1 #define pr_fmt(fmt) "SVM: " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28
29 #include <asm/apic.h>
30 #include <asm/perf_event.h>
31 #include <asm/tlbflush.h>
32 #include <asm/desc.h>
33 #include <asm/debugreg.h>
34 #include <asm/kvm_para.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/mce.h>
37 #include <asm/spec-ctrl.h>
38 #include <asm/cpu_device_id.h>
39
40 #include <asm/virtext.h>
41 #include "trace.h"
42
43 #include "svm.h"
44
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49
50 #ifdef MODULE
51 static const struct x86_cpu_id svm_cpu_id[] = {
52 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
53 {}
54 };
55 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
56 #endif
57
58 #define IOPM_ALLOC_ORDER 2
59 #define MSRPM_ALLOC_ORDER 1
60
61 #define SEG_TYPE_LDT 2
62 #define SEG_TYPE_BUSY_TSS16 3
63
64 #define SVM_FEATURE_LBRV (1 << 1)
65 #define SVM_FEATURE_SVML (1 << 2)
66 #define SVM_FEATURE_TSC_RATE (1 << 4)
67 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
68 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
69 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
70 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
71
72 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
73
74 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
75 #define TSC_RATIO_MIN 0x0000000000000001ULL
76 #define TSC_RATIO_MAX 0x000000ffffffffffULL
77
78 static bool erratum_383_found __read_mostly;
79
80 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
81
82 /*
83 * Set osvw_len to higher value when updated Revision Guides
84 * are published and we know what the new status bits are
85 */
86 static uint64_t osvw_len = 4, osvw_status;
87
88 static DEFINE_PER_CPU(u64, current_tsc_ratio);
89 #define TSC_RATIO_DEFAULT 0x0100000000ULL
90
91 static const struct svm_direct_access_msrs {
92 u32 index; /* Index of the MSR */
93 bool always; /* True if intercept is always on */
94 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
95 { .index = MSR_STAR, .always = true },
96 { .index = MSR_IA32_SYSENTER_CS, .always = true },
97 #ifdef CONFIG_X86_64
98 { .index = MSR_GS_BASE, .always = true },
99 { .index = MSR_FS_BASE, .always = true },
100 { .index = MSR_KERNEL_GS_BASE, .always = true },
101 { .index = MSR_LSTAR, .always = true },
102 { .index = MSR_CSTAR, .always = true },
103 { .index = MSR_SYSCALL_MASK, .always = true },
104 #endif
105 { .index = MSR_IA32_SPEC_CTRL, .always = false },
106 { .index = MSR_IA32_PRED_CMD, .always = false },
107 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
108 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
109 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
110 { .index = MSR_IA32_LASTINTTOIP, .always = false },
111 { .index = MSR_INVALID, .always = false },
112 };
113
114 /* enable NPT for AMD64 and X86 with PAE */
115 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
116 bool npt_enabled = true;
117 #else
118 bool npt_enabled;
119 #endif
120
121 /*
122 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
123 * pause_filter_count: On processors that support Pause filtering(indicated
124 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
125 * count value. On VMRUN this value is loaded into an internal counter.
126 * Each time a pause instruction is executed, this counter is decremented
127 * until it reaches zero at which time a #VMEXIT is generated if pause
128 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
129 * Intercept Filtering for more details.
130 * This also indicate if ple logic enabled.
131 *
132 * pause_filter_thresh: In addition, some processor families support advanced
133 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
134 * the amount of time a guest is allowed to execute in a pause loop.
135 * In this mode, a 16-bit pause filter threshold field is added in the
136 * VMCB. The threshold value is a cycle count that is used to reset the
137 * pause counter. As with simple pause filtering, VMRUN loads the pause
138 * count value from VMCB into an internal counter. Then, on each pause
139 * instruction the hardware checks the elapsed number of cycles since
140 * the most recent pause instruction against the pause filter threshold.
141 * If the elapsed cycle count is greater than the pause filter threshold,
142 * then the internal pause count is reloaded from the VMCB and execution
143 * continues. If the elapsed cycle count is less than the pause filter
144 * threshold, then the internal pause count is decremented. If the count
145 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
146 * triggered. If advanced pause filtering is supported and pause filter
147 * threshold field is set to zero, the filter will operate in the simpler,
148 * count only mode.
149 */
150
151 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
152 module_param(pause_filter_thresh, ushort, 0444);
153
154 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
155 module_param(pause_filter_count, ushort, 0444);
156
157 /* Default doubles per-vcpu window every exit. */
158 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
159 module_param(pause_filter_count_grow, ushort, 0444);
160
161 /* Default resets per-vcpu window every exit to pause_filter_count. */
162 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
163 module_param(pause_filter_count_shrink, ushort, 0444);
164
165 /* Default is to compute the maximum so we can never overflow. */
166 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
167 module_param(pause_filter_count_max, ushort, 0444);
168
169 /* allow nested paging (virtualized MMU) for all guests */
170 static int npt = true;
171 module_param(npt, int, S_IRUGO);
172
173 /* allow nested virtualization in KVM/SVM */
174 static int nested = true;
175 module_param(nested, int, S_IRUGO);
176
177 /* enable/disable Next RIP Save */
178 static int nrips = true;
179 module_param(nrips, int, 0444);
180
181 /* enable/disable Virtual VMLOAD VMSAVE */
182 static int vls = true;
183 module_param(vls, int, 0444);
184
185 /* enable/disable Virtual GIF */
186 static int vgif = true;
187 module_param(vgif, int, 0444);
188
189 /* enable/disable SEV support */
190 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
191 module_param(sev, int, 0444);
192
193 static bool __read_mostly dump_invalid_vmcb = 0;
194 module_param(dump_invalid_vmcb, bool, 0644);
195
196 static u8 rsm_ins_bytes[] = "\x0f\xaa";
197
198 static void svm_complete_interrupts(struct vcpu_svm *svm);
199
200 static unsigned long iopm_base;
201
202 struct kvm_ldttss_desc {
203 u16 limit0;
204 u16 base0;
205 unsigned base1:8, type:5, dpl:2, p:1;
206 unsigned limit1:4, zero0:3, g:1, base2:8;
207 u32 base3;
208 u32 zero1;
209 } __attribute__((packed));
210
211 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
212
213 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
214
215 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
216 #define MSRS_RANGE_SIZE 2048
217 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
218
svm_msrpm_offset(u32 msr)219 u32 svm_msrpm_offset(u32 msr)
220 {
221 u32 offset;
222 int i;
223
224 for (i = 0; i < NUM_MSR_MAPS; i++) {
225 if (msr < msrpm_ranges[i] ||
226 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
227 continue;
228
229 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
230 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
231
232 /* Now we have the u8 offset - but need the u32 offset */
233 return offset / 4;
234 }
235
236 /* MSR not in any range */
237 return MSR_INVALID;
238 }
239
240 #define MAX_INST_SIZE 15
241
clgi(void)242 static inline void clgi(void)
243 {
244 asm volatile (__ex("clgi"));
245 }
246
stgi(void)247 static inline void stgi(void)
248 {
249 asm volatile (__ex("stgi"));
250 }
251
invlpga(unsigned long addr,u32 asid)252 static inline void invlpga(unsigned long addr, u32 asid)
253 {
254 asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
255 }
256
get_max_npt_level(void)257 static int get_max_npt_level(void)
258 {
259 #ifdef CONFIG_X86_64
260 return PT64_ROOT_4LEVEL;
261 #else
262 return PT32E_ROOT_LEVEL;
263 #endif
264 }
265
svm_set_efer(struct kvm_vcpu * vcpu,u64 efer)266 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
267 {
268 struct vcpu_svm *svm = to_svm(vcpu);
269 u64 old_efer = vcpu->arch.efer;
270 vcpu->arch.efer = efer;
271
272 if (!npt_enabled) {
273 /* Shadow paging assumes NX to be available. */
274 efer |= EFER_NX;
275
276 if (!(efer & EFER_LMA))
277 efer &= ~EFER_LME;
278 }
279
280 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
281 if (!(efer & EFER_SVME)) {
282 svm_leave_nested(vcpu);
283 svm_set_gif(svm, true);
284
285 /*
286 * Free the nested guest state, unless we are in SMM.
287 * In this case we will return to the nested guest
288 * as soon as we leave SMM.
289 */
290 if (!is_smm(&svm->vcpu))
291 svm_free_nested(svm);
292
293 } else {
294 int ret = svm_allocate_nested(svm);
295
296 if (ret) {
297 vcpu->arch.efer = old_efer;
298 return ret;
299 }
300 }
301 }
302
303 svm->vmcb->save.efer = efer | EFER_SVME;
304 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
305 return 0;
306 }
307
svm_get_interrupt_shadow(struct kvm_vcpu * vcpu)308 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
309 {
310 struct vcpu_svm *svm = to_svm(vcpu);
311 u32 ret = 0;
312
313 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
314 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
315 return ret;
316 }
317
svm_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)318 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
319 {
320 struct vcpu_svm *svm = to_svm(vcpu);
321
322 if (mask == 0)
323 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
324 else
325 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
326
327 }
328
skip_emulated_instruction(struct kvm_vcpu * vcpu)329 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
330 {
331 struct vcpu_svm *svm = to_svm(vcpu);
332
333 if (nrips && svm->vmcb->control.next_rip != 0) {
334 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
335 svm->next_rip = svm->vmcb->control.next_rip;
336 }
337
338 if (!svm->next_rip) {
339 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
340 return 0;
341 } else {
342 kvm_rip_write(vcpu, svm->next_rip);
343 }
344 svm_set_interrupt_shadow(vcpu, 0);
345
346 return 1;
347 }
348
svm_queue_exception(struct kvm_vcpu * vcpu)349 static void svm_queue_exception(struct kvm_vcpu *vcpu)
350 {
351 struct vcpu_svm *svm = to_svm(vcpu);
352 unsigned nr = vcpu->arch.exception.nr;
353 bool has_error_code = vcpu->arch.exception.has_error_code;
354 u32 error_code = vcpu->arch.exception.error_code;
355
356 kvm_deliver_exception_payload(&svm->vcpu);
357
358 if (nr == BP_VECTOR && !nrips) {
359 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
360
361 /*
362 * For guest debugging where we have to reinject #BP if some
363 * INT3 is guest-owned:
364 * Emulate nRIP by moving RIP forward. Will fail if injection
365 * raises a fault that is not intercepted. Still better than
366 * failing in all cases.
367 */
368 (void)skip_emulated_instruction(&svm->vcpu);
369 rip = kvm_rip_read(&svm->vcpu);
370 svm->int3_rip = rip + svm->vmcb->save.cs.base;
371 svm->int3_injected = rip - old_rip;
372 }
373
374 svm->vmcb->control.event_inj = nr
375 | SVM_EVTINJ_VALID
376 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
377 | SVM_EVTINJ_TYPE_EXEPT;
378 svm->vmcb->control.event_inj_err = error_code;
379 }
380
svm_init_erratum_383(void)381 static void svm_init_erratum_383(void)
382 {
383 u32 low, high;
384 int err;
385 u64 val;
386
387 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
388 return;
389
390 /* Use _safe variants to not break nested virtualization */
391 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
392 if (err)
393 return;
394
395 val |= (1ULL << 47);
396
397 low = lower_32_bits(val);
398 high = upper_32_bits(val);
399
400 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
401
402 erratum_383_found = true;
403 }
404
svm_init_osvw(struct kvm_vcpu * vcpu)405 static void svm_init_osvw(struct kvm_vcpu *vcpu)
406 {
407 /*
408 * Guests should see errata 400 and 415 as fixed (assuming that
409 * HLT and IO instructions are intercepted).
410 */
411 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
412 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
413
414 /*
415 * By increasing VCPU's osvw.length to 3 we are telling the guest that
416 * all osvw.status bits inside that length, including bit 0 (which is
417 * reserved for erratum 298), are valid. However, if host processor's
418 * osvw_len is 0 then osvw_status[0] carries no information. We need to
419 * be conservative here and therefore we tell the guest that erratum 298
420 * is present (because we really don't know).
421 */
422 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
423 vcpu->arch.osvw.status |= 1;
424 }
425
has_svm(void)426 static int has_svm(void)
427 {
428 const char *msg;
429
430 if (!cpu_has_svm(&msg)) {
431 printk(KERN_INFO "has_svm: %s\n", msg);
432 return 0;
433 }
434
435 if (sev_active()) {
436 pr_info("KVM is unsupported when running as an SEV guest\n");
437 return 0;
438 }
439
440 return 1;
441 }
442
svm_hardware_disable(void)443 static void svm_hardware_disable(void)
444 {
445 /* Make sure we clean up behind us */
446 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
447 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
448
449 cpu_svm_disable();
450
451 amd_pmu_disable_virt();
452 }
453
svm_hardware_enable(void)454 static int svm_hardware_enable(void)
455 {
456
457 struct svm_cpu_data *sd;
458 uint64_t efer;
459 struct desc_struct *gdt;
460 int me = raw_smp_processor_id();
461
462 rdmsrl(MSR_EFER, efer);
463 if (efer & EFER_SVME)
464 return -EBUSY;
465
466 if (!has_svm()) {
467 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
468 return -EINVAL;
469 }
470 sd = per_cpu(svm_data, me);
471 if (!sd) {
472 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
473 return -EINVAL;
474 }
475
476 sd->asid_generation = 1;
477 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
478 sd->next_asid = sd->max_asid + 1;
479 sd->min_asid = max_sev_asid + 1;
480
481 gdt = get_current_gdt_rw();
482 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
483
484 wrmsrl(MSR_EFER, efer | EFER_SVME);
485
486 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
487
488 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
489 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
490 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
491 }
492
493
494 /*
495 * Get OSVW bits.
496 *
497 * Note that it is possible to have a system with mixed processor
498 * revisions and therefore different OSVW bits. If bits are not the same
499 * on different processors then choose the worst case (i.e. if erratum
500 * is present on one processor and not on another then assume that the
501 * erratum is present everywhere).
502 */
503 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
504 uint64_t len, status = 0;
505 int err;
506
507 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
508 if (!err)
509 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
510 &err);
511
512 if (err)
513 osvw_status = osvw_len = 0;
514 else {
515 if (len < osvw_len)
516 osvw_len = len;
517 osvw_status |= status;
518 osvw_status &= (1ULL << osvw_len) - 1;
519 }
520 } else
521 osvw_status = osvw_len = 0;
522
523 svm_init_erratum_383();
524
525 amd_pmu_enable_virt();
526
527 return 0;
528 }
529
svm_cpu_uninit(int cpu)530 static void svm_cpu_uninit(int cpu)
531 {
532 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
533
534 if (!sd)
535 return;
536
537 per_cpu(svm_data, cpu) = NULL;
538 kfree(sd->sev_vmcbs);
539 __free_page(sd->save_area);
540 kfree(sd);
541 }
542
svm_cpu_init(int cpu)543 static int svm_cpu_init(int cpu)
544 {
545 struct svm_cpu_data *sd;
546
547 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
548 if (!sd)
549 return -ENOMEM;
550 sd->cpu = cpu;
551 sd->save_area = alloc_page(GFP_KERNEL);
552 if (!sd->save_area)
553 goto free_cpu_data;
554
555 if (svm_sev_enabled()) {
556 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
557 sizeof(void *),
558 GFP_KERNEL);
559 if (!sd->sev_vmcbs)
560 goto free_save_area;
561 }
562
563 per_cpu(svm_data, cpu) = sd;
564
565 return 0;
566
567 free_save_area:
568 __free_page(sd->save_area);
569 free_cpu_data:
570 kfree(sd);
571 return -ENOMEM;
572
573 }
574
direct_access_msr_slot(u32 msr)575 static int direct_access_msr_slot(u32 msr)
576 {
577 u32 i;
578
579 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
580 if (direct_access_msrs[i].index == msr)
581 return i;
582
583 return -ENOENT;
584 }
585
set_shadow_msr_intercept(struct kvm_vcpu * vcpu,u32 msr,int read,int write)586 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
587 int write)
588 {
589 struct vcpu_svm *svm = to_svm(vcpu);
590 int slot = direct_access_msr_slot(msr);
591
592 if (slot == -ENOENT)
593 return;
594
595 /* Set the shadow bitmaps to the desired intercept states */
596 if (read)
597 set_bit(slot, svm->shadow_msr_intercept.read);
598 else
599 clear_bit(slot, svm->shadow_msr_intercept.read);
600
601 if (write)
602 set_bit(slot, svm->shadow_msr_intercept.write);
603 else
604 clear_bit(slot, svm->shadow_msr_intercept.write);
605 }
606
valid_msr_intercept(u32 index)607 static bool valid_msr_intercept(u32 index)
608 {
609 return direct_access_msr_slot(index) != -ENOENT;
610 }
611
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)612 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
613 {
614 u8 bit_write;
615 unsigned long tmp;
616 u32 offset;
617 u32 *msrpm;
618
619 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
620 to_svm(vcpu)->msrpm;
621
622 offset = svm_msrpm_offset(msr);
623 bit_write = 2 * (msr & 0x0f) + 1;
624 tmp = msrpm[offset];
625
626 BUG_ON(offset == MSR_INVALID);
627
628 return !!test_bit(bit_write, &tmp);
629 }
630
set_msr_interception_bitmap(struct kvm_vcpu * vcpu,u32 * msrpm,u32 msr,int read,int write)631 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
632 u32 msr, int read, int write)
633 {
634 u8 bit_read, bit_write;
635 unsigned long tmp;
636 u32 offset;
637
638 /*
639 * If this warning triggers extend the direct_access_msrs list at the
640 * beginning of the file
641 */
642 WARN_ON(!valid_msr_intercept(msr));
643
644 /* Enforce non allowed MSRs to trap */
645 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
646 read = 0;
647
648 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
649 write = 0;
650
651 offset = svm_msrpm_offset(msr);
652 bit_read = 2 * (msr & 0x0f);
653 bit_write = 2 * (msr & 0x0f) + 1;
654 tmp = msrpm[offset];
655
656 BUG_ON(offset == MSR_INVALID);
657
658 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
659 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
660
661 msrpm[offset] = tmp;
662 }
663
set_msr_interception(struct kvm_vcpu * vcpu,u32 * msrpm,u32 msr,int read,int write)664 static void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
665 int read, int write)
666 {
667 set_shadow_msr_intercept(vcpu, msr, read, write);
668 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
669 }
670
svm_vcpu_alloc_msrpm(void)671 u32 *svm_vcpu_alloc_msrpm(void)
672 {
673 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
674 u32 *msrpm;
675
676 if (!pages)
677 return NULL;
678
679 msrpm = page_address(pages);
680 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
681
682 return msrpm;
683 }
684
svm_vcpu_init_msrpm(struct kvm_vcpu * vcpu,u32 * msrpm)685 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
686 {
687 int i;
688
689 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
690 if (!direct_access_msrs[i].always)
691 continue;
692 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
693 }
694 }
695
696
svm_vcpu_free_msrpm(u32 * msrpm)697 void svm_vcpu_free_msrpm(u32 *msrpm)
698 {
699 __free_pages(virt_to_page(msrpm), MSRPM_ALLOC_ORDER);
700 }
701
svm_msr_filter_changed(struct kvm_vcpu * vcpu)702 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
703 {
704 struct vcpu_svm *svm = to_svm(vcpu);
705 u32 i;
706
707 /*
708 * Set intercept permissions for all direct access MSRs again. They
709 * will automatically get filtered through the MSR filter, so we are
710 * back in sync after this.
711 */
712 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
713 u32 msr = direct_access_msrs[i].index;
714 u32 read = test_bit(i, svm->shadow_msr_intercept.read);
715 u32 write = test_bit(i, svm->shadow_msr_intercept.write);
716
717 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
718 }
719 }
720
add_msr_offset(u32 offset)721 static void add_msr_offset(u32 offset)
722 {
723 int i;
724
725 for (i = 0; i < MSRPM_OFFSETS; ++i) {
726
727 /* Offset already in list? */
728 if (msrpm_offsets[i] == offset)
729 return;
730
731 /* Slot used by another offset? */
732 if (msrpm_offsets[i] != MSR_INVALID)
733 continue;
734
735 /* Add offset to list */
736 msrpm_offsets[i] = offset;
737
738 return;
739 }
740
741 /*
742 * If this BUG triggers the msrpm_offsets table has an overflow. Just
743 * increase MSRPM_OFFSETS in this case.
744 */
745 BUG();
746 }
747
init_msrpm_offsets(void)748 static void init_msrpm_offsets(void)
749 {
750 int i;
751
752 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
753
754 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
755 u32 offset;
756
757 offset = svm_msrpm_offset(direct_access_msrs[i].index);
758 BUG_ON(offset == MSR_INVALID);
759
760 add_msr_offset(offset);
761 }
762 }
763
svm_enable_lbrv(struct kvm_vcpu * vcpu)764 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
765 {
766 struct vcpu_svm *svm = to_svm(vcpu);
767
768 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
769 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
770 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
771 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
772 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
773 }
774
svm_disable_lbrv(struct kvm_vcpu * vcpu)775 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
776 {
777 struct vcpu_svm *svm = to_svm(vcpu);
778
779 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
780 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
781 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
782 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
783 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
784 }
785
disable_nmi_singlestep(struct vcpu_svm * svm)786 void disable_nmi_singlestep(struct vcpu_svm *svm)
787 {
788 svm->nmi_singlestep = false;
789
790 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
791 /* Clear our flags if they were not set by the guest */
792 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
793 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
794 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
795 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
796 }
797 }
798
grow_ple_window(struct kvm_vcpu * vcpu)799 static void grow_ple_window(struct kvm_vcpu *vcpu)
800 {
801 struct vcpu_svm *svm = to_svm(vcpu);
802 struct vmcb_control_area *control = &svm->vmcb->control;
803 int old = control->pause_filter_count;
804
805 control->pause_filter_count = __grow_ple_window(old,
806 pause_filter_count,
807 pause_filter_count_grow,
808 pause_filter_count_max);
809
810 if (control->pause_filter_count != old) {
811 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
812 trace_kvm_ple_window_update(vcpu->vcpu_id,
813 control->pause_filter_count, old);
814 }
815 }
816
shrink_ple_window(struct kvm_vcpu * vcpu)817 static void shrink_ple_window(struct kvm_vcpu *vcpu)
818 {
819 struct vcpu_svm *svm = to_svm(vcpu);
820 struct vmcb_control_area *control = &svm->vmcb->control;
821 int old = control->pause_filter_count;
822
823 control->pause_filter_count =
824 __shrink_ple_window(old,
825 pause_filter_count,
826 pause_filter_count_shrink,
827 pause_filter_count);
828 if (control->pause_filter_count != old) {
829 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
830 trace_kvm_ple_window_update(vcpu->vcpu_id,
831 control->pause_filter_count, old);
832 }
833 }
834
835 /*
836 * The default MMIO mask is a single bit (excluding the present bit),
837 * which could conflict with the memory encryption bit. Check for
838 * memory encryption support and override the default MMIO mask if
839 * memory encryption is enabled.
840 */
svm_adjust_mmio_mask(void)841 static __init void svm_adjust_mmio_mask(void)
842 {
843 unsigned int enc_bit, mask_bit;
844 u64 msr, mask;
845
846 /* If there is no memory encryption support, use existing mask */
847 if (cpuid_eax(0x80000000) < 0x8000001f)
848 return;
849
850 /* If memory encryption is not enabled, use existing mask */
851 rdmsrl(MSR_K8_SYSCFG, msr);
852 if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
853 return;
854
855 enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
856 mask_bit = boot_cpu_data.x86_phys_bits;
857
858 /* Increment the mask bit if it is the same as the encryption bit */
859 if (enc_bit == mask_bit)
860 mask_bit++;
861
862 /*
863 * If the mask bit location is below 52, then some bits above the
864 * physical addressing limit will always be reserved, so use the
865 * rsvd_bits() function to generate the mask. This mask, along with
866 * the present bit, will be used to generate a page fault with
867 * PFER.RSV = 1.
868 *
869 * If the mask bit location is 52 (or above), then clear the mask.
870 */
871 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
872
873 kvm_mmu_set_mmio_spte_mask(mask, PT_WRITABLE_MASK | PT_USER_MASK);
874 }
875
svm_hardware_teardown(void)876 static void svm_hardware_teardown(void)
877 {
878 int cpu;
879
880 if (svm_sev_enabled())
881 sev_hardware_teardown();
882
883 for_each_possible_cpu(cpu)
884 svm_cpu_uninit(cpu);
885
886 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
887 iopm_base = 0;
888 }
889
svm_set_cpu_caps(void)890 static __init void svm_set_cpu_caps(void)
891 {
892 kvm_set_cpu_caps();
893
894 supported_xss = 0;
895
896 /* CPUID 0x80000001 and 0x8000000A (SVM features) */
897 if (nested) {
898 kvm_cpu_cap_set(X86_FEATURE_SVM);
899
900 if (nrips)
901 kvm_cpu_cap_set(X86_FEATURE_NRIPS);
902
903 if (npt_enabled)
904 kvm_cpu_cap_set(X86_FEATURE_NPT);
905 }
906
907 /* CPUID 0x80000008 */
908 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
909 boot_cpu_has(X86_FEATURE_AMD_SSBD))
910 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
911
912 /* Enable INVPCID feature */
913 kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
914 }
915
svm_hardware_setup(void)916 static __init int svm_hardware_setup(void)
917 {
918 int cpu;
919 struct page *iopm_pages;
920 void *iopm_va;
921 int r;
922
923 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
924
925 if (!iopm_pages)
926 return -ENOMEM;
927
928 iopm_va = page_address(iopm_pages);
929 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
930 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
931
932 init_msrpm_offsets();
933
934 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
935
936 if (boot_cpu_has(X86_FEATURE_NX))
937 kvm_enable_efer_bits(EFER_NX);
938
939 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
940 kvm_enable_efer_bits(EFER_FFXSR);
941
942 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
943 kvm_has_tsc_control = true;
944 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
945 kvm_tsc_scaling_ratio_frac_bits = 32;
946 }
947
948 /* Check for pause filtering support */
949 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
950 pause_filter_count = 0;
951 pause_filter_thresh = 0;
952 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
953 pause_filter_thresh = 0;
954 }
955
956 if (nested) {
957 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
958 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
959 }
960
961 if (sev) {
962 if (boot_cpu_has(X86_FEATURE_SEV) &&
963 IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
964 r = sev_hardware_setup();
965 if (r)
966 sev = false;
967 } else {
968 sev = false;
969 }
970 }
971
972 svm_adjust_mmio_mask();
973
974 for_each_possible_cpu(cpu) {
975 r = svm_cpu_init(cpu);
976 if (r)
977 goto err;
978 }
979
980 if (!boot_cpu_has(X86_FEATURE_NPT))
981 npt_enabled = false;
982
983 if (npt_enabled && !npt)
984 npt_enabled = false;
985
986 kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G);
987 pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
988
989 if (nrips) {
990 if (!boot_cpu_has(X86_FEATURE_NRIPS))
991 nrips = false;
992 }
993
994 if (avic) {
995 if (!npt_enabled ||
996 !boot_cpu_has(X86_FEATURE_AVIC) ||
997 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
998 avic = false;
999 } else {
1000 pr_info("AVIC enabled\n");
1001
1002 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1003 }
1004 }
1005
1006 if (vls) {
1007 if (!npt_enabled ||
1008 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1009 !IS_ENABLED(CONFIG_X86_64)) {
1010 vls = false;
1011 } else {
1012 pr_info("Virtual VMLOAD VMSAVE supported\n");
1013 }
1014 }
1015
1016 if (vgif) {
1017 if (!boot_cpu_has(X86_FEATURE_VGIF))
1018 vgif = false;
1019 else
1020 pr_info("Virtual GIF supported\n");
1021 }
1022
1023 svm_set_cpu_caps();
1024
1025 /*
1026 * It seems that on AMD processors PTE's accessed bit is
1027 * being set by the CPU hardware before the NPF vmexit.
1028 * This is not expected behaviour and our tests fail because
1029 * of it.
1030 * A workaround here is to disable support for
1031 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
1032 * In this case userspace can know if there is support using
1033 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
1034 * it
1035 * If future AMD CPU models change the behaviour described above,
1036 * this variable can be changed accordingly
1037 */
1038 allow_smaller_maxphyaddr = !npt_enabled;
1039
1040 return 0;
1041
1042 err:
1043 svm_hardware_teardown();
1044 return r;
1045 }
1046
init_seg(struct vmcb_seg * seg)1047 static void init_seg(struct vmcb_seg *seg)
1048 {
1049 seg->selector = 0;
1050 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1051 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1052 seg->limit = 0xffff;
1053 seg->base = 0;
1054 }
1055
init_sys_seg(struct vmcb_seg * seg,uint32_t type)1056 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1057 {
1058 seg->selector = 0;
1059 seg->attrib = SVM_SELECTOR_P_MASK | type;
1060 seg->limit = 0xffff;
1061 seg->base = 0;
1062 }
1063
svm_write_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1064 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1065 {
1066 struct vcpu_svm *svm = to_svm(vcpu);
1067 u64 g_tsc_offset = 0;
1068
1069 if (is_guest_mode(vcpu)) {
1070 /* Write L1's TSC offset. */
1071 g_tsc_offset = svm->vmcb->control.tsc_offset -
1072 svm->nested.hsave->control.tsc_offset;
1073 svm->nested.hsave->control.tsc_offset = offset;
1074 }
1075
1076 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1077 svm->vmcb->control.tsc_offset - g_tsc_offset,
1078 offset);
1079
1080 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1081
1082 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1083 return svm->vmcb->control.tsc_offset;
1084 }
1085
svm_check_invpcid(struct vcpu_svm * svm)1086 static void svm_check_invpcid(struct vcpu_svm *svm)
1087 {
1088 /*
1089 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1090 * roots, or if INVPCID is disabled in the guest to inject #UD.
1091 */
1092 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1093 if (!npt_enabled ||
1094 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1095 svm_set_intercept(svm, INTERCEPT_INVPCID);
1096 else
1097 svm_clr_intercept(svm, INTERCEPT_INVPCID);
1098 }
1099 }
1100
init_vmcb(struct vcpu_svm * svm)1101 static void init_vmcb(struct vcpu_svm *svm)
1102 {
1103 struct vmcb_control_area *control = &svm->vmcb->control;
1104 struct vmcb_save_area *save = &svm->vmcb->save;
1105
1106 svm->vcpu.arch.hflags = 0;
1107
1108 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1109 svm_set_intercept(svm, INTERCEPT_CR3_READ);
1110 svm_set_intercept(svm, INTERCEPT_CR4_READ);
1111 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1112 svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1113 svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1114 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1115 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1116
1117 set_dr_intercepts(svm);
1118
1119 set_exception_intercept(svm, PF_VECTOR);
1120 set_exception_intercept(svm, UD_VECTOR);
1121 set_exception_intercept(svm, MC_VECTOR);
1122 set_exception_intercept(svm, AC_VECTOR);
1123 set_exception_intercept(svm, DB_VECTOR);
1124 /*
1125 * Guest access to VMware backdoor ports could legitimately
1126 * trigger #GP because of TSS I/O permission bitmap.
1127 * We intercept those #GP and allow access to them anyway
1128 * as VMware does.
1129 */
1130 if (enable_vmware_backdoor)
1131 set_exception_intercept(svm, GP_VECTOR);
1132
1133 svm_set_intercept(svm, INTERCEPT_INTR);
1134 svm_set_intercept(svm, INTERCEPT_NMI);
1135 svm_set_intercept(svm, INTERCEPT_SMI);
1136 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1137 svm_set_intercept(svm, INTERCEPT_RDPMC);
1138 svm_set_intercept(svm, INTERCEPT_CPUID);
1139 svm_set_intercept(svm, INTERCEPT_INVD);
1140 svm_set_intercept(svm, INTERCEPT_INVLPG);
1141 svm_set_intercept(svm, INTERCEPT_INVLPGA);
1142 svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1143 svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1144 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1145 svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1146 svm_set_intercept(svm, INTERCEPT_VMRUN);
1147 svm_set_intercept(svm, INTERCEPT_VMMCALL);
1148 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1149 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1150 svm_set_intercept(svm, INTERCEPT_STGI);
1151 svm_set_intercept(svm, INTERCEPT_CLGI);
1152 svm_set_intercept(svm, INTERCEPT_SKINIT);
1153 svm_set_intercept(svm, INTERCEPT_WBINVD);
1154 svm_set_intercept(svm, INTERCEPT_XSETBV);
1155 svm_set_intercept(svm, INTERCEPT_RDPRU);
1156 svm_set_intercept(svm, INTERCEPT_RSM);
1157
1158 if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1159 svm_set_intercept(svm, INTERCEPT_MONITOR);
1160 svm_set_intercept(svm, INTERCEPT_MWAIT);
1161 }
1162
1163 if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1164 svm_set_intercept(svm, INTERCEPT_HLT);
1165
1166 control->iopm_base_pa = __sme_set(iopm_base);
1167 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1168 control->int_ctl = V_INTR_MASKING_MASK;
1169
1170 init_seg(&save->es);
1171 init_seg(&save->ss);
1172 init_seg(&save->ds);
1173 init_seg(&save->fs);
1174 init_seg(&save->gs);
1175
1176 save->cs.selector = 0xf000;
1177 save->cs.base = 0xffff0000;
1178 /* Executable/Readable Code Segment */
1179 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1180 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1181 save->cs.limit = 0xffff;
1182
1183 save->gdtr.limit = 0xffff;
1184 save->idtr.limit = 0xffff;
1185
1186 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1187 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1188
1189 svm_set_cr4(&svm->vcpu, 0);
1190 svm_set_efer(&svm->vcpu, 0);
1191 save->dr6 = 0xffff0ff0;
1192 kvm_set_rflags(&svm->vcpu, 2);
1193 save->rip = 0x0000fff0;
1194 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1195
1196 /*
1197 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1198 * It also updates the guest-visible cr0 value.
1199 */
1200 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1201 kvm_mmu_reset_context(&svm->vcpu);
1202
1203 save->cr4 = X86_CR4_PAE;
1204 /* rdx = ?? */
1205
1206 if (npt_enabled) {
1207 /* Setup VMCB for Nested Paging */
1208 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1209 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1210 clr_exception_intercept(svm, PF_VECTOR);
1211 svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1212 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1213 save->g_pat = svm->vcpu.arch.pat;
1214 save->cr3 = 0;
1215 save->cr4 = 0;
1216 }
1217 svm->asid_generation = 0;
1218
1219 svm->nested.vmcb12_gpa = 0;
1220 svm->vcpu.arch.hflags = 0;
1221
1222 if (!kvm_pause_in_guest(svm->vcpu.kvm)) {
1223 control->pause_filter_count = pause_filter_count;
1224 if (pause_filter_thresh)
1225 control->pause_filter_thresh = pause_filter_thresh;
1226 svm_set_intercept(svm, INTERCEPT_PAUSE);
1227 } else {
1228 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1229 }
1230
1231 svm_check_invpcid(svm);
1232
1233 if (kvm_vcpu_apicv_active(&svm->vcpu))
1234 avic_init_vmcb(svm);
1235
1236 /*
1237 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1238 * in VMCB and clear intercepts to avoid #VMEXIT.
1239 */
1240 if (vls) {
1241 svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1242 svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1243 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1244 }
1245
1246 if (vgif) {
1247 svm_clr_intercept(svm, INTERCEPT_STGI);
1248 svm_clr_intercept(svm, INTERCEPT_CLGI);
1249 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1250 }
1251
1252 if (sev_guest(svm->vcpu.kvm)) {
1253 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1254 clr_exception_intercept(svm, UD_VECTOR);
1255 }
1256
1257 vmcb_mark_all_dirty(svm->vmcb);
1258
1259 enable_gif(svm);
1260
1261 }
1262
svm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)1263 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1264 {
1265 struct vcpu_svm *svm = to_svm(vcpu);
1266 u32 dummy;
1267 u32 eax = 1;
1268
1269 svm->spec_ctrl = 0;
1270 svm->virt_spec_ctrl = 0;
1271
1272 if (!init_event) {
1273 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1274 MSR_IA32_APICBASE_ENABLE;
1275 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1276 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1277 }
1278 init_vmcb(svm);
1279
1280 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false);
1281 kvm_rdx_write(vcpu, eax);
1282
1283 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1284 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1285 }
1286
svm_create_vcpu(struct kvm_vcpu * vcpu)1287 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
1288 {
1289 struct vcpu_svm *svm;
1290 struct page *vmcb_page;
1291 int err;
1292
1293 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1294 svm = to_svm(vcpu);
1295
1296 err = -ENOMEM;
1297 vmcb_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1298 if (!vmcb_page)
1299 goto out;
1300
1301 err = avic_init_vcpu(svm);
1302 if (err)
1303 goto error_free_vmcb_page;
1304
1305 /* We initialize this flag to true to make sure that the is_running
1306 * bit would be set the first time the vcpu is loaded.
1307 */
1308 if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
1309 svm->avic_is_running = true;
1310
1311 svm->msrpm = svm_vcpu_alloc_msrpm();
1312 if (!svm->msrpm) {
1313 err = -ENOMEM;
1314 goto error_free_vmcb_page;
1315 }
1316
1317 svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1318
1319 svm->vmcb = page_address(vmcb_page);
1320 svm->vmcb_pa = __sme_set(page_to_pfn(vmcb_page) << PAGE_SHIFT);
1321 svm->asid_generation = 0;
1322 init_vmcb(svm);
1323
1324 svm_init_osvw(vcpu);
1325 vcpu->arch.microcode_version = 0x01000065;
1326
1327 return 0;
1328
1329 error_free_vmcb_page:
1330 __free_page(vmcb_page);
1331 out:
1332 return err;
1333 }
1334
svm_clear_current_vmcb(struct vmcb * vmcb)1335 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1336 {
1337 int i;
1338
1339 for_each_online_cpu(i)
1340 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1341 }
1342
svm_free_vcpu(struct kvm_vcpu * vcpu)1343 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1344 {
1345 struct vcpu_svm *svm = to_svm(vcpu);
1346
1347 /*
1348 * The vmcb page can be recycled, causing a false negative in
1349 * svm_vcpu_load(). So, ensure that no logical CPU has this
1350 * vmcb page recorded as its current vmcb.
1351 */
1352 svm_clear_current_vmcb(svm->vmcb);
1353
1354 svm_leave_nested(vcpu);
1355 svm_free_nested(svm);
1356
1357 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
1358 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1359 }
1360
svm_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1361 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1362 {
1363 struct vcpu_svm *svm = to_svm(vcpu);
1364 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1365 int i;
1366
1367 if (unlikely(cpu != vcpu->cpu)) {
1368 svm->asid_generation = 0;
1369 vmcb_mark_all_dirty(svm->vmcb);
1370 }
1371
1372 #ifdef CONFIG_X86_64
1373 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1374 #endif
1375 savesegment(fs, svm->host.fs);
1376 savesegment(gs, svm->host.gs);
1377 svm->host.ldt = kvm_read_ldt();
1378
1379 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1380 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1381
1382 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1383 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1384 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1385 __this_cpu_write(current_tsc_ratio, tsc_ratio);
1386 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1387 }
1388 }
1389 /* This assumes that the kernel never uses MSR_TSC_AUX */
1390 if (static_cpu_has(X86_FEATURE_RDTSCP))
1391 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1392
1393 if (sd->current_vmcb != svm->vmcb) {
1394 sd->current_vmcb = svm->vmcb;
1395
1396 if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT))
1397 indirect_branch_prediction_barrier();
1398 }
1399 avic_vcpu_load(vcpu, cpu);
1400 }
1401
svm_vcpu_put(struct kvm_vcpu * vcpu)1402 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1403 {
1404 struct vcpu_svm *svm = to_svm(vcpu);
1405 int i;
1406
1407 avic_vcpu_put(vcpu);
1408
1409 ++vcpu->stat.host_state_reload;
1410 kvm_load_ldt(svm->host.ldt);
1411 #ifdef CONFIG_X86_64
1412 loadsegment(fs, svm->host.fs);
1413 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1414 load_gs_index(svm->host.gs);
1415 #else
1416 #ifdef CONFIG_X86_32_LAZY_GS
1417 loadsegment(gs, svm->host.gs);
1418 #endif
1419 #endif
1420 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1421 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1422 }
1423
svm_get_rflags(struct kvm_vcpu * vcpu)1424 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1425 {
1426 struct vcpu_svm *svm = to_svm(vcpu);
1427 unsigned long rflags = svm->vmcb->save.rflags;
1428
1429 if (svm->nmi_singlestep) {
1430 /* Hide our flags if they were not set by the guest */
1431 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1432 rflags &= ~X86_EFLAGS_TF;
1433 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1434 rflags &= ~X86_EFLAGS_RF;
1435 }
1436 return rflags;
1437 }
1438
svm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1439 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1440 {
1441 if (to_svm(vcpu)->nmi_singlestep)
1442 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1443
1444 /*
1445 * Any change of EFLAGS.VM is accompanied by a reload of SS
1446 * (caused by either a task switch or an inter-privilege IRET),
1447 * so we do not need to update the CPL here.
1448 */
1449 to_svm(vcpu)->vmcb->save.rflags = rflags;
1450 }
1451
svm_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)1452 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1453 {
1454 switch (reg) {
1455 case VCPU_EXREG_PDPTR:
1456 BUG_ON(!npt_enabled);
1457 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1458 break;
1459 default:
1460 WARN_ON_ONCE(1);
1461 }
1462 }
1463
svm_set_vintr(struct vcpu_svm * svm)1464 static void svm_set_vintr(struct vcpu_svm *svm)
1465 {
1466 struct vmcb_control_area *control;
1467
1468 /* The following fields are ignored when AVIC is enabled */
1469 WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu));
1470 svm_set_intercept(svm, INTERCEPT_VINTR);
1471
1472 /*
1473 * This is just a dummy VINTR to actually cause a vmexit to happen.
1474 * Actual injection of virtual interrupts happens through EVENTINJ.
1475 */
1476 control = &svm->vmcb->control;
1477 control->int_vector = 0x0;
1478 control->int_ctl &= ~V_INTR_PRIO_MASK;
1479 control->int_ctl |= V_IRQ_MASK |
1480 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1481 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1482 }
1483
svm_clear_vintr(struct vcpu_svm * svm)1484 static void svm_clear_vintr(struct vcpu_svm *svm)
1485 {
1486 svm_clr_intercept(svm, INTERCEPT_VINTR);
1487
1488 /* Drop int_ctl fields related to VINTR injection. */
1489 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1490 if (is_guest_mode(&svm->vcpu)) {
1491 svm->nested.hsave->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1492
1493 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1494 (svm->nested.ctl.int_ctl & V_TPR_MASK));
1495 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1496 V_IRQ_INJECTION_BITS_MASK;
1497
1498 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1499 }
1500
1501 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1502 }
1503
svm_seg(struct kvm_vcpu * vcpu,int seg)1504 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1505 {
1506 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1507
1508 switch (seg) {
1509 case VCPU_SREG_CS: return &save->cs;
1510 case VCPU_SREG_DS: return &save->ds;
1511 case VCPU_SREG_ES: return &save->es;
1512 case VCPU_SREG_FS: return &save->fs;
1513 case VCPU_SREG_GS: return &save->gs;
1514 case VCPU_SREG_SS: return &save->ss;
1515 case VCPU_SREG_TR: return &save->tr;
1516 case VCPU_SREG_LDTR: return &save->ldtr;
1517 }
1518 BUG();
1519 return NULL;
1520 }
1521
svm_get_segment_base(struct kvm_vcpu * vcpu,int seg)1522 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1523 {
1524 struct vmcb_seg *s = svm_seg(vcpu, seg);
1525
1526 return s->base;
1527 }
1528
svm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1529 static void svm_get_segment(struct kvm_vcpu *vcpu,
1530 struct kvm_segment *var, int seg)
1531 {
1532 struct vmcb_seg *s = svm_seg(vcpu, seg);
1533
1534 var->base = s->base;
1535 var->limit = s->limit;
1536 var->selector = s->selector;
1537 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1538 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1539 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1540 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1541 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1542 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1543 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1544
1545 /*
1546 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1547 * However, the SVM spec states that the G bit is not observed by the
1548 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1549 * So let's synthesize a legal G bit for all segments, this helps
1550 * running KVM nested. It also helps cross-vendor migration, because
1551 * Intel's vmentry has a check on the 'G' bit.
1552 */
1553 var->g = s->limit > 0xfffff;
1554
1555 /*
1556 * AMD's VMCB does not have an explicit unusable field, so emulate it
1557 * for cross vendor migration purposes by "not present"
1558 */
1559 var->unusable = !var->present;
1560
1561 switch (seg) {
1562 case VCPU_SREG_TR:
1563 /*
1564 * Work around a bug where the busy flag in the tr selector
1565 * isn't exposed
1566 */
1567 var->type |= 0x2;
1568 break;
1569 case VCPU_SREG_DS:
1570 case VCPU_SREG_ES:
1571 case VCPU_SREG_FS:
1572 case VCPU_SREG_GS:
1573 /*
1574 * The accessed bit must always be set in the segment
1575 * descriptor cache, although it can be cleared in the
1576 * descriptor, the cached bit always remains at 1. Since
1577 * Intel has a check on this, set it here to support
1578 * cross-vendor migration.
1579 */
1580 if (!var->unusable)
1581 var->type |= 0x1;
1582 break;
1583 case VCPU_SREG_SS:
1584 /*
1585 * On AMD CPUs sometimes the DB bit in the segment
1586 * descriptor is left as 1, although the whole segment has
1587 * been made unusable. Clear it here to pass an Intel VMX
1588 * entry check when cross vendor migrating.
1589 */
1590 if (var->unusable)
1591 var->db = 0;
1592 /* This is symmetric with svm_set_segment() */
1593 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1594 break;
1595 }
1596 }
1597
svm_get_cpl(struct kvm_vcpu * vcpu)1598 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1599 {
1600 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1601
1602 return save->cpl;
1603 }
1604
svm_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1605 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1606 {
1607 struct vcpu_svm *svm = to_svm(vcpu);
1608
1609 dt->size = svm->vmcb->save.idtr.limit;
1610 dt->address = svm->vmcb->save.idtr.base;
1611 }
1612
svm_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1613 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1614 {
1615 struct vcpu_svm *svm = to_svm(vcpu);
1616
1617 svm->vmcb->save.idtr.limit = dt->size;
1618 svm->vmcb->save.idtr.base = dt->address ;
1619 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1620 }
1621
svm_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1622 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1623 {
1624 struct vcpu_svm *svm = to_svm(vcpu);
1625
1626 dt->size = svm->vmcb->save.gdtr.limit;
1627 dt->address = svm->vmcb->save.gdtr.base;
1628 }
1629
svm_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1630 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1631 {
1632 struct vcpu_svm *svm = to_svm(vcpu);
1633
1634 svm->vmcb->save.gdtr.limit = dt->size;
1635 svm->vmcb->save.gdtr.base = dt->address ;
1636 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1637 }
1638
update_cr0_intercept(struct vcpu_svm * svm)1639 static void update_cr0_intercept(struct vcpu_svm *svm)
1640 {
1641 ulong gcr0 = svm->vcpu.arch.cr0;
1642 u64 *hcr0 = &svm->vmcb->save.cr0;
1643
1644 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1645 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1646
1647 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1648
1649 if (gcr0 == *hcr0) {
1650 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1651 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1652 } else {
1653 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1654 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1655 }
1656 }
1657
svm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1658 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1659 {
1660 struct vcpu_svm *svm = to_svm(vcpu);
1661
1662 #ifdef CONFIG_X86_64
1663 if (vcpu->arch.efer & EFER_LME) {
1664 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1665 vcpu->arch.efer |= EFER_LMA;
1666 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1667 }
1668
1669 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1670 vcpu->arch.efer &= ~EFER_LMA;
1671 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1672 }
1673 }
1674 #endif
1675 vcpu->arch.cr0 = cr0;
1676
1677 if (!npt_enabled)
1678 cr0 |= X86_CR0_PG | X86_CR0_WP;
1679
1680 /*
1681 * re-enable caching here because the QEMU bios
1682 * does not do it - this results in some delay at
1683 * reboot
1684 */
1685 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1686 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1687 svm->vmcb->save.cr0 = cr0;
1688 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1689 update_cr0_intercept(svm);
1690 }
1691
svm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1692 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1693 {
1694 return true;
1695 }
1696
svm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1697 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1698 {
1699 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1700 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1701
1702 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1703 svm_flush_tlb(vcpu);
1704
1705 vcpu->arch.cr4 = cr4;
1706 if (!npt_enabled)
1707 cr4 |= X86_CR4_PAE;
1708 cr4 |= host_cr4_mce;
1709 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1710 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1711 }
1712
svm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1713 static void svm_set_segment(struct kvm_vcpu *vcpu,
1714 struct kvm_segment *var, int seg)
1715 {
1716 struct vcpu_svm *svm = to_svm(vcpu);
1717 struct vmcb_seg *s = svm_seg(vcpu, seg);
1718
1719 s->base = var->base;
1720 s->limit = var->limit;
1721 s->selector = var->selector;
1722 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1723 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1724 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1725 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1726 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1727 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1728 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1729 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1730
1731 /*
1732 * This is always accurate, except if SYSRET returned to a segment
1733 * with SS.DPL != 3. Intel does not have this quirk, and always
1734 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1735 * would entail passing the CPL to userspace and back.
1736 */
1737 if (seg == VCPU_SREG_SS)
1738 /* This is symmetric with svm_get_segment() */
1739 svm->vmcb->save.cpl = (var->dpl & 3);
1740
1741 vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1742 }
1743
update_exception_bitmap(struct kvm_vcpu * vcpu)1744 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1745 {
1746 struct vcpu_svm *svm = to_svm(vcpu);
1747
1748 clr_exception_intercept(svm, BP_VECTOR);
1749
1750 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1751 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1752 set_exception_intercept(svm, BP_VECTOR);
1753 }
1754 }
1755
new_asid(struct vcpu_svm * svm,struct svm_cpu_data * sd)1756 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1757 {
1758 if (sd->next_asid > sd->max_asid) {
1759 ++sd->asid_generation;
1760 sd->next_asid = sd->min_asid;
1761 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1762 }
1763
1764 svm->asid_generation = sd->asid_generation;
1765 svm->vmcb->control.asid = sd->next_asid++;
1766
1767 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1768 }
1769
svm_set_dr6(struct vcpu_svm * svm,unsigned long value)1770 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1771 {
1772 struct vmcb *vmcb = svm->vmcb;
1773
1774 if (unlikely(value != vmcb->save.dr6)) {
1775 vmcb->save.dr6 = value;
1776 vmcb_mark_dirty(vmcb, VMCB_DR);
1777 }
1778 }
1779
svm_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)1780 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1781 {
1782 struct vcpu_svm *svm = to_svm(vcpu);
1783
1784 get_debugreg(vcpu->arch.db[0], 0);
1785 get_debugreg(vcpu->arch.db[1], 1);
1786 get_debugreg(vcpu->arch.db[2], 2);
1787 get_debugreg(vcpu->arch.db[3], 3);
1788 /*
1789 * We cannot reset svm->vmcb->save.dr6 to DR6_FIXED_1|DR6_RTM here,
1790 * because db_interception might need it. We can do it before vmentry.
1791 */
1792 vcpu->arch.dr6 = svm->vmcb->save.dr6;
1793 vcpu->arch.dr7 = svm->vmcb->save.dr7;
1794 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1795 set_dr_intercepts(svm);
1796 }
1797
svm_set_dr7(struct kvm_vcpu * vcpu,unsigned long value)1798 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1799 {
1800 struct vcpu_svm *svm = to_svm(vcpu);
1801
1802 svm->vmcb->save.dr7 = value;
1803 vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1804 }
1805
pf_interception(struct vcpu_svm * svm)1806 static int pf_interception(struct vcpu_svm *svm)
1807 {
1808 u64 fault_address = svm->vmcb->control.exit_info_2;
1809 u64 error_code = svm->vmcb->control.exit_info_1;
1810
1811 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
1812 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1813 svm->vmcb->control.insn_bytes : NULL,
1814 svm->vmcb->control.insn_len);
1815 }
1816
npf_interception(struct vcpu_svm * svm)1817 static int npf_interception(struct vcpu_svm *svm)
1818 {
1819 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1820 u64 error_code = svm->vmcb->control.exit_info_1;
1821
1822 trace_kvm_page_fault(fault_address, error_code);
1823 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1824 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1825 svm->vmcb->control.insn_bytes : NULL,
1826 svm->vmcb->control.insn_len);
1827 }
1828
db_interception(struct vcpu_svm * svm)1829 static int db_interception(struct vcpu_svm *svm)
1830 {
1831 struct kvm_run *kvm_run = svm->vcpu.run;
1832 struct kvm_vcpu *vcpu = &svm->vcpu;
1833
1834 if (!(svm->vcpu.guest_debug &
1835 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1836 !svm->nmi_singlestep) {
1837 u32 payload = (svm->vmcb->save.dr6 ^ DR6_RTM) & ~DR6_FIXED_1;
1838 kvm_queue_exception_p(&svm->vcpu, DB_VECTOR, payload);
1839 return 1;
1840 }
1841
1842 if (svm->nmi_singlestep) {
1843 disable_nmi_singlestep(svm);
1844 /* Make sure we check for pending NMIs upon entry */
1845 kvm_make_request(KVM_REQ_EVENT, vcpu);
1846 }
1847
1848 if (svm->vcpu.guest_debug &
1849 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1850 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1851 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1852 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1853 kvm_run->debug.arch.pc =
1854 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1855 kvm_run->debug.arch.exception = DB_VECTOR;
1856 return 0;
1857 }
1858
1859 return 1;
1860 }
1861
bp_interception(struct vcpu_svm * svm)1862 static int bp_interception(struct vcpu_svm *svm)
1863 {
1864 struct kvm_run *kvm_run = svm->vcpu.run;
1865
1866 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1867 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1868 kvm_run->debug.arch.exception = BP_VECTOR;
1869 return 0;
1870 }
1871
ud_interception(struct vcpu_svm * svm)1872 static int ud_interception(struct vcpu_svm *svm)
1873 {
1874 return handle_ud(&svm->vcpu);
1875 }
1876
ac_interception(struct vcpu_svm * svm)1877 static int ac_interception(struct vcpu_svm *svm)
1878 {
1879 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
1880 return 1;
1881 }
1882
gp_interception(struct vcpu_svm * svm)1883 static int gp_interception(struct vcpu_svm *svm)
1884 {
1885 struct kvm_vcpu *vcpu = &svm->vcpu;
1886 u32 error_code = svm->vmcb->control.exit_info_1;
1887
1888 WARN_ON_ONCE(!enable_vmware_backdoor);
1889
1890 /*
1891 * VMware backdoor emulation on #GP interception only handles IN{S},
1892 * OUT{S}, and RDPMC, none of which generate a non-zero error code.
1893 */
1894 if (error_code) {
1895 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1896 return 1;
1897 }
1898 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
1899 }
1900
is_erratum_383(void)1901 static bool is_erratum_383(void)
1902 {
1903 int err, i;
1904 u64 value;
1905
1906 if (!erratum_383_found)
1907 return false;
1908
1909 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1910 if (err)
1911 return false;
1912
1913 /* Bit 62 may or may not be set for this mce */
1914 value &= ~(1ULL << 62);
1915
1916 if (value != 0xb600000000010015ULL)
1917 return false;
1918
1919 /* Clear MCi_STATUS registers */
1920 for (i = 0; i < 6; ++i)
1921 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1922
1923 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1924 if (!err) {
1925 u32 low, high;
1926
1927 value &= ~(1ULL << 2);
1928 low = lower_32_bits(value);
1929 high = upper_32_bits(value);
1930
1931 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1932 }
1933
1934 /* Flush tlb to evict multi-match entries */
1935 __flush_tlb_all();
1936
1937 return true;
1938 }
1939
1940 /*
1941 * Trigger machine check on the host. We assume all the MSRs are already set up
1942 * by the CPU and that we still run on the same CPU as the MCE occurred on.
1943 * We pass a fake environment to the machine check handler because we want
1944 * the guest to be always treated like user space, no matter what context
1945 * it used internally.
1946 */
kvm_machine_check(void)1947 static void kvm_machine_check(void)
1948 {
1949 #if defined(CONFIG_X86_MCE)
1950 struct pt_regs regs = {
1951 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
1952 .flags = X86_EFLAGS_IF,
1953 };
1954
1955 do_machine_check(®s);
1956 #endif
1957 }
1958
svm_handle_mce(struct vcpu_svm * svm)1959 static void svm_handle_mce(struct vcpu_svm *svm)
1960 {
1961 if (is_erratum_383()) {
1962 /*
1963 * Erratum 383 triggered. Guest state is corrupt so kill the
1964 * guest.
1965 */
1966 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1967
1968 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1969
1970 return;
1971 }
1972
1973 /*
1974 * On an #MC intercept the MCE handler is not called automatically in
1975 * the host. So do it by hand here.
1976 */
1977 kvm_machine_check();
1978 }
1979
mc_interception(struct vcpu_svm * svm)1980 static int mc_interception(struct vcpu_svm *svm)
1981 {
1982 return 1;
1983 }
1984
shutdown_interception(struct vcpu_svm * svm)1985 static int shutdown_interception(struct vcpu_svm *svm)
1986 {
1987 struct kvm_run *kvm_run = svm->vcpu.run;
1988
1989 /*
1990 * VMCB is undefined after a SHUTDOWN intercept
1991 * so reinitialize it.
1992 */
1993 clear_page(svm->vmcb);
1994 init_vmcb(svm);
1995
1996 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1997 return 0;
1998 }
1999
io_interception(struct vcpu_svm * svm)2000 static int io_interception(struct vcpu_svm *svm)
2001 {
2002 struct kvm_vcpu *vcpu = &svm->vcpu;
2003 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2004 int size, in, string;
2005 unsigned port;
2006
2007 ++svm->vcpu.stat.io_exits;
2008 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2009 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2010 if (string)
2011 return kvm_emulate_instruction(vcpu, 0);
2012
2013 port = io_info >> 16;
2014 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2015 svm->next_rip = svm->vmcb->control.exit_info_2;
2016
2017 return kvm_fast_pio(&svm->vcpu, size, port, in);
2018 }
2019
nmi_interception(struct vcpu_svm * svm)2020 static int nmi_interception(struct vcpu_svm *svm)
2021 {
2022 return 1;
2023 }
2024
intr_interception(struct vcpu_svm * svm)2025 static int intr_interception(struct vcpu_svm *svm)
2026 {
2027 ++svm->vcpu.stat.irq_exits;
2028 return 1;
2029 }
2030
nop_on_interception(struct vcpu_svm * svm)2031 static int nop_on_interception(struct vcpu_svm *svm)
2032 {
2033 return 1;
2034 }
2035
halt_interception(struct vcpu_svm * svm)2036 static int halt_interception(struct vcpu_svm *svm)
2037 {
2038 return kvm_emulate_halt(&svm->vcpu);
2039 }
2040
vmmcall_interception(struct vcpu_svm * svm)2041 static int vmmcall_interception(struct vcpu_svm *svm)
2042 {
2043 return kvm_emulate_hypercall(&svm->vcpu);
2044 }
2045
vmload_interception(struct vcpu_svm * svm)2046 static int vmload_interception(struct vcpu_svm *svm)
2047 {
2048 struct vmcb *nested_vmcb;
2049 struct kvm_host_map map;
2050 int ret;
2051
2052 if (nested_svm_check_permissions(svm))
2053 return 1;
2054
2055 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2056 if (ret) {
2057 if (ret == -EINVAL)
2058 kvm_inject_gp(&svm->vcpu, 0);
2059 return 1;
2060 }
2061
2062 nested_vmcb = map.hva;
2063
2064 ret = kvm_skip_emulated_instruction(&svm->vcpu);
2065
2066 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2067 kvm_vcpu_unmap(&svm->vcpu, &map, true);
2068
2069 return ret;
2070 }
2071
vmsave_interception(struct vcpu_svm * svm)2072 static int vmsave_interception(struct vcpu_svm *svm)
2073 {
2074 struct vmcb *nested_vmcb;
2075 struct kvm_host_map map;
2076 int ret;
2077
2078 if (nested_svm_check_permissions(svm))
2079 return 1;
2080
2081 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2082 if (ret) {
2083 if (ret == -EINVAL)
2084 kvm_inject_gp(&svm->vcpu, 0);
2085 return 1;
2086 }
2087
2088 nested_vmcb = map.hva;
2089
2090 ret = kvm_skip_emulated_instruction(&svm->vcpu);
2091
2092 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2093 kvm_vcpu_unmap(&svm->vcpu, &map, true);
2094
2095 return ret;
2096 }
2097
vmrun_interception(struct vcpu_svm * svm)2098 static int vmrun_interception(struct vcpu_svm *svm)
2099 {
2100 if (nested_svm_check_permissions(svm))
2101 return 1;
2102
2103 return nested_svm_vmrun(svm);
2104 }
2105
svm_set_gif(struct vcpu_svm * svm,bool value)2106 void svm_set_gif(struct vcpu_svm *svm, bool value)
2107 {
2108 if (value) {
2109 /*
2110 * If VGIF is enabled, the STGI intercept is only added to
2111 * detect the opening of the SMI/NMI window; remove it now.
2112 * Likewise, clear the VINTR intercept, we will set it
2113 * again while processing KVM_REQ_EVENT if needed.
2114 */
2115 if (vgif_enabled(svm))
2116 svm_clr_intercept(svm, INTERCEPT_STGI);
2117 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2118 svm_clear_vintr(svm);
2119
2120 enable_gif(svm);
2121 if (svm->vcpu.arch.smi_pending ||
2122 svm->vcpu.arch.nmi_pending ||
2123 kvm_cpu_has_injectable_intr(&svm->vcpu))
2124 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2125 } else {
2126 disable_gif(svm);
2127
2128 /*
2129 * After a CLGI no interrupts should come. But if vGIF is
2130 * in use, we still rely on the VINTR intercept (rather than
2131 * STGI) to detect an open interrupt window.
2132 */
2133 if (!vgif_enabled(svm))
2134 svm_clear_vintr(svm);
2135 }
2136 }
2137
stgi_interception(struct vcpu_svm * svm)2138 static int stgi_interception(struct vcpu_svm *svm)
2139 {
2140 int ret;
2141
2142 if (nested_svm_check_permissions(svm))
2143 return 1;
2144
2145 ret = kvm_skip_emulated_instruction(&svm->vcpu);
2146 svm_set_gif(svm, true);
2147 return ret;
2148 }
2149
clgi_interception(struct vcpu_svm * svm)2150 static int clgi_interception(struct vcpu_svm *svm)
2151 {
2152 int ret;
2153
2154 if (nested_svm_check_permissions(svm))
2155 return 1;
2156
2157 ret = kvm_skip_emulated_instruction(&svm->vcpu);
2158 svm_set_gif(svm, false);
2159 return ret;
2160 }
2161
invlpga_interception(struct vcpu_svm * svm)2162 static int invlpga_interception(struct vcpu_svm *svm)
2163 {
2164 struct kvm_vcpu *vcpu = &svm->vcpu;
2165
2166 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
2167 kvm_rax_read(&svm->vcpu));
2168
2169 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2170 kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
2171
2172 return kvm_skip_emulated_instruction(&svm->vcpu);
2173 }
2174
skinit_interception(struct vcpu_svm * svm)2175 static int skinit_interception(struct vcpu_svm *svm)
2176 {
2177 trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
2178
2179 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2180 return 1;
2181 }
2182
wbinvd_interception(struct vcpu_svm * svm)2183 static int wbinvd_interception(struct vcpu_svm *svm)
2184 {
2185 return kvm_emulate_wbinvd(&svm->vcpu);
2186 }
2187
xsetbv_interception(struct vcpu_svm * svm)2188 static int xsetbv_interception(struct vcpu_svm *svm)
2189 {
2190 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2191 u32 index = kvm_rcx_read(&svm->vcpu);
2192
2193 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2194 return kvm_skip_emulated_instruction(&svm->vcpu);
2195 }
2196
2197 return 1;
2198 }
2199
rdpru_interception(struct vcpu_svm * svm)2200 static int rdpru_interception(struct vcpu_svm *svm)
2201 {
2202 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2203 return 1;
2204 }
2205
task_switch_interception(struct vcpu_svm * svm)2206 static int task_switch_interception(struct vcpu_svm *svm)
2207 {
2208 u16 tss_selector;
2209 int reason;
2210 int int_type = svm->vmcb->control.exit_int_info &
2211 SVM_EXITINTINFO_TYPE_MASK;
2212 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2213 uint32_t type =
2214 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2215 uint32_t idt_v =
2216 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2217 bool has_error_code = false;
2218 u32 error_code = 0;
2219
2220 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2221
2222 if (svm->vmcb->control.exit_info_2 &
2223 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2224 reason = TASK_SWITCH_IRET;
2225 else if (svm->vmcb->control.exit_info_2 &
2226 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2227 reason = TASK_SWITCH_JMP;
2228 else if (idt_v)
2229 reason = TASK_SWITCH_GATE;
2230 else
2231 reason = TASK_SWITCH_CALL;
2232
2233 if (reason == TASK_SWITCH_GATE) {
2234 switch (type) {
2235 case SVM_EXITINTINFO_TYPE_NMI:
2236 svm->vcpu.arch.nmi_injected = false;
2237 break;
2238 case SVM_EXITINTINFO_TYPE_EXEPT:
2239 if (svm->vmcb->control.exit_info_2 &
2240 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2241 has_error_code = true;
2242 error_code =
2243 (u32)svm->vmcb->control.exit_info_2;
2244 }
2245 kvm_clear_exception_queue(&svm->vcpu);
2246 break;
2247 case SVM_EXITINTINFO_TYPE_INTR:
2248 kvm_clear_interrupt_queue(&svm->vcpu);
2249 break;
2250 default:
2251 break;
2252 }
2253 }
2254
2255 if (reason != TASK_SWITCH_GATE ||
2256 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2257 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2258 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2259 if (!skip_emulated_instruction(&svm->vcpu))
2260 return 0;
2261 }
2262
2263 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2264 int_vec = -1;
2265
2266 return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2267 has_error_code, error_code);
2268 }
2269
cpuid_interception(struct vcpu_svm * svm)2270 static int cpuid_interception(struct vcpu_svm *svm)
2271 {
2272 return kvm_emulate_cpuid(&svm->vcpu);
2273 }
2274
iret_interception(struct vcpu_svm * svm)2275 static int iret_interception(struct vcpu_svm *svm)
2276 {
2277 ++svm->vcpu.stat.nmi_window_exits;
2278 svm_clr_intercept(svm, INTERCEPT_IRET);
2279 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2280 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2281 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2282 return 1;
2283 }
2284
invd_interception(struct vcpu_svm * svm)2285 static int invd_interception(struct vcpu_svm *svm)
2286 {
2287 /* Treat an INVD instruction as a NOP and just skip it. */
2288 return kvm_skip_emulated_instruction(&svm->vcpu);
2289 }
2290
invlpg_interception(struct vcpu_svm * svm)2291 static int invlpg_interception(struct vcpu_svm *svm)
2292 {
2293 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2294 return kvm_emulate_instruction(&svm->vcpu, 0);
2295
2296 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2297 return kvm_skip_emulated_instruction(&svm->vcpu);
2298 }
2299
emulate_on_interception(struct vcpu_svm * svm)2300 static int emulate_on_interception(struct vcpu_svm *svm)
2301 {
2302 return kvm_emulate_instruction(&svm->vcpu, 0);
2303 }
2304
rsm_interception(struct vcpu_svm * svm)2305 static int rsm_interception(struct vcpu_svm *svm)
2306 {
2307 return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
2308 }
2309
rdpmc_interception(struct vcpu_svm * svm)2310 static int rdpmc_interception(struct vcpu_svm *svm)
2311 {
2312 int err;
2313
2314 if (!nrips)
2315 return emulate_on_interception(svm);
2316
2317 err = kvm_rdpmc(&svm->vcpu);
2318 return kvm_complete_insn_gp(&svm->vcpu, err);
2319 }
2320
check_selective_cr0_intercepted(struct vcpu_svm * svm,unsigned long val)2321 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2322 unsigned long val)
2323 {
2324 unsigned long cr0 = svm->vcpu.arch.cr0;
2325 bool ret = false;
2326
2327 if (!is_guest_mode(&svm->vcpu) ||
2328 (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2329 return false;
2330
2331 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2332 val &= ~SVM_CR0_SELECTIVE_MASK;
2333
2334 if (cr0 ^ val) {
2335 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2336 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2337 }
2338
2339 return ret;
2340 }
2341
2342 #define CR_VALID (1ULL << 63)
2343
cr_interception(struct vcpu_svm * svm)2344 static int cr_interception(struct vcpu_svm *svm)
2345 {
2346 int reg, cr;
2347 unsigned long val;
2348 int err;
2349
2350 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2351 return emulate_on_interception(svm);
2352
2353 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2354 return emulate_on_interception(svm);
2355
2356 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2357 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2358 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2359 else
2360 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2361
2362 err = 0;
2363 if (cr >= 16) { /* mov to cr */
2364 cr -= 16;
2365 val = kvm_register_readl(&svm->vcpu, reg);
2366 trace_kvm_cr_write(cr, val);
2367 switch (cr) {
2368 case 0:
2369 if (!check_selective_cr0_intercepted(svm, val))
2370 err = kvm_set_cr0(&svm->vcpu, val);
2371 else
2372 return 1;
2373
2374 break;
2375 case 3:
2376 err = kvm_set_cr3(&svm->vcpu, val);
2377 break;
2378 case 4:
2379 err = kvm_set_cr4(&svm->vcpu, val);
2380 break;
2381 case 8:
2382 err = kvm_set_cr8(&svm->vcpu, val);
2383 break;
2384 default:
2385 WARN(1, "unhandled write to CR%d", cr);
2386 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2387 return 1;
2388 }
2389 } else { /* mov from cr */
2390 switch (cr) {
2391 case 0:
2392 val = kvm_read_cr0(&svm->vcpu);
2393 break;
2394 case 2:
2395 val = svm->vcpu.arch.cr2;
2396 break;
2397 case 3:
2398 val = kvm_read_cr3(&svm->vcpu);
2399 break;
2400 case 4:
2401 val = kvm_read_cr4(&svm->vcpu);
2402 break;
2403 case 8:
2404 val = kvm_get_cr8(&svm->vcpu);
2405 break;
2406 default:
2407 WARN(1, "unhandled read from CR%d", cr);
2408 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2409 return 1;
2410 }
2411 kvm_register_writel(&svm->vcpu, reg, val);
2412 trace_kvm_cr_read(cr, val);
2413 }
2414 return kvm_complete_insn_gp(&svm->vcpu, err);
2415 }
2416
dr_interception(struct vcpu_svm * svm)2417 static int dr_interception(struct vcpu_svm *svm)
2418 {
2419 int reg, dr;
2420 unsigned long val;
2421
2422 if (svm->vcpu.guest_debug == 0) {
2423 /*
2424 * No more DR vmexits; force a reload of the debug registers
2425 * and reenter on this instruction. The next vmexit will
2426 * retrieve the full state of the debug registers.
2427 */
2428 clr_dr_intercepts(svm);
2429 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2430 return 1;
2431 }
2432
2433 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2434 return emulate_on_interception(svm);
2435
2436 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2437 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2438
2439 if (dr >= 16) { /* mov to DRn */
2440 if (!kvm_require_dr(&svm->vcpu, dr - 16))
2441 return 1;
2442 val = kvm_register_readl(&svm->vcpu, reg);
2443 kvm_set_dr(&svm->vcpu, dr - 16, val);
2444 } else {
2445 if (!kvm_require_dr(&svm->vcpu, dr))
2446 return 1;
2447 kvm_get_dr(&svm->vcpu, dr, &val);
2448 kvm_register_writel(&svm->vcpu, reg, val);
2449 }
2450
2451 return kvm_skip_emulated_instruction(&svm->vcpu);
2452 }
2453
cr8_write_interception(struct vcpu_svm * svm)2454 static int cr8_write_interception(struct vcpu_svm *svm)
2455 {
2456 struct kvm_run *kvm_run = svm->vcpu.run;
2457 int r;
2458
2459 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2460 /* instruction emulation calls kvm_set_cr8() */
2461 r = cr_interception(svm);
2462 if (lapic_in_kernel(&svm->vcpu))
2463 return r;
2464 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2465 return r;
2466 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2467 return 0;
2468 }
2469
svm_get_msr_feature(struct kvm_msr_entry * msr)2470 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2471 {
2472 msr->data = 0;
2473
2474 switch (msr->index) {
2475 case MSR_AMD64_DE_CFG:
2476 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2477 msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2478 break;
2479 case MSR_IA32_PERF_CAPABILITIES:
2480 return 0;
2481 default:
2482 return KVM_MSR_RET_INVALID;
2483 }
2484
2485 return 0;
2486 }
2487
svm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2488 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2489 {
2490 struct vcpu_svm *svm = to_svm(vcpu);
2491
2492 switch (msr_info->index) {
2493 case MSR_STAR:
2494 msr_info->data = svm->vmcb->save.star;
2495 break;
2496 #ifdef CONFIG_X86_64
2497 case MSR_LSTAR:
2498 msr_info->data = svm->vmcb->save.lstar;
2499 break;
2500 case MSR_CSTAR:
2501 msr_info->data = svm->vmcb->save.cstar;
2502 break;
2503 case MSR_KERNEL_GS_BASE:
2504 msr_info->data = svm->vmcb->save.kernel_gs_base;
2505 break;
2506 case MSR_SYSCALL_MASK:
2507 msr_info->data = svm->vmcb->save.sfmask;
2508 break;
2509 #endif
2510 case MSR_IA32_SYSENTER_CS:
2511 msr_info->data = svm->vmcb->save.sysenter_cs;
2512 break;
2513 case MSR_IA32_SYSENTER_EIP:
2514 msr_info->data = svm->sysenter_eip;
2515 break;
2516 case MSR_IA32_SYSENTER_ESP:
2517 msr_info->data = svm->sysenter_esp;
2518 break;
2519 case MSR_TSC_AUX:
2520 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2521 return 1;
2522 if (!msr_info->host_initiated &&
2523 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2524 return 1;
2525 msr_info->data = svm->tsc_aux;
2526 break;
2527 /*
2528 * Nobody will change the following 5 values in the VMCB so we can
2529 * safely return them on rdmsr. They will always be 0 until LBRV is
2530 * implemented.
2531 */
2532 case MSR_IA32_DEBUGCTLMSR:
2533 msr_info->data = svm->vmcb->save.dbgctl;
2534 break;
2535 case MSR_IA32_LASTBRANCHFROMIP:
2536 msr_info->data = svm->vmcb->save.br_from;
2537 break;
2538 case MSR_IA32_LASTBRANCHTOIP:
2539 msr_info->data = svm->vmcb->save.br_to;
2540 break;
2541 case MSR_IA32_LASTINTFROMIP:
2542 msr_info->data = svm->vmcb->save.last_excp_from;
2543 break;
2544 case MSR_IA32_LASTINTTOIP:
2545 msr_info->data = svm->vmcb->save.last_excp_to;
2546 break;
2547 case MSR_VM_HSAVE_PA:
2548 msr_info->data = svm->nested.hsave_msr;
2549 break;
2550 case MSR_VM_CR:
2551 msr_info->data = svm->nested.vm_cr_msr;
2552 break;
2553 case MSR_IA32_SPEC_CTRL:
2554 if (!msr_info->host_initiated &&
2555 !guest_has_spec_ctrl_msr(vcpu))
2556 return 1;
2557
2558 msr_info->data = svm->spec_ctrl;
2559 break;
2560 case MSR_AMD64_VIRT_SPEC_CTRL:
2561 if (!msr_info->host_initiated &&
2562 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2563 return 1;
2564
2565 msr_info->data = svm->virt_spec_ctrl;
2566 break;
2567 case MSR_F15H_IC_CFG: {
2568
2569 int family, model;
2570
2571 family = guest_cpuid_family(vcpu);
2572 model = guest_cpuid_model(vcpu);
2573
2574 if (family < 0 || model < 0)
2575 return kvm_get_msr_common(vcpu, msr_info);
2576
2577 msr_info->data = 0;
2578
2579 if (family == 0x15 &&
2580 (model >= 0x2 && model < 0x20))
2581 msr_info->data = 0x1E;
2582 }
2583 break;
2584 case MSR_AMD64_DE_CFG:
2585 msr_info->data = svm->msr_decfg;
2586 break;
2587 default:
2588 return kvm_get_msr_common(vcpu, msr_info);
2589 }
2590 return 0;
2591 }
2592
rdmsr_interception(struct vcpu_svm * svm)2593 static int rdmsr_interception(struct vcpu_svm *svm)
2594 {
2595 return kvm_emulate_rdmsr(&svm->vcpu);
2596 }
2597
svm_set_vm_cr(struct kvm_vcpu * vcpu,u64 data)2598 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2599 {
2600 struct vcpu_svm *svm = to_svm(vcpu);
2601 int svm_dis, chg_mask;
2602
2603 if (data & ~SVM_VM_CR_VALID_MASK)
2604 return 1;
2605
2606 chg_mask = SVM_VM_CR_VALID_MASK;
2607
2608 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2609 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2610
2611 svm->nested.vm_cr_msr &= ~chg_mask;
2612 svm->nested.vm_cr_msr |= (data & chg_mask);
2613
2614 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2615
2616 /* check for svm_disable while efer.svme is set */
2617 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2618 return 1;
2619
2620 return 0;
2621 }
2622
svm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)2623 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2624 {
2625 struct vcpu_svm *svm = to_svm(vcpu);
2626
2627 u32 ecx = msr->index;
2628 u64 data = msr->data;
2629 switch (ecx) {
2630 case MSR_IA32_CR_PAT:
2631 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2632 return 1;
2633 vcpu->arch.pat = data;
2634 svm->vmcb->save.g_pat = data;
2635 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2636 break;
2637 case MSR_IA32_SPEC_CTRL:
2638 if (!msr->host_initiated &&
2639 !guest_has_spec_ctrl_msr(vcpu))
2640 return 1;
2641
2642 if (kvm_spec_ctrl_test_value(data))
2643 return 1;
2644
2645 svm->spec_ctrl = data;
2646 if (!data)
2647 break;
2648
2649 /*
2650 * For non-nested:
2651 * When it's written (to non-zero) for the first time, pass
2652 * it through.
2653 *
2654 * For nested:
2655 * The handling of the MSR bitmap for L2 guests is done in
2656 * nested_svm_vmrun_msrpm.
2657 * We update the L1 MSR bit as well since it will end up
2658 * touching the MSR anyway now.
2659 */
2660 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2661 break;
2662 case MSR_IA32_PRED_CMD:
2663 if (!msr->host_initiated &&
2664 !guest_has_pred_cmd_msr(vcpu))
2665 return 1;
2666
2667 if (data & ~PRED_CMD_IBPB)
2668 return 1;
2669 if (!boot_cpu_has(X86_FEATURE_IBPB))
2670 return 1;
2671 if (!data)
2672 break;
2673
2674 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2675 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2676 break;
2677 case MSR_AMD64_VIRT_SPEC_CTRL:
2678 if (!msr->host_initiated &&
2679 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2680 return 1;
2681
2682 if (data & ~SPEC_CTRL_SSBD)
2683 return 1;
2684
2685 svm->virt_spec_ctrl = data;
2686 break;
2687 case MSR_STAR:
2688 svm->vmcb->save.star = data;
2689 break;
2690 #ifdef CONFIG_X86_64
2691 case MSR_LSTAR:
2692 svm->vmcb->save.lstar = data;
2693 break;
2694 case MSR_CSTAR:
2695 svm->vmcb->save.cstar = data;
2696 break;
2697 case MSR_KERNEL_GS_BASE:
2698 svm->vmcb->save.kernel_gs_base = data;
2699 break;
2700 case MSR_SYSCALL_MASK:
2701 svm->vmcb->save.sfmask = data;
2702 break;
2703 #endif
2704 case MSR_IA32_SYSENTER_CS:
2705 svm->vmcb->save.sysenter_cs = data;
2706 break;
2707 case MSR_IA32_SYSENTER_EIP:
2708 svm->sysenter_eip = data;
2709 svm->vmcb->save.sysenter_eip = data;
2710 break;
2711 case MSR_IA32_SYSENTER_ESP:
2712 svm->sysenter_esp = data;
2713 svm->vmcb->save.sysenter_esp = data;
2714 break;
2715 case MSR_TSC_AUX:
2716 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2717 return 1;
2718
2719 if (!msr->host_initiated &&
2720 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2721 return 1;
2722
2723 /*
2724 * This is rare, so we update the MSR here instead of using
2725 * direct_access_msrs. Doing that would require a rdmsr in
2726 * svm_vcpu_put.
2727 */
2728 svm->tsc_aux = data;
2729 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2730 break;
2731 case MSR_IA32_DEBUGCTLMSR:
2732 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2733 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2734 __func__, data);
2735 break;
2736 }
2737 if (data & DEBUGCTL_RESERVED_BITS)
2738 return 1;
2739
2740 svm->vmcb->save.dbgctl = data;
2741 vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
2742 if (data & (1ULL<<0))
2743 svm_enable_lbrv(vcpu);
2744 else
2745 svm_disable_lbrv(vcpu);
2746 break;
2747 case MSR_VM_HSAVE_PA:
2748 /*
2749 * Old kernels did not validate the value written to
2750 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid
2751 * value to allow live migrating buggy or malicious guests
2752 * originating from those kernels.
2753 */
2754 if (!msr->host_initiated && !page_address_valid(vcpu, data))
2755 return 1;
2756
2757 svm->nested.hsave_msr = data & PAGE_MASK;
2758 break;
2759 case MSR_VM_CR:
2760 return svm_set_vm_cr(vcpu, data);
2761 case MSR_VM_IGNNE:
2762 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2763 break;
2764 case MSR_AMD64_DE_CFG: {
2765 struct kvm_msr_entry msr_entry;
2766
2767 msr_entry.index = msr->index;
2768 if (svm_get_msr_feature(&msr_entry))
2769 return 1;
2770
2771 /* Check the supported bits */
2772 if (data & ~msr_entry.data)
2773 return 1;
2774
2775 /* Don't allow the guest to change a bit, #GP */
2776 if (!msr->host_initiated && (data ^ msr_entry.data))
2777 return 1;
2778
2779 svm->msr_decfg = data;
2780 break;
2781 }
2782 case MSR_IA32_APICBASE:
2783 if (kvm_vcpu_apicv_active(vcpu))
2784 avic_update_vapic_bar(to_svm(vcpu), data);
2785 fallthrough;
2786 default:
2787 return kvm_set_msr_common(vcpu, msr);
2788 }
2789 return 0;
2790 }
2791
wrmsr_interception(struct vcpu_svm * svm)2792 static int wrmsr_interception(struct vcpu_svm *svm)
2793 {
2794 return kvm_emulate_wrmsr(&svm->vcpu);
2795 }
2796
msr_interception(struct vcpu_svm * svm)2797 static int msr_interception(struct vcpu_svm *svm)
2798 {
2799 if (svm->vmcb->control.exit_info_1)
2800 return wrmsr_interception(svm);
2801 else
2802 return rdmsr_interception(svm);
2803 }
2804
interrupt_window_interception(struct vcpu_svm * svm)2805 static int interrupt_window_interception(struct vcpu_svm *svm)
2806 {
2807 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2808 svm_clear_vintr(svm);
2809
2810 /*
2811 * For AVIC, the only reason to end up here is ExtINTs.
2812 * In this case AVIC was temporarily disabled for
2813 * requesting the IRQ window and we have to re-enable it.
2814 */
2815 svm_toggle_avic_for_irq_window(&svm->vcpu, true);
2816
2817 ++svm->vcpu.stat.irq_window_exits;
2818 return 1;
2819 }
2820
pause_interception(struct vcpu_svm * svm)2821 static int pause_interception(struct vcpu_svm *svm)
2822 {
2823 struct kvm_vcpu *vcpu = &svm->vcpu;
2824 bool in_kernel = (svm_get_cpl(vcpu) == 0);
2825
2826 if (!kvm_pause_in_guest(vcpu->kvm))
2827 grow_ple_window(vcpu);
2828
2829 kvm_vcpu_on_spin(vcpu, in_kernel);
2830 return 1;
2831 }
2832
nop_interception(struct vcpu_svm * svm)2833 static int nop_interception(struct vcpu_svm *svm)
2834 {
2835 return kvm_skip_emulated_instruction(&(svm->vcpu));
2836 }
2837
monitor_interception(struct vcpu_svm * svm)2838 static int monitor_interception(struct vcpu_svm *svm)
2839 {
2840 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
2841 return nop_interception(svm);
2842 }
2843
mwait_interception(struct vcpu_svm * svm)2844 static int mwait_interception(struct vcpu_svm *svm)
2845 {
2846 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
2847 return nop_interception(svm);
2848 }
2849
invpcid_interception(struct vcpu_svm * svm)2850 static int invpcid_interception(struct vcpu_svm *svm)
2851 {
2852 struct kvm_vcpu *vcpu = &svm->vcpu;
2853 unsigned long type;
2854 gva_t gva;
2855
2856 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
2857 kvm_queue_exception(vcpu, UD_VECTOR);
2858 return 1;
2859 }
2860
2861 /*
2862 * For an INVPCID intercept:
2863 * EXITINFO1 provides the linear address of the memory operand.
2864 * EXITINFO2 provides the contents of the register operand.
2865 */
2866 type = svm->vmcb->control.exit_info_2;
2867 gva = svm->vmcb->control.exit_info_1;
2868
2869 if (type > 3) {
2870 kvm_inject_gp(vcpu, 0);
2871 return 1;
2872 }
2873
2874 return kvm_handle_invpcid(vcpu, type, gva);
2875 }
2876
2877 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
2878 [SVM_EXIT_READ_CR0] = cr_interception,
2879 [SVM_EXIT_READ_CR3] = cr_interception,
2880 [SVM_EXIT_READ_CR4] = cr_interception,
2881 [SVM_EXIT_READ_CR8] = cr_interception,
2882 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
2883 [SVM_EXIT_WRITE_CR0] = cr_interception,
2884 [SVM_EXIT_WRITE_CR3] = cr_interception,
2885 [SVM_EXIT_WRITE_CR4] = cr_interception,
2886 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
2887 [SVM_EXIT_READ_DR0] = dr_interception,
2888 [SVM_EXIT_READ_DR1] = dr_interception,
2889 [SVM_EXIT_READ_DR2] = dr_interception,
2890 [SVM_EXIT_READ_DR3] = dr_interception,
2891 [SVM_EXIT_READ_DR4] = dr_interception,
2892 [SVM_EXIT_READ_DR5] = dr_interception,
2893 [SVM_EXIT_READ_DR6] = dr_interception,
2894 [SVM_EXIT_READ_DR7] = dr_interception,
2895 [SVM_EXIT_WRITE_DR0] = dr_interception,
2896 [SVM_EXIT_WRITE_DR1] = dr_interception,
2897 [SVM_EXIT_WRITE_DR2] = dr_interception,
2898 [SVM_EXIT_WRITE_DR3] = dr_interception,
2899 [SVM_EXIT_WRITE_DR4] = dr_interception,
2900 [SVM_EXIT_WRITE_DR5] = dr_interception,
2901 [SVM_EXIT_WRITE_DR6] = dr_interception,
2902 [SVM_EXIT_WRITE_DR7] = dr_interception,
2903 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
2904 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
2905 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
2906 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
2907 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
2908 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
2909 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
2910 [SVM_EXIT_INTR] = intr_interception,
2911 [SVM_EXIT_NMI] = nmi_interception,
2912 [SVM_EXIT_SMI] = nop_on_interception,
2913 [SVM_EXIT_INIT] = nop_on_interception,
2914 [SVM_EXIT_VINTR] = interrupt_window_interception,
2915 [SVM_EXIT_RDPMC] = rdpmc_interception,
2916 [SVM_EXIT_CPUID] = cpuid_interception,
2917 [SVM_EXIT_IRET] = iret_interception,
2918 [SVM_EXIT_INVD] = invd_interception,
2919 [SVM_EXIT_PAUSE] = pause_interception,
2920 [SVM_EXIT_HLT] = halt_interception,
2921 [SVM_EXIT_INVLPG] = invlpg_interception,
2922 [SVM_EXIT_INVLPGA] = invlpga_interception,
2923 [SVM_EXIT_IOIO] = io_interception,
2924 [SVM_EXIT_MSR] = msr_interception,
2925 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
2926 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
2927 [SVM_EXIT_VMRUN] = vmrun_interception,
2928 [SVM_EXIT_VMMCALL] = vmmcall_interception,
2929 [SVM_EXIT_VMLOAD] = vmload_interception,
2930 [SVM_EXIT_VMSAVE] = vmsave_interception,
2931 [SVM_EXIT_STGI] = stgi_interception,
2932 [SVM_EXIT_CLGI] = clgi_interception,
2933 [SVM_EXIT_SKINIT] = skinit_interception,
2934 [SVM_EXIT_WBINVD] = wbinvd_interception,
2935 [SVM_EXIT_MONITOR] = monitor_interception,
2936 [SVM_EXIT_MWAIT] = mwait_interception,
2937 [SVM_EXIT_XSETBV] = xsetbv_interception,
2938 [SVM_EXIT_RDPRU] = rdpru_interception,
2939 [SVM_EXIT_INVPCID] = invpcid_interception,
2940 [SVM_EXIT_NPF] = npf_interception,
2941 [SVM_EXIT_RSM] = rsm_interception,
2942 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
2943 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
2944 };
2945
dump_vmcb(struct kvm_vcpu * vcpu)2946 static void dump_vmcb(struct kvm_vcpu *vcpu)
2947 {
2948 struct vcpu_svm *svm = to_svm(vcpu);
2949 struct vmcb_control_area *control = &svm->vmcb->control;
2950 struct vmcb_save_area *save = &svm->vmcb->save;
2951
2952 if (!dump_invalid_vmcb) {
2953 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2954 return;
2955 }
2956
2957 pr_err("VMCB Control Area:\n");
2958 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
2959 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
2960 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
2961 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
2962 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
2963 pr_err("%-20s%08x %08x\n", "intercepts:",
2964 control->intercepts[INTERCEPT_WORD3],
2965 control->intercepts[INTERCEPT_WORD4]);
2966 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
2967 pr_err("%-20s%d\n", "pause filter threshold:",
2968 control->pause_filter_thresh);
2969 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
2970 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
2971 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
2972 pr_err("%-20s%d\n", "asid:", control->asid);
2973 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
2974 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
2975 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
2976 pr_err("%-20s%08x\n", "int_state:", control->int_state);
2977 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
2978 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
2979 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
2980 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
2981 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
2982 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
2983 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
2984 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
2985 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
2986 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
2987 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
2988 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
2989 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
2990 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
2991 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
2992 pr_err("VMCB State Save Area:\n");
2993 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2994 "es:",
2995 save->es.selector, save->es.attrib,
2996 save->es.limit, save->es.base);
2997 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2998 "cs:",
2999 save->cs.selector, save->cs.attrib,
3000 save->cs.limit, save->cs.base);
3001 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3002 "ss:",
3003 save->ss.selector, save->ss.attrib,
3004 save->ss.limit, save->ss.base);
3005 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3006 "ds:",
3007 save->ds.selector, save->ds.attrib,
3008 save->ds.limit, save->ds.base);
3009 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3010 "fs:",
3011 save->fs.selector, save->fs.attrib,
3012 save->fs.limit, save->fs.base);
3013 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3014 "gs:",
3015 save->gs.selector, save->gs.attrib,
3016 save->gs.limit, save->gs.base);
3017 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3018 "gdtr:",
3019 save->gdtr.selector, save->gdtr.attrib,
3020 save->gdtr.limit, save->gdtr.base);
3021 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3022 "ldtr:",
3023 save->ldtr.selector, save->ldtr.attrib,
3024 save->ldtr.limit, save->ldtr.base);
3025 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3026 "idtr:",
3027 save->idtr.selector, save->idtr.attrib,
3028 save->idtr.limit, save->idtr.base);
3029 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3030 "tr:",
3031 save->tr.selector, save->tr.attrib,
3032 save->tr.limit, save->tr.base);
3033 pr_err("cpl: %d efer: %016llx\n",
3034 save->cpl, save->efer);
3035 pr_err("%-15s %016llx %-13s %016llx\n",
3036 "cr0:", save->cr0, "cr2:", save->cr2);
3037 pr_err("%-15s %016llx %-13s %016llx\n",
3038 "cr3:", save->cr3, "cr4:", save->cr4);
3039 pr_err("%-15s %016llx %-13s %016llx\n",
3040 "dr6:", save->dr6, "dr7:", save->dr7);
3041 pr_err("%-15s %016llx %-13s %016llx\n",
3042 "rip:", save->rip, "rflags:", save->rflags);
3043 pr_err("%-15s %016llx %-13s %016llx\n",
3044 "rsp:", save->rsp, "rax:", save->rax);
3045 pr_err("%-15s %016llx %-13s %016llx\n",
3046 "star:", save->star, "lstar:", save->lstar);
3047 pr_err("%-15s %016llx %-13s %016llx\n",
3048 "cstar:", save->cstar, "sfmask:", save->sfmask);
3049 pr_err("%-15s %016llx %-13s %016llx\n",
3050 "kernel_gs_base:", save->kernel_gs_base,
3051 "sysenter_cs:", save->sysenter_cs);
3052 pr_err("%-15s %016llx %-13s %016llx\n",
3053 "sysenter_esp:", save->sysenter_esp,
3054 "sysenter_eip:", save->sysenter_eip);
3055 pr_err("%-15s %016llx %-13s %016llx\n",
3056 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3057 pr_err("%-15s %016llx %-13s %016llx\n",
3058 "br_from:", save->br_from, "br_to:", save->br_to);
3059 pr_err("%-15s %016llx %-13s %016llx\n",
3060 "excp_from:", save->last_excp_from,
3061 "excp_to:", save->last_excp_to);
3062 }
3063
svm_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)3064 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
3065 u32 *intr_info, u32 *error_code)
3066 {
3067 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3068
3069 *info1 = control->exit_info_1;
3070 *info2 = control->exit_info_2;
3071 *intr_info = control->exit_int_info;
3072 if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3073 (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3074 *error_code = control->exit_int_info_err;
3075 else
3076 *error_code = 0;
3077 }
3078
handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)3079 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3080 {
3081 struct vcpu_svm *svm = to_svm(vcpu);
3082 struct kvm_run *kvm_run = vcpu->run;
3083 u32 exit_code = svm->vmcb->control.exit_code;
3084
3085 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3086
3087 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3088 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3089 if (npt_enabled)
3090 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3091
3092 if (is_guest_mode(vcpu)) {
3093 int vmexit;
3094
3095 trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM);
3096
3097 vmexit = nested_svm_exit_special(svm);
3098
3099 if (vmexit == NESTED_EXIT_CONTINUE)
3100 vmexit = nested_svm_exit_handled(svm);
3101
3102 if (vmexit == NESTED_EXIT_DONE)
3103 return 1;
3104 }
3105
3106 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3107 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3108 kvm_run->fail_entry.hardware_entry_failure_reason
3109 = svm->vmcb->control.exit_code;
3110 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3111 dump_vmcb(vcpu);
3112 return 0;
3113 }
3114
3115 if (exit_fastpath != EXIT_FASTPATH_NONE)
3116 return 1;
3117
3118 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3119 || !svm_exit_handlers[exit_code]) {
3120 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code);
3121 dump_vmcb(vcpu);
3122 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3123 vcpu->run->internal.suberror =
3124 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3125 vcpu->run->internal.ndata = 2;
3126 vcpu->run->internal.data[0] = exit_code;
3127 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3128 return 0;
3129 }
3130
3131 #ifdef CONFIG_RETPOLINE
3132 if (exit_code == SVM_EXIT_MSR)
3133 return msr_interception(svm);
3134 else if (exit_code == SVM_EXIT_VINTR)
3135 return interrupt_window_interception(svm);
3136 else if (exit_code == SVM_EXIT_INTR)
3137 return intr_interception(svm);
3138 else if (exit_code == SVM_EXIT_HLT)
3139 return halt_interception(svm);
3140 else if (exit_code == SVM_EXIT_NPF)
3141 return npf_interception(svm);
3142 #endif
3143 return svm_exit_handlers[exit_code](svm);
3144 }
3145
reload_tss(struct kvm_vcpu * vcpu)3146 static void reload_tss(struct kvm_vcpu *vcpu)
3147 {
3148 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3149
3150 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3151 load_TR_desc();
3152 }
3153
pre_svm_run(struct vcpu_svm * svm)3154 static void pre_svm_run(struct vcpu_svm *svm)
3155 {
3156 struct svm_cpu_data *sd = per_cpu(svm_data, svm->vcpu.cpu);
3157
3158 if (sev_guest(svm->vcpu.kvm))
3159 return pre_sev_run(svm, svm->vcpu.cpu);
3160
3161 /* FIXME: handle wraparound of asid_generation */
3162 if (svm->asid_generation != sd->asid_generation)
3163 new_asid(svm, sd);
3164 }
3165
svm_inject_nmi(struct kvm_vcpu * vcpu)3166 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3167 {
3168 struct vcpu_svm *svm = to_svm(vcpu);
3169
3170 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3171 vcpu->arch.hflags |= HF_NMI_MASK;
3172 svm_set_intercept(svm, INTERCEPT_IRET);
3173 ++vcpu->stat.nmi_injections;
3174 }
3175
svm_set_irq(struct kvm_vcpu * vcpu)3176 static void svm_set_irq(struct kvm_vcpu *vcpu)
3177 {
3178 struct vcpu_svm *svm = to_svm(vcpu);
3179
3180 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3181 ++vcpu->stat.irq_injections;
3182
3183 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3184 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3185 }
3186
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)3187 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3188 {
3189 struct vcpu_svm *svm = to_svm(vcpu);
3190
3191 if (nested_svm_virtualize_tpr(vcpu))
3192 return;
3193
3194 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3195
3196 if (irr == -1)
3197 return;
3198
3199 if (tpr >= irr)
3200 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3201 }
3202
svm_nmi_blocked(struct kvm_vcpu * vcpu)3203 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3204 {
3205 struct vcpu_svm *svm = to_svm(vcpu);
3206 struct vmcb *vmcb = svm->vmcb;
3207 bool ret;
3208
3209 if (!gif_set(svm))
3210 return true;
3211
3212 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3213 return false;
3214
3215 ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3216 (svm->vcpu.arch.hflags & HF_NMI_MASK);
3217
3218 return ret;
3219 }
3220
svm_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)3221 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3222 {
3223 struct vcpu_svm *svm = to_svm(vcpu);
3224 if (svm->nested.nested_run_pending)
3225 return -EBUSY;
3226
3227 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
3228 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3229 return -EBUSY;
3230
3231 return !svm_nmi_blocked(vcpu);
3232 }
3233
svm_get_nmi_mask(struct kvm_vcpu * vcpu)3234 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3235 {
3236 struct vcpu_svm *svm = to_svm(vcpu);
3237
3238 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3239 }
3240
svm_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)3241 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3242 {
3243 struct vcpu_svm *svm = to_svm(vcpu);
3244
3245 if (masked) {
3246 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3247 svm_set_intercept(svm, INTERCEPT_IRET);
3248 } else {
3249 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3250 svm_clr_intercept(svm, INTERCEPT_IRET);
3251 }
3252 }
3253
svm_interrupt_blocked(struct kvm_vcpu * vcpu)3254 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3255 {
3256 struct vcpu_svm *svm = to_svm(vcpu);
3257 struct vmcb *vmcb = svm->vmcb;
3258
3259 if (!gif_set(svm))
3260 return true;
3261
3262 if (is_guest_mode(vcpu)) {
3263 /* As long as interrupts are being delivered... */
3264 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3265 ? !(svm->nested.hsave->save.rflags & X86_EFLAGS_IF)
3266 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3267 return true;
3268
3269 /* ... vmexits aren't blocked by the interrupt shadow */
3270 if (nested_exit_on_intr(svm))
3271 return false;
3272 } else {
3273 if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3274 return true;
3275 }
3276
3277 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3278 }
3279
svm_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)3280 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3281 {
3282 struct vcpu_svm *svm = to_svm(vcpu);
3283 if (svm->nested.nested_run_pending)
3284 return -EBUSY;
3285
3286 /*
3287 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3288 * e.g. if the IRQ arrived asynchronously after checking nested events.
3289 */
3290 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3291 return -EBUSY;
3292
3293 return !svm_interrupt_blocked(vcpu);
3294 }
3295
enable_irq_window(struct kvm_vcpu * vcpu)3296 static void enable_irq_window(struct kvm_vcpu *vcpu)
3297 {
3298 struct vcpu_svm *svm = to_svm(vcpu);
3299
3300 /*
3301 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3302 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3303 * get that intercept, this function will be called again though and
3304 * we'll get the vintr intercept. However, if the vGIF feature is
3305 * enabled, the STGI interception will not occur. Enable the irq
3306 * window under the assumption that the hardware will set the GIF.
3307 */
3308 if (vgif_enabled(svm) || gif_set(svm)) {
3309 /*
3310 * IRQ window is not needed when AVIC is enabled,
3311 * unless we have pending ExtINT since it cannot be injected
3312 * via AVIC. In such case, we need to temporarily disable AVIC,
3313 * and fallback to injecting IRQ via V_IRQ.
3314 */
3315 svm_toggle_avic_for_irq_window(vcpu, false);
3316 svm_set_vintr(svm);
3317 }
3318 }
3319
enable_nmi_window(struct kvm_vcpu * vcpu)3320 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3321 {
3322 struct vcpu_svm *svm = to_svm(vcpu);
3323
3324 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3325 == HF_NMI_MASK)
3326 return; /* IRET will cause a vm exit */
3327
3328 if (!gif_set(svm)) {
3329 if (vgif_enabled(svm))
3330 svm_set_intercept(svm, INTERCEPT_STGI);
3331 return; /* STGI will cause a vm exit */
3332 }
3333
3334 /*
3335 * Something prevents NMI from been injected. Single step over possible
3336 * problem (IRET or exception injection or interrupt shadow)
3337 */
3338 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3339 svm->nmi_singlestep = true;
3340 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3341 }
3342
svm_set_tss_addr(struct kvm * kvm,unsigned int addr)3343 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3344 {
3345 return 0;
3346 }
3347
svm_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)3348 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
3349 {
3350 return 0;
3351 }
3352
svm_flush_tlb(struct kvm_vcpu * vcpu)3353 void svm_flush_tlb(struct kvm_vcpu *vcpu)
3354 {
3355 struct vcpu_svm *svm = to_svm(vcpu);
3356
3357 /*
3358 * Flush only the current ASID even if the TLB flush was invoked via
3359 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all
3360 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3361 * unconditionally does a TLB flush on both nested VM-Enter and nested
3362 * VM-Exit (via kvm_mmu_reset_context()).
3363 */
3364 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3365 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3366 else
3367 svm->asid_generation--;
3368 }
3369
svm_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t gva)3370 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3371 {
3372 struct vcpu_svm *svm = to_svm(vcpu);
3373
3374 invlpga(gva, svm->vmcb->control.asid);
3375 }
3376
svm_prepare_guest_switch(struct kvm_vcpu * vcpu)3377 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3378 {
3379 amd_clear_divider();
3380 }
3381
sync_cr8_to_lapic(struct kvm_vcpu * vcpu)3382 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3383 {
3384 struct vcpu_svm *svm = to_svm(vcpu);
3385
3386 if (nested_svm_virtualize_tpr(vcpu))
3387 return;
3388
3389 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3390 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3391 kvm_set_cr8(vcpu, cr8);
3392 }
3393 }
3394
sync_lapic_to_cr8(struct kvm_vcpu * vcpu)3395 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3396 {
3397 struct vcpu_svm *svm = to_svm(vcpu);
3398 u64 cr8;
3399
3400 if (nested_svm_virtualize_tpr(vcpu) ||
3401 kvm_vcpu_apicv_active(vcpu))
3402 return;
3403
3404 cr8 = kvm_get_cr8(vcpu);
3405 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3406 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3407 }
3408
svm_complete_interrupts(struct vcpu_svm * svm)3409 static void svm_complete_interrupts(struct vcpu_svm *svm)
3410 {
3411 u8 vector;
3412 int type;
3413 u32 exitintinfo = svm->vmcb->control.exit_int_info;
3414 unsigned int3_injected = svm->int3_injected;
3415
3416 svm->int3_injected = 0;
3417
3418 /*
3419 * If we've made progress since setting HF_IRET_MASK, we've
3420 * executed an IRET and can allow NMI injection.
3421 */
3422 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3423 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3424 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3425 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3426 }
3427
3428 svm->vcpu.arch.nmi_injected = false;
3429 kvm_clear_exception_queue(&svm->vcpu);
3430 kvm_clear_interrupt_queue(&svm->vcpu);
3431
3432 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3433 return;
3434
3435 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3436
3437 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3438 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3439
3440 switch (type) {
3441 case SVM_EXITINTINFO_TYPE_NMI:
3442 svm->vcpu.arch.nmi_injected = true;
3443 break;
3444 case SVM_EXITINTINFO_TYPE_EXEPT:
3445 /*
3446 * In case of software exceptions, do not reinject the vector,
3447 * but re-execute the instruction instead. Rewind RIP first
3448 * if we emulated INT3 before.
3449 */
3450 if (kvm_exception_is_soft(vector)) {
3451 if (vector == BP_VECTOR && int3_injected &&
3452 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3453 kvm_rip_write(&svm->vcpu,
3454 kvm_rip_read(&svm->vcpu) -
3455 int3_injected);
3456 break;
3457 }
3458 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3459 u32 err = svm->vmcb->control.exit_int_info_err;
3460 kvm_requeue_exception_e(&svm->vcpu, vector, err);
3461
3462 } else
3463 kvm_requeue_exception(&svm->vcpu, vector);
3464 break;
3465 case SVM_EXITINTINFO_TYPE_INTR:
3466 kvm_queue_interrupt(&svm->vcpu, vector, false);
3467 break;
3468 default:
3469 break;
3470 }
3471 }
3472
svm_cancel_injection(struct kvm_vcpu * vcpu)3473 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3474 {
3475 struct vcpu_svm *svm = to_svm(vcpu);
3476 struct vmcb_control_area *control = &svm->vmcb->control;
3477
3478 control->exit_int_info = control->event_inj;
3479 control->exit_int_info_err = control->event_inj_err;
3480 control->event_inj = 0;
3481 svm_complete_interrupts(svm);
3482 }
3483
svm_exit_handlers_fastpath(struct kvm_vcpu * vcpu)3484 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3485 {
3486 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3487
3488 /*
3489 * Note, the next RIP must be provided as SRCU isn't held, i.e. KVM
3490 * can't read guest memory (dereference memslots) to decode the WRMSR.
3491 */
3492 if (control->exit_code == SVM_EXIT_MSR && control->exit_info_1 &&
3493 nrips && control->next_rip)
3494 return handle_fastpath_set_msr_irqoff(vcpu);
3495
3496 return EXIT_FASTPATH_NONE;
3497 }
3498
3499 void __svm_vcpu_run(unsigned long vmcb_pa, unsigned long *regs);
3500
svm_vcpu_enter_exit(struct kvm_vcpu * vcpu,struct vcpu_svm * svm)3501 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu,
3502 struct vcpu_svm *svm)
3503 {
3504 /*
3505 * VMENTER enables interrupts (host state), but the kernel state is
3506 * interrupts disabled when this is invoked. Also tell RCU about
3507 * it. This is the same logic as for exit_to_user_mode().
3508 *
3509 * This ensures that e.g. latency analysis on the host observes
3510 * guest mode as interrupt enabled.
3511 *
3512 * guest_enter_irqoff() informs context tracking about the
3513 * transition to guest mode and if enabled adjusts RCU state
3514 * accordingly.
3515 */
3516 instrumentation_begin();
3517 trace_hardirqs_on_prepare();
3518 lockdep_hardirqs_on_prepare(CALLER_ADDR0);
3519 instrumentation_end();
3520
3521 guest_enter_irqoff();
3522 lockdep_hardirqs_on(CALLER_ADDR0);
3523
3524 __svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs);
3525
3526 #ifdef CONFIG_X86_64
3527 native_wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3528 #else
3529 loadsegment(fs, svm->host.fs);
3530 #ifndef CONFIG_X86_32_LAZY_GS
3531 loadsegment(gs, svm->host.gs);
3532 #endif
3533 #endif
3534
3535 /*
3536 * VMEXIT disables interrupts (host state), but tracing and lockdep
3537 * have them in state 'on' as recorded before entering guest mode.
3538 * Same as enter_from_user_mode().
3539 *
3540 * context_tracking_guest_exit() restores host context and reinstates
3541 * RCU if enabled and required.
3542 *
3543 * This needs to be done before the below as native_read_msr()
3544 * contains a tracepoint and x86_spec_ctrl_restore_host() calls
3545 * into world and some more.
3546 */
3547 lockdep_hardirqs_off(CALLER_ADDR0);
3548 context_tracking_guest_exit();
3549
3550 instrumentation_begin();
3551 trace_hardirqs_off_finish();
3552 instrumentation_end();
3553 }
3554
svm_vcpu_run(struct kvm_vcpu * vcpu)3555 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3556 {
3557 struct vcpu_svm *svm = to_svm(vcpu);
3558
3559 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3560 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3561 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3562
3563 /*
3564 * Disable singlestep if we're injecting an interrupt/exception.
3565 * We don't want our modified rflags to be pushed on the stack where
3566 * we might not be able to easily reset them if we disabled NMI
3567 * singlestep later.
3568 */
3569 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3570 /*
3571 * Event injection happens before external interrupts cause a
3572 * vmexit and interrupts are disabled here, so smp_send_reschedule
3573 * is enough to force an immediate vmexit.
3574 */
3575 disable_nmi_singlestep(svm);
3576 smp_send_reschedule(vcpu->cpu);
3577 }
3578
3579 pre_svm_run(svm);
3580
3581 sync_lapic_to_cr8(vcpu);
3582
3583 svm->vmcb->save.cr2 = vcpu->arch.cr2;
3584
3585 /*
3586 * Run with all-zero DR6 unless needed, so that we can get the exact cause
3587 * of a #DB.
3588 */
3589 if (unlikely(svm->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3590 svm_set_dr6(svm, vcpu->arch.dr6);
3591 else
3592 svm_set_dr6(svm, DR6_FIXED_1 | DR6_RTM);
3593
3594 clgi();
3595 kvm_load_guest_xsave_state(vcpu);
3596
3597 kvm_wait_lapic_expire(vcpu);
3598
3599 /*
3600 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3601 * it's non-zero. Since vmentry is serialising on affected CPUs, there
3602 * is no need to worry about the conditional branch over the wrmsr
3603 * being speculatively taken.
3604 */
3605 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3606
3607 svm_vcpu_enter_exit(vcpu, svm);
3608
3609 /*
3610 * We do not use IBRS in the kernel. If this vCPU has used the
3611 * SPEC_CTRL MSR it may have left it on; save the value and
3612 * turn it off. This is much more efficient than blindly adding
3613 * it to the atomic save/restore list. Especially as the former
3614 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3615 *
3616 * For non-nested case:
3617 * If the L01 MSR bitmap does not intercept the MSR, then we need to
3618 * save it.
3619 *
3620 * For nested case:
3621 * If the L02 MSR bitmap does not intercept the MSR, then we need to
3622 * save it.
3623 */
3624 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3625 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3626
3627 reload_tss(vcpu);
3628
3629 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3630
3631 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3632 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3633 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3634 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3635
3636 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3637 kvm_before_interrupt(&svm->vcpu);
3638
3639 kvm_load_host_xsave_state(vcpu);
3640 stgi();
3641
3642 /* Any pending NMI will happen here */
3643
3644 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3645 kvm_after_interrupt(&svm->vcpu);
3646
3647 sync_cr8_to_lapic(vcpu);
3648
3649 svm->next_rip = 0;
3650 if (is_guest_mode(&svm->vcpu)) {
3651 sync_nested_vmcb_control(svm);
3652 svm->nested.nested_run_pending = 0;
3653 }
3654
3655 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3656 vmcb_mark_all_clean(svm->vmcb);
3657
3658 /* if exit due to PF check for async PF */
3659 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3660 svm->vcpu.arch.apf.host_apf_flags =
3661 kvm_read_and_reset_apf_flags();
3662
3663 if (npt_enabled) {
3664 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3665 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3666 }
3667
3668 /*
3669 * We need to handle MC intercepts here before the vcpu has a chance to
3670 * change the physical cpu
3671 */
3672 if (unlikely(svm->vmcb->control.exit_code ==
3673 SVM_EXIT_EXCP_BASE + MC_VECTOR))
3674 svm_handle_mce(svm);
3675
3676 svm_complete_interrupts(svm);
3677
3678 if (is_guest_mode(vcpu))
3679 return EXIT_FASTPATH_NONE;
3680
3681 return svm_exit_handlers_fastpath(vcpu);
3682 }
3683
svm_load_mmu_pgd(struct kvm_vcpu * vcpu,unsigned long root,int root_level)3684 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root,
3685 int root_level)
3686 {
3687 struct vcpu_svm *svm = to_svm(vcpu);
3688 unsigned long cr3;
3689
3690 cr3 = __sme_set(root);
3691 if (npt_enabled) {
3692 svm->vmcb->control.nested_cr3 = cr3;
3693 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3694
3695 /* Loading L2's CR3 is handled by enter_svm_guest_mode. */
3696 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3697 return;
3698 cr3 = vcpu->arch.cr3;
3699 }
3700
3701 svm->vmcb->save.cr3 = cr3;
3702 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
3703 }
3704
is_disabled(void)3705 static int is_disabled(void)
3706 {
3707 u64 vm_cr;
3708
3709 rdmsrl(MSR_VM_CR, vm_cr);
3710 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3711 return 1;
3712
3713 return 0;
3714 }
3715
3716 static void
svm_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)3717 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3718 {
3719 /*
3720 * Patch in the VMMCALL instruction:
3721 */
3722 hypercall[0] = 0x0f;
3723 hypercall[1] = 0x01;
3724 hypercall[2] = 0xd9;
3725 }
3726
svm_check_processor_compat(void)3727 static int __init svm_check_processor_compat(void)
3728 {
3729 return 0;
3730 }
3731
svm_cpu_has_accelerated_tpr(void)3732 static bool svm_cpu_has_accelerated_tpr(void)
3733 {
3734 return false;
3735 }
3736
svm_has_emulated_msr(u32 index)3737 static bool svm_has_emulated_msr(u32 index)
3738 {
3739 switch (index) {
3740 case MSR_IA32_MCG_EXT_CTL:
3741 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3742 return false;
3743 default:
3744 break;
3745 }
3746
3747 return true;
3748 }
3749
svm_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)3750 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3751 {
3752 return 0;
3753 }
3754
svm_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)3755 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
3756 {
3757 struct vcpu_svm *svm = to_svm(vcpu);
3758 struct kvm_cpuid_entry2 *best;
3759
3760 vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3761 boot_cpu_has(X86_FEATURE_XSAVE) &&
3762 boot_cpu_has(X86_FEATURE_XSAVES);
3763
3764 /* Update nrips enabled cache */
3765 svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
3766 guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
3767
3768 /* Check again if INVPCID interception if required */
3769 svm_check_invpcid(svm);
3770
3771 /* For sev guests, the memory encryption bit is not reserved in CR3. */
3772 if (sev_guest(vcpu->kvm)) {
3773 best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0);
3774 if (best)
3775 vcpu->arch.cr3_lm_rsvd_bits &= ~(1UL << (best->ebx & 0x3f));
3776 }
3777
3778 if (!kvm_vcpu_apicv_active(vcpu))
3779 return;
3780
3781 /*
3782 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
3783 * is exposed to the guest, disable AVIC.
3784 */
3785 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
3786 kvm_request_apicv_update(vcpu->kvm, false,
3787 APICV_INHIBIT_REASON_X2APIC);
3788
3789 /*
3790 * Currently, AVIC does not work with nested virtualization.
3791 * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
3792 */
3793 if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
3794 kvm_request_apicv_update(vcpu->kvm, false,
3795 APICV_INHIBIT_REASON_NESTED);
3796 }
3797
svm_has_wbinvd_exit(void)3798 static bool svm_has_wbinvd_exit(void)
3799 {
3800 return true;
3801 }
3802
3803 #define PRE_EX(exit) { .exit_code = (exit), \
3804 .stage = X86_ICPT_PRE_EXCEPT, }
3805 #define POST_EX(exit) { .exit_code = (exit), \
3806 .stage = X86_ICPT_POST_EXCEPT, }
3807 #define POST_MEM(exit) { .exit_code = (exit), \
3808 .stage = X86_ICPT_POST_MEMACCESS, }
3809
3810 static const struct __x86_intercept {
3811 u32 exit_code;
3812 enum x86_intercept_stage stage;
3813 } x86_intercept_map[] = {
3814 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
3815 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
3816 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
3817 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
3818 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
3819 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
3820 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
3821 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
3822 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
3823 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
3824 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
3825 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
3826 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
3827 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
3828 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
3829 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
3830 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
3831 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
3832 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
3833 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
3834 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
3835 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
3836 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
3837 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
3838 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
3839 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
3840 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
3841 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
3842 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
3843 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
3844 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
3845 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
3846 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
3847 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
3848 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
3849 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
3850 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
3851 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
3852 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
3853 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
3854 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
3855 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
3856 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
3857 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
3858 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
3859 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
3860 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV),
3861 };
3862
3863 #undef PRE_EX
3864 #undef POST_EX
3865 #undef POST_MEM
3866
svm_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)3867 static int svm_check_intercept(struct kvm_vcpu *vcpu,
3868 struct x86_instruction_info *info,
3869 enum x86_intercept_stage stage,
3870 struct x86_exception *exception)
3871 {
3872 struct vcpu_svm *svm = to_svm(vcpu);
3873 int vmexit, ret = X86EMUL_CONTINUE;
3874 struct __x86_intercept icpt_info;
3875 struct vmcb *vmcb = svm->vmcb;
3876
3877 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
3878 goto out;
3879
3880 icpt_info = x86_intercept_map[info->intercept];
3881
3882 if (stage != icpt_info.stage)
3883 goto out;
3884
3885 switch (icpt_info.exit_code) {
3886 case SVM_EXIT_READ_CR0:
3887 if (info->intercept == x86_intercept_cr_read)
3888 icpt_info.exit_code += info->modrm_reg;
3889 break;
3890 case SVM_EXIT_WRITE_CR0: {
3891 unsigned long cr0, val;
3892
3893 if (info->intercept == x86_intercept_cr_write)
3894 icpt_info.exit_code += info->modrm_reg;
3895
3896 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
3897 info->intercept == x86_intercept_clts)
3898 break;
3899
3900 if (!(vmcb_is_intercept(&svm->nested.ctl,
3901 INTERCEPT_SELECTIVE_CR0)))
3902 break;
3903
3904 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
3905 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
3906
3907 if (info->intercept == x86_intercept_lmsw) {
3908 cr0 &= 0xfUL;
3909 val &= 0xfUL;
3910 /* lmsw can't clear PE - catch this here */
3911 if (cr0 & X86_CR0_PE)
3912 val |= X86_CR0_PE;
3913 }
3914
3915 if (cr0 ^ val)
3916 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3917
3918 break;
3919 }
3920 case SVM_EXIT_READ_DR0:
3921 case SVM_EXIT_WRITE_DR0:
3922 icpt_info.exit_code += info->modrm_reg;
3923 break;
3924 case SVM_EXIT_MSR:
3925 if (info->intercept == x86_intercept_wrmsr)
3926 vmcb->control.exit_info_1 = 1;
3927 else
3928 vmcb->control.exit_info_1 = 0;
3929 break;
3930 case SVM_EXIT_PAUSE:
3931 /*
3932 * We get this for NOP only, but pause
3933 * is rep not, check this here
3934 */
3935 if (info->rep_prefix != REPE_PREFIX)
3936 goto out;
3937 break;
3938 case SVM_EXIT_IOIO: {
3939 u64 exit_info;
3940 u32 bytes;
3941
3942 if (info->intercept == x86_intercept_in ||
3943 info->intercept == x86_intercept_ins) {
3944 exit_info = ((info->src_val & 0xffff) << 16) |
3945 SVM_IOIO_TYPE_MASK;
3946 bytes = info->dst_bytes;
3947 } else {
3948 exit_info = (info->dst_val & 0xffff) << 16;
3949 bytes = info->src_bytes;
3950 }
3951
3952 if (info->intercept == x86_intercept_outs ||
3953 info->intercept == x86_intercept_ins)
3954 exit_info |= SVM_IOIO_STR_MASK;
3955
3956 if (info->rep_prefix)
3957 exit_info |= SVM_IOIO_REP_MASK;
3958
3959 bytes = min(bytes, 4u);
3960
3961 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
3962
3963 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
3964
3965 vmcb->control.exit_info_1 = exit_info;
3966 vmcb->control.exit_info_2 = info->next_rip;
3967
3968 break;
3969 }
3970 default:
3971 break;
3972 }
3973
3974 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
3975 if (static_cpu_has(X86_FEATURE_NRIPS))
3976 vmcb->control.next_rip = info->next_rip;
3977 vmcb->control.exit_code = icpt_info.exit_code;
3978 vmexit = nested_svm_exit_handled(svm);
3979
3980 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
3981 : X86EMUL_CONTINUE;
3982
3983 out:
3984 return ret;
3985 }
3986
svm_handle_exit_irqoff(struct kvm_vcpu * vcpu)3987 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
3988 {
3989 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
3990 vcpu->arch.at_instruction_boundary = true;
3991 }
3992
svm_sched_in(struct kvm_vcpu * vcpu,int cpu)3993 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
3994 {
3995 if (!kvm_pause_in_guest(vcpu->kvm))
3996 shrink_ple_window(vcpu);
3997 }
3998
svm_setup_mce(struct kvm_vcpu * vcpu)3999 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4000 {
4001 /* [63:9] are reserved. */
4002 vcpu->arch.mcg_cap &= 0x1ff;
4003 }
4004
svm_smi_blocked(struct kvm_vcpu * vcpu)4005 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4006 {
4007 struct vcpu_svm *svm = to_svm(vcpu);
4008
4009 /* Per APM Vol.2 15.22.2 "Response to SMI" */
4010 if (!gif_set(svm))
4011 return true;
4012
4013 return is_smm(vcpu);
4014 }
4015
svm_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4016 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4017 {
4018 struct vcpu_svm *svm = to_svm(vcpu);
4019 if (svm->nested.nested_run_pending)
4020 return -EBUSY;
4021
4022 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */
4023 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4024 return -EBUSY;
4025
4026 return !svm_smi_blocked(vcpu);
4027 }
4028
svm_pre_enter_smm(struct kvm_vcpu * vcpu,char * smstate)4029 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4030 {
4031 struct vcpu_svm *svm = to_svm(vcpu);
4032 int ret;
4033
4034 if (is_guest_mode(vcpu)) {
4035 /* FED8h - SVM Guest */
4036 put_smstate(u64, smstate, 0x7ed8, 1);
4037 /* FEE0h - SVM Guest VMCB Physical Address */
4038 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4039
4040 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4041 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4042 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4043
4044 ret = nested_svm_vmexit(svm);
4045 if (ret)
4046 return ret;
4047 }
4048 return 0;
4049 }
4050
svm_pre_leave_smm(struct kvm_vcpu * vcpu,const char * smstate)4051 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4052 {
4053 struct vcpu_svm *svm = to_svm(vcpu);
4054 struct kvm_host_map map;
4055 int ret = 0;
4056
4057 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) {
4058 u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4059 u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
4060 u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4061
4062 if (guest) {
4063 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4064 return 1;
4065
4066 if (!(saved_efer & EFER_SVME))
4067 return 1;
4068
4069 if (kvm_vcpu_map(&svm->vcpu,
4070 gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4071 return 1;
4072
4073 if (svm_allocate_nested(svm))
4074 return 1;
4075
4076 ret = enter_svm_guest_mode(svm, vmcb12_gpa, map.hva);
4077 kvm_vcpu_unmap(&svm->vcpu, &map, true);
4078 }
4079 }
4080
4081 return ret;
4082 }
4083
enable_smi_window(struct kvm_vcpu * vcpu)4084 static void enable_smi_window(struct kvm_vcpu *vcpu)
4085 {
4086 struct vcpu_svm *svm = to_svm(vcpu);
4087
4088 if (!gif_set(svm)) {
4089 if (vgif_enabled(svm))
4090 svm_set_intercept(svm, INTERCEPT_STGI);
4091 /* STGI will cause a vm exit */
4092 } else {
4093 /* We must be in SMM; RSM will cause a vmexit anyway. */
4094 }
4095 }
4096
svm_can_emulate_instruction(struct kvm_vcpu * vcpu,void * insn,int insn_len)4097 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
4098 {
4099 bool smep, smap, is_user;
4100 unsigned long cr4;
4101
4102 /* Emulation is always possible when KVM has access to all guest state. */
4103 if (!sev_guest(vcpu->kvm))
4104 return true;
4105
4106 /*
4107 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4108 *
4109 * Errata:
4110 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
4111 * possible that CPU microcode implementing DecodeAssist will fail
4112 * to read bytes of instruction which caused #NPF. In this case,
4113 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
4114 * return 0 instead of the correct guest instruction bytes.
4115 *
4116 * This happens because CPU microcode reading instruction bytes
4117 * uses a special opcode which attempts to read data using CPL=0
4118 * priviledges. The microcode reads CS:RIP and if it hits a SMAP
4119 * fault, it gives up and returns no instruction bytes.
4120 *
4121 * Detection:
4122 * We reach here in case CPU supports DecodeAssist, raised #NPF and
4123 * returned 0 in GuestIntrBytes field of the VMCB.
4124 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
4125 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
4126 * in case vCPU CPL==3 (Because otherwise guest would have triggered
4127 * a SMEP fault instead of #NPF).
4128 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
4129 * As most guests enable SMAP if they have also enabled SMEP, use above
4130 * logic in order to attempt minimize false-positive of detecting errata
4131 * while still preserving all cases semantic correctness.
4132 *
4133 * Workaround:
4134 * To determine what instruction the guest was executing, the hypervisor
4135 * will have to decode the instruction at the instruction pointer.
4136 *
4137 * In non SEV guest, hypervisor will be able to read the guest
4138 * memory to decode the instruction pointer when insn_len is zero
4139 * so we return true to indicate that decoding is possible.
4140 *
4141 * But in the SEV guest, the guest memory is encrypted with the
4142 * guest specific key and hypervisor will not be able to decode the
4143 * instruction pointer so we will not able to workaround it. Lets
4144 * print the error and request to kill the guest.
4145 */
4146 if (likely(!insn || insn_len))
4147 return true;
4148
4149 cr4 = kvm_read_cr4(vcpu);
4150 smep = cr4 & X86_CR4_SMEP;
4151 smap = cr4 & X86_CR4_SMAP;
4152 is_user = svm_get_cpl(vcpu) == 3;
4153 if (smap && (!smep || is_user)) {
4154 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4155
4156 /*
4157 * If the fault occurred in userspace, arbitrarily inject #GP
4158 * to avoid killing the guest and to hopefully avoid confusing
4159 * the guest kernel too much, e.g. injecting #PF would not be
4160 * coherent with respect to the guest's page tables. Request
4161 * triple fault if the fault occurred in the kernel as there's
4162 * no fault that KVM can inject without confusing the guest.
4163 * In practice, the triple fault is moot as no sane SEV kernel
4164 * will execute from user memory while also running with SMAP=1.
4165 */
4166 if (is_user)
4167 kvm_inject_gp(vcpu, 0);
4168 else
4169 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4170 }
4171
4172 return false;
4173 }
4174
svm_apic_init_signal_blocked(struct kvm_vcpu * vcpu)4175 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4176 {
4177 struct vcpu_svm *svm = to_svm(vcpu);
4178
4179 /*
4180 * TODO: Last condition latch INIT signals on vCPU when
4181 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4182 * To properly emulate the INIT intercept,
4183 * svm_check_nested_events() should call nested_svm_vmexit()
4184 * if an INIT signal is pending.
4185 */
4186 return !gif_set(svm) ||
4187 (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
4188 }
4189
svm_vm_destroy(struct kvm * kvm)4190 static void svm_vm_destroy(struct kvm *kvm)
4191 {
4192 avic_vm_destroy(kvm);
4193 sev_vm_destroy(kvm);
4194 }
4195
svm_vm_init(struct kvm * kvm)4196 static int svm_vm_init(struct kvm *kvm)
4197 {
4198 if (!pause_filter_count || !pause_filter_thresh)
4199 kvm->arch.pause_in_guest = true;
4200
4201 if (avic) {
4202 int ret = avic_vm_init(kvm);
4203 if (ret)
4204 return ret;
4205 }
4206
4207 kvm_apicv_init(kvm, avic);
4208 return 0;
4209 }
4210
4211 static struct kvm_x86_ops svm_x86_ops __initdata = {
4212 .hardware_unsetup = svm_hardware_teardown,
4213 .hardware_enable = svm_hardware_enable,
4214 .hardware_disable = svm_hardware_disable,
4215 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4216 .has_emulated_msr = svm_has_emulated_msr,
4217
4218 .vcpu_create = svm_create_vcpu,
4219 .vcpu_free = svm_free_vcpu,
4220 .vcpu_reset = svm_vcpu_reset,
4221
4222 .vm_size = sizeof(struct kvm_svm),
4223 .vm_init = svm_vm_init,
4224 .vm_destroy = svm_vm_destroy,
4225
4226 .prepare_guest_switch = svm_prepare_guest_switch,
4227 .vcpu_load = svm_vcpu_load,
4228 .vcpu_put = svm_vcpu_put,
4229 .vcpu_blocking = svm_vcpu_blocking,
4230 .vcpu_unblocking = svm_vcpu_unblocking,
4231
4232 .update_exception_bitmap = update_exception_bitmap,
4233 .get_msr_feature = svm_get_msr_feature,
4234 .get_msr = svm_get_msr,
4235 .set_msr = svm_set_msr,
4236 .get_segment_base = svm_get_segment_base,
4237 .get_segment = svm_get_segment,
4238 .set_segment = svm_set_segment,
4239 .get_cpl = svm_get_cpl,
4240 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4241 .set_cr0 = svm_set_cr0,
4242 .is_valid_cr4 = svm_is_valid_cr4,
4243 .set_cr4 = svm_set_cr4,
4244 .set_efer = svm_set_efer,
4245 .get_idt = svm_get_idt,
4246 .set_idt = svm_set_idt,
4247 .get_gdt = svm_get_gdt,
4248 .set_gdt = svm_set_gdt,
4249 .set_dr7 = svm_set_dr7,
4250 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4251 .cache_reg = svm_cache_reg,
4252 .get_rflags = svm_get_rflags,
4253 .set_rflags = svm_set_rflags,
4254
4255 .tlb_flush_all = svm_flush_tlb,
4256 .tlb_flush_current = svm_flush_tlb,
4257 .tlb_flush_gva = svm_flush_tlb_gva,
4258 .tlb_flush_guest = svm_flush_tlb,
4259
4260 .run = svm_vcpu_run,
4261 .handle_exit = handle_exit,
4262 .skip_emulated_instruction = skip_emulated_instruction,
4263 .update_emulated_instruction = NULL,
4264 .set_interrupt_shadow = svm_set_interrupt_shadow,
4265 .get_interrupt_shadow = svm_get_interrupt_shadow,
4266 .patch_hypercall = svm_patch_hypercall,
4267 .set_irq = svm_set_irq,
4268 .set_nmi = svm_inject_nmi,
4269 .queue_exception = svm_queue_exception,
4270 .cancel_injection = svm_cancel_injection,
4271 .interrupt_allowed = svm_interrupt_allowed,
4272 .nmi_allowed = svm_nmi_allowed,
4273 .get_nmi_mask = svm_get_nmi_mask,
4274 .set_nmi_mask = svm_set_nmi_mask,
4275 .enable_nmi_window = enable_nmi_window,
4276 .enable_irq_window = enable_irq_window,
4277 .update_cr8_intercept = update_cr8_intercept,
4278 .set_virtual_apic_mode = svm_set_virtual_apic_mode,
4279 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
4280 .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
4281 .pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl,
4282 .load_eoi_exitmap = svm_load_eoi_exitmap,
4283 .hwapic_irr_update = svm_hwapic_irr_update,
4284 .hwapic_isr_update = svm_hwapic_isr_update,
4285 .sync_pir_to_irr = kvm_lapic_find_highest_irr,
4286 .apicv_post_state_restore = avic_post_state_restore,
4287
4288 .set_tss_addr = svm_set_tss_addr,
4289 .set_identity_map_addr = svm_set_identity_map_addr,
4290 .get_mt_mask = svm_get_mt_mask,
4291
4292 .get_exit_info = svm_get_exit_info,
4293
4294 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4295
4296 .has_wbinvd_exit = svm_has_wbinvd_exit,
4297
4298 .write_l1_tsc_offset = svm_write_l1_tsc_offset,
4299
4300 .load_mmu_pgd = svm_load_mmu_pgd,
4301
4302 .check_intercept = svm_check_intercept,
4303 .handle_exit_irqoff = svm_handle_exit_irqoff,
4304
4305 .request_immediate_exit = __kvm_request_immediate_exit,
4306
4307 .sched_in = svm_sched_in,
4308
4309 .pmu_ops = &amd_pmu_ops,
4310 .nested_ops = &svm_nested_ops,
4311
4312 .deliver_posted_interrupt = svm_deliver_avic_intr,
4313 .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
4314 .update_pi_irte = svm_update_pi_irte,
4315 .setup_mce = svm_setup_mce,
4316
4317 .smi_allowed = svm_smi_allowed,
4318 .pre_enter_smm = svm_pre_enter_smm,
4319 .pre_leave_smm = svm_pre_leave_smm,
4320 .enable_smi_window = enable_smi_window,
4321
4322 .mem_enc_op = svm_mem_enc_op,
4323 .mem_enc_reg_region = svm_register_enc_region,
4324 .mem_enc_unreg_region = svm_unregister_enc_region,
4325 .guest_memory_reclaimed = sev_guest_memory_reclaimed,
4326
4327 .can_emulate_instruction = svm_can_emulate_instruction,
4328
4329 .apic_init_signal_blocked = svm_apic_init_signal_blocked,
4330
4331 .msr_filter_changed = svm_msr_filter_changed,
4332 };
4333
4334 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4335 .cpu_has_kvm_support = has_svm,
4336 .disabled_by_bios = is_disabled,
4337 .hardware_setup = svm_hardware_setup,
4338 .check_processor_compatibility = svm_check_processor_compat,
4339
4340 .runtime_ops = &svm_x86_ops,
4341 };
4342
svm_init(void)4343 static int __init svm_init(void)
4344 {
4345 __unused_size_checks();
4346
4347 return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4348 __alignof__(struct vcpu_svm), THIS_MODULE);
4349 }
4350
svm_exit(void)4351 static void __exit svm_exit(void)
4352 {
4353 kvm_exit();
4354 }
4355
4356 module_init(svm_init)
4357 module_exit(svm_exit)
4358