1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/objtool.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "pmu.h"
14 #include "trace.h"
15 #include "vmx.h"
16 #include "x86.h"
17
18 static bool __read_mostly enable_shadow_vmcs = 1;
19 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
20
21 static bool __read_mostly nested_early_check = 0;
22 module_param(nested_early_check, bool, S_IRUGO);
23
24 #define CC(consistency_check) \
25 ({ \
26 bool failed = (consistency_check); \
27 if (failed) \
28 trace_kvm_nested_vmenter_failed(#consistency_check, 0); \
29 failed; \
30 })
31
32 /*
33 * Hyper-V requires all of these, so mark them as supported even though
34 * they are just treated the same as all-context.
35 */
36 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
37 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
38 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
39 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
40 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
41
42 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
43
44 enum {
45 VMX_VMREAD_BITMAP,
46 VMX_VMWRITE_BITMAP,
47 VMX_BITMAP_NR
48 };
49 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
50
51 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
52 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
53
54 struct shadow_vmcs_field {
55 u16 encoding;
56 u16 offset;
57 };
58 static struct shadow_vmcs_field shadow_read_only_fields[] = {
59 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
60 #include "vmcs_shadow_fields.h"
61 };
62 static int max_shadow_read_only_fields =
63 ARRAY_SIZE(shadow_read_only_fields);
64
65 static struct shadow_vmcs_field shadow_read_write_fields[] = {
66 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
67 #include "vmcs_shadow_fields.h"
68 };
69 static int max_shadow_read_write_fields =
70 ARRAY_SIZE(shadow_read_write_fields);
71
init_vmcs_shadow_fields(void)72 static void init_vmcs_shadow_fields(void)
73 {
74 int i, j;
75
76 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
77 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
78
79 for (i = j = 0; i < max_shadow_read_only_fields; i++) {
80 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
81 u16 field = entry.encoding;
82
83 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
84 (i + 1 == max_shadow_read_only_fields ||
85 shadow_read_only_fields[i + 1].encoding != field + 1))
86 pr_err("Missing field from shadow_read_only_field %x\n",
87 field + 1);
88
89 clear_bit(field, vmx_vmread_bitmap);
90 if (field & 1)
91 #ifdef CONFIG_X86_64
92 continue;
93 #else
94 entry.offset += sizeof(u32);
95 #endif
96 shadow_read_only_fields[j++] = entry;
97 }
98 max_shadow_read_only_fields = j;
99
100 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
101 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
102 u16 field = entry.encoding;
103
104 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
105 (i + 1 == max_shadow_read_write_fields ||
106 shadow_read_write_fields[i + 1].encoding != field + 1))
107 pr_err("Missing field from shadow_read_write_field %x\n",
108 field + 1);
109
110 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
111 field <= GUEST_TR_AR_BYTES,
112 "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
113
114 /*
115 * PML and the preemption timer can be emulated, but the
116 * processor cannot vmwrite to fields that don't exist
117 * on bare metal.
118 */
119 switch (field) {
120 case GUEST_PML_INDEX:
121 if (!cpu_has_vmx_pml())
122 continue;
123 break;
124 case VMX_PREEMPTION_TIMER_VALUE:
125 if (!cpu_has_vmx_preemption_timer())
126 continue;
127 break;
128 case GUEST_INTR_STATUS:
129 if (!cpu_has_vmx_apicv())
130 continue;
131 break;
132 default:
133 break;
134 }
135
136 clear_bit(field, vmx_vmwrite_bitmap);
137 clear_bit(field, vmx_vmread_bitmap);
138 if (field & 1)
139 #ifdef CONFIG_X86_64
140 continue;
141 #else
142 entry.offset += sizeof(u32);
143 #endif
144 shadow_read_write_fields[j++] = entry;
145 }
146 max_shadow_read_write_fields = j;
147 }
148
149 /*
150 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
151 * set the success or error code of an emulated VMX instruction (as specified
152 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
153 * instruction.
154 */
nested_vmx_succeed(struct kvm_vcpu * vcpu)155 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
156 {
157 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
158 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
159 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
160 return kvm_skip_emulated_instruction(vcpu);
161 }
162
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)163 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
164 {
165 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
166 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
167 X86_EFLAGS_SF | X86_EFLAGS_OF))
168 | X86_EFLAGS_CF);
169 return kvm_skip_emulated_instruction(vcpu);
170 }
171
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)172 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
173 u32 vm_instruction_error)
174 {
175 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
176 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
177 X86_EFLAGS_SF | X86_EFLAGS_OF))
178 | X86_EFLAGS_ZF);
179 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
180 /*
181 * We don't need to force a shadow sync because
182 * VM_INSTRUCTION_ERROR is not shadowed
183 */
184 return kvm_skip_emulated_instruction(vcpu);
185 }
186
nested_vmx_fail(struct kvm_vcpu * vcpu,u32 vm_instruction_error)187 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
188 {
189 struct vcpu_vmx *vmx = to_vmx(vcpu);
190
191 /*
192 * failValid writes the error number to the current VMCS, which
193 * can't be done if there isn't a current VMCS.
194 */
195 if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
196 return nested_vmx_failInvalid(vcpu);
197
198 return nested_vmx_failValid(vcpu, vm_instruction_error);
199 }
200
nested_vmx_abort(struct kvm_vcpu * vcpu,u32 indicator)201 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
202 {
203 /* TODO: not to reset guest simply here. */
204 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
205 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
206 }
207
vmx_control_verify(u32 control,u32 low,u32 high)208 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
209 {
210 return fixed_bits_valid(control, low, high);
211 }
212
vmx_control_msr(u32 low,u32 high)213 static inline u64 vmx_control_msr(u32 low, u32 high)
214 {
215 return low | ((u64)high << 32);
216 }
217
vmx_disable_shadow_vmcs(struct vcpu_vmx * vmx)218 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
219 {
220 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
221 vmcs_write64(VMCS_LINK_POINTER, -1ull);
222 vmx->nested.need_vmcs12_to_shadow_sync = false;
223 }
224
nested_release_evmcs(struct kvm_vcpu * vcpu)225 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
226 {
227 struct vcpu_vmx *vmx = to_vmx(vcpu);
228
229 if (!vmx->nested.hv_evmcs)
230 return;
231
232 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
233 vmx->nested.hv_evmcs_vmptr = 0;
234 vmx->nested.hv_evmcs = NULL;
235 }
236
vmx_sync_vmcs_host_state(struct vcpu_vmx * vmx,struct loaded_vmcs * prev)237 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
238 struct loaded_vmcs *prev)
239 {
240 struct vmcs_host_state *dest, *src;
241
242 if (unlikely(!vmx->guest_state_loaded))
243 return;
244
245 src = &prev->host_state;
246 dest = &vmx->loaded_vmcs->host_state;
247
248 vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
249 dest->ldt_sel = src->ldt_sel;
250 #ifdef CONFIG_X86_64
251 dest->ds_sel = src->ds_sel;
252 dest->es_sel = src->es_sel;
253 #endif
254 }
255
vmx_switch_vmcs(struct kvm_vcpu * vcpu,struct loaded_vmcs * vmcs)256 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
257 {
258 struct vcpu_vmx *vmx = to_vmx(vcpu);
259 struct loaded_vmcs *prev;
260 int cpu;
261
262 if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
263 return;
264
265 cpu = get_cpu();
266 prev = vmx->loaded_vmcs;
267 vmx->loaded_vmcs = vmcs;
268 vmx_vcpu_load_vmcs(vcpu, cpu, prev);
269 vmx_sync_vmcs_host_state(vmx, prev);
270 put_cpu();
271
272 vmx_register_cache_reset(vcpu);
273 }
274
275 /*
276 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
277 * just stops using VMX.
278 */
free_nested(struct kvm_vcpu * vcpu)279 static void free_nested(struct kvm_vcpu *vcpu)
280 {
281 struct vcpu_vmx *vmx = to_vmx(vcpu);
282
283 if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
284 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
285
286 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
287 return;
288
289 kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
290
291 vmx->nested.vmxon = false;
292 vmx->nested.smm.vmxon = false;
293 free_vpid(vmx->nested.vpid02);
294 vmx->nested.posted_intr_nv = -1;
295 vmx->nested.current_vmptr = -1ull;
296 if (enable_shadow_vmcs) {
297 vmx_disable_shadow_vmcs(vmx);
298 vmcs_clear(vmx->vmcs01.shadow_vmcs);
299 free_vmcs(vmx->vmcs01.shadow_vmcs);
300 vmx->vmcs01.shadow_vmcs = NULL;
301 }
302 kfree(vmx->nested.cached_vmcs12);
303 vmx->nested.cached_vmcs12 = NULL;
304 kfree(vmx->nested.cached_shadow_vmcs12);
305 vmx->nested.cached_shadow_vmcs12 = NULL;
306 /* Unpin physical memory we referred to in the vmcs02 */
307 if (vmx->nested.apic_access_page) {
308 kvm_release_page_clean(vmx->nested.apic_access_page);
309 vmx->nested.apic_access_page = NULL;
310 }
311 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
312 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
313 vmx->nested.pi_desc = NULL;
314
315 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
316
317 nested_release_evmcs(vcpu);
318
319 free_loaded_vmcs(&vmx->nested.vmcs02);
320 }
321
322 /*
323 * Ensure that the current vmcs of the logical processor is the
324 * vmcs01 of the vcpu before calling free_nested().
325 */
nested_vmx_free_vcpu(struct kvm_vcpu * vcpu)326 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
327 {
328 vcpu_load(vcpu);
329 vmx_leave_nested(vcpu);
330 vcpu_put(vcpu);
331 }
332
nested_ept_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)333 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
334 struct x86_exception *fault)
335 {
336 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
337 struct vcpu_vmx *vmx = to_vmx(vcpu);
338 u32 vm_exit_reason;
339 unsigned long exit_qualification = vcpu->arch.exit_qualification;
340
341 if (vmx->nested.pml_full) {
342 vm_exit_reason = EXIT_REASON_PML_FULL;
343 vmx->nested.pml_full = false;
344 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
345 } else if (fault->error_code & PFERR_RSVD_MASK)
346 vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
347 else
348 vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
349
350 nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
351 vmcs12->guest_physical_address = fault->address;
352 }
353
nested_ept_init_mmu_context(struct kvm_vcpu * vcpu)354 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
355 {
356 WARN_ON(mmu_is_nested(vcpu));
357
358 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
359 kvm_init_shadow_ept_mmu(vcpu,
360 to_vmx(vcpu)->nested.msrs.ept_caps &
361 VMX_EPT_EXECUTE_ONLY_BIT,
362 nested_ept_ad_enabled(vcpu),
363 nested_ept_get_eptp(vcpu));
364 vcpu->arch.mmu->get_guest_pgd = nested_ept_get_eptp;
365 vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
366 vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
367
368 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
369 }
370
nested_ept_uninit_mmu_context(struct kvm_vcpu * vcpu)371 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
372 {
373 vcpu->arch.mmu = &vcpu->arch.root_mmu;
374 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
375 }
376
nested_vmx_is_page_fault_vmexit(struct vmcs12 * vmcs12,u16 error_code)377 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
378 u16 error_code)
379 {
380 bool inequality, bit;
381
382 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
383 inequality =
384 (error_code & vmcs12->page_fault_error_code_mask) !=
385 vmcs12->page_fault_error_code_match;
386 return inequality ^ bit;
387 }
388
389
390 /*
391 * KVM wants to inject page-faults which it got to the guest. This function
392 * checks whether in a nested guest, we need to inject them to L1 or L2.
393 */
nested_vmx_check_exception(struct kvm_vcpu * vcpu,unsigned long * exit_qual)394 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
395 {
396 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
397 unsigned int nr = vcpu->arch.exception.nr;
398 bool has_payload = vcpu->arch.exception.has_payload;
399 unsigned long payload = vcpu->arch.exception.payload;
400
401 if (nr == PF_VECTOR) {
402 if (vcpu->arch.exception.nested_apf) {
403 *exit_qual = vcpu->arch.apf.nested_apf_token;
404 return 1;
405 }
406 if (nested_vmx_is_page_fault_vmexit(vmcs12,
407 vcpu->arch.exception.error_code)) {
408 *exit_qual = has_payload ? payload : vcpu->arch.cr2;
409 return 1;
410 }
411 } else if (vmcs12->exception_bitmap & (1u << nr)) {
412 if (nr == DB_VECTOR) {
413 if (!has_payload) {
414 payload = vcpu->arch.dr6;
415 payload &= ~(DR6_FIXED_1 | DR6_BT);
416 payload ^= DR6_RTM;
417 }
418 *exit_qual = payload;
419 } else
420 *exit_qual = 0;
421 return 1;
422 }
423
424 return 0;
425 }
426
427
vmx_inject_page_fault_nested(struct kvm_vcpu * vcpu,struct x86_exception * fault)428 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
429 struct x86_exception *fault)
430 {
431 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
432
433 WARN_ON(!is_guest_mode(vcpu));
434
435 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
436 !to_vmx(vcpu)->nested.nested_run_pending) {
437 vmcs12->vm_exit_intr_error_code = fault->error_code;
438 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
439 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
440 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
441 fault->address);
442 } else {
443 kvm_inject_page_fault(vcpu, fault);
444 }
445 }
446
nested_vmx_check_io_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)447 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
448 struct vmcs12 *vmcs12)
449 {
450 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
451 return 0;
452
453 if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
454 CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
455 return -EINVAL;
456
457 return 0;
458 }
459
nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)460 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
461 struct vmcs12 *vmcs12)
462 {
463 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
464 return 0;
465
466 if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
467 return -EINVAL;
468
469 return 0;
470 }
471
nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)472 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
473 struct vmcs12 *vmcs12)
474 {
475 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
476 return 0;
477
478 if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
479 return -EINVAL;
480
481 return 0;
482 }
483
484 /*
485 * Check if MSR is intercepted for L01 MSR bitmap.
486 */
msr_write_intercepted_l01(struct kvm_vcpu * vcpu,u32 msr)487 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
488 {
489 unsigned long *msr_bitmap;
490 int f = sizeof(unsigned long);
491
492 if (!cpu_has_vmx_msr_bitmap())
493 return true;
494
495 msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
496
497 if (msr <= 0x1fff) {
498 return !!test_bit(msr, msr_bitmap + 0x800 / f);
499 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
500 msr &= 0x1fff;
501 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
502 }
503
504 return true;
505 }
506
507 /*
508 * If a msr is allowed by L0, we should check whether it is allowed by L1.
509 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
510 */
nested_vmx_disable_intercept_for_msr(unsigned long * msr_bitmap_l1,unsigned long * msr_bitmap_nested,u32 msr,int type)511 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
512 unsigned long *msr_bitmap_nested,
513 u32 msr, int type)
514 {
515 int f = sizeof(unsigned long);
516
517 /*
518 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
519 * have the write-low and read-high bitmap offsets the wrong way round.
520 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
521 */
522 if (msr <= 0x1fff) {
523 if (type & MSR_TYPE_R &&
524 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
525 /* read-low */
526 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
527
528 if (type & MSR_TYPE_W &&
529 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
530 /* write-low */
531 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
532
533 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
534 msr &= 0x1fff;
535 if (type & MSR_TYPE_R &&
536 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
537 /* read-high */
538 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
539
540 if (type & MSR_TYPE_W &&
541 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
542 /* write-high */
543 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
544
545 }
546 }
547
enable_x2apic_msr_intercepts(unsigned long * msr_bitmap)548 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
549 {
550 int msr;
551
552 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
553 unsigned word = msr / BITS_PER_LONG;
554
555 msr_bitmap[word] = ~0;
556 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
557 }
558 }
559
560 /*
561 * Merge L0's and L1's MSR bitmap, return false to indicate that
562 * we do not use the hardware.
563 */
nested_vmx_prepare_msr_bitmap(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)564 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
565 struct vmcs12 *vmcs12)
566 {
567 int msr;
568 unsigned long *msr_bitmap_l1;
569 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
570 struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
571
572 /* Nothing to do if the MSR bitmap is not in use. */
573 if (!cpu_has_vmx_msr_bitmap() ||
574 !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
575 return false;
576
577 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
578 return false;
579
580 msr_bitmap_l1 = (unsigned long *)map->hva;
581
582 /*
583 * To keep the control flow simple, pay eight 8-byte writes (sixteen
584 * 4-byte writes on 32-bit systems) up front to enable intercepts for
585 * the x2APIC MSR range and selectively disable them below.
586 */
587 enable_x2apic_msr_intercepts(msr_bitmap_l0);
588
589 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
590 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
591 /*
592 * L0 need not intercept reads for MSRs between 0x800
593 * and 0x8ff, it just lets the processor take the value
594 * from the virtual-APIC page; take those 256 bits
595 * directly from the L1 bitmap.
596 */
597 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
598 unsigned word = msr / BITS_PER_LONG;
599
600 msr_bitmap_l0[word] = msr_bitmap_l1[word];
601 }
602 }
603
604 nested_vmx_disable_intercept_for_msr(
605 msr_bitmap_l1, msr_bitmap_l0,
606 X2APIC_MSR(APIC_TASKPRI),
607 MSR_TYPE_R | MSR_TYPE_W);
608
609 if (nested_cpu_has_vid(vmcs12)) {
610 nested_vmx_disable_intercept_for_msr(
611 msr_bitmap_l1, msr_bitmap_l0,
612 X2APIC_MSR(APIC_EOI),
613 MSR_TYPE_W);
614 nested_vmx_disable_intercept_for_msr(
615 msr_bitmap_l1, msr_bitmap_l0,
616 X2APIC_MSR(APIC_SELF_IPI),
617 MSR_TYPE_W);
618 }
619 }
620
621 /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
622 #ifdef CONFIG_X86_64
623 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
624 MSR_FS_BASE, MSR_TYPE_RW);
625
626 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
627 MSR_GS_BASE, MSR_TYPE_RW);
628
629 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
630 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
631 #endif
632
633 /*
634 * Checking the L0->L1 bitmap is trying to verify two things:
635 *
636 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
637 * ensures that we do not accidentally generate an L02 MSR bitmap
638 * from the L12 MSR bitmap that is too permissive.
639 * 2. That L1 or L2s have actually used the MSR. This avoids
640 * unnecessarily merging of the bitmap if the MSR is unused. This
641 * works properly because we only update the L01 MSR bitmap lazily.
642 * So even if L0 should pass L1 these MSRs, the L01 bitmap is only
643 * updated to reflect this when L1 (or its L2s) actually write to
644 * the MSR.
645 */
646 if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
647 nested_vmx_disable_intercept_for_msr(
648 msr_bitmap_l1, msr_bitmap_l0,
649 MSR_IA32_SPEC_CTRL,
650 MSR_TYPE_R | MSR_TYPE_W);
651
652 if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
653 nested_vmx_disable_intercept_for_msr(
654 msr_bitmap_l1, msr_bitmap_l0,
655 MSR_IA32_PRED_CMD,
656 MSR_TYPE_W);
657
658 kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
659
660 return true;
661 }
662
nested_cache_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)663 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
664 struct vmcs12 *vmcs12)
665 {
666 struct kvm_host_map map;
667 struct vmcs12 *shadow;
668
669 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
670 vmcs12->vmcs_link_pointer == -1ull)
671 return;
672
673 shadow = get_shadow_vmcs12(vcpu);
674
675 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
676 return;
677
678 memcpy(shadow, map.hva, VMCS12_SIZE);
679 kvm_vcpu_unmap(vcpu, &map, false);
680 }
681
nested_flush_cached_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)682 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
683 struct vmcs12 *vmcs12)
684 {
685 struct vcpu_vmx *vmx = to_vmx(vcpu);
686
687 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
688 vmcs12->vmcs_link_pointer == -1ull)
689 return;
690
691 kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
692 get_shadow_vmcs12(vcpu), VMCS12_SIZE);
693 }
694
695 /*
696 * In nested virtualization, check if L1 has set
697 * VM_EXIT_ACK_INTR_ON_EXIT
698 */
nested_exit_intr_ack_set(struct kvm_vcpu * vcpu)699 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
700 {
701 return get_vmcs12(vcpu)->vm_exit_controls &
702 VM_EXIT_ACK_INTR_ON_EXIT;
703 }
704
nested_vmx_check_apic_access_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)705 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
706 struct vmcs12 *vmcs12)
707 {
708 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
709 CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
710 return -EINVAL;
711 else
712 return 0;
713 }
714
nested_vmx_check_apicv_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)715 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
716 struct vmcs12 *vmcs12)
717 {
718 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
719 !nested_cpu_has_apic_reg_virt(vmcs12) &&
720 !nested_cpu_has_vid(vmcs12) &&
721 !nested_cpu_has_posted_intr(vmcs12))
722 return 0;
723
724 /*
725 * If virtualize x2apic mode is enabled,
726 * virtualize apic access must be disabled.
727 */
728 if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
729 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
730 return -EINVAL;
731
732 /*
733 * If virtual interrupt delivery is enabled,
734 * we must exit on external interrupts.
735 */
736 if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
737 return -EINVAL;
738
739 /*
740 * bits 15:8 should be zero in posted_intr_nv,
741 * the descriptor address has been already checked
742 * in nested_get_vmcs12_pages.
743 *
744 * bits 5:0 of posted_intr_desc_addr should be zero.
745 */
746 if (nested_cpu_has_posted_intr(vmcs12) &&
747 (CC(!nested_cpu_has_vid(vmcs12)) ||
748 CC(!nested_exit_intr_ack_set(vcpu)) ||
749 CC((vmcs12->posted_intr_nv & 0xff00)) ||
750 CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
751 CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
752 return -EINVAL;
753
754 /* tpr shadow is needed by all apicv features. */
755 if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
756 return -EINVAL;
757
758 return 0;
759 }
760
nested_vmx_check_msr_switch(struct kvm_vcpu * vcpu,u32 count,u64 addr)761 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
762 u32 count, u64 addr)
763 {
764 int maxphyaddr;
765
766 if (count == 0)
767 return 0;
768 maxphyaddr = cpuid_maxphyaddr(vcpu);
769 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
770 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
771 return -EINVAL;
772
773 return 0;
774 }
775
nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)776 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
777 struct vmcs12 *vmcs12)
778 {
779 if (CC(nested_vmx_check_msr_switch(vcpu,
780 vmcs12->vm_exit_msr_load_count,
781 vmcs12->vm_exit_msr_load_addr)) ||
782 CC(nested_vmx_check_msr_switch(vcpu,
783 vmcs12->vm_exit_msr_store_count,
784 vmcs12->vm_exit_msr_store_addr)))
785 return -EINVAL;
786
787 return 0;
788 }
789
nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)790 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
791 struct vmcs12 *vmcs12)
792 {
793 if (CC(nested_vmx_check_msr_switch(vcpu,
794 vmcs12->vm_entry_msr_load_count,
795 vmcs12->vm_entry_msr_load_addr)))
796 return -EINVAL;
797
798 return 0;
799 }
800
nested_vmx_check_pml_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)801 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
802 struct vmcs12 *vmcs12)
803 {
804 if (!nested_cpu_has_pml(vmcs12))
805 return 0;
806
807 if (CC(!nested_cpu_has_ept(vmcs12)) ||
808 CC(!page_address_valid(vcpu, vmcs12->pml_address)))
809 return -EINVAL;
810
811 return 0;
812 }
813
nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)814 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
815 struct vmcs12 *vmcs12)
816 {
817 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
818 !nested_cpu_has_ept(vmcs12)))
819 return -EINVAL;
820 return 0;
821 }
822
nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)823 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
824 struct vmcs12 *vmcs12)
825 {
826 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
827 !nested_cpu_has_ept(vmcs12)))
828 return -EINVAL;
829 return 0;
830 }
831
nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)832 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
833 struct vmcs12 *vmcs12)
834 {
835 if (!nested_cpu_has_shadow_vmcs(vmcs12))
836 return 0;
837
838 if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
839 CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
840 return -EINVAL;
841
842 return 0;
843 }
844
nested_vmx_msr_check_common(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)845 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
846 struct vmx_msr_entry *e)
847 {
848 /* x2APIC MSR accesses are not allowed */
849 if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
850 return -EINVAL;
851 if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
852 CC(e->index == MSR_IA32_UCODE_REV))
853 return -EINVAL;
854 if (CC(e->reserved != 0))
855 return -EINVAL;
856 return 0;
857 }
858
nested_vmx_load_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)859 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
860 struct vmx_msr_entry *e)
861 {
862 if (CC(e->index == MSR_FS_BASE) ||
863 CC(e->index == MSR_GS_BASE) ||
864 CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
865 nested_vmx_msr_check_common(vcpu, e))
866 return -EINVAL;
867 return 0;
868 }
869
nested_vmx_store_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)870 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
871 struct vmx_msr_entry *e)
872 {
873 if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
874 nested_vmx_msr_check_common(vcpu, e))
875 return -EINVAL;
876 return 0;
877 }
878
nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu * vcpu)879 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
880 {
881 struct vcpu_vmx *vmx = to_vmx(vcpu);
882 u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
883 vmx->nested.msrs.misc_high);
884
885 return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
886 }
887
888 /*
889 * Load guest's/host's msr at nested entry/exit.
890 * return 0 for success, entry index for failure.
891 *
892 * One of the failure modes for MSR load/store is when a list exceeds the
893 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
894 * as possible, process all valid entries before failing rather than precheck
895 * for a capacity violation.
896 */
nested_vmx_load_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)897 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
898 {
899 u32 i;
900 struct vmx_msr_entry e;
901 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
902
903 for (i = 0; i < count; i++) {
904 if (unlikely(i >= max_msr_list_size))
905 goto fail;
906
907 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
908 &e, sizeof(e))) {
909 pr_debug_ratelimited(
910 "%s cannot read MSR entry (%u, 0x%08llx)\n",
911 __func__, i, gpa + i * sizeof(e));
912 goto fail;
913 }
914 if (nested_vmx_load_msr_check(vcpu, &e)) {
915 pr_debug_ratelimited(
916 "%s check failed (%u, 0x%x, 0x%x)\n",
917 __func__, i, e.index, e.reserved);
918 goto fail;
919 }
920 if (kvm_set_msr(vcpu, e.index, e.value)) {
921 pr_debug_ratelimited(
922 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
923 __func__, i, e.index, e.value);
924 goto fail;
925 }
926 }
927 return 0;
928 fail:
929 /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
930 return i + 1;
931 }
932
nested_vmx_get_vmexit_msr_value(struct kvm_vcpu * vcpu,u32 msr_index,u64 * data)933 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
934 u32 msr_index,
935 u64 *data)
936 {
937 struct vcpu_vmx *vmx = to_vmx(vcpu);
938
939 /*
940 * If the L0 hypervisor stored a more accurate value for the TSC that
941 * does not include the time taken for emulation of the L2->L1
942 * VM-exit in L0, use the more accurate value.
943 */
944 if (msr_index == MSR_IA32_TSC) {
945 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
946 MSR_IA32_TSC);
947
948 if (i >= 0) {
949 u64 val = vmx->msr_autostore.guest.val[i].value;
950
951 *data = kvm_read_l1_tsc(vcpu, val);
952 return true;
953 }
954 }
955
956 if (kvm_get_msr(vcpu, msr_index, data)) {
957 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
958 msr_index);
959 return false;
960 }
961 return true;
962 }
963
read_and_check_msr_entry(struct kvm_vcpu * vcpu,u64 gpa,int i,struct vmx_msr_entry * e)964 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
965 struct vmx_msr_entry *e)
966 {
967 if (kvm_vcpu_read_guest(vcpu,
968 gpa + i * sizeof(*e),
969 e, 2 * sizeof(u32))) {
970 pr_debug_ratelimited(
971 "%s cannot read MSR entry (%u, 0x%08llx)\n",
972 __func__, i, gpa + i * sizeof(*e));
973 return false;
974 }
975 if (nested_vmx_store_msr_check(vcpu, e)) {
976 pr_debug_ratelimited(
977 "%s check failed (%u, 0x%x, 0x%x)\n",
978 __func__, i, e->index, e->reserved);
979 return false;
980 }
981 return true;
982 }
983
nested_vmx_store_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)984 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
985 {
986 u64 data;
987 u32 i;
988 struct vmx_msr_entry e;
989 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
990
991 for (i = 0; i < count; i++) {
992 if (unlikely(i >= max_msr_list_size))
993 return -EINVAL;
994
995 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
996 return -EINVAL;
997
998 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
999 return -EINVAL;
1000
1001 if (kvm_vcpu_write_guest(vcpu,
1002 gpa + i * sizeof(e) +
1003 offsetof(struct vmx_msr_entry, value),
1004 &data, sizeof(data))) {
1005 pr_debug_ratelimited(
1006 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1007 __func__, i, e.index, data);
1008 return -EINVAL;
1009 }
1010 }
1011 return 0;
1012 }
1013
nested_msr_store_list_has_msr(struct kvm_vcpu * vcpu,u32 msr_index)1014 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1015 {
1016 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1017 u32 count = vmcs12->vm_exit_msr_store_count;
1018 u64 gpa = vmcs12->vm_exit_msr_store_addr;
1019 struct vmx_msr_entry e;
1020 u32 i;
1021
1022 for (i = 0; i < count; i++) {
1023 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1024 return false;
1025
1026 if (e.index == msr_index)
1027 return true;
1028 }
1029 return false;
1030 }
1031
prepare_vmx_msr_autostore_list(struct kvm_vcpu * vcpu,u32 msr_index)1032 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1033 u32 msr_index)
1034 {
1035 struct vcpu_vmx *vmx = to_vmx(vcpu);
1036 struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1037 bool in_vmcs12_store_list;
1038 int msr_autostore_slot;
1039 bool in_autostore_list;
1040 int last;
1041
1042 msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1043 in_autostore_list = msr_autostore_slot >= 0;
1044 in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1045
1046 if (in_vmcs12_store_list && !in_autostore_list) {
1047 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1048 /*
1049 * Emulated VMEntry does not fail here. Instead a less
1050 * accurate value will be returned by
1051 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1052 * instead of reading the value from the vmcs02 VMExit
1053 * MSR-store area.
1054 */
1055 pr_warn_ratelimited(
1056 "Not enough msr entries in msr_autostore. Can't add msr %x\n",
1057 msr_index);
1058 return;
1059 }
1060 last = autostore->nr++;
1061 autostore->val[last].index = msr_index;
1062 } else if (!in_vmcs12_store_list && in_autostore_list) {
1063 last = --autostore->nr;
1064 autostore->val[msr_autostore_slot] = autostore->val[last];
1065 }
1066 }
1067
nested_cr3_valid(struct kvm_vcpu * vcpu,unsigned long val)1068 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
1069 {
1070 unsigned long invalid_mask;
1071
1072 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1073 return (val & invalid_mask) == 0;
1074 }
1075
1076 /*
1077 * Returns true if the MMU needs to be sync'd on nested VM-Enter/VM-Exit.
1078 * tl;dr: the MMU needs a sync if L0 is using shadow paging and L1 didn't
1079 * enable VPID for L2 (implying it expects a TLB flush on VMX transitions).
1080 * Here's why.
1081 *
1082 * If EPT is enabled by L0 a sync is never needed:
1083 * - if it is disabled by L1, then L0 is not shadowing L1 or L2 PTEs, there
1084 * cannot be unsync'd SPTEs for either L1 or L2.
1085 *
1086 * - if it is also enabled by L1, then L0 doesn't need to sync on VM-Enter
1087 * VM-Enter as VM-Enter isn't required to invalidate guest-physical mappings
1088 * (irrespective of VPID), i.e. L1 can't rely on the (virtual) CPU to flush
1089 * stale guest-physical mappings for L2 from the TLB. And as above, L0 isn't
1090 * shadowing L1 PTEs so there are no unsync'd SPTEs to sync on VM-Exit.
1091 *
1092 * If EPT is disabled by L0:
1093 * - if VPID is enabled by L1 (for L2), the situation is similar to when L1
1094 * enables EPT: L0 doesn't need to sync as VM-Enter and VM-Exit aren't
1095 * required to invalidate linear mappings (EPT is disabled so there are
1096 * no combined or guest-physical mappings), i.e. L1 can't rely on the
1097 * (virtual) CPU to flush stale linear mappings for either L2 or itself (L1).
1098 *
1099 * - however if VPID is disabled by L1, then a sync is needed as L1 expects all
1100 * linear mappings (EPT is disabled so there are no combined or guest-physical
1101 * mappings) to be invalidated on both VM-Enter and VM-Exit.
1102 *
1103 * Note, this logic is subtly different than nested_has_guest_tlb_tag(), which
1104 * additionally checks that L2 has been assigned a VPID (when EPT is disabled).
1105 * Whether or not L2 has been assigned a VPID by L0 is irrelevant with respect
1106 * to L1's expectations, e.g. L0 needs to invalidate hardware TLB entries if L2
1107 * doesn't have a unique VPID to prevent reusing L1's entries (assuming L1 has
1108 * been assigned a VPID), but L0 doesn't need to do a MMU sync because L1
1109 * doesn't expect stale (virtual) TLB entries to be flushed, i.e. L1 doesn't
1110 * know that L0 will flush the TLB and so L1 will do INVVPID as needed to flush
1111 * stale TLB entries, at which point L0 will sync L2's MMU.
1112 */
nested_vmx_transition_mmu_sync(struct kvm_vcpu * vcpu)1113 static bool nested_vmx_transition_mmu_sync(struct kvm_vcpu *vcpu)
1114 {
1115 return !enable_ept && !nested_cpu_has_vpid(get_vmcs12(vcpu));
1116 }
1117
1118 /*
1119 * Load guest's/host's cr3 at nested entry/exit. @nested_ept is true if we are
1120 * emulating VM-Entry into a guest with EPT enabled. On failure, the expected
1121 * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1122 * @entry_failure_code.
1123 */
nested_vmx_load_cr3(struct kvm_vcpu * vcpu,unsigned long cr3,bool nested_ept,enum vm_entry_failure_code * entry_failure_code)1124 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
1125 enum vm_entry_failure_code *entry_failure_code)
1126 {
1127 if (CC(!nested_cr3_valid(vcpu, cr3))) {
1128 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1129 return -EINVAL;
1130 }
1131
1132 /*
1133 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1134 * must not be dereferenced.
1135 */
1136 if (!nested_ept && is_pae_paging(vcpu) &&
1137 (cr3 != kvm_read_cr3(vcpu) || pdptrs_changed(vcpu))) {
1138 if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1139 *entry_failure_code = ENTRY_FAIL_PDPTE;
1140 return -EINVAL;
1141 }
1142 }
1143
1144 /*
1145 * Unconditionally skip the TLB flush on fast CR3 switch, all TLB
1146 * flushes are handled by nested_vmx_transition_tlb_flush().
1147 */
1148 if (!nested_ept) {
1149 kvm_mmu_new_pgd(vcpu, cr3, true, true);
1150
1151 /*
1152 * A TLB flush on VM-Enter/VM-Exit flushes all linear mappings
1153 * across all PCIDs, i.e. all PGDs need to be synchronized.
1154 * See nested_vmx_transition_mmu_sync() for more details.
1155 */
1156 if (nested_vmx_transition_mmu_sync(vcpu))
1157 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1158 }
1159
1160 vcpu->arch.cr3 = cr3;
1161 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1162
1163 kvm_init_mmu(vcpu, false);
1164
1165 return 0;
1166 }
1167
1168 /*
1169 * Returns if KVM is able to config CPU to tag TLB entries
1170 * populated by L2 differently than TLB entries populated
1171 * by L1.
1172 *
1173 * If L0 uses EPT, L1 and L2 run with different EPTP because
1174 * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1175 * are tagged with different EPTP.
1176 *
1177 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1178 * with different VPID (L1 entries are tagged with vmx->vpid
1179 * while L2 entries are tagged with vmx->nested.vpid02).
1180 */
nested_has_guest_tlb_tag(struct kvm_vcpu * vcpu)1181 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1182 {
1183 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1184
1185 return enable_ept ||
1186 (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1187 }
1188
nested_vmx_transition_tlb_flush(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool is_vmenter)1189 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1190 struct vmcs12 *vmcs12,
1191 bool is_vmenter)
1192 {
1193 struct vcpu_vmx *vmx = to_vmx(vcpu);
1194
1195 /*
1196 * If VPID is disabled, linear and combined mappings are flushed on
1197 * VM-Enter/VM-Exit, and guest-physical mappings are valid only for
1198 * their associated EPTP.
1199 */
1200 if (!enable_vpid)
1201 return;
1202
1203 /*
1204 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1205 * for *all* contexts to be flushed on VM-Enter/VM-Exit.
1206 *
1207 * If VPID is enabled and used by vmc12, but L2 does not have a unique
1208 * TLB tag (ASID), i.e. EPT is disabled and KVM was unable to allocate
1209 * a VPID for L2, flush the current context as the effective ASID is
1210 * common to both L1 and L2.
1211 *
1212 * Defer the flush so that it runs after vmcs02.EPTP has been set by
1213 * KVM_REQ_LOAD_MMU_PGD (if nested EPT is enabled) and to avoid
1214 * redundant flushes further down the nested pipeline.
1215 *
1216 * If a TLB flush isn't required due to any of the above, and vpid12 is
1217 * changing then the new "virtual" VPID (vpid12) will reuse the same
1218 * "real" VPID (vpid02), and so needs to be sync'd. There is no direct
1219 * mapping between vpid02 and vpid12, vpid02 is per-vCPU and reused for
1220 * all nested vCPUs.
1221 */
1222 if (!nested_cpu_has_vpid(vmcs12)) {
1223 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1224 } else if (!nested_has_guest_tlb_tag(vcpu)) {
1225 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1226 } else if (is_vmenter &&
1227 vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1228 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1229 vpid_sync_context(nested_get_vpid02(vcpu));
1230 }
1231 }
1232
is_bitwise_subset(u64 superset,u64 subset,u64 mask)1233 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1234 {
1235 superset &= mask;
1236 subset &= mask;
1237
1238 return (superset | subset) == superset;
1239 }
1240
vmx_restore_vmx_basic(struct vcpu_vmx * vmx,u64 data)1241 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1242 {
1243 const u64 feature_and_reserved =
1244 /* feature (except bit 48; see below) */
1245 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1246 /* reserved */
1247 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1248 u64 vmx_basic = vmcs_config.nested.basic;
1249
1250 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1251 return -EINVAL;
1252
1253 /*
1254 * KVM does not emulate a version of VMX that constrains physical
1255 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1256 */
1257 if (data & BIT_ULL(48))
1258 return -EINVAL;
1259
1260 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1261 vmx_basic_vmcs_revision_id(data))
1262 return -EINVAL;
1263
1264 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1265 return -EINVAL;
1266
1267 vmx->nested.msrs.basic = data;
1268 return 0;
1269 }
1270
vmx_get_control_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u32 ** low,u32 ** high)1271 static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
1272 u32 **low, u32 **high)
1273 {
1274 switch (msr_index) {
1275 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1276 *low = &msrs->pinbased_ctls_low;
1277 *high = &msrs->pinbased_ctls_high;
1278 break;
1279 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1280 *low = &msrs->procbased_ctls_low;
1281 *high = &msrs->procbased_ctls_high;
1282 break;
1283 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1284 *low = &msrs->exit_ctls_low;
1285 *high = &msrs->exit_ctls_high;
1286 break;
1287 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1288 *low = &msrs->entry_ctls_low;
1289 *high = &msrs->entry_ctls_high;
1290 break;
1291 case MSR_IA32_VMX_PROCBASED_CTLS2:
1292 *low = &msrs->secondary_ctls_low;
1293 *high = &msrs->secondary_ctls_high;
1294 break;
1295 default:
1296 BUG();
1297 }
1298 }
1299
1300 static int
vmx_restore_control_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1301 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1302 {
1303 u32 *lowp, *highp;
1304 u64 supported;
1305
1306 vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp);
1307
1308 supported = vmx_control_msr(*lowp, *highp);
1309
1310 /* Check must-be-1 bits are still 1. */
1311 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1312 return -EINVAL;
1313
1314 /* Check must-be-0 bits are still 0. */
1315 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1316 return -EINVAL;
1317
1318 vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp);
1319 *lowp = data;
1320 *highp = data >> 32;
1321 return 0;
1322 }
1323
vmx_restore_vmx_misc(struct vcpu_vmx * vmx,u64 data)1324 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1325 {
1326 const u64 feature_and_reserved_bits =
1327 /* feature */
1328 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1329 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1330 /* reserved */
1331 GENMASK_ULL(13, 9) | BIT_ULL(31);
1332 u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low,
1333 vmcs_config.nested.misc_high);
1334
1335 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1336 return -EINVAL;
1337
1338 if ((vmx->nested.msrs.pinbased_ctls_high &
1339 PIN_BASED_VMX_PREEMPTION_TIMER) &&
1340 vmx_misc_preemption_timer_rate(data) !=
1341 vmx_misc_preemption_timer_rate(vmx_misc))
1342 return -EINVAL;
1343
1344 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1345 return -EINVAL;
1346
1347 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1348 return -EINVAL;
1349
1350 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1351 return -EINVAL;
1352
1353 vmx->nested.msrs.misc_low = data;
1354 vmx->nested.msrs.misc_high = data >> 32;
1355
1356 return 0;
1357 }
1358
vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx * vmx,u64 data)1359 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1360 {
1361 u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps,
1362 vmcs_config.nested.vpid_caps);
1363
1364 /* Every bit is either reserved or a feature bit. */
1365 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1366 return -EINVAL;
1367
1368 vmx->nested.msrs.ept_caps = data;
1369 vmx->nested.msrs.vpid_caps = data >> 32;
1370 return 0;
1371 }
1372
vmx_get_fixed0_msr(struct nested_vmx_msrs * msrs,u32 msr_index)1373 static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
1374 {
1375 switch (msr_index) {
1376 case MSR_IA32_VMX_CR0_FIXED0:
1377 return &msrs->cr0_fixed0;
1378 case MSR_IA32_VMX_CR4_FIXED0:
1379 return &msrs->cr4_fixed0;
1380 default:
1381 BUG();
1382 }
1383 }
1384
vmx_restore_fixed0_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1385 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1386 {
1387 const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index);
1388
1389 /*
1390 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1391 * must be 1 in the restored value.
1392 */
1393 if (!is_bitwise_subset(data, *msr, -1ULL))
1394 return -EINVAL;
1395
1396 *vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data;
1397 return 0;
1398 }
1399
1400 /*
1401 * Called when userspace is restoring VMX MSRs.
1402 *
1403 * Returns 0 on success, non-0 otherwise.
1404 */
vmx_set_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)1405 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1406 {
1407 struct vcpu_vmx *vmx = to_vmx(vcpu);
1408
1409 /*
1410 * Don't allow changes to the VMX capability MSRs while the vCPU
1411 * is in VMX operation.
1412 */
1413 if (vmx->nested.vmxon)
1414 return -EBUSY;
1415
1416 switch (msr_index) {
1417 case MSR_IA32_VMX_BASIC:
1418 return vmx_restore_vmx_basic(vmx, data);
1419 case MSR_IA32_VMX_PINBASED_CTLS:
1420 case MSR_IA32_VMX_PROCBASED_CTLS:
1421 case MSR_IA32_VMX_EXIT_CTLS:
1422 case MSR_IA32_VMX_ENTRY_CTLS:
1423 /*
1424 * The "non-true" VMX capability MSRs are generated from the
1425 * "true" MSRs, so we do not support restoring them directly.
1426 *
1427 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1428 * should restore the "true" MSRs with the must-be-1 bits
1429 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1430 * DEFAULT SETTINGS".
1431 */
1432 return -EINVAL;
1433 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1434 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1435 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1436 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1437 case MSR_IA32_VMX_PROCBASED_CTLS2:
1438 return vmx_restore_control_msr(vmx, msr_index, data);
1439 case MSR_IA32_VMX_MISC:
1440 return vmx_restore_vmx_misc(vmx, data);
1441 case MSR_IA32_VMX_CR0_FIXED0:
1442 case MSR_IA32_VMX_CR4_FIXED0:
1443 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1444 case MSR_IA32_VMX_CR0_FIXED1:
1445 case MSR_IA32_VMX_CR4_FIXED1:
1446 /*
1447 * These MSRs are generated based on the vCPU's CPUID, so we
1448 * do not support restoring them directly.
1449 */
1450 return -EINVAL;
1451 case MSR_IA32_VMX_EPT_VPID_CAP:
1452 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1453 case MSR_IA32_VMX_VMCS_ENUM:
1454 vmx->nested.msrs.vmcs_enum = data;
1455 return 0;
1456 case MSR_IA32_VMX_VMFUNC:
1457 if (data & ~vmcs_config.nested.vmfunc_controls)
1458 return -EINVAL;
1459 vmx->nested.msrs.vmfunc_controls = data;
1460 return 0;
1461 default:
1462 /*
1463 * The rest of the VMX capability MSRs do not support restore.
1464 */
1465 return -EINVAL;
1466 }
1467 }
1468
1469 /* Returns 0 on success, non-0 otherwise. */
vmx_get_vmx_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u64 * pdata)1470 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1471 {
1472 switch (msr_index) {
1473 case MSR_IA32_VMX_BASIC:
1474 *pdata = msrs->basic;
1475 break;
1476 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1477 case MSR_IA32_VMX_PINBASED_CTLS:
1478 *pdata = vmx_control_msr(
1479 msrs->pinbased_ctls_low,
1480 msrs->pinbased_ctls_high);
1481 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1482 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1483 break;
1484 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1485 case MSR_IA32_VMX_PROCBASED_CTLS:
1486 *pdata = vmx_control_msr(
1487 msrs->procbased_ctls_low,
1488 msrs->procbased_ctls_high);
1489 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1490 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1491 break;
1492 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1493 case MSR_IA32_VMX_EXIT_CTLS:
1494 *pdata = vmx_control_msr(
1495 msrs->exit_ctls_low,
1496 msrs->exit_ctls_high);
1497 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1498 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1499 break;
1500 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1501 case MSR_IA32_VMX_ENTRY_CTLS:
1502 *pdata = vmx_control_msr(
1503 msrs->entry_ctls_low,
1504 msrs->entry_ctls_high);
1505 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1506 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1507 break;
1508 case MSR_IA32_VMX_MISC:
1509 *pdata = vmx_control_msr(
1510 msrs->misc_low,
1511 msrs->misc_high);
1512 break;
1513 case MSR_IA32_VMX_CR0_FIXED0:
1514 *pdata = msrs->cr0_fixed0;
1515 break;
1516 case MSR_IA32_VMX_CR0_FIXED1:
1517 *pdata = msrs->cr0_fixed1;
1518 break;
1519 case MSR_IA32_VMX_CR4_FIXED0:
1520 *pdata = msrs->cr4_fixed0;
1521 break;
1522 case MSR_IA32_VMX_CR4_FIXED1:
1523 *pdata = msrs->cr4_fixed1;
1524 break;
1525 case MSR_IA32_VMX_VMCS_ENUM:
1526 *pdata = msrs->vmcs_enum;
1527 break;
1528 case MSR_IA32_VMX_PROCBASED_CTLS2:
1529 *pdata = vmx_control_msr(
1530 msrs->secondary_ctls_low,
1531 msrs->secondary_ctls_high);
1532 break;
1533 case MSR_IA32_VMX_EPT_VPID_CAP:
1534 *pdata = msrs->ept_caps |
1535 ((u64)msrs->vpid_caps << 32);
1536 break;
1537 case MSR_IA32_VMX_VMFUNC:
1538 *pdata = msrs->vmfunc_controls;
1539 break;
1540 default:
1541 return 1;
1542 }
1543
1544 return 0;
1545 }
1546
1547 /*
1548 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1549 * been modified by the L1 guest. Note, "writable" in this context means
1550 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1551 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1552 * VM-exit information fields (which are actually writable if the vCPU is
1553 * configured to support "VMWRITE to any supported field in the VMCS").
1554 */
copy_shadow_to_vmcs12(struct vcpu_vmx * vmx)1555 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1556 {
1557 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1558 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1559 struct shadow_vmcs_field field;
1560 unsigned long val;
1561 int i;
1562
1563 if (WARN_ON(!shadow_vmcs))
1564 return;
1565
1566 preempt_disable();
1567
1568 vmcs_load(shadow_vmcs);
1569
1570 for (i = 0; i < max_shadow_read_write_fields; i++) {
1571 field = shadow_read_write_fields[i];
1572 val = __vmcs_readl(field.encoding);
1573 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1574 }
1575
1576 vmcs_clear(shadow_vmcs);
1577 vmcs_load(vmx->loaded_vmcs->vmcs);
1578
1579 preempt_enable();
1580 }
1581
copy_vmcs12_to_shadow(struct vcpu_vmx * vmx)1582 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1583 {
1584 const struct shadow_vmcs_field *fields[] = {
1585 shadow_read_write_fields,
1586 shadow_read_only_fields
1587 };
1588 const int max_fields[] = {
1589 max_shadow_read_write_fields,
1590 max_shadow_read_only_fields
1591 };
1592 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1593 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1594 struct shadow_vmcs_field field;
1595 unsigned long val;
1596 int i, q;
1597
1598 if (WARN_ON(!shadow_vmcs))
1599 return;
1600
1601 vmcs_load(shadow_vmcs);
1602
1603 for (q = 0; q < ARRAY_SIZE(fields); q++) {
1604 for (i = 0; i < max_fields[q]; i++) {
1605 field = fields[q][i];
1606 val = vmcs12_read_any(vmcs12, field.encoding,
1607 field.offset);
1608 __vmcs_writel(field.encoding, val);
1609 }
1610 }
1611
1612 vmcs_clear(shadow_vmcs);
1613 vmcs_load(vmx->loaded_vmcs->vmcs);
1614 }
1615
copy_enlightened_to_vmcs12(struct vcpu_vmx * vmx)1616 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1617 {
1618 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1619 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1620
1621 /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1622 vmcs12->tpr_threshold = evmcs->tpr_threshold;
1623 vmcs12->guest_rip = evmcs->guest_rip;
1624
1625 if (unlikely(!(evmcs->hv_clean_fields &
1626 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1627 vmcs12->guest_rsp = evmcs->guest_rsp;
1628 vmcs12->guest_rflags = evmcs->guest_rflags;
1629 vmcs12->guest_interruptibility_info =
1630 evmcs->guest_interruptibility_info;
1631 }
1632
1633 if (unlikely(!(evmcs->hv_clean_fields &
1634 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1635 vmcs12->cpu_based_vm_exec_control =
1636 evmcs->cpu_based_vm_exec_control;
1637 }
1638
1639 if (unlikely(!(evmcs->hv_clean_fields &
1640 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1641 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1642 }
1643
1644 if (unlikely(!(evmcs->hv_clean_fields &
1645 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1646 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1647 }
1648
1649 if (unlikely(!(evmcs->hv_clean_fields &
1650 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1651 vmcs12->vm_entry_intr_info_field =
1652 evmcs->vm_entry_intr_info_field;
1653 vmcs12->vm_entry_exception_error_code =
1654 evmcs->vm_entry_exception_error_code;
1655 vmcs12->vm_entry_instruction_len =
1656 evmcs->vm_entry_instruction_len;
1657 }
1658
1659 if (unlikely(!(evmcs->hv_clean_fields &
1660 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1661 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1662 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1663 vmcs12->host_cr0 = evmcs->host_cr0;
1664 vmcs12->host_cr3 = evmcs->host_cr3;
1665 vmcs12->host_cr4 = evmcs->host_cr4;
1666 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1667 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1668 vmcs12->host_rip = evmcs->host_rip;
1669 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1670 vmcs12->host_es_selector = evmcs->host_es_selector;
1671 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1672 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1673 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1674 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1675 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1676 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1677 }
1678
1679 if (unlikely(!(evmcs->hv_clean_fields &
1680 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1681 vmcs12->pin_based_vm_exec_control =
1682 evmcs->pin_based_vm_exec_control;
1683 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1684 vmcs12->secondary_vm_exec_control =
1685 evmcs->secondary_vm_exec_control;
1686 }
1687
1688 if (unlikely(!(evmcs->hv_clean_fields &
1689 HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1690 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1691 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1692 }
1693
1694 if (unlikely(!(evmcs->hv_clean_fields &
1695 HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1696 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1697 }
1698
1699 if (unlikely(!(evmcs->hv_clean_fields &
1700 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1701 vmcs12->guest_es_base = evmcs->guest_es_base;
1702 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1703 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1704 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1705 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1706 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1707 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1708 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1709 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1710 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1711 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1712 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1713 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1714 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1715 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1716 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1717 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1718 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1719 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1720 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1721 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1722 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1723 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1724 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1725 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1726 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1727 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1728 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1729 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1730 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1731 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1732 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1733 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1734 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1735 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1736 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1737 }
1738
1739 if (unlikely(!(evmcs->hv_clean_fields &
1740 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1741 vmcs12->tsc_offset = evmcs->tsc_offset;
1742 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1743 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1744 }
1745
1746 if (unlikely(!(evmcs->hv_clean_fields &
1747 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1748 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1749 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1750 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1751 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1752 vmcs12->guest_cr0 = evmcs->guest_cr0;
1753 vmcs12->guest_cr3 = evmcs->guest_cr3;
1754 vmcs12->guest_cr4 = evmcs->guest_cr4;
1755 vmcs12->guest_dr7 = evmcs->guest_dr7;
1756 }
1757
1758 if (unlikely(!(evmcs->hv_clean_fields &
1759 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1760 vmcs12->host_fs_base = evmcs->host_fs_base;
1761 vmcs12->host_gs_base = evmcs->host_gs_base;
1762 vmcs12->host_tr_base = evmcs->host_tr_base;
1763 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1764 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1765 vmcs12->host_rsp = evmcs->host_rsp;
1766 }
1767
1768 if (unlikely(!(evmcs->hv_clean_fields &
1769 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1770 vmcs12->ept_pointer = evmcs->ept_pointer;
1771 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1772 }
1773
1774 if (unlikely(!(evmcs->hv_clean_fields &
1775 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1776 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1777 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1778 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1779 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1780 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1781 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1782 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1783 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1784 vmcs12->guest_pending_dbg_exceptions =
1785 evmcs->guest_pending_dbg_exceptions;
1786 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1787 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1788 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1789 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1790 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1791 }
1792
1793 /*
1794 * Not used?
1795 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1796 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1797 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1798 * vmcs12->page_fault_error_code_mask =
1799 * evmcs->page_fault_error_code_mask;
1800 * vmcs12->page_fault_error_code_match =
1801 * evmcs->page_fault_error_code_match;
1802 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1803 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1804 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1805 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1806 */
1807
1808 /*
1809 * Read only fields:
1810 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1811 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1812 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1813 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1814 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1815 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1816 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1817 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1818 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1819 * vmcs12->exit_qualification = evmcs->exit_qualification;
1820 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1821 *
1822 * Not present in struct vmcs12:
1823 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1824 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1825 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1826 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1827 */
1828
1829 return 0;
1830 }
1831
copy_vmcs12_to_enlightened(struct vcpu_vmx * vmx)1832 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1833 {
1834 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1835 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1836
1837 /*
1838 * Should not be changed by KVM:
1839 *
1840 * evmcs->host_es_selector = vmcs12->host_es_selector;
1841 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1842 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1843 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1844 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1845 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1846 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1847 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1848 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1849 * evmcs->host_cr0 = vmcs12->host_cr0;
1850 * evmcs->host_cr3 = vmcs12->host_cr3;
1851 * evmcs->host_cr4 = vmcs12->host_cr4;
1852 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1853 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1854 * evmcs->host_rip = vmcs12->host_rip;
1855 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1856 * evmcs->host_fs_base = vmcs12->host_fs_base;
1857 * evmcs->host_gs_base = vmcs12->host_gs_base;
1858 * evmcs->host_tr_base = vmcs12->host_tr_base;
1859 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1860 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1861 * evmcs->host_rsp = vmcs12->host_rsp;
1862 * sync_vmcs02_to_vmcs12() doesn't read these:
1863 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1864 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1865 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1866 * evmcs->ept_pointer = vmcs12->ept_pointer;
1867 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1868 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1869 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1870 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1871 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1872 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1873 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1874 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1875 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1876 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1877 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1878 * evmcs->page_fault_error_code_mask =
1879 * vmcs12->page_fault_error_code_mask;
1880 * evmcs->page_fault_error_code_match =
1881 * vmcs12->page_fault_error_code_match;
1882 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1883 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1884 * evmcs->tsc_offset = vmcs12->tsc_offset;
1885 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1886 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1887 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1888 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1889 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1890 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1891 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1892 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1893 *
1894 * Not present in struct vmcs12:
1895 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1896 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1897 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1898 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1899 */
1900
1901 evmcs->guest_es_selector = vmcs12->guest_es_selector;
1902 evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1903 evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1904 evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1905 evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1906 evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1907 evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1908 evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1909
1910 evmcs->guest_es_limit = vmcs12->guest_es_limit;
1911 evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1912 evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1913 evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1914 evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1915 evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1916 evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1917 evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1918 evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1919 evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1920
1921 evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1922 evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1923 evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1924 evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1925 evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1926 evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1927 evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1928 evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1929
1930 evmcs->guest_es_base = vmcs12->guest_es_base;
1931 evmcs->guest_cs_base = vmcs12->guest_cs_base;
1932 evmcs->guest_ss_base = vmcs12->guest_ss_base;
1933 evmcs->guest_ds_base = vmcs12->guest_ds_base;
1934 evmcs->guest_fs_base = vmcs12->guest_fs_base;
1935 evmcs->guest_gs_base = vmcs12->guest_gs_base;
1936 evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1937 evmcs->guest_tr_base = vmcs12->guest_tr_base;
1938 evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1939 evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1940
1941 evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1942 evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1943
1944 evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1945 evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1946 evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1947 evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1948
1949 evmcs->guest_pending_dbg_exceptions =
1950 vmcs12->guest_pending_dbg_exceptions;
1951 evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1952 evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1953
1954 evmcs->guest_activity_state = vmcs12->guest_activity_state;
1955 evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1956
1957 evmcs->guest_cr0 = vmcs12->guest_cr0;
1958 evmcs->guest_cr3 = vmcs12->guest_cr3;
1959 evmcs->guest_cr4 = vmcs12->guest_cr4;
1960 evmcs->guest_dr7 = vmcs12->guest_dr7;
1961
1962 evmcs->guest_physical_address = vmcs12->guest_physical_address;
1963
1964 evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1965 evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1966 evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1967 evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1968 evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1969 evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1970 evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1971 evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1972
1973 evmcs->exit_qualification = vmcs12->exit_qualification;
1974
1975 evmcs->guest_linear_address = vmcs12->guest_linear_address;
1976 evmcs->guest_rsp = vmcs12->guest_rsp;
1977 evmcs->guest_rflags = vmcs12->guest_rflags;
1978
1979 evmcs->guest_interruptibility_info =
1980 vmcs12->guest_interruptibility_info;
1981 evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1982 evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1983 evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1984 evmcs->vm_entry_exception_error_code =
1985 vmcs12->vm_entry_exception_error_code;
1986 evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1987
1988 evmcs->guest_rip = vmcs12->guest_rip;
1989
1990 evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1991
1992 return 0;
1993 }
1994
1995 /*
1996 * This is an equivalent of the nested hypervisor executing the vmptrld
1997 * instruction.
1998 */
nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu * vcpu,bool from_launch)1999 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
2000 struct kvm_vcpu *vcpu, bool from_launch)
2001 {
2002 struct vcpu_vmx *vmx = to_vmx(vcpu);
2003 bool evmcs_gpa_changed = false;
2004 u64 evmcs_gpa;
2005
2006 if (likely(!vmx->nested.enlightened_vmcs_enabled))
2007 return EVMPTRLD_DISABLED;
2008
2009 if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
2010 return EVMPTRLD_DISABLED;
2011
2012 if (unlikely(!vmx->nested.hv_evmcs ||
2013 evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2014 if (!vmx->nested.hv_evmcs)
2015 vmx->nested.current_vmptr = -1ull;
2016
2017 nested_release_evmcs(vcpu);
2018
2019 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2020 &vmx->nested.hv_evmcs_map))
2021 return EVMPTRLD_ERROR;
2022
2023 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2024
2025 /*
2026 * Currently, KVM only supports eVMCS version 1
2027 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2028 * value to first u32 field of eVMCS which should specify eVMCS
2029 * VersionNumber.
2030 *
2031 * Guest should be aware of supported eVMCS versions by host by
2032 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2033 * expected to set this CPUID leaf according to the value
2034 * returned in vmcs_version from nested_enable_evmcs().
2035 *
2036 * However, it turns out that Microsoft Hyper-V fails to comply
2037 * to their own invented interface: When Hyper-V use eVMCS, it
2038 * just sets first u32 field of eVMCS to revision_id specified
2039 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2040 * which is one of the supported versions specified in
2041 * CPUID.0x4000000A.EAX[0:15].
2042 *
2043 * To overcome Hyper-V bug, we accept here either a supported
2044 * eVMCS version or VMCS12 revision_id as valid values for first
2045 * u32 field of eVMCS.
2046 */
2047 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2048 (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2049 nested_release_evmcs(vcpu);
2050 return EVMPTRLD_VMFAIL;
2051 }
2052
2053 vmx->nested.dirty_vmcs12 = true;
2054 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2055
2056 evmcs_gpa_changed = true;
2057 /*
2058 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2059 * reloaded from guest's memory (read only fields, fields not
2060 * present in struct hv_enlightened_vmcs, ...). Make sure there
2061 * are no leftovers.
2062 */
2063 if (from_launch) {
2064 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2065 memset(vmcs12, 0, sizeof(*vmcs12));
2066 vmcs12->hdr.revision_id = VMCS12_REVISION;
2067 }
2068
2069 }
2070
2071 /*
2072 * Clean fields data can't be used on VMLAUNCH and when we switch
2073 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2074 */
2075 if (from_launch || evmcs_gpa_changed)
2076 vmx->nested.hv_evmcs->hv_clean_fields &=
2077 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2078
2079 return EVMPTRLD_SUCCEEDED;
2080 }
2081
nested_sync_vmcs12_to_shadow(struct kvm_vcpu * vcpu)2082 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2083 {
2084 struct vcpu_vmx *vmx = to_vmx(vcpu);
2085
2086 if (vmx->nested.hv_evmcs) {
2087 copy_vmcs12_to_enlightened(vmx);
2088 /* All fields are clean */
2089 vmx->nested.hv_evmcs->hv_clean_fields |=
2090 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2091 } else {
2092 copy_vmcs12_to_shadow(vmx);
2093 }
2094
2095 vmx->nested.need_vmcs12_to_shadow_sync = false;
2096 }
2097
vmx_preemption_timer_fn(struct hrtimer * timer)2098 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2099 {
2100 struct vcpu_vmx *vmx =
2101 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2102
2103 vmx->nested.preemption_timer_expired = true;
2104 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2105 kvm_vcpu_kick(&vmx->vcpu);
2106
2107 return HRTIMER_NORESTART;
2108 }
2109
vmx_calc_preemption_timer_value(struct kvm_vcpu * vcpu)2110 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2111 {
2112 struct vcpu_vmx *vmx = to_vmx(vcpu);
2113 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2114
2115 u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2116 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2117
2118 if (!vmx->nested.has_preemption_timer_deadline) {
2119 vmx->nested.preemption_timer_deadline =
2120 vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2121 vmx->nested.has_preemption_timer_deadline = true;
2122 }
2123 return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2124 }
2125
vmx_start_preemption_timer(struct kvm_vcpu * vcpu,u64 preemption_timeout)2126 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2127 u64 preemption_timeout)
2128 {
2129 struct vcpu_vmx *vmx = to_vmx(vcpu);
2130
2131 /*
2132 * A timer value of zero is architecturally guaranteed to cause
2133 * a VMExit prior to executing any instructions in the guest.
2134 */
2135 if (preemption_timeout == 0) {
2136 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2137 return;
2138 }
2139
2140 if (vcpu->arch.virtual_tsc_khz == 0)
2141 return;
2142
2143 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2144 preemption_timeout *= 1000000;
2145 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2146 hrtimer_start(&vmx->nested.preemption_timer,
2147 ktime_add_ns(ktime_get(), preemption_timeout),
2148 HRTIMER_MODE_ABS_PINNED);
2149 }
2150
nested_vmx_calc_efer(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2151 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2152 {
2153 if (vmx->nested.nested_run_pending &&
2154 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2155 return vmcs12->guest_ia32_efer;
2156 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2157 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2158 else
2159 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2160 }
2161
prepare_vmcs02_constant_state(struct vcpu_vmx * vmx)2162 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2163 {
2164 /*
2165 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2166 * according to L0's settings (vmcs12 is irrelevant here). Host
2167 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2168 * will be set as needed prior to VMLAUNCH/VMRESUME.
2169 */
2170 if (vmx->nested.vmcs02_initialized)
2171 return;
2172 vmx->nested.vmcs02_initialized = true;
2173
2174 /*
2175 * We don't care what the EPTP value is we just need to guarantee
2176 * it's valid so we don't get a false positive when doing early
2177 * consistency checks.
2178 */
2179 if (enable_ept && nested_early_check)
2180 vmcs_write64(EPT_POINTER,
2181 construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2182
2183 /* All VMFUNCs are currently emulated through L0 vmexits. */
2184 if (cpu_has_vmx_vmfunc())
2185 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2186
2187 if (cpu_has_vmx_posted_intr())
2188 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2189
2190 if (cpu_has_vmx_msr_bitmap())
2191 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2192
2193 /*
2194 * The PML address never changes, so it is constant in vmcs02.
2195 * Conceptually we want to copy the PML index from vmcs01 here,
2196 * and then back to vmcs01 on nested vmexit. But since we flush
2197 * the log and reset GUEST_PML_INDEX on each vmexit, the PML
2198 * index is also effectively constant in vmcs02.
2199 */
2200 if (enable_pml) {
2201 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
2202 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2203 }
2204
2205 if (cpu_has_vmx_encls_vmexit())
2206 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2207
2208 /*
2209 * Set the MSR load/store lists to match L0's settings. Only the
2210 * addresses are constant (for vmcs02), the counts can change based
2211 * on L2's behavior, e.g. switching to/from long mode.
2212 */
2213 vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2214 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2215 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2216
2217 vmx_set_constant_host_state(vmx);
2218 }
2219
prepare_vmcs02_early_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2220 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2221 struct vmcs12 *vmcs12)
2222 {
2223 prepare_vmcs02_constant_state(vmx);
2224
2225 vmcs_write64(VMCS_LINK_POINTER, -1ull);
2226
2227 if (enable_vpid) {
2228 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2229 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2230 else
2231 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2232 }
2233 }
2234
prepare_vmcs02_early(struct vcpu_vmx * vmx,struct loaded_vmcs * vmcs01,struct vmcs12 * vmcs12)2235 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2236 struct vmcs12 *vmcs12)
2237 {
2238 u32 exec_control, vmcs12_exec_ctrl;
2239 u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2240
2241 if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2242 prepare_vmcs02_early_rare(vmx, vmcs12);
2243
2244 /*
2245 * PIN CONTROLS
2246 */
2247 exec_control = __pin_controls_get(vmcs01);
2248 exec_control |= (vmcs12->pin_based_vm_exec_control &
2249 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2250
2251 /* Posted interrupts setting is only taken from vmcs12. */
2252 vmx->nested.pi_pending = false;
2253 if (nested_cpu_has_posted_intr(vmcs12))
2254 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2255 else
2256 exec_control &= ~PIN_BASED_POSTED_INTR;
2257 pin_controls_set(vmx, exec_control);
2258
2259 /*
2260 * EXEC CONTROLS
2261 */
2262 exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2263 exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2264 exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2265 exec_control &= ~CPU_BASED_TPR_SHADOW;
2266 exec_control |= vmcs12->cpu_based_vm_exec_control;
2267
2268 vmx->nested.l1_tpr_threshold = -1;
2269 if (exec_control & CPU_BASED_TPR_SHADOW)
2270 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2271 #ifdef CONFIG_X86_64
2272 else
2273 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2274 CPU_BASED_CR8_STORE_EXITING;
2275 #endif
2276
2277 /*
2278 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2279 * for I/O port accesses.
2280 */
2281 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2282 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2283
2284 /*
2285 * This bit will be computed in nested_get_vmcs12_pages, because
2286 * we do not have access to L1's MSR bitmap yet. For now, keep
2287 * the same bit as before, hoping to avoid multiple VMWRITEs that
2288 * only set/clear this bit.
2289 */
2290 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2291 exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2292
2293 exec_controls_set(vmx, exec_control);
2294
2295 /*
2296 * SECONDARY EXEC CONTROLS
2297 */
2298 if (cpu_has_secondary_exec_ctrls()) {
2299 exec_control = __secondary_exec_controls_get(vmcs01);
2300
2301 /* Take the following fields only from vmcs12 */
2302 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2303 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2304 SECONDARY_EXEC_ENABLE_INVPCID |
2305 SECONDARY_EXEC_ENABLE_RDTSCP |
2306 SECONDARY_EXEC_XSAVES |
2307 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2308 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2309 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2310 SECONDARY_EXEC_ENABLE_VMFUNC |
2311 SECONDARY_EXEC_DESC);
2312
2313 if (nested_cpu_has(vmcs12,
2314 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2315 vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2316 ~SECONDARY_EXEC_ENABLE_PML;
2317 exec_control |= vmcs12_exec_ctrl;
2318 }
2319
2320 /* VMCS shadowing for L2 is emulated for now */
2321 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2322
2323 /*
2324 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2325 * will not have to rewrite the controls just for this bit.
2326 */
2327 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2328 (vmcs12->guest_cr4 & X86_CR4_UMIP))
2329 exec_control |= SECONDARY_EXEC_DESC;
2330
2331 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2332 vmcs_write16(GUEST_INTR_STATUS,
2333 vmcs12->guest_intr_status);
2334
2335 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2336 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2337
2338 secondary_exec_controls_set(vmx, exec_control);
2339 }
2340
2341 /*
2342 * ENTRY CONTROLS
2343 *
2344 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2345 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2346 * on the related bits (if supported by the CPU) in the hope that
2347 * we can avoid VMWrites during vmx_set_efer().
2348 *
2349 * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is
2350 * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to
2351 * do the same for L2.
2352 */
2353 exec_control = __vm_entry_controls_get(vmcs01);
2354 exec_control |= (vmcs12->vm_entry_controls &
2355 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
2356 exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2357 if (cpu_has_load_ia32_efer()) {
2358 if (guest_efer & EFER_LMA)
2359 exec_control |= VM_ENTRY_IA32E_MODE;
2360 if (guest_efer != host_efer)
2361 exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2362 }
2363 vm_entry_controls_set(vmx, exec_control);
2364
2365 /*
2366 * EXIT CONTROLS
2367 *
2368 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2369 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2370 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2371 */
2372 exec_control = __vm_exit_controls_get(vmcs01);
2373 if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2374 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2375 else
2376 exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2377 vm_exit_controls_set(vmx, exec_control);
2378
2379 /*
2380 * Interrupt/Exception Fields
2381 */
2382 if (vmx->nested.nested_run_pending) {
2383 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2384 vmcs12->vm_entry_intr_info_field);
2385 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2386 vmcs12->vm_entry_exception_error_code);
2387 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2388 vmcs12->vm_entry_instruction_len);
2389 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2390 vmcs12->guest_interruptibility_info);
2391 vmx->loaded_vmcs->nmi_known_unmasked =
2392 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2393 } else {
2394 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2395 }
2396 }
2397
prepare_vmcs02_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2398 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2399 {
2400 struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2401
2402 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2403 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2404 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2405 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2406 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2407 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2408 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2409 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2410 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2411 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2412 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2413 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2414 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2415 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2416 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2417 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2418 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2419 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2420 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2421 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2422 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2423 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2424 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2425 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2426 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2427 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2428 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2429 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2430 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2431 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2432 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2433 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2434 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2435 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2436 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2437 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2438 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2439 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2440
2441 vmx->segment_cache.bitmask = 0;
2442 }
2443
2444 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2445 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2446 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2447 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2448 vmcs12->guest_pending_dbg_exceptions);
2449 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2450 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2451
2452 /*
2453 * L1 may access the L2's PDPTR, so save them to construct
2454 * vmcs12
2455 */
2456 if (enable_ept) {
2457 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2458 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2459 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2460 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2461 }
2462
2463 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2464 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2465 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2466 }
2467
2468 if (nested_cpu_has_xsaves(vmcs12))
2469 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2470
2471 /*
2472 * Whether page-faults are trapped is determined by a combination of
2473 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. If L0
2474 * doesn't care about page faults then we should set all of these to
2475 * L1's desires. However, if L0 does care about (some) page faults, it
2476 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2477 * simply ask to exit on each and every L2 page fault. This is done by
2478 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2479 * Note that below we don't need special code to set EB.PF beyond the
2480 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2481 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2482 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2483 */
2484 if (vmx_need_pf_intercept(&vmx->vcpu)) {
2485 /*
2486 * TODO: if both L0 and L1 need the same MASK and MATCH,
2487 * go ahead and use it?
2488 */
2489 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2490 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2491 } else {
2492 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2493 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2494 }
2495
2496 if (cpu_has_vmx_apicv()) {
2497 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2498 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2499 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2500 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2501 }
2502
2503 /*
2504 * Make sure the msr_autostore list is up to date before we set the
2505 * count in the vmcs02.
2506 */
2507 prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2508
2509 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2510 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2511 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2512
2513 set_cr4_guest_host_mask(vmx);
2514 }
2515
2516 /*
2517 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2518 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2519 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2520 * guest in a way that will both be appropriate to L1's requests, and our
2521 * needs. In addition to modifying the active vmcs (which is vmcs02), this
2522 * function also has additional necessary side-effects, like setting various
2523 * vcpu->arch fields.
2524 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2525 * is assigned to entry_failure_code on failure.
2526 */
prepare_vmcs02(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,enum vm_entry_failure_code * entry_failure_code)2527 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2528 enum vm_entry_failure_code *entry_failure_code)
2529 {
2530 struct vcpu_vmx *vmx = to_vmx(vcpu);
2531 struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2532 bool load_guest_pdptrs_vmcs12 = false;
2533
2534 if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2535 prepare_vmcs02_rare(vmx, vmcs12);
2536 vmx->nested.dirty_vmcs12 = false;
2537
2538 load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2539 !(hv_evmcs->hv_clean_fields &
2540 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2541 }
2542
2543 if (vmx->nested.nested_run_pending &&
2544 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2545 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2546 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2547 } else {
2548 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2549 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2550 }
2551 if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2552 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2553 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2554 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2555
2556 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2557 * bitwise-or of what L1 wants to trap for L2, and what we want to
2558 * trap. Note that CR0.TS also needs updating - we do this later.
2559 */
2560 update_exception_bitmap(vcpu);
2561 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2562 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2563
2564 if (vmx->nested.nested_run_pending &&
2565 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2566 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2567 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2568 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2569 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2570 }
2571
2572 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2573
2574 if (kvm_has_tsc_control)
2575 decache_tsc_multiplier(vmx);
2576
2577 nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2578
2579 if (nested_cpu_has_ept(vmcs12))
2580 nested_ept_init_mmu_context(vcpu);
2581
2582 /*
2583 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2584 * bits which we consider mandatory enabled.
2585 * The CR0_READ_SHADOW is what L2 should have expected to read given
2586 * the specifications by L1; It's not enough to take
2587 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2588 * have more bits than L1 expected.
2589 */
2590 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2591 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2592
2593 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2594 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2595
2596 vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2597 /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2598 vmx_set_efer(vcpu, vcpu->arch.efer);
2599
2600 /*
2601 * Guest state is invalid and unrestricted guest is disabled,
2602 * which means L1 attempted VMEntry to L2 with invalid state.
2603 * Fail the VMEntry.
2604 */
2605 if (CC(!vmx_guest_state_valid(vcpu))) {
2606 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2607 return -EINVAL;
2608 }
2609
2610 /* Shadow page tables on either EPT or shadow page tables. */
2611 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2612 entry_failure_code))
2613 return -EINVAL;
2614
2615 /*
2616 * Immediately write vmcs02.GUEST_CR3. It will be propagated to vmcs12
2617 * on nested VM-Exit, which can occur without actually running L2 and
2618 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2619 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2620 * transition to HLT instead of running L2.
2621 */
2622 if (enable_ept)
2623 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2624
2625 /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2626 if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2627 is_pae_paging(vcpu)) {
2628 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2629 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2630 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2631 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2632 }
2633
2634 if (!enable_ept)
2635 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2636
2637 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2638 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2639 vmcs12->guest_ia32_perf_global_ctrl))) {
2640 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2641 return -EINVAL;
2642 }
2643
2644 kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2645 kvm_rip_write(vcpu, vmcs12->guest_rip);
2646 return 0;
2647 }
2648
nested_vmx_check_nmi_controls(struct vmcs12 * vmcs12)2649 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2650 {
2651 if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2652 nested_cpu_has_virtual_nmis(vmcs12)))
2653 return -EINVAL;
2654
2655 if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2656 nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2657 return -EINVAL;
2658
2659 return 0;
2660 }
2661
nested_vmx_check_eptp(struct kvm_vcpu * vcpu,u64 new_eptp)2662 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2663 {
2664 struct vcpu_vmx *vmx = to_vmx(vcpu);
2665 int maxphyaddr = cpuid_maxphyaddr(vcpu);
2666
2667 /* Check for memory type validity */
2668 switch (new_eptp & VMX_EPTP_MT_MASK) {
2669 case VMX_EPTP_MT_UC:
2670 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2671 return false;
2672 break;
2673 case VMX_EPTP_MT_WB:
2674 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2675 return false;
2676 break;
2677 default:
2678 return false;
2679 }
2680
2681 /* Page-walk levels validity. */
2682 switch (new_eptp & VMX_EPTP_PWL_MASK) {
2683 case VMX_EPTP_PWL_5:
2684 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2685 return false;
2686 break;
2687 case VMX_EPTP_PWL_4:
2688 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2689 return false;
2690 break;
2691 default:
2692 return false;
2693 }
2694
2695 /* Reserved bits should not be set */
2696 if (CC(new_eptp >> maxphyaddr || ((new_eptp >> 7) & 0x1f)))
2697 return false;
2698
2699 /* AD, if set, should be supported */
2700 if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2701 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2702 return false;
2703 }
2704
2705 return true;
2706 }
2707
2708 /*
2709 * Checks related to VM-Execution Control Fields
2710 */
nested_check_vm_execution_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2711 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2712 struct vmcs12 *vmcs12)
2713 {
2714 struct vcpu_vmx *vmx = to_vmx(vcpu);
2715
2716 if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2717 vmx->nested.msrs.pinbased_ctls_low,
2718 vmx->nested.msrs.pinbased_ctls_high)) ||
2719 CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2720 vmx->nested.msrs.procbased_ctls_low,
2721 vmx->nested.msrs.procbased_ctls_high)))
2722 return -EINVAL;
2723
2724 if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2725 CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2726 vmx->nested.msrs.secondary_ctls_low,
2727 vmx->nested.msrs.secondary_ctls_high)))
2728 return -EINVAL;
2729
2730 if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2731 nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2732 nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2733 nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2734 nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2735 nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2736 nested_vmx_check_nmi_controls(vmcs12) ||
2737 nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2738 nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2739 nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2740 nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2741 CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2742 return -EINVAL;
2743
2744 if (!nested_cpu_has_preemption_timer(vmcs12) &&
2745 nested_cpu_has_save_preemption_timer(vmcs12))
2746 return -EINVAL;
2747
2748 if (nested_cpu_has_ept(vmcs12) &&
2749 CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2750 return -EINVAL;
2751
2752 if (nested_cpu_has_vmfunc(vmcs12)) {
2753 if (CC(vmcs12->vm_function_control &
2754 ~vmx->nested.msrs.vmfunc_controls))
2755 return -EINVAL;
2756
2757 if (nested_cpu_has_eptp_switching(vmcs12)) {
2758 if (CC(!nested_cpu_has_ept(vmcs12)) ||
2759 CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2760 return -EINVAL;
2761 }
2762 }
2763
2764 return 0;
2765 }
2766
2767 /*
2768 * Checks related to VM-Exit Control Fields
2769 */
nested_check_vm_exit_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2770 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2771 struct vmcs12 *vmcs12)
2772 {
2773 struct vcpu_vmx *vmx = to_vmx(vcpu);
2774
2775 if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2776 vmx->nested.msrs.exit_ctls_low,
2777 vmx->nested.msrs.exit_ctls_high)) ||
2778 CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2779 return -EINVAL;
2780
2781 return 0;
2782 }
2783
2784 /*
2785 * Checks related to VM-Entry Control Fields
2786 */
nested_check_vm_entry_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2787 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2788 struct vmcs12 *vmcs12)
2789 {
2790 struct vcpu_vmx *vmx = to_vmx(vcpu);
2791
2792 if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2793 vmx->nested.msrs.entry_ctls_low,
2794 vmx->nested.msrs.entry_ctls_high)))
2795 return -EINVAL;
2796
2797 /*
2798 * From the Intel SDM, volume 3:
2799 * Fields relevant to VM-entry event injection must be set properly.
2800 * These fields are the VM-entry interruption-information field, the
2801 * VM-entry exception error code, and the VM-entry instruction length.
2802 */
2803 if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2804 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2805 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2806 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2807 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2808 bool should_have_error_code;
2809 bool urg = nested_cpu_has2(vmcs12,
2810 SECONDARY_EXEC_UNRESTRICTED_GUEST);
2811 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2812
2813 /* VM-entry interruption-info field: interruption type */
2814 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2815 CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2816 !nested_cpu_supports_monitor_trap_flag(vcpu)))
2817 return -EINVAL;
2818
2819 /* VM-entry interruption-info field: vector */
2820 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2821 CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2822 CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2823 return -EINVAL;
2824
2825 /* VM-entry interruption-info field: deliver error code */
2826 should_have_error_code =
2827 intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2828 x86_exception_has_error_code(vector);
2829 if (CC(has_error_code != should_have_error_code))
2830 return -EINVAL;
2831
2832 /* VM-entry exception error code */
2833 if (CC(has_error_code &&
2834 vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2835 return -EINVAL;
2836
2837 /* VM-entry interruption-info field: reserved bits */
2838 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2839 return -EINVAL;
2840
2841 /* VM-entry instruction length */
2842 switch (intr_type) {
2843 case INTR_TYPE_SOFT_EXCEPTION:
2844 case INTR_TYPE_SOFT_INTR:
2845 case INTR_TYPE_PRIV_SW_EXCEPTION:
2846 if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2847 CC(vmcs12->vm_entry_instruction_len == 0 &&
2848 CC(!nested_cpu_has_zero_length_injection(vcpu))))
2849 return -EINVAL;
2850 }
2851 }
2852
2853 if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2854 return -EINVAL;
2855
2856 return 0;
2857 }
2858
nested_vmx_check_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2859 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2860 struct vmcs12 *vmcs12)
2861 {
2862 if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2863 nested_check_vm_exit_controls(vcpu, vmcs12) ||
2864 nested_check_vm_entry_controls(vcpu, vmcs12))
2865 return -EINVAL;
2866
2867 if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2868 return nested_evmcs_check_controls(vmcs12);
2869
2870 return 0;
2871 }
2872
nested_vmx_check_address_space_size(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2873 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
2874 struct vmcs12 *vmcs12)
2875 {
2876 #ifdef CONFIG_X86_64
2877 if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
2878 !!(vcpu->arch.efer & EFER_LMA)))
2879 return -EINVAL;
2880 #endif
2881 return 0;
2882 }
2883
nested_vmx_check_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2884 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2885 struct vmcs12 *vmcs12)
2886 {
2887 bool ia32e;
2888
2889 if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2890 CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2891 CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
2892 return -EINVAL;
2893
2894 if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2895 CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2896 return -EINVAL;
2897
2898 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2899 CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2900 return -EINVAL;
2901
2902 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2903 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2904 vmcs12->host_ia32_perf_global_ctrl)))
2905 return -EINVAL;
2906
2907 #ifdef CONFIG_X86_64
2908 ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
2909 #else
2910 ia32e = false;
2911 #endif
2912
2913 if (ia32e) {
2914 if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2915 return -EINVAL;
2916 } else {
2917 if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2918 CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2919 CC((vmcs12->host_rip) >> 32))
2920 return -EINVAL;
2921 }
2922
2923 if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2924 CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2925 CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2926 CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2927 CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2928 CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2929 CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2930 CC(vmcs12->host_cs_selector == 0) ||
2931 CC(vmcs12->host_tr_selector == 0) ||
2932 CC(vmcs12->host_ss_selector == 0 && !ia32e))
2933 return -EINVAL;
2934
2935 if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2936 CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2937 CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2938 CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2939 CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2940 CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2941 return -EINVAL;
2942
2943 /*
2944 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2945 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2946 * the values of the LMA and LME bits in the field must each be that of
2947 * the host address-space size VM-exit control.
2948 */
2949 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2950 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2951 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2952 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2953 return -EINVAL;
2954 }
2955
2956 return 0;
2957 }
2958
nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2959 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2960 struct vmcs12 *vmcs12)
2961 {
2962 int r = 0;
2963 struct vmcs12 *shadow;
2964 struct kvm_host_map map;
2965
2966 if (vmcs12->vmcs_link_pointer == -1ull)
2967 return 0;
2968
2969 if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2970 return -EINVAL;
2971
2972 if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2973 return -EINVAL;
2974
2975 shadow = map.hva;
2976
2977 if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2978 CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2979 r = -EINVAL;
2980
2981 kvm_vcpu_unmap(vcpu, &map, false);
2982 return r;
2983 }
2984
2985 /*
2986 * Checks related to Guest Non-register State
2987 */
nested_check_guest_non_reg_state(struct vmcs12 * vmcs12)2988 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2989 {
2990 if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2991 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
2992 return -EINVAL;
2993
2994 return 0;
2995 }
2996
nested_vmx_check_guest_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,enum vm_entry_failure_code * entry_failure_code)2997 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2998 struct vmcs12 *vmcs12,
2999 enum vm_entry_failure_code *entry_failure_code)
3000 {
3001 bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE);
3002
3003 *entry_failure_code = ENTRY_FAIL_DEFAULT;
3004
3005 if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3006 CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3007 return -EINVAL;
3008
3009 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3010 CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
3011 return -EINVAL;
3012
3013 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3014 CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3015 return -EINVAL;
3016
3017 if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3018 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3019 return -EINVAL;
3020 }
3021
3022 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3023 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3024 vmcs12->guest_ia32_perf_global_ctrl)))
3025 return -EINVAL;
3026
3027 if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG))
3028 return -EINVAL;
3029
3030 if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) ||
3031 CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG)))
3032 return -EINVAL;
3033
3034 /*
3035 * If the load IA32_EFER VM-entry control is 1, the following checks
3036 * are performed on the field for the IA32_EFER MSR:
3037 * - Bits reserved in the IA32_EFER MSR must be 0.
3038 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3039 * the IA-32e mode guest VM-exit control. It must also be identical
3040 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3041 * CR0.PG) is 1.
3042 */
3043 if (to_vmx(vcpu)->nested.nested_run_pending &&
3044 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3045 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3046 CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3047 CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3048 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3049 return -EINVAL;
3050 }
3051
3052 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3053 (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3054 CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3055 return -EINVAL;
3056
3057 if (nested_check_guest_non_reg_state(vmcs12))
3058 return -EINVAL;
3059
3060 return 0;
3061 }
3062
nested_vmx_check_vmentry_hw(struct kvm_vcpu * vcpu)3063 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3064 {
3065 struct vcpu_vmx *vmx = to_vmx(vcpu);
3066 unsigned long cr3, cr4;
3067 bool vm_fail;
3068
3069 if (!nested_early_check)
3070 return 0;
3071
3072 if (vmx->msr_autoload.host.nr)
3073 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3074 if (vmx->msr_autoload.guest.nr)
3075 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3076
3077 preempt_disable();
3078
3079 vmx_prepare_switch_to_guest(vcpu);
3080
3081 /*
3082 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3083 * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
3084 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3085 * there is no need to preserve other bits or save/restore the field.
3086 */
3087 vmcs_writel(GUEST_RFLAGS, 0);
3088
3089 cr3 = __get_current_cr3_fast();
3090 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3091 vmcs_writel(HOST_CR3, cr3);
3092 vmx->loaded_vmcs->host_state.cr3 = cr3;
3093 }
3094
3095 cr4 = cr4_read_shadow();
3096 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3097 vmcs_writel(HOST_CR4, cr4);
3098 vmx->loaded_vmcs->host_state.cr4 = cr4;
3099 }
3100
3101 vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3102 __vmx_vcpu_run_flags(vmx));
3103
3104 if (vmx->msr_autoload.host.nr)
3105 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3106 if (vmx->msr_autoload.guest.nr)
3107 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3108
3109 if (vm_fail) {
3110 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3111
3112 preempt_enable();
3113
3114 trace_kvm_nested_vmenter_failed(
3115 "early hardware check VM-instruction error: ", error);
3116 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3117 return 1;
3118 }
3119
3120 /*
3121 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3122 */
3123 if (hw_breakpoint_active())
3124 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3125 local_irq_enable();
3126 preempt_enable();
3127
3128 /*
3129 * A non-failing VMEntry means we somehow entered guest mode with
3130 * an illegal RIP, and that's just the tip of the iceberg. There
3131 * is no telling what memory has been modified or what state has
3132 * been exposed to unknown code. Hitting this all but guarantees
3133 * a (very critical) hardware issue.
3134 */
3135 WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3136 VMX_EXIT_REASONS_FAILED_VMENTRY));
3137
3138 return 0;
3139 }
3140
nested_get_evmcs_page(struct kvm_vcpu * vcpu)3141 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3142 {
3143 struct vcpu_vmx *vmx = to_vmx(vcpu);
3144
3145 /*
3146 * hv_evmcs may end up being not mapped after migration (when
3147 * L2 was running), map it here to make sure vmcs12 changes are
3148 * properly reflected.
3149 */
3150 if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs) {
3151 enum nested_evmptrld_status evmptrld_status =
3152 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3153
3154 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3155 evmptrld_status == EVMPTRLD_ERROR)
3156 return false;
3157 }
3158
3159 return true;
3160 }
3161
nested_get_vmcs12_pages(struct kvm_vcpu * vcpu)3162 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3163 {
3164 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3165 struct vcpu_vmx *vmx = to_vmx(vcpu);
3166 struct kvm_host_map *map;
3167 struct page *page;
3168 u64 hpa;
3169
3170 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3171 /*
3172 * Translate L1 physical address to host physical
3173 * address for vmcs02. Keep the page pinned, so this
3174 * physical address remains valid. We keep a reference
3175 * to it so we can release it later.
3176 */
3177 if (vmx->nested.apic_access_page) { /* shouldn't happen */
3178 kvm_release_page_clean(vmx->nested.apic_access_page);
3179 vmx->nested.apic_access_page = NULL;
3180 }
3181 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3182 if (!is_error_page(page)) {
3183 vmx->nested.apic_access_page = page;
3184 hpa = page_to_phys(vmx->nested.apic_access_page);
3185 vmcs_write64(APIC_ACCESS_ADDR, hpa);
3186 } else {
3187 pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3188 __func__);
3189 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3190 vcpu->run->internal.suberror =
3191 KVM_INTERNAL_ERROR_EMULATION;
3192 vcpu->run->internal.ndata = 0;
3193 return false;
3194 }
3195 }
3196
3197 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3198 map = &vmx->nested.virtual_apic_map;
3199
3200 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3201 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3202 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3203 nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3204 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3205 /*
3206 * The processor will never use the TPR shadow, simply
3207 * clear the bit from the execution control. Such a
3208 * configuration is useless, but it happens in tests.
3209 * For any other configuration, failing the vm entry is
3210 * _not_ what the processor does but it's basically the
3211 * only possibility we have.
3212 */
3213 exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3214 } else {
3215 /*
3216 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3217 * force VM-Entry to fail.
3218 */
3219 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3220 }
3221 }
3222
3223 if (nested_cpu_has_posted_intr(vmcs12)) {
3224 map = &vmx->nested.pi_desc_map;
3225
3226 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3227 vmx->nested.pi_desc =
3228 (struct pi_desc *)(((void *)map->hva) +
3229 offset_in_page(vmcs12->posted_intr_desc_addr));
3230 vmcs_write64(POSTED_INTR_DESC_ADDR,
3231 pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3232 }
3233 }
3234 if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3235 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3236 else
3237 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3238
3239 return true;
3240 }
3241
vmx_get_nested_state_pages(struct kvm_vcpu * vcpu)3242 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3243 {
3244 if (!nested_get_evmcs_page(vcpu)) {
3245 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3246 __func__);
3247 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3248 vcpu->run->internal.suberror =
3249 KVM_INTERNAL_ERROR_EMULATION;
3250 vcpu->run->internal.ndata = 0;
3251
3252 return false;
3253 }
3254
3255 if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3256 return false;
3257
3258 return true;
3259 }
3260
nested_vmx_write_pml_buffer(struct kvm_vcpu * vcpu,gpa_t gpa)3261 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3262 {
3263 struct vmcs12 *vmcs12;
3264 struct vcpu_vmx *vmx = to_vmx(vcpu);
3265 gpa_t dst;
3266
3267 if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3268 return 0;
3269
3270 if (WARN_ON_ONCE(vmx->nested.pml_full))
3271 return 1;
3272
3273 /*
3274 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3275 * set is already checked as part of A/D emulation.
3276 */
3277 vmcs12 = get_vmcs12(vcpu);
3278 if (!nested_cpu_has_pml(vmcs12))
3279 return 0;
3280
3281 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3282 vmx->nested.pml_full = true;
3283 return 1;
3284 }
3285
3286 gpa &= ~0xFFFull;
3287 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3288
3289 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3290 offset_in_page(dst), sizeof(gpa)))
3291 return 0;
3292
3293 vmcs12->guest_pml_index--;
3294
3295 return 0;
3296 }
3297
3298 /*
3299 * Intel's VMX Instruction Reference specifies a common set of prerequisites
3300 * for running VMX instructions (except VMXON, whose prerequisites are
3301 * slightly different). It also specifies what exception to inject otherwise.
3302 * Note that many of these exceptions have priority over VM exits, so they
3303 * don't have to be checked again here.
3304 */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)3305 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3306 {
3307 if (!to_vmx(vcpu)->nested.vmxon) {
3308 kvm_queue_exception(vcpu, UD_VECTOR);
3309 return 0;
3310 }
3311
3312 if (vmx_get_cpl(vcpu)) {
3313 kvm_inject_gp(vcpu, 0);
3314 return 0;
3315 }
3316
3317 return 1;
3318 }
3319
vmx_has_apicv_interrupt(struct kvm_vcpu * vcpu)3320 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3321 {
3322 u8 rvi = vmx_get_rvi();
3323 u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3324
3325 return ((rvi & 0xf0) > (vppr & 0xf0));
3326 }
3327
3328 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3329 struct vmcs12 *vmcs12);
3330
3331 /*
3332 * If from_vmentry is false, this is being called from state restore (either RSM
3333 * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
3334 *
3335 * Returns:
3336 * NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3337 * NVMX_VMENTRY_VMFAIL: Consistency check VMFail
3338 * NVMX_VMENTRY_VMEXIT: Consistency check VMExit
3339 * NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3340 */
nested_vmx_enter_non_root_mode(struct kvm_vcpu * vcpu,bool from_vmentry)3341 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3342 bool from_vmentry)
3343 {
3344 struct vcpu_vmx *vmx = to_vmx(vcpu);
3345 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3346 enum vm_entry_failure_code entry_failure_code;
3347 bool evaluate_pending_interrupts;
3348 union vmx_exit_reason exit_reason = {
3349 .basic = EXIT_REASON_INVALID_STATE,
3350 .failed_vmentry = 1,
3351 };
3352 u32 failed_index;
3353
3354 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3355 kvm_vcpu_flush_tlb_current(vcpu);
3356
3357 evaluate_pending_interrupts = exec_controls_get(vmx) &
3358 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3359 if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3360 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3361
3362 if (!vmx->nested.nested_run_pending ||
3363 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3364 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3365 if (kvm_mpx_supported() &&
3366 (!vmx->nested.nested_run_pending ||
3367 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
3368 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3369
3370 /*
3371 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3372 * nested early checks are disabled. In the event of a "late" VM-Fail,
3373 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3374 * software model to the pre-VMEntry host state. When EPT is disabled,
3375 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3376 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3. Stuffing
3377 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3378 * the correct value. Smashing vmcs01.GUEST_CR3 is safe because nested
3379 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3380 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3381 * L1. Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3382 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3383 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3384 * path would need to manually save/restore vmcs01.GUEST_CR3.
3385 */
3386 if (!enable_ept && !nested_early_check)
3387 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3388
3389 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3390
3391 prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3392
3393 if (from_vmentry) {
3394 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3395 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3396 return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3397 }
3398
3399 if (nested_vmx_check_vmentry_hw(vcpu)) {
3400 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3401 return NVMX_VMENTRY_VMFAIL;
3402 }
3403
3404 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3405 &entry_failure_code)) {
3406 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3407 vmcs12->exit_qualification = entry_failure_code;
3408 goto vmentry_fail_vmexit;
3409 }
3410 }
3411
3412 enter_guest_mode(vcpu);
3413 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3414 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3415
3416 if (prepare_vmcs02(vcpu, vmcs12, &entry_failure_code)) {
3417 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3418 vmcs12->exit_qualification = entry_failure_code;
3419 goto vmentry_fail_vmexit_guest_mode;
3420 }
3421
3422 if (from_vmentry) {
3423 failed_index = nested_vmx_load_msr(vcpu,
3424 vmcs12->vm_entry_msr_load_addr,
3425 vmcs12->vm_entry_msr_load_count);
3426 if (failed_index) {
3427 exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3428 vmcs12->exit_qualification = failed_index;
3429 goto vmentry_fail_vmexit_guest_mode;
3430 }
3431 } else {
3432 /*
3433 * The MMU is not initialized to point at the right entities yet and
3434 * "get pages" would need to read data from the guest (i.e. we will
3435 * need to perform gpa to hpa translation). Request a call
3436 * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
3437 * have already been set at vmentry time and should not be reset.
3438 */
3439 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3440 }
3441
3442 /*
3443 * If L1 had a pending IRQ/NMI until it executed
3444 * VMLAUNCH/VMRESUME which wasn't delivered because it was
3445 * disallowed (e.g. interrupts disabled), L0 needs to
3446 * evaluate if this pending event should cause an exit from L2
3447 * to L1 or delivered directly to L2 (e.g. In case L1 don't
3448 * intercept EXTERNAL_INTERRUPT).
3449 *
3450 * Usually this would be handled by the processor noticing an
3451 * IRQ/NMI window request, or checking RVI during evaluation of
3452 * pending virtual interrupts. However, this setting was done
3453 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3454 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3455 */
3456 if (unlikely(evaluate_pending_interrupts))
3457 kvm_make_request(KVM_REQ_EVENT, vcpu);
3458
3459 /*
3460 * Do not start the preemption timer hrtimer until after we know
3461 * we are successful, so that only nested_vmx_vmexit needs to cancel
3462 * the timer.
3463 */
3464 vmx->nested.preemption_timer_expired = false;
3465 if (nested_cpu_has_preemption_timer(vmcs12)) {
3466 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3467 vmx_start_preemption_timer(vcpu, timer_value);
3468 }
3469
3470 /*
3471 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3472 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3473 * returned as far as L1 is concerned. It will only return (and set
3474 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3475 */
3476 return NVMX_VMENTRY_SUCCESS;
3477
3478 /*
3479 * A failed consistency check that leads to a VMExit during L1's
3480 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3481 * 26.7 "VM-entry failures during or after loading guest state".
3482 */
3483 vmentry_fail_vmexit_guest_mode:
3484 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3485 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3486 leave_guest_mode(vcpu);
3487
3488 vmentry_fail_vmexit:
3489 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3490
3491 if (!from_vmentry)
3492 return NVMX_VMENTRY_VMEXIT;
3493
3494 load_vmcs12_host_state(vcpu, vmcs12);
3495 vmcs12->vm_exit_reason = exit_reason.full;
3496 if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3497 vmx->nested.need_vmcs12_to_shadow_sync = true;
3498 return NVMX_VMENTRY_VMEXIT;
3499 }
3500
3501 /*
3502 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3503 * for running an L2 nested guest.
3504 */
nested_vmx_run(struct kvm_vcpu * vcpu,bool launch)3505 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3506 {
3507 struct vmcs12 *vmcs12;
3508 enum nvmx_vmentry_status status;
3509 struct vcpu_vmx *vmx = to_vmx(vcpu);
3510 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3511 enum nested_evmptrld_status evmptrld_status;
3512
3513 if (!nested_vmx_check_permission(vcpu))
3514 return 1;
3515
3516 evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3517 if (evmptrld_status == EVMPTRLD_ERROR) {
3518 kvm_queue_exception(vcpu, UD_VECTOR);
3519 return 1;
3520 } else if (CC(evmptrld_status == EVMPTRLD_VMFAIL)) {
3521 return nested_vmx_failInvalid(vcpu);
3522 }
3523
3524 if (CC(!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull))
3525 return nested_vmx_failInvalid(vcpu);
3526
3527 vmcs12 = get_vmcs12(vcpu);
3528
3529 /*
3530 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3531 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3532 * rather than RFLAGS.ZF, and no error number is stored to the
3533 * VM-instruction error field.
3534 */
3535 if (CC(vmcs12->hdr.shadow_vmcs))
3536 return nested_vmx_failInvalid(vcpu);
3537
3538 if (vmx->nested.hv_evmcs) {
3539 copy_enlightened_to_vmcs12(vmx);
3540 /* Enlightened VMCS doesn't have launch state */
3541 vmcs12->launch_state = !launch;
3542 } else if (enable_shadow_vmcs) {
3543 copy_shadow_to_vmcs12(vmx);
3544 }
3545
3546 /*
3547 * The nested entry process starts with enforcing various prerequisites
3548 * on vmcs12 as required by the Intel SDM, and act appropriately when
3549 * they fail: As the SDM explains, some conditions should cause the
3550 * instruction to fail, while others will cause the instruction to seem
3551 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3552 * To speed up the normal (success) code path, we should avoid checking
3553 * for misconfigurations which will anyway be caught by the processor
3554 * when using the merged vmcs02.
3555 */
3556 if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3557 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3558
3559 if (CC(vmcs12->launch_state == launch))
3560 return nested_vmx_fail(vcpu,
3561 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3562 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3563
3564 if (nested_vmx_check_controls(vcpu, vmcs12))
3565 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3566
3567 if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3568 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3569
3570 if (nested_vmx_check_host_state(vcpu, vmcs12))
3571 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3572
3573 /*
3574 * We're finally done with prerequisite checking, and can start with
3575 * the nested entry.
3576 */
3577 vmx->nested.nested_run_pending = 1;
3578 vmx->nested.has_preemption_timer_deadline = false;
3579 status = nested_vmx_enter_non_root_mode(vcpu, true);
3580 if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3581 goto vmentry_failed;
3582
3583 /* Emulate processing of posted interrupts on VM-Enter. */
3584 if (nested_cpu_has_posted_intr(vmcs12) &&
3585 kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3586 vmx->nested.pi_pending = true;
3587 kvm_make_request(KVM_REQ_EVENT, vcpu);
3588 kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3589 }
3590
3591 /* Hide L1D cache contents from the nested guest. */
3592 vmx->vcpu.arch.l1tf_flush_l1d = true;
3593
3594 /*
3595 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3596 * also be used as part of restoring nVMX state for
3597 * snapshot restore (migration).
3598 *
3599 * In this flow, it is assumed that vmcs12 cache was
3600 * trasferred as part of captured nVMX state and should
3601 * therefore not be read from guest memory (which may not
3602 * exist on destination host yet).
3603 */
3604 nested_cache_shadow_vmcs12(vcpu, vmcs12);
3605
3606 /*
3607 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3608 * awakened by event injection or by an NMI-window VM-exit or
3609 * by an interrupt-window VM-exit, halt the vcpu.
3610 */
3611 if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3612 !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3613 !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_NMI_WINDOW_EXITING) &&
3614 !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_INTR_WINDOW_EXITING) &&
3615 (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3616 vmx->nested.nested_run_pending = 0;
3617 return kvm_vcpu_halt(vcpu);
3618 }
3619 return 1;
3620
3621 vmentry_failed:
3622 vmx->nested.nested_run_pending = 0;
3623 if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3624 return 0;
3625 if (status == NVMX_VMENTRY_VMEXIT)
3626 return 1;
3627 WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3628 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3629 }
3630
3631 /*
3632 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3633 * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3634 * This function returns the new value we should put in vmcs12.guest_cr0.
3635 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3636 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3637 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3638 * didn't trap the bit, because if L1 did, so would L0).
3639 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3640 * been modified by L2, and L1 knows it. So just leave the old value of
3641 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3642 * isn't relevant, because if L0 traps this bit it can set it to anything.
3643 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3644 * changed these bits, and therefore they need to be updated, but L0
3645 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3646 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3647 */
3648 static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3649 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3650 {
3651 return
3652 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3653 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3654 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3655 vcpu->arch.cr0_guest_owned_bits));
3656 }
3657
3658 static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3659 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3660 {
3661 return
3662 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3663 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3664 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3665 vcpu->arch.cr4_guest_owned_bits));
3666 }
3667
vmcs12_save_pending_event(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info)3668 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3669 struct vmcs12 *vmcs12,
3670 u32 vm_exit_reason, u32 exit_intr_info)
3671 {
3672 u32 idt_vectoring;
3673 unsigned int nr;
3674
3675 /*
3676 * Per the SDM, VM-Exits due to double and triple faults are never
3677 * considered to occur during event delivery, even if the double/triple
3678 * fault is the result of an escalating vectoring issue.
3679 *
3680 * Note, the SDM qualifies the double fault behavior with "The original
3681 * event results in a double-fault exception". It's unclear why the
3682 * qualification exists since exits due to double fault can occur only
3683 * while vectoring a different exception (injected events are never
3684 * subject to interception), i.e. there's _always_ an original event.
3685 *
3686 * The SDM also uses NMI as a confusing example for the "original event
3687 * causes the VM exit directly" clause. NMI isn't special in any way,
3688 * the same rule applies to all events that cause an exit directly.
3689 * NMI is an odd choice for the example because NMIs can only occur on
3690 * instruction boundaries, i.e. they _can't_ occur during vectoring.
3691 */
3692 if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3693 ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3694 is_double_fault(exit_intr_info))) {
3695 vmcs12->idt_vectoring_info_field = 0;
3696 } else if (vcpu->arch.exception.injected) {
3697 nr = vcpu->arch.exception.nr;
3698 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3699
3700 if (kvm_exception_is_soft(nr)) {
3701 vmcs12->vm_exit_instruction_len =
3702 vcpu->arch.event_exit_inst_len;
3703 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3704 } else
3705 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3706
3707 if (vcpu->arch.exception.has_error_code) {
3708 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3709 vmcs12->idt_vectoring_error_code =
3710 vcpu->arch.exception.error_code;
3711 }
3712
3713 vmcs12->idt_vectoring_info_field = idt_vectoring;
3714 } else if (vcpu->arch.nmi_injected) {
3715 vmcs12->idt_vectoring_info_field =
3716 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3717 } else if (vcpu->arch.interrupt.injected) {
3718 nr = vcpu->arch.interrupt.nr;
3719 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3720
3721 if (vcpu->arch.interrupt.soft) {
3722 idt_vectoring |= INTR_TYPE_SOFT_INTR;
3723 vmcs12->vm_entry_instruction_len =
3724 vcpu->arch.event_exit_inst_len;
3725 } else
3726 idt_vectoring |= INTR_TYPE_EXT_INTR;
3727
3728 vmcs12->idt_vectoring_info_field = idt_vectoring;
3729 } else {
3730 vmcs12->idt_vectoring_info_field = 0;
3731 }
3732 }
3733
3734
nested_mark_vmcs12_pages_dirty(struct kvm_vcpu * vcpu)3735 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3736 {
3737 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3738 gfn_t gfn;
3739
3740 /*
3741 * Don't need to mark the APIC access page dirty; it is never
3742 * written to by the CPU during APIC virtualization.
3743 */
3744
3745 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3746 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3747 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3748 }
3749
3750 if (nested_cpu_has_posted_intr(vmcs12)) {
3751 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3752 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3753 }
3754 }
3755
vmx_complete_nested_posted_interrupt(struct kvm_vcpu * vcpu)3756 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3757 {
3758 struct vcpu_vmx *vmx = to_vmx(vcpu);
3759 int max_irr;
3760 void *vapic_page;
3761 u16 status;
3762
3763 if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3764 return;
3765
3766 vmx->nested.pi_pending = false;
3767 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3768 return;
3769
3770 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3771 if (max_irr != 256) {
3772 vapic_page = vmx->nested.virtual_apic_map.hva;
3773 if (!vapic_page)
3774 return;
3775
3776 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3777 vapic_page, &max_irr);
3778 status = vmcs_read16(GUEST_INTR_STATUS);
3779 if ((u8)max_irr > ((u8)status & 0xff)) {
3780 status &= ~0xff;
3781 status |= (u8)max_irr;
3782 vmcs_write16(GUEST_INTR_STATUS, status);
3783 }
3784 }
3785
3786 nested_mark_vmcs12_pages_dirty(vcpu);
3787 }
3788
nested_vmx_inject_exception_vmexit(struct kvm_vcpu * vcpu,unsigned long exit_qual)3789 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3790 unsigned long exit_qual)
3791 {
3792 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3793 unsigned int nr = vcpu->arch.exception.nr;
3794 u32 intr_info = nr | INTR_INFO_VALID_MASK;
3795
3796 if (vcpu->arch.exception.has_error_code) {
3797 /*
3798 * Intel CPUs do not generate error codes with bits 31:16 set,
3799 * and more importantly VMX disallows setting bits 31:16 in the
3800 * injected error code for VM-Entry. Drop the bits to mimic
3801 * hardware and avoid inducing failure on nested VM-Entry if L1
3802 * chooses to inject the exception back to L2. AMD CPUs _do_
3803 * generate "full" 32-bit error codes, so KVM allows userspace
3804 * to inject exception error codes with bits 31:16 set.
3805 */
3806 vmcs12->vm_exit_intr_error_code = (u16)vcpu->arch.exception.error_code;
3807 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3808 }
3809
3810 if (kvm_exception_is_soft(nr))
3811 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3812 else
3813 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3814
3815 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3816 vmx_get_nmi_mask(vcpu))
3817 intr_info |= INTR_INFO_UNBLOCK_NMI;
3818
3819 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3820 }
3821
3822 /*
3823 * Returns true if a debug trap is pending delivery.
3824 *
3825 * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3826 * exception may be inferred from the presence of an exception payload.
3827 */
vmx_pending_dbg_trap(struct kvm_vcpu * vcpu)3828 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3829 {
3830 return vcpu->arch.exception.pending &&
3831 vcpu->arch.exception.nr == DB_VECTOR &&
3832 vcpu->arch.exception.payload;
3833 }
3834
3835 /*
3836 * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3837 * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3838 * represents these debug traps with a payload that is said to be compatible
3839 * with the 'pending debug exceptions' field, write the payload to the VMCS
3840 * field if a VM-exit is delivered before the debug trap.
3841 */
nested_vmx_update_pending_dbg(struct kvm_vcpu * vcpu)3842 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3843 {
3844 if (vmx_pending_dbg_trap(vcpu))
3845 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3846 vcpu->arch.exception.payload);
3847 }
3848
nested_vmx_preemption_timer_pending(struct kvm_vcpu * vcpu)3849 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3850 {
3851 return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3852 to_vmx(vcpu)->nested.preemption_timer_expired;
3853 }
3854
vmx_check_nested_events(struct kvm_vcpu * vcpu)3855 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3856 {
3857 struct vcpu_vmx *vmx = to_vmx(vcpu);
3858 unsigned long exit_qual;
3859 bool block_nested_events =
3860 vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3861 bool mtf_pending = vmx->nested.mtf_pending;
3862 struct kvm_lapic *apic = vcpu->arch.apic;
3863
3864 /*
3865 * Clear the MTF state. If a higher priority VM-exit is delivered first,
3866 * this state is discarded.
3867 */
3868 if (!block_nested_events)
3869 vmx->nested.mtf_pending = false;
3870
3871 if (lapic_in_kernel(vcpu) &&
3872 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3873 if (block_nested_events)
3874 return -EBUSY;
3875 nested_vmx_update_pending_dbg(vcpu);
3876 clear_bit(KVM_APIC_INIT, &apic->pending_events);
3877 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3878 return 0;
3879 }
3880
3881 /*
3882 * Process any exceptions that are not debug traps before MTF.
3883 */
3884 if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3885 if (block_nested_events)
3886 return -EBUSY;
3887 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3888 goto no_vmexit;
3889 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3890 return 0;
3891 }
3892
3893 if (mtf_pending) {
3894 if (block_nested_events)
3895 return -EBUSY;
3896 nested_vmx_update_pending_dbg(vcpu);
3897 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3898 return 0;
3899 }
3900
3901 if (vcpu->arch.exception.pending) {
3902 if (block_nested_events)
3903 return -EBUSY;
3904 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3905 goto no_vmexit;
3906 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3907 return 0;
3908 }
3909
3910 if (nested_vmx_preemption_timer_pending(vcpu)) {
3911 if (block_nested_events)
3912 return -EBUSY;
3913 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3914 return 0;
3915 }
3916
3917 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3918 if (block_nested_events)
3919 return -EBUSY;
3920 goto no_vmexit;
3921 }
3922
3923 if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3924 if (block_nested_events)
3925 return -EBUSY;
3926 if (!nested_exit_on_nmi(vcpu))
3927 goto no_vmexit;
3928
3929 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3930 NMI_VECTOR | INTR_TYPE_NMI_INTR |
3931 INTR_INFO_VALID_MASK, 0);
3932 /*
3933 * The NMI-triggered VM exit counts as injection:
3934 * clear this one and block further NMIs.
3935 */
3936 vcpu->arch.nmi_pending = 0;
3937 vmx_set_nmi_mask(vcpu, true);
3938 return 0;
3939 }
3940
3941 if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3942 if (block_nested_events)
3943 return -EBUSY;
3944 if (!nested_exit_on_intr(vcpu))
3945 goto no_vmexit;
3946 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3947 return 0;
3948 }
3949
3950 no_vmexit:
3951 vmx_complete_nested_posted_interrupt(vcpu);
3952 return 0;
3953 }
3954
vmx_get_preemption_timer_value(struct kvm_vcpu * vcpu)3955 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3956 {
3957 ktime_t remaining =
3958 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3959 u64 value;
3960
3961 if (ktime_to_ns(remaining) <= 0)
3962 return 0;
3963
3964 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3965 do_div(value, 1000000);
3966 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3967 }
3968
is_vmcs12_ext_field(unsigned long field)3969 static bool is_vmcs12_ext_field(unsigned long field)
3970 {
3971 switch (field) {
3972 case GUEST_ES_SELECTOR:
3973 case GUEST_CS_SELECTOR:
3974 case GUEST_SS_SELECTOR:
3975 case GUEST_DS_SELECTOR:
3976 case GUEST_FS_SELECTOR:
3977 case GUEST_GS_SELECTOR:
3978 case GUEST_LDTR_SELECTOR:
3979 case GUEST_TR_SELECTOR:
3980 case GUEST_ES_LIMIT:
3981 case GUEST_CS_LIMIT:
3982 case GUEST_SS_LIMIT:
3983 case GUEST_DS_LIMIT:
3984 case GUEST_FS_LIMIT:
3985 case GUEST_GS_LIMIT:
3986 case GUEST_LDTR_LIMIT:
3987 case GUEST_TR_LIMIT:
3988 case GUEST_GDTR_LIMIT:
3989 case GUEST_IDTR_LIMIT:
3990 case GUEST_ES_AR_BYTES:
3991 case GUEST_DS_AR_BYTES:
3992 case GUEST_FS_AR_BYTES:
3993 case GUEST_GS_AR_BYTES:
3994 case GUEST_LDTR_AR_BYTES:
3995 case GUEST_TR_AR_BYTES:
3996 case GUEST_ES_BASE:
3997 case GUEST_CS_BASE:
3998 case GUEST_SS_BASE:
3999 case GUEST_DS_BASE:
4000 case GUEST_FS_BASE:
4001 case GUEST_GS_BASE:
4002 case GUEST_LDTR_BASE:
4003 case GUEST_TR_BASE:
4004 case GUEST_GDTR_BASE:
4005 case GUEST_IDTR_BASE:
4006 case GUEST_PENDING_DBG_EXCEPTIONS:
4007 case GUEST_BNDCFGS:
4008 return true;
4009 default:
4010 break;
4011 }
4012
4013 return false;
4014 }
4015
sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4016 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4017 struct vmcs12 *vmcs12)
4018 {
4019 struct vcpu_vmx *vmx = to_vmx(vcpu);
4020
4021 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4022 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4023 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4024 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4025 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4026 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4027 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4028 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4029 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4030 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4031 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4032 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4033 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4034 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4035 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4036 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4037 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4038 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4039 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4040 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4041 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4042 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4043 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4044 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4045 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4046 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4047 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4048 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4049 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4050 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4051 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4052 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4053 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4054 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4055 vmcs12->guest_pending_dbg_exceptions =
4056 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4057 if (kvm_mpx_supported())
4058 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
4059
4060 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4061 }
4062
copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4063 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4064 struct vmcs12 *vmcs12)
4065 {
4066 struct vcpu_vmx *vmx = to_vmx(vcpu);
4067 int cpu;
4068
4069 if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4070 return;
4071
4072
4073 WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4074
4075 cpu = get_cpu();
4076 vmx->loaded_vmcs = &vmx->nested.vmcs02;
4077 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4078
4079 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4080
4081 vmx->loaded_vmcs = &vmx->vmcs01;
4082 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4083 put_cpu();
4084 }
4085
4086 /*
4087 * Update the guest state fields of vmcs12 to reflect changes that
4088 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4089 * VM-entry controls is also updated, since this is really a guest
4090 * state bit.)
4091 */
sync_vmcs02_to_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4092 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4093 {
4094 struct vcpu_vmx *vmx = to_vmx(vcpu);
4095
4096 if (vmx->nested.hv_evmcs)
4097 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4098
4099 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
4100
4101 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4102 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4103
4104 vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4105 vmcs12->guest_rip = kvm_rip_read(vcpu);
4106 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4107
4108 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4109 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4110
4111 vmcs12->guest_interruptibility_info =
4112 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4113
4114 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4115 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4116 else
4117 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4118
4119 if (nested_cpu_has_preemption_timer(vmcs12) &&
4120 vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4121 !vmx->nested.nested_run_pending)
4122 vmcs12->vmx_preemption_timer_value =
4123 vmx_get_preemption_timer_value(vcpu);
4124
4125 /*
4126 * In some cases (usually, nested EPT), L2 is allowed to change its
4127 * own CR3 without exiting. If it has changed it, we must keep it.
4128 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4129 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4130 *
4131 * Additionally, restore L2's PDPTR to vmcs12.
4132 */
4133 if (enable_ept) {
4134 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4135 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4136 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4137 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4138 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4139 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4140 }
4141 }
4142
4143 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4144
4145 if (nested_cpu_has_vid(vmcs12))
4146 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4147
4148 vmcs12->vm_entry_controls =
4149 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4150 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4151
4152 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4153 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4154
4155 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4156 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4157 }
4158
4159 /*
4160 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4161 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4162 * and this function updates it to reflect the changes to the guest state while
4163 * L2 was running (and perhaps made some exits which were handled directly by L0
4164 * without going back to L1), and to reflect the exit reason.
4165 * Note that we do not have to copy here all VMCS fields, just those that
4166 * could have changed by the L2 guest or the exit - i.e., the guest-state and
4167 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4168 * which already writes to vmcs12 directly.
4169 */
prepare_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification)4170 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4171 u32 vm_exit_reason, u32 exit_intr_info,
4172 unsigned long exit_qualification)
4173 {
4174 /* update exit information fields: */
4175 vmcs12->vm_exit_reason = vm_exit_reason;
4176 vmcs12->exit_qualification = exit_qualification;
4177
4178 /*
4179 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4180 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4181 * exit info fields are unmodified.
4182 */
4183 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4184 vmcs12->launch_state = 1;
4185
4186 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4187 * instead of reading the real value. */
4188 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4189
4190 /*
4191 * Transfer the event that L0 or L1 may wanted to inject into
4192 * L2 to IDT_VECTORING_INFO_FIELD.
4193 */
4194 vmcs12_save_pending_event(vcpu, vmcs12,
4195 vm_exit_reason, exit_intr_info);
4196
4197 vmcs12->vm_exit_intr_info = exit_intr_info;
4198 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4199 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4200
4201 /*
4202 * According to spec, there's no need to store the guest's
4203 * MSRs if the exit is due to a VM-entry failure that occurs
4204 * during or after loading the guest state. Since this exit
4205 * does not fall in that category, we need to save the MSRs.
4206 */
4207 if (nested_vmx_store_msr(vcpu,
4208 vmcs12->vm_exit_msr_store_addr,
4209 vmcs12->vm_exit_msr_store_count))
4210 nested_vmx_abort(vcpu,
4211 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4212 }
4213 }
4214
4215 /*
4216 * A part of what we need to when the nested L2 guest exits and we want to
4217 * run its L1 parent, is to reset L1's guest state to the host state specified
4218 * in vmcs12.
4219 * This function is to be called not only on normal nested exit, but also on
4220 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4221 * Failures During or After Loading Guest State").
4222 * This function should be called when the active VMCS is L1's (vmcs01).
4223 */
load_vmcs12_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4224 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4225 struct vmcs12 *vmcs12)
4226 {
4227 enum vm_entry_failure_code ignored;
4228 struct kvm_segment seg;
4229
4230 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4231 vcpu->arch.efer = vmcs12->host_ia32_efer;
4232 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4233 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4234 else
4235 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4236 vmx_set_efer(vcpu, vcpu->arch.efer);
4237
4238 kvm_rsp_write(vcpu, vmcs12->host_rsp);
4239 kvm_rip_write(vcpu, vmcs12->host_rip);
4240 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4241 vmx_set_interrupt_shadow(vcpu, 0);
4242
4243 /*
4244 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4245 * actually changed, because vmx_set_cr0 refers to efer set above.
4246 *
4247 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4248 * (KVM doesn't change it);
4249 */
4250 vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4251 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4252
4253 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4254 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4255 vmx_set_cr4(vcpu, vmcs12->host_cr4);
4256
4257 nested_ept_uninit_mmu_context(vcpu);
4258
4259 /*
4260 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4261 * couldn't have changed.
4262 */
4263 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &ignored))
4264 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4265
4266 if (!enable_ept)
4267 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
4268
4269 nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4270
4271 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4272 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4273 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4274 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4275 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4276 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4277 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4278
4279 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
4280 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4281 vmcs_write64(GUEST_BNDCFGS, 0);
4282
4283 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4284 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4285 vcpu->arch.pat = vmcs12->host_ia32_pat;
4286 }
4287 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4288 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4289 vmcs12->host_ia32_perf_global_ctrl));
4290
4291 /* Set L1 segment info according to Intel SDM
4292 27.5.2 Loading Host Segment and Descriptor-Table Registers */
4293 seg = (struct kvm_segment) {
4294 .base = 0,
4295 .limit = 0xFFFFFFFF,
4296 .selector = vmcs12->host_cs_selector,
4297 .type = 11,
4298 .present = 1,
4299 .s = 1,
4300 .g = 1
4301 };
4302 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4303 seg.l = 1;
4304 else
4305 seg.db = 1;
4306 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4307 seg = (struct kvm_segment) {
4308 .base = 0,
4309 .limit = 0xFFFFFFFF,
4310 .type = 3,
4311 .present = 1,
4312 .s = 1,
4313 .db = 1,
4314 .g = 1
4315 };
4316 seg.selector = vmcs12->host_ds_selector;
4317 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4318 seg.selector = vmcs12->host_es_selector;
4319 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4320 seg.selector = vmcs12->host_ss_selector;
4321 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4322 seg.selector = vmcs12->host_fs_selector;
4323 seg.base = vmcs12->host_fs_base;
4324 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4325 seg.selector = vmcs12->host_gs_selector;
4326 seg.base = vmcs12->host_gs_base;
4327 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4328 seg = (struct kvm_segment) {
4329 .base = vmcs12->host_tr_base,
4330 .limit = 0x67,
4331 .selector = vmcs12->host_tr_selector,
4332 .type = 11,
4333 .present = 1
4334 };
4335 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4336
4337 kvm_set_dr(vcpu, 7, 0x400);
4338 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4339
4340 if (cpu_has_vmx_msr_bitmap())
4341 vmx_update_msr_bitmap(vcpu);
4342
4343 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4344 vmcs12->vm_exit_msr_load_count))
4345 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4346 }
4347
nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx * vmx)4348 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4349 {
4350 struct vmx_uret_msr *efer_msr;
4351 unsigned int i;
4352
4353 if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4354 return vmcs_read64(GUEST_IA32_EFER);
4355
4356 if (cpu_has_load_ia32_efer())
4357 return host_efer;
4358
4359 for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4360 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4361 return vmx->msr_autoload.guest.val[i].value;
4362 }
4363
4364 efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4365 if (efer_msr)
4366 return efer_msr->data;
4367
4368 return host_efer;
4369 }
4370
nested_vmx_restore_host_state(struct kvm_vcpu * vcpu)4371 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4372 {
4373 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4374 struct vcpu_vmx *vmx = to_vmx(vcpu);
4375 struct vmx_msr_entry g, h;
4376 gpa_t gpa;
4377 u32 i, j;
4378
4379 vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4380
4381 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4382 /*
4383 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4384 * as vmcs01.GUEST_DR7 contains a userspace defined value
4385 * and vcpu->arch.dr7 is not squirreled away before the
4386 * nested VMENTER (not worth adding a variable in nested_vmx).
4387 */
4388 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4389 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4390 else
4391 WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4392 }
4393
4394 /*
4395 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4396 * handle a variety of side effects to KVM's software model.
4397 */
4398 vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4399
4400 vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4401 vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4402
4403 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4404 vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4405
4406 nested_ept_uninit_mmu_context(vcpu);
4407 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4408 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4409
4410 /*
4411 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4412 * from vmcs01 (if necessary). The PDPTRs are not loaded on
4413 * VMFail, like everything else we just need to ensure our
4414 * software model is up-to-date.
4415 */
4416 if (enable_ept && is_pae_paging(vcpu))
4417 ept_save_pdptrs(vcpu);
4418
4419 kvm_mmu_reset_context(vcpu);
4420
4421 if (cpu_has_vmx_msr_bitmap())
4422 vmx_update_msr_bitmap(vcpu);
4423
4424 /*
4425 * This nasty bit of open coding is a compromise between blindly
4426 * loading L1's MSRs using the exit load lists (incorrect emulation
4427 * of VMFail), leaving the nested VM's MSRs in the software model
4428 * (incorrect behavior) and snapshotting the modified MSRs (too
4429 * expensive since the lists are unbound by hardware). For each
4430 * MSR that was (prematurely) loaded from the nested VMEntry load
4431 * list, reload it from the exit load list if it exists and differs
4432 * from the guest value. The intent is to stuff host state as
4433 * silently as possible, not to fully process the exit load list.
4434 */
4435 for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4436 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4437 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4438 pr_debug_ratelimited(
4439 "%s read MSR index failed (%u, 0x%08llx)\n",
4440 __func__, i, gpa);
4441 goto vmabort;
4442 }
4443
4444 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4445 gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4446 if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4447 pr_debug_ratelimited(
4448 "%s read MSR failed (%u, 0x%08llx)\n",
4449 __func__, j, gpa);
4450 goto vmabort;
4451 }
4452 if (h.index != g.index)
4453 continue;
4454 if (h.value == g.value)
4455 break;
4456
4457 if (nested_vmx_load_msr_check(vcpu, &h)) {
4458 pr_debug_ratelimited(
4459 "%s check failed (%u, 0x%x, 0x%x)\n",
4460 __func__, j, h.index, h.reserved);
4461 goto vmabort;
4462 }
4463
4464 if (kvm_set_msr(vcpu, h.index, h.value)) {
4465 pr_debug_ratelimited(
4466 "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4467 __func__, j, h.index, h.value);
4468 goto vmabort;
4469 }
4470 }
4471 }
4472
4473 return;
4474
4475 vmabort:
4476 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4477 }
4478
4479 /*
4480 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4481 * and modify vmcs12 to make it see what it would expect to see there if
4482 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4483 */
nested_vmx_vmexit(struct kvm_vcpu * vcpu,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification)4484 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4485 u32 exit_intr_info, unsigned long exit_qualification)
4486 {
4487 struct vcpu_vmx *vmx = to_vmx(vcpu);
4488 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4489
4490 /* trying to cancel vmlaunch/vmresume is a bug */
4491 WARN_ON_ONCE(vmx->nested.nested_run_pending);
4492
4493 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4494 /*
4495 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4496 * Enlightened VMCS after migration and we still need to
4497 * do that when something is forcing L2->L1 exit prior to
4498 * the first L2 run.
4499 */
4500 (void)nested_get_evmcs_page(vcpu);
4501 }
4502
4503 /* Service the TLB flush request for L2 before switching to L1. */
4504 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
4505 kvm_vcpu_flush_tlb_current(vcpu);
4506
4507 /*
4508 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4509 * now and the new vmentry. Ensure that the VMCS02 PDPTR fields are
4510 * up-to-date before switching to L1.
4511 */
4512 if (enable_ept && is_pae_paging(vcpu))
4513 vmx_ept_load_pdptrs(vcpu);
4514
4515 leave_guest_mode(vcpu);
4516
4517 if (nested_cpu_has_preemption_timer(vmcs12))
4518 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4519
4520 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
4521 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4522
4523 if (likely(!vmx->fail)) {
4524 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4525
4526 if (vm_exit_reason != -1)
4527 prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4528 exit_intr_info, exit_qualification);
4529
4530 /*
4531 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4532 * also be used to capture vmcs12 cache as part of
4533 * capturing nVMX state for snapshot (migration).
4534 *
4535 * Otherwise, this flush will dirty guest memory at a
4536 * point it is already assumed by user-space to be
4537 * immutable.
4538 */
4539 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4540 } else {
4541 /*
4542 * The only expected VM-instruction error is "VM entry with
4543 * invalid control field(s)." Anything else indicates a
4544 * problem with L0. And we should never get here with a
4545 * VMFail of any type if early consistency checks are enabled.
4546 */
4547 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4548 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4549 WARN_ON_ONCE(nested_early_check);
4550 }
4551
4552 /*
4553 * Drop events/exceptions that were queued for re-injection to L2
4554 * (picked up via vmx_complete_interrupts()), as well as exceptions
4555 * that were pending for L2. Note, this must NOT be hoisted above
4556 * prepare_vmcs12(), events/exceptions queued for re-injection need to
4557 * be captured in vmcs12 (see vmcs12_save_pending_event()).
4558 */
4559 vcpu->arch.nmi_injected = false;
4560 kvm_clear_exception_queue(vcpu);
4561 kvm_clear_interrupt_queue(vcpu);
4562
4563 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4564
4565 /*
4566 * If IBRS is advertised to the vCPU, KVM must flush the indirect
4567 * branch predictors when transitioning from L2 to L1, as L1 expects
4568 * hardware (KVM in this case) to provide separate predictor modes.
4569 * Bare metal isolates VMX root (host) from VMX non-root (guest), but
4570 * doesn't isolate different VMCSs, i.e. in this case, doesn't provide
4571 * separate modes for L2 vs L1.
4572 */
4573 if (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
4574 indirect_branch_prediction_barrier();
4575
4576 /* Update any VMCS fields that might have changed while L2 ran */
4577 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4578 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4579 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4580 if (vmx->nested.l1_tpr_threshold != -1)
4581 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4582
4583 if (kvm_has_tsc_control)
4584 decache_tsc_multiplier(vmx);
4585
4586 if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4587 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4588 vmx_set_virtual_apic_mode(vcpu);
4589 }
4590
4591 /* Unpin physical memory we referred to in vmcs02 */
4592 if (vmx->nested.apic_access_page) {
4593 kvm_release_page_clean(vmx->nested.apic_access_page);
4594 vmx->nested.apic_access_page = NULL;
4595 }
4596 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4597 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4598 vmx->nested.pi_desc = NULL;
4599
4600 if (vmx->nested.reload_vmcs01_apic_access_page) {
4601 vmx->nested.reload_vmcs01_apic_access_page = false;
4602 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4603 }
4604
4605 if ((vm_exit_reason != -1) &&
4606 (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4607 vmx->nested.need_vmcs12_to_shadow_sync = true;
4608
4609 /* in case we halted in L2 */
4610 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4611
4612 if (likely(!vmx->fail)) {
4613 if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4614 nested_exit_intr_ack_set(vcpu)) {
4615 int irq = kvm_cpu_get_interrupt(vcpu);
4616 WARN_ON(irq < 0);
4617 vmcs12->vm_exit_intr_info = irq |
4618 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4619 }
4620
4621 if (vm_exit_reason != -1)
4622 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4623 vmcs12->exit_qualification,
4624 vmcs12->idt_vectoring_info_field,
4625 vmcs12->vm_exit_intr_info,
4626 vmcs12->vm_exit_intr_error_code,
4627 KVM_ISA_VMX);
4628
4629 load_vmcs12_host_state(vcpu, vmcs12);
4630
4631 return;
4632 }
4633
4634 /*
4635 * After an early L2 VM-entry failure, we're now back
4636 * in L1 which thinks it just finished a VMLAUNCH or
4637 * VMRESUME instruction, so we need to set the failure
4638 * flag and the VM-instruction error field of the VMCS
4639 * accordingly, and skip the emulated instruction.
4640 */
4641 (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4642
4643 /*
4644 * Restore L1's host state to KVM's software model. We're here
4645 * because a consistency check was caught by hardware, which
4646 * means some amount of guest state has been propagated to KVM's
4647 * model and needs to be unwound to the host's state.
4648 */
4649 nested_vmx_restore_host_state(vcpu);
4650
4651 vmx->fail = 0;
4652 }
4653
4654 /*
4655 * Decode the memory-address operand of a vmx instruction, as recorded on an
4656 * exit caused by such an instruction (run by a guest hypervisor).
4657 * On success, returns 0. When the operand is invalid, returns 1 and throws
4658 * #UD, #GP, or #SS.
4659 */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,bool wr,int len,gva_t * ret)4660 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4661 u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4662 {
4663 gva_t off;
4664 bool exn;
4665 struct kvm_segment s;
4666
4667 /*
4668 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4669 * Execution", on an exit, vmx_instruction_info holds most of the
4670 * addressing components of the operand. Only the displacement part
4671 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4672 * For how an actual address is calculated from all these components,
4673 * refer to Vol. 1, "Operand Addressing".
4674 */
4675 int scaling = vmx_instruction_info & 3;
4676 int addr_size = (vmx_instruction_info >> 7) & 7;
4677 bool is_reg = vmx_instruction_info & (1u << 10);
4678 int seg_reg = (vmx_instruction_info >> 15) & 7;
4679 int index_reg = (vmx_instruction_info >> 18) & 0xf;
4680 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4681 int base_reg = (vmx_instruction_info >> 23) & 0xf;
4682 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
4683
4684 if (is_reg) {
4685 kvm_queue_exception(vcpu, UD_VECTOR);
4686 return 1;
4687 }
4688
4689 /* Addr = segment_base + offset */
4690 /* offset = base + [index * scale] + displacement */
4691 off = exit_qualification; /* holds the displacement */
4692 if (addr_size == 1)
4693 off = (gva_t)sign_extend64(off, 31);
4694 else if (addr_size == 0)
4695 off = (gva_t)sign_extend64(off, 15);
4696 if (base_is_valid)
4697 off += kvm_register_readl(vcpu, base_reg);
4698 if (index_is_valid)
4699 off += kvm_register_readl(vcpu, index_reg) << scaling;
4700 vmx_get_segment(vcpu, &s, seg_reg);
4701
4702 /*
4703 * The effective address, i.e. @off, of a memory operand is truncated
4704 * based on the address size of the instruction. Note that this is
4705 * the *effective address*, i.e. the address prior to accounting for
4706 * the segment's base.
4707 */
4708 if (addr_size == 1) /* 32 bit */
4709 off &= 0xffffffff;
4710 else if (addr_size == 0) /* 16 bit */
4711 off &= 0xffff;
4712
4713 /* Checks for #GP/#SS exceptions. */
4714 exn = false;
4715 if (is_long_mode(vcpu)) {
4716 /*
4717 * The virtual/linear address is never truncated in 64-bit
4718 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4719 * address when using FS/GS with a non-zero base.
4720 */
4721 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4722 *ret = s.base + off;
4723 else
4724 *ret = off;
4725
4726 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4727 * non-canonical form. This is the only check on the memory
4728 * destination for long mode!
4729 */
4730 exn = is_noncanonical_address(*ret, vcpu);
4731 } else {
4732 /*
4733 * When not in long mode, the virtual/linear address is
4734 * unconditionally truncated to 32 bits regardless of the
4735 * address size.
4736 */
4737 *ret = (s.base + off) & 0xffffffff;
4738
4739 /* Protected mode: apply checks for segment validity in the
4740 * following order:
4741 * - segment type check (#GP(0) may be thrown)
4742 * - usability check (#GP(0)/#SS(0))
4743 * - limit check (#GP(0)/#SS(0))
4744 */
4745 if (wr)
4746 /* #GP(0) if the destination operand is located in a
4747 * read-only data segment or any code segment.
4748 */
4749 exn = ((s.type & 0xa) == 0 || (s.type & 8));
4750 else
4751 /* #GP(0) if the source operand is located in an
4752 * execute-only code segment
4753 */
4754 exn = ((s.type & 0xa) == 8);
4755 if (exn) {
4756 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4757 return 1;
4758 }
4759 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4760 */
4761 exn = (s.unusable != 0);
4762
4763 /*
4764 * Protected mode: #GP(0)/#SS(0) if the memory operand is
4765 * outside the segment limit. All CPUs that support VMX ignore
4766 * limit checks for flat segments, i.e. segments with base==0,
4767 * limit==0xffffffff and of type expand-up data or code.
4768 */
4769 if (!(s.base == 0 && s.limit == 0xffffffff &&
4770 ((s.type & 8) || !(s.type & 4))))
4771 exn = exn || ((u64)off + len - 1 > s.limit);
4772 }
4773 if (exn) {
4774 kvm_queue_exception_e(vcpu,
4775 seg_reg == VCPU_SREG_SS ?
4776 SS_VECTOR : GP_VECTOR,
4777 0);
4778 return 1;
4779 }
4780
4781 return 0;
4782 }
4783
nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu * vcpu)4784 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4785 {
4786 struct vcpu_vmx *vmx;
4787
4788 if (!nested_vmx_allowed(vcpu))
4789 return;
4790
4791 vmx = to_vmx(vcpu);
4792 if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4793 vmx->nested.msrs.entry_ctls_high |=
4794 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4795 vmx->nested.msrs.exit_ctls_high |=
4796 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4797 } else {
4798 vmx->nested.msrs.entry_ctls_high &=
4799 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4800 vmx->nested.msrs.exit_ctls_high &=
4801 ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4802 }
4803 }
4804
nested_vmx_get_vmptr(struct kvm_vcpu * vcpu,gpa_t * vmpointer,int * ret)4805 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
4806 int *ret)
4807 {
4808 gva_t gva;
4809 struct x86_exception e;
4810 int r;
4811
4812 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4813 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4814 sizeof(*vmpointer), &gva)) {
4815 *ret = 1;
4816 return -EINVAL;
4817 }
4818
4819 r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
4820 if (r != X86EMUL_CONTINUE) {
4821 *ret = kvm_handle_memory_failure(vcpu, r, &e);
4822 return -EINVAL;
4823 }
4824
4825 return 0;
4826 }
4827
4828 /*
4829 * Allocate a shadow VMCS and associate it with the currently loaded
4830 * VMCS, unless such a shadow VMCS already exists. The newly allocated
4831 * VMCS is also VMCLEARed, so that it is ready for use.
4832 */
alloc_shadow_vmcs(struct kvm_vcpu * vcpu)4833 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4834 {
4835 struct vcpu_vmx *vmx = to_vmx(vcpu);
4836 struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4837
4838 /*
4839 * We should allocate a shadow vmcs for vmcs01 only when L1
4840 * executes VMXON and free it when L1 executes VMXOFF.
4841 * As it is invalid to execute VMXON twice, we shouldn't reach
4842 * here when vmcs01 already have an allocated shadow vmcs.
4843 */
4844 WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4845
4846 if (!loaded_vmcs->shadow_vmcs) {
4847 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4848 if (loaded_vmcs->shadow_vmcs)
4849 vmcs_clear(loaded_vmcs->shadow_vmcs);
4850 }
4851 return loaded_vmcs->shadow_vmcs;
4852 }
4853
enter_vmx_operation(struct kvm_vcpu * vcpu)4854 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4855 {
4856 struct vcpu_vmx *vmx = to_vmx(vcpu);
4857 int r;
4858
4859 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4860 if (r < 0)
4861 goto out_vmcs02;
4862
4863 vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4864 if (!vmx->nested.cached_vmcs12)
4865 goto out_cached_vmcs12;
4866
4867 vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4868 if (!vmx->nested.cached_shadow_vmcs12)
4869 goto out_cached_shadow_vmcs12;
4870
4871 if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4872 goto out_shadow_vmcs;
4873
4874 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4875 HRTIMER_MODE_ABS_PINNED);
4876 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4877
4878 vmx->nested.vpid02 = allocate_vpid();
4879
4880 vmx->nested.vmcs02_initialized = false;
4881 vmx->nested.vmxon = true;
4882
4883 if (vmx_pt_mode_is_host_guest()) {
4884 vmx->pt_desc.guest.ctl = 0;
4885 pt_update_intercept_for_msr(vcpu);
4886 }
4887
4888 return 0;
4889
4890 out_shadow_vmcs:
4891 kfree(vmx->nested.cached_shadow_vmcs12);
4892
4893 out_cached_shadow_vmcs12:
4894 kfree(vmx->nested.cached_vmcs12);
4895
4896 out_cached_vmcs12:
4897 free_loaded_vmcs(&vmx->nested.vmcs02);
4898
4899 out_vmcs02:
4900 return -ENOMEM;
4901 }
4902
4903 /*
4904 * Emulate the VMXON instruction.
4905 * Currently, we just remember that VMX is active, and do not save or even
4906 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4907 * do not currently need to store anything in that guest-allocated memory
4908 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4909 * argument is different from the VMXON pointer (which the spec says they do).
4910 */
handle_vmon(struct kvm_vcpu * vcpu)4911 static int handle_vmon(struct kvm_vcpu *vcpu)
4912 {
4913 int ret;
4914 gpa_t vmptr;
4915 uint32_t revision;
4916 struct vcpu_vmx *vmx = to_vmx(vcpu);
4917 const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4918 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4919
4920 /*
4921 * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter
4922 * the guest and so cannot rely on hardware to perform the check,
4923 * which has higher priority than VM-Exit (see Intel SDM's pseudocode
4924 * for VMXON).
4925 *
4926 * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86
4927 * and !COMPATIBILITY modes. For an unrestricted guest, KVM doesn't
4928 * force any of the relevant guest state. For a restricted guest, KVM
4929 * does force CR0.PE=1, but only to also force VM86 in order to emulate
4930 * Real Mode, and so there's no need to check CR0.PE manually.
4931 */
4932 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4933 kvm_queue_exception(vcpu, UD_VECTOR);
4934 return 1;
4935 }
4936
4937 /*
4938 * The CPL is checked for "not in VMX operation" and for "in VMX root",
4939 * and has higher priority than the VM-Fail due to being post-VMXON,
4940 * i.e. VMXON #GPs outside of VMX non-root if CPL!=0. In VMX non-root,
4941 * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits
4942 * from L2 to L1, i.e. there's no need to check for the vCPU being in
4943 * VMX non-root.
4944 *
4945 * Forwarding the VM-Exit unconditionally, i.e. without performing the
4946 * #UD checks (see above), is functionally ok because KVM doesn't allow
4947 * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's
4948 * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are
4949 * missed by hardware due to shadowing CR0 and/or CR4.
4950 */
4951 if (vmx_get_cpl(vcpu)) {
4952 kvm_inject_gp(vcpu, 0);
4953 return 1;
4954 }
4955
4956 if (vmx->nested.vmxon)
4957 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4958
4959 /*
4960 * Invalid CR0/CR4 generates #GP. These checks are performed if and
4961 * only if the vCPU isn't already in VMX operation, i.e. effectively
4962 * have lower priority than the VM-Fail above.
4963 */
4964 if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) ||
4965 !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) {
4966 kvm_inject_gp(vcpu, 0);
4967 return 1;
4968 }
4969
4970 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4971 != VMXON_NEEDED_FEATURES) {
4972 kvm_inject_gp(vcpu, 0);
4973 return 1;
4974 }
4975
4976 if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
4977 return ret;
4978
4979 /*
4980 * SDM 3: 24.11.5
4981 * The first 4 bytes of VMXON region contain the supported
4982 * VMCS revision identifier
4983 *
4984 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4985 * which replaces physical address width with 32
4986 */
4987 if (!page_address_valid(vcpu, vmptr))
4988 return nested_vmx_failInvalid(vcpu);
4989
4990 if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4991 revision != VMCS12_REVISION)
4992 return nested_vmx_failInvalid(vcpu);
4993
4994 vmx->nested.vmxon_ptr = vmptr;
4995 ret = enter_vmx_operation(vcpu);
4996 if (ret)
4997 return ret;
4998
4999 return nested_vmx_succeed(vcpu);
5000 }
5001
nested_release_vmcs12(struct kvm_vcpu * vcpu)5002 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
5003 {
5004 struct vcpu_vmx *vmx = to_vmx(vcpu);
5005
5006 if (vmx->nested.current_vmptr == -1ull)
5007 return;
5008
5009 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
5010
5011 if (enable_shadow_vmcs) {
5012 /* copy to memory all shadowed fields in case
5013 they were modified */
5014 copy_shadow_to_vmcs12(vmx);
5015 vmx_disable_shadow_vmcs(vmx);
5016 }
5017 vmx->nested.posted_intr_nv = -1;
5018
5019 /* Flush VMCS12 to guest memory */
5020 kvm_vcpu_write_guest_page(vcpu,
5021 vmx->nested.current_vmptr >> PAGE_SHIFT,
5022 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5023
5024 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5025
5026 vmx->nested.current_vmptr = -1ull;
5027 }
5028
5029 /* Emulate the VMXOFF instruction */
handle_vmoff(struct kvm_vcpu * vcpu)5030 static int handle_vmoff(struct kvm_vcpu *vcpu)
5031 {
5032 if (!nested_vmx_check_permission(vcpu))
5033 return 1;
5034
5035 free_nested(vcpu);
5036
5037 /* Process a latched INIT during time CPU was in VMX operation */
5038 kvm_make_request(KVM_REQ_EVENT, vcpu);
5039
5040 return nested_vmx_succeed(vcpu);
5041 }
5042
5043 /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)5044 static int handle_vmclear(struct kvm_vcpu *vcpu)
5045 {
5046 struct vcpu_vmx *vmx = to_vmx(vcpu);
5047 u32 zero = 0;
5048 gpa_t vmptr;
5049 u64 evmcs_gpa;
5050 int r;
5051
5052 if (!nested_vmx_check_permission(vcpu))
5053 return 1;
5054
5055 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5056 return r;
5057
5058 if (!page_address_valid(vcpu, vmptr))
5059 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5060
5061 if (vmptr == vmx->nested.vmxon_ptr)
5062 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5063
5064 /*
5065 * When Enlightened VMEntry is enabled on the calling CPU we treat
5066 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
5067 * way to distinguish it from VMCS12) and we must not corrupt it by
5068 * writing to the non-existent 'launch_state' field. The area doesn't
5069 * have to be the currently active EVMCS on the calling CPU and there's
5070 * nothing KVM has to do to transition it from 'active' to 'non-active'
5071 * state. It is possible that the area will stay mapped as
5072 * vmx->nested.hv_evmcs but this shouldn't be a problem.
5073 */
5074 if (likely(!vmx->nested.enlightened_vmcs_enabled ||
5075 !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
5076 if (vmptr == vmx->nested.current_vmptr)
5077 nested_release_vmcs12(vcpu);
5078
5079 kvm_vcpu_write_guest(vcpu,
5080 vmptr + offsetof(struct vmcs12,
5081 launch_state),
5082 &zero, sizeof(zero));
5083 }
5084
5085 return nested_vmx_succeed(vcpu);
5086 }
5087
5088 /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)5089 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5090 {
5091 return nested_vmx_run(vcpu, true);
5092 }
5093
5094 /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)5095 static int handle_vmresume(struct kvm_vcpu *vcpu)
5096 {
5097
5098 return nested_vmx_run(vcpu, false);
5099 }
5100
handle_vmread(struct kvm_vcpu * vcpu)5101 static int handle_vmread(struct kvm_vcpu *vcpu)
5102 {
5103 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5104 : get_vmcs12(vcpu);
5105 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5106 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5107 struct vcpu_vmx *vmx = to_vmx(vcpu);
5108 struct x86_exception e;
5109 unsigned long field;
5110 u64 value;
5111 gva_t gva = 0;
5112 short offset;
5113 int len, r;
5114
5115 if (!nested_vmx_check_permission(vcpu))
5116 return 1;
5117
5118 /*
5119 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5120 * any VMREAD sets the ALU flags for VMfailInvalid.
5121 */
5122 if (vmx->nested.current_vmptr == -1ull ||
5123 (is_guest_mode(vcpu) &&
5124 get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5125 return nested_vmx_failInvalid(vcpu);
5126
5127 /* Decode instruction info and find the field to read */
5128 field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
5129
5130 offset = vmcs_field_to_offset(field);
5131 if (offset < 0)
5132 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5133
5134 if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5135 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5136
5137 /* Read the field, zero-extended to a u64 value */
5138 value = vmcs12_read_any(vmcs12, field, offset);
5139
5140 /*
5141 * Now copy part of this value to register or memory, as requested.
5142 * Note that the number of bits actually copied is 32 or 64 depending
5143 * on the guest's mode (32 or 64 bit), not on the given field's length.
5144 */
5145 if (instr_info & BIT(10)) {
5146 kvm_register_writel(vcpu, (((instr_info) >> 3) & 0xf), value);
5147 } else {
5148 len = is_64_bit_mode(vcpu) ? 8 : 4;
5149 if (get_vmx_mem_address(vcpu, exit_qualification,
5150 instr_info, true, len, &gva))
5151 return 1;
5152 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5153 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5154 if (r != X86EMUL_CONTINUE)
5155 return kvm_handle_memory_failure(vcpu, r, &e);
5156 }
5157
5158 return nested_vmx_succeed(vcpu);
5159 }
5160
is_shadow_field_rw(unsigned long field)5161 static bool is_shadow_field_rw(unsigned long field)
5162 {
5163 switch (field) {
5164 #define SHADOW_FIELD_RW(x, y) case x:
5165 #include "vmcs_shadow_fields.h"
5166 return true;
5167 default:
5168 break;
5169 }
5170 return false;
5171 }
5172
is_shadow_field_ro(unsigned long field)5173 static bool is_shadow_field_ro(unsigned long field)
5174 {
5175 switch (field) {
5176 #define SHADOW_FIELD_RO(x, y) case x:
5177 #include "vmcs_shadow_fields.h"
5178 return true;
5179 default:
5180 break;
5181 }
5182 return false;
5183 }
5184
handle_vmwrite(struct kvm_vcpu * vcpu)5185 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5186 {
5187 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5188 : get_vmcs12(vcpu);
5189 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5190 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5191 struct vcpu_vmx *vmx = to_vmx(vcpu);
5192 struct x86_exception e;
5193 unsigned long field;
5194 short offset;
5195 gva_t gva;
5196 int len, r;
5197
5198 /*
5199 * The value to write might be 32 or 64 bits, depending on L1's long
5200 * mode, and eventually we need to write that into a field of several
5201 * possible lengths. The code below first zero-extends the value to 64
5202 * bit (value), and then copies only the appropriate number of
5203 * bits into the vmcs12 field.
5204 */
5205 u64 value = 0;
5206
5207 if (!nested_vmx_check_permission(vcpu))
5208 return 1;
5209
5210 /*
5211 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5212 * any VMWRITE sets the ALU flags for VMfailInvalid.
5213 */
5214 if (vmx->nested.current_vmptr == -1ull ||
5215 (is_guest_mode(vcpu) &&
5216 get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5217 return nested_vmx_failInvalid(vcpu);
5218
5219 if (instr_info & BIT(10))
5220 value = kvm_register_readl(vcpu, (((instr_info) >> 3) & 0xf));
5221 else {
5222 len = is_64_bit_mode(vcpu) ? 8 : 4;
5223 if (get_vmx_mem_address(vcpu, exit_qualification,
5224 instr_info, false, len, &gva))
5225 return 1;
5226 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5227 if (r != X86EMUL_CONTINUE)
5228 return kvm_handle_memory_failure(vcpu, r, &e);
5229 }
5230
5231 field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
5232
5233 offset = vmcs_field_to_offset(field);
5234 if (offset < 0)
5235 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5236
5237 /*
5238 * If the vCPU supports "VMWRITE to any supported field in the
5239 * VMCS," then the "read-only" fields are actually read/write.
5240 */
5241 if (vmcs_field_readonly(field) &&
5242 !nested_cpu_has_vmwrite_any_field(vcpu))
5243 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5244
5245 /*
5246 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5247 * vmcs12, else we may crush a field or consume a stale value.
5248 */
5249 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5250 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5251
5252 /*
5253 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5254 * fields on VMWRITE. Emulate this behavior to ensure consistent KVM
5255 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5256 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5257 * from L1 will return a different value than VMREAD from L2 (L1 sees
5258 * the stripped down value, L2 sees the full value as stored by KVM).
5259 */
5260 if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5261 value &= 0x1f0ff;
5262
5263 vmcs12_write_any(vmcs12, field, offset, value);
5264
5265 /*
5266 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5267 * dirty shadow vmcs12 instead of vmcs12. Fields that can be updated
5268 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5269 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5270 */
5271 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5272 /*
5273 * L1 can read these fields without exiting, ensure the
5274 * shadow VMCS is up-to-date.
5275 */
5276 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5277 preempt_disable();
5278 vmcs_load(vmx->vmcs01.shadow_vmcs);
5279
5280 __vmcs_writel(field, value);
5281
5282 vmcs_clear(vmx->vmcs01.shadow_vmcs);
5283 vmcs_load(vmx->loaded_vmcs->vmcs);
5284 preempt_enable();
5285 }
5286 vmx->nested.dirty_vmcs12 = true;
5287 }
5288
5289 return nested_vmx_succeed(vcpu);
5290 }
5291
set_current_vmptr(struct vcpu_vmx * vmx,gpa_t vmptr)5292 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5293 {
5294 vmx->nested.current_vmptr = vmptr;
5295 if (enable_shadow_vmcs) {
5296 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5297 vmcs_write64(VMCS_LINK_POINTER,
5298 __pa(vmx->vmcs01.shadow_vmcs));
5299 vmx->nested.need_vmcs12_to_shadow_sync = true;
5300 }
5301 vmx->nested.dirty_vmcs12 = true;
5302 }
5303
5304 /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)5305 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5306 {
5307 struct vcpu_vmx *vmx = to_vmx(vcpu);
5308 gpa_t vmptr;
5309 int r;
5310
5311 if (!nested_vmx_check_permission(vcpu))
5312 return 1;
5313
5314 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5315 return r;
5316
5317 if (!page_address_valid(vcpu, vmptr))
5318 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5319
5320 if (vmptr == vmx->nested.vmxon_ptr)
5321 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5322
5323 /* Forbid normal VMPTRLD if Enlightened version was used */
5324 if (vmx->nested.hv_evmcs)
5325 return 1;
5326
5327 if (vmx->nested.current_vmptr != vmptr) {
5328 struct kvm_host_map map;
5329 struct vmcs12 *new_vmcs12;
5330
5331 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
5332 /*
5333 * Reads from an unbacked page return all 1s,
5334 * which means that the 32 bits located at the
5335 * given physical address won't match the required
5336 * VMCS12_REVISION identifier.
5337 */
5338 return nested_vmx_fail(vcpu,
5339 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5340 }
5341
5342 new_vmcs12 = map.hva;
5343
5344 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5345 (new_vmcs12->hdr.shadow_vmcs &&
5346 !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5347 kvm_vcpu_unmap(vcpu, &map, false);
5348 return nested_vmx_fail(vcpu,
5349 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5350 }
5351
5352 nested_release_vmcs12(vcpu);
5353
5354 /*
5355 * Load VMCS12 from guest memory since it is not already
5356 * cached.
5357 */
5358 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5359 kvm_vcpu_unmap(vcpu, &map, false);
5360
5361 set_current_vmptr(vmx, vmptr);
5362 }
5363
5364 return nested_vmx_succeed(vcpu);
5365 }
5366
5367 /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)5368 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5369 {
5370 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5371 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5372 gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5373 struct x86_exception e;
5374 gva_t gva;
5375 int r;
5376
5377 if (!nested_vmx_check_permission(vcpu))
5378 return 1;
5379
5380 if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
5381 return 1;
5382
5383 if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5384 true, sizeof(gpa_t), &gva))
5385 return 1;
5386 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5387 r = kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr,
5388 sizeof(gpa_t), &e);
5389 if (r != X86EMUL_CONTINUE)
5390 return kvm_handle_memory_failure(vcpu, r, &e);
5391
5392 return nested_vmx_succeed(vcpu);
5393 }
5394
5395 #define EPTP_PA_MASK GENMASK_ULL(51, 12)
5396
nested_ept_root_matches(hpa_t root_hpa,u64 root_eptp,u64 eptp)5397 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
5398 {
5399 return VALID_PAGE(root_hpa) &&
5400 ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
5401 }
5402
5403 /* Emulate the INVEPT instruction */
handle_invept(struct kvm_vcpu * vcpu)5404 static int handle_invept(struct kvm_vcpu *vcpu)
5405 {
5406 struct vcpu_vmx *vmx = to_vmx(vcpu);
5407 u32 vmx_instruction_info, types;
5408 unsigned long type, roots_to_free;
5409 struct kvm_mmu *mmu;
5410 gva_t gva;
5411 struct x86_exception e;
5412 struct {
5413 u64 eptp, gpa;
5414 } operand;
5415 int i, r;
5416
5417 if (!(vmx->nested.msrs.secondary_ctls_high &
5418 SECONDARY_EXEC_ENABLE_EPT) ||
5419 !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5420 kvm_queue_exception(vcpu, UD_VECTOR);
5421 return 1;
5422 }
5423
5424 if (!nested_vmx_check_permission(vcpu))
5425 return 1;
5426
5427 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5428 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5429
5430 types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5431
5432 if (type >= 32 || !(types & (1 << type)))
5433 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5434
5435 /* According to the Intel VMX instruction reference, the memory
5436 * operand is read even if it isn't needed (e.g., for type==global)
5437 */
5438 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5439 vmx_instruction_info, false, sizeof(operand), &gva))
5440 return 1;
5441 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5442 if (r != X86EMUL_CONTINUE)
5443 return kvm_handle_memory_failure(vcpu, r, &e);
5444
5445 /*
5446 * Nested EPT roots are always held through guest_mmu,
5447 * not root_mmu.
5448 */
5449 mmu = &vcpu->arch.guest_mmu;
5450
5451 switch (type) {
5452 case VMX_EPT_EXTENT_CONTEXT:
5453 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5454 return nested_vmx_fail(vcpu,
5455 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5456
5457 roots_to_free = 0;
5458 if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
5459 operand.eptp))
5460 roots_to_free |= KVM_MMU_ROOT_CURRENT;
5461
5462 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5463 if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5464 mmu->prev_roots[i].pgd,
5465 operand.eptp))
5466 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5467 }
5468 break;
5469 case VMX_EPT_EXTENT_GLOBAL:
5470 roots_to_free = KVM_MMU_ROOTS_ALL;
5471 break;
5472 default:
5473 BUG();
5474 break;
5475 }
5476
5477 if (roots_to_free)
5478 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
5479
5480 return nested_vmx_succeed(vcpu);
5481 }
5482
handle_invvpid(struct kvm_vcpu * vcpu)5483 static int handle_invvpid(struct kvm_vcpu *vcpu)
5484 {
5485 struct vcpu_vmx *vmx = to_vmx(vcpu);
5486 u32 vmx_instruction_info;
5487 unsigned long type, types;
5488 gva_t gva;
5489 struct x86_exception e;
5490 struct {
5491 u64 vpid;
5492 u64 gla;
5493 } operand;
5494 u16 vpid02;
5495 int r;
5496
5497 if (!(vmx->nested.msrs.secondary_ctls_high &
5498 SECONDARY_EXEC_ENABLE_VPID) ||
5499 !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5500 kvm_queue_exception(vcpu, UD_VECTOR);
5501 return 1;
5502 }
5503
5504 if (!nested_vmx_check_permission(vcpu))
5505 return 1;
5506
5507 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5508 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5509
5510 types = (vmx->nested.msrs.vpid_caps &
5511 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5512
5513 if (type >= 32 || !(types & (1 << type)))
5514 return nested_vmx_fail(vcpu,
5515 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5516
5517 /* according to the intel vmx instruction reference, the memory
5518 * operand is read even if it isn't needed (e.g., for type==global)
5519 */
5520 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5521 vmx_instruction_info, false, sizeof(operand), &gva))
5522 return 1;
5523 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5524 if (r != X86EMUL_CONTINUE)
5525 return kvm_handle_memory_failure(vcpu, r, &e);
5526
5527 if (operand.vpid >> 16)
5528 return nested_vmx_fail(vcpu,
5529 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5530
5531 vpid02 = nested_get_vpid02(vcpu);
5532 switch (type) {
5533 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5534 if (!operand.vpid ||
5535 is_noncanonical_address(operand.gla, vcpu))
5536 return nested_vmx_fail(vcpu,
5537 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5538 vpid_sync_vcpu_addr(vpid02, operand.gla);
5539 break;
5540 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5541 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5542 if (!operand.vpid)
5543 return nested_vmx_fail(vcpu,
5544 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5545 vpid_sync_context(vpid02);
5546 break;
5547 case VMX_VPID_EXTENT_ALL_CONTEXT:
5548 vpid_sync_context(vpid02);
5549 break;
5550 default:
5551 WARN_ON_ONCE(1);
5552 return kvm_skip_emulated_instruction(vcpu);
5553 }
5554
5555 /*
5556 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5557 * linear mappings for L2 (tagged with L2's VPID). Free all roots as
5558 * VPIDs are not tracked in the MMU role.
5559 *
5560 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5561 * an MMU when EPT is disabled.
5562 *
5563 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5564 */
5565 if (!enable_ept)
5566 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu,
5567 KVM_MMU_ROOTS_ALL);
5568
5569 return nested_vmx_succeed(vcpu);
5570 }
5571
nested_vmx_eptp_switching(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5572 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5573 struct vmcs12 *vmcs12)
5574 {
5575 u32 index = kvm_rcx_read(vcpu);
5576 u64 new_eptp;
5577
5578 if (!nested_cpu_has_eptp_switching(vmcs12) ||
5579 !nested_cpu_has_ept(vmcs12))
5580 return 1;
5581
5582 if (index >= VMFUNC_EPTP_ENTRIES)
5583 return 1;
5584
5585 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5586 &new_eptp, index * 8, 8))
5587 return 1;
5588
5589 /*
5590 * If the (L2) guest does a vmfunc to the currently
5591 * active ept pointer, we don't have to do anything else
5592 */
5593 if (vmcs12->ept_pointer != new_eptp) {
5594 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5595 return 1;
5596
5597 vmcs12->ept_pointer = new_eptp;
5598
5599 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
5600 }
5601
5602 return 0;
5603 }
5604
handle_vmfunc(struct kvm_vcpu * vcpu)5605 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5606 {
5607 struct vcpu_vmx *vmx = to_vmx(vcpu);
5608 struct vmcs12 *vmcs12;
5609 u32 function = kvm_rax_read(vcpu);
5610
5611 /*
5612 * VMFUNC is only supported for nested guests, but we always enable the
5613 * secondary control for simplicity; for non-nested mode, fake that we
5614 * didn't by injecting #UD.
5615 */
5616 if (!is_guest_mode(vcpu)) {
5617 kvm_queue_exception(vcpu, UD_VECTOR);
5618 return 1;
5619 }
5620
5621 vmcs12 = get_vmcs12(vcpu);
5622 if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5623 goto fail;
5624
5625 switch (function) {
5626 case 0:
5627 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5628 goto fail;
5629 break;
5630 default:
5631 goto fail;
5632 }
5633 return kvm_skip_emulated_instruction(vcpu);
5634
5635 fail:
5636 /*
5637 * This is effectively a reflected VM-Exit, as opposed to a synthesized
5638 * nested VM-Exit. Pass the original exit reason, i.e. don't hardcode
5639 * EXIT_REASON_VMFUNC as the exit reason.
5640 */
5641 nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5642 vmx_get_intr_info(vcpu),
5643 vmx_get_exit_qual(vcpu));
5644 return 1;
5645 }
5646
5647 /*
5648 * Return true if an IO instruction with the specified port and size should cause
5649 * a VM-exit into L1.
5650 */
nested_vmx_check_io_bitmaps(struct kvm_vcpu * vcpu,unsigned int port,int size)5651 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5652 int size)
5653 {
5654 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5655 gpa_t bitmap, last_bitmap;
5656 u8 b;
5657
5658 last_bitmap = (gpa_t)-1;
5659 b = -1;
5660
5661 while (size > 0) {
5662 if (port < 0x8000)
5663 bitmap = vmcs12->io_bitmap_a;
5664 else if (port < 0x10000)
5665 bitmap = vmcs12->io_bitmap_b;
5666 else
5667 return true;
5668 bitmap += (port & 0x7fff) / 8;
5669
5670 if (last_bitmap != bitmap)
5671 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5672 return true;
5673 if (b & (1 << (port & 7)))
5674 return true;
5675
5676 port++;
5677 size--;
5678 last_bitmap = bitmap;
5679 }
5680
5681 return false;
5682 }
5683
nested_vmx_exit_handled_io(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5684 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5685 struct vmcs12 *vmcs12)
5686 {
5687 unsigned long exit_qualification;
5688 unsigned short port;
5689 int size;
5690
5691 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5692 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5693
5694 exit_qualification = vmx_get_exit_qual(vcpu);
5695
5696 port = exit_qualification >> 16;
5697 size = (exit_qualification & 7) + 1;
5698
5699 return nested_vmx_check_io_bitmaps(vcpu, port, size);
5700 }
5701
5702 /*
5703 * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5704 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5705 * disinterest in the current event (read or write a specific MSR) by using an
5706 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5707 */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,union vmx_exit_reason exit_reason)5708 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5709 struct vmcs12 *vmcs12,
5710 union vmx_exit_reason exit_reason)
5711 {
5712 u32 msr_index = kvm_rcx_read(vcpu);
5713 gpa_t bitmap;
5714
5715 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5716 return true;
5717
5718 /*
5719 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5720 * for the four combinations of read/write and low/high MSR numbers.
5721 * First we need to figure out which of the four to use:
5722 */
5723 bitmap = vmcs12->msr_bitmap;
5724 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5725 bitmap += 2048;
5726 if (msr_index >= 0xc0000000) {
5727 msr_index -= 0xc0000000;
5728 bitmap += 1024;
5729 }
5730
5731 /* Then read the msr_index'th bit from this bitmap: */
5732 if (msr_index < 1024*8) {
5733 unsigned char b;
5734 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5735 return true;
5736 return 1 & (b >> (msr_index & 7));
5737 } else
5738 return true; /* let L1 handle the wrong parameter */
5739 }
5740
5741 /*
5742 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5743 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5744 * intercept (via guest_host_mask etc.) the current event.
5745 */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5746 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5747 struct vmcs12 *vmcs12)
5748 {
5749 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5750 int cr = exit_qualification & 15;
5751 int reg;
5752 unsigned long val;
5753
5754 switch ((exit_qualification >> 4) & 3) {
5755 case 0: /* mov to cr */
5756 reg = (exit_qualification >> 8) & 15;
5757 val = kvm_register_readl(vcpu, reg);
5758 switch (cr) {
5759 case 0:
5760 if (vmcs12->cr0_guest_host_mask &
5761 (val ^ vmcs12->cr0_read_shadow))
5762 return true;
5763 break;
5764 case 3:
5765 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5766 return true;
5767 break;
5768 case 4:
5769 if (vmcs12->cr4_guest_host_mask &
5770 (vmcs12->cr4_read_shadow ^ val))
5771 return true;
5772 break;
5773 case 8:
5774 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5775 return true;
5776 break;
5777 }
5778 break;
5779 case 2: /* clts */
5780 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5781 (vmcs12->cr0_read_shadow & X86_CR0_TS))
5782 return true;
5783 break;
5784 case 1: /* mov from cr */
5785 switch (cr) {
5786 case 3:
5787 if (vmcs12->cpu_based_vm_exec_control &
5788 CPU_BASED_CR3_STORE_EXITING)
5789 return true;
5790 break;
5791 case 8:
5792 if (vmcs12->cpu_based_vm_exec_control &
5793 CPU_BASED_CR8_STORE_EXITING)
5794 return true;
5795 break;
5796 }
5797 break;
5798 case 3: /* lmsw */
5799 /*
5800 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5801 * cr0. Other attempted changes are ignored, with no exit.
5802 */
5803 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5804 if (vmcs12->cr0_guest_host_mask & 0xe &
5805 (val ^ vmcs12->cr0_read_shadow))
5806 return true;
5807 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5808 !(vmcs12->cr0_read_shadow & 0x1) &&
5809 (val & 0x1))
5810 return true;
5811 break;
5812 }
5813 return false;
5814 }
5815
nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,gpa_t bitmap)5816 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5817 struct vmcs12 *vmcs12, gpa_t bitmap)
5818 {
5819 u32 vmx_instruction_info;
5820 unsigned long field;
5821 u8 b;
5822
5823 if (!nested_cpu_has_shadow_vmcs(vmcs12))
5824 return true;
5825
5826 /* Decode instruction info and find the field to access */
5827 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5828 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5829
5830 /* Out-of-range fields always cause a VM exit from L2 to L1 */
5831 if (field >> 15)
5832 return true;
5833
5834 if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5835 return true;
5836
5837 return 1 & (b >> (field & 7));
5838 }
5839
nested_vmx_exit_handled_mtf(struct vmcs12 * vmcs12)5840 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5841 {
5842 u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5843
5844 if (nested_cpu_has_mtf(vmcs12))
5845 return true;
5846
5847 /*
5848 * An MTF VM-exit may be injected into the guest by setting the
5849 * interruption-type to 7 (other event) and the vector field to 0. Such
5850 * is the case regardless of the 'monitor trap flag' VM-execution
5851 * control.
5852 */
5853 return entry_intr_info == (INTR_INFO_VALID_MASK
5854 | INTR_TYPE_OTHER_EVENT);
5855 }
5856
5857 /*
5858 * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5859 * L1 wants the exit. Only call this when in is_guest_mode (L2).
5860 */
nested_vmx_l0_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)5861 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
5862 union vmx_exit_reason exit_reason)
5863 {
5864 u32 intr_info;
5865
5866 switch ((u16)exit_reason.basic) {
5867 case EXIT_REASON_EXCEPTION_NMI:
5868 intr_info = vmx_get_intr_info(vcpu);
5869 if (is_nmi(intr_info))
5870 return true;
5871 else if (is_page_fault(intr_info))
5872 return vcpu->arch.apf.host_apf_flags ||
5873 vmx_need_pf_intercept(vcpu);
5874 else if (is_debug(intr_info) &&
5875 vcpu->guest_debug &
5876 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5877 return true;
5878 else if (is_breakpoint(intr_info) &&
5879 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5880 return true;
5881 else if (is_alignment_check(intr_info) &&
5882 !vmx_guest_inject_ac(vcpu))
5883 return true;
5884 return false;
5885 case EXIT_REASON_EXTERNAL_INTERRUPT:
5886 return true;
5887 case EXIT_REASON_MCE_DURING_VMENTRY:
5888 return true;
5889 case EXIT_REASON_EPT_VIOLATION:
5890 /*
5891 * L0 always deals with the EPT violation. If nested EPT is
5892 * used, and the nested mmu code discovers that the address is
5893 * missing in the guest EPT table (EPT12), the EPT violation
5894 * will be injected with nested_ept_inject_page_fault()
5895 */
5896 return true;
5897 case EXIT_REASON_EPT_MISCONFIG:
5898 /*
5899 * L2 never uses directly L1's EPT, but rather L0's own EPT
5900 * table (shadow on EPT) or a merged EPT table that L0 built
5901 * (EPT on EPT). So any problems with the structure of the
5902 * table is L0's fault.
5903 */
5904 return true;
5905 case EXIT_REASON_PREEMPTION_TIMER:
5906 return true;
5907 case EXIT_REASON_PML_FULL:
5908 /* We emulate PML support to L1. */
5909 return true;
5910 case EXIT_REASON_VMFUNC:
5911 /* VM functions are emulated through L2->L0 vmexits. */
5912 return true;
5913 case EXIT_REASON_ENCLS:
5914 /* SGX is never exposed to L1 */
5915 return true;
5916 default:
5917 break;
5918 }
5919 return false;
5920 }
5921
5922 /*
5923 * Return 1 if L1 wants to intercept an exit from L2. Only call this when in
5924 * is_guest_mode (L2).
5925 */
nested_vmx_l1_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)5926 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
5927 union vmx_exit_reason exit_reason)
5928 {
5929 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5930 u32 intr_info;
5931
5932 switch ((u16)exit_reason.basic) {
5933 case EXIT_REASON_EXCEPTION_NMI:
5934 intr_info = vmx_get_intr_info(vcpu);
5935 if (is_nmi(intr_info))
5936 return true;
5937 else if (is_page_fault(intr_info))
5938 return true;
5939 return vmcs12->exception_bitmap &
5940 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5941 case EXIT_REASON_EXTERNAL_INTERRUPT:
5942 return nested_exit_on_intr(vcpu);
5943 case EXIT_REASON_TRIPLE_FAULT:
5944 return true;
5945 case EXIT_REASON_INTERRUPT_WINDOW:
5946 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5947 case EXIT_REASON_NMI_WINDOW:
5948 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5949 case EXIT_REASON_TASK_SWITCH:
5950 return true;
5951 case EXIT_REASON_CPUID:
5952 return true;
5953 case EXIT_REASON_HLT:
5954 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5955 case EXIT_REASON_INVD:
5956 return true;
5957 case EXIT_REASON_INVLPG:
5958 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5959 case EXIT_REASON_RDPMC:
5960 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5961 case EXIT_REASON_RDRAND:
5962 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5963 case EXIT_REASON_RDSEED:
5964 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5965 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5966 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5967 case EXIT_REASON_VMREAD:
5968 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5969 vmcs12->vmread_bitmap);
5970 case EXIT_REASON_VMWRITE:
5971 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5972 vmcs12->vmwrite_bitmap);
5973 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5974 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5975 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5976 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5977 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5978 /*
5979 * VMX instructions trap unconditionally. This allows L1 to
5980 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5981 */
5982 return true;
5983 case EXIT_REASON_CR_ACCESS:
5984 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5985 case EXIT_REASON_DR_ACCESS:
5986 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5987 case EXIT_REASON_IO_INSTRUCTION:
5988 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5989 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5990 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5991 case EXIT_REASON_MSR_READ:
5992 case EXIT_REASON_MSR_WRITE:
5993 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5994 case EXIT_REASON_INVALID_STATE:
5995 return true;
5996 case EXIT_REASON_MWAIT_INSTRUCTION:
5997 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5998 case EXIT_REASON_MONITOR_TRAP_FLAG:
5999 return nested_vmx_exit_handled_mtf(vmcs12);
6000 case EXIT_REASON_MONITOR_INSTRUCTION:
6001 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6002 case EXIT_REASON_PAUSE_INSTRUCTION:
6003 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6004 nested_cpu_has2(vmcs12,
6005 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6006 case EXIT_REASON_MCE_DURING_VMENTRY:
6007 return true;
6008 case EXIT_REASON_TPR_BELOW_THRESHOLD:
6009 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6010 case EXIT_REASON_APIC_ACCESS:
6011 case EXIT_REASON_APIC_WRITE:
6012 case EXIT_REASON_EOI_INDUCED:
6013 /*
6014 * The controls for "virtualize APIC accesses," "APIC-
6015 * register virtualization," and "virtual-interrupt
6016 * delivery" only come from vmcs12.
6017 */
6018 return true;
6019 case EXIT_REASON_INVPCID:
6020 return
6021 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6022 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6023 case EXIT_REASON_WBINVD:
6024 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6025 case EXIT_REASON_XSETBV:
6026 return true;
6027 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6028 /*
6029 * This should never happen, since it is not possible to
6030 * set XSS to a non-zero value---neither in L1 nor in L2.
6031 * If if it were, XSS would have to be checked against
6032 * the XSS exit bitmap in vmcs12.
6033 */
6034 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
6035 case EXIT_REASON_UMWAIT:
6036 case EXIT_REASON_TPAUSE:
6037 return nested_cpu_has2(vmcs12,
6038 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6039 default:
6040 return true;
6041 }
6042 }
6043
6044 /*
6045 * Conditionally reflect a VM-Exit into L1. Returns %true if the VM-Exit was
6046 * reflected into L1.
6047 */
nested_vmx_reflect_vmexit(struct kvm_vcpu * vcpu)6048 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6049 {
6050 struct vcpu_vmx *vmx = to_vmx(vcpu);
6051 union vmx_exit_reason exit_reason = vmx->exit_reason;
6052 unsigned long exit_qual;
6053 u32 exit_intr_info;
6054
6055 WARN_ON_ONCE(vmx->nested.nested_run_pending);
6056
6057 /*
6058 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6059 * has already loaded L2's state.
6060 */
6061 if (unlikely(vmx->fail)) {
6062 trace_kvm_nested_vmenter_failed(
6063 "hardware VM-instruction error: ",
6064 vmcs_read32(VM_INSTRUCTION_ERROR));
6065 exit_intr_info = 0;
6066 exit_qual = 0;
6067 goto reflect_vmexit;
6068 }
6069
6070 trace_kvm_nested_vmexit(exit_reason.full, vcpu, KVM_ISA_VMX);
6071
6072 /* If L0 (KVM) wants the exit, it trumps L1's desires. */
6073 if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6074 return false;
6075
6076 /* If L1 doesn't want the exit, handle it in L0. */
6077 if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6078 return false;
6079
6080 /*
6081 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits. For
6082 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6083 * need to be synthesized by querying the in-kernel LAPIC, but external
6084 * interrupts are never reflected to L1 so it's a non-issue.
6085 */
6086 exit_intr_info = vmx_get_intr_info(vcpu);
6087 if (is_exception_with_error_code(exit_intr_info)) {
6088 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6089
6090 vmcs12->vm_exit_intr_error_code =
6091 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6092 }
6093 exit_qual = vmx_get_exit_qual(vcpu);
6094
6095 reflect_vmexit:
6096 nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6097 return true;
6098 }
6099
vmx_get_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,u32 user_data_size)6100 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6101 struct kvm_nested_state __user *user_kvm_nested_state,
6102 u32 user_data_size)
6103 {
6104 struct vcpu_vmx *vmx;
6105 struct vmcs12 *vmcs12;
6106 struct kvm_nested_state kvm_state = {
6107 .flags = 0,
6108 .format = KVM_STATE_NESTED_FORMAT_VMX,
6109 .size = sizeof(kvm_state),
6110 .hdr.vmx.flags = 0,
6111 .hdr.vmx.vmxon_pa = -1ull,
6112 .hdr.vmx.vmcs12_pa = -1ull,
6113 .hdr.vmx.preemption_timer_deadline = 0,
6114 };
6115 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6116 &user_kvm_nested_state->data.vmx[0];
6117
6118 if (!vcpu)
6119 return kvm_state.size + sizeof(*user_vmx_nested_state);
6120
6121 vmx = to_vmx(vcpu);
6122 vmcs12 = get_vmcs12(vcpu);
6123
6124 if (nested_vmx_allowed(vcpu) &&
6125 (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6126 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6127 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6128
6129 if (vmx_has_valid_vmcs12(vcpu)) {
6130 kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6131
6132 if (vmx->nested.hv_evmcs)
6133 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6134
6135 if (is_guest_mode(vcpu) &&
6136 nested_cpu_has_shadow_vmcs(vmcs12) &&
6137 vmcs12->vmcs_link_pointer != -1ull)
6138 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6139 }
6140
6141 if (vmx->nested.smm.vmxon)
6142 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6143
6144 if (vmx->nested.smm.guest_mode)
6145 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6146
6147 if (is_guest_mode(vcpu)) {
6148 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6149
6150 if (vmx->nested.nested_run_pending)
6151 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6152
6153 if (vmx->nested.mtf_pending)
6154 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6155
6156 if (nested_cpu_has_preemption_timer(vmcs12) &&
6157 vmx->nested.has_preemption_timer_deadline) {
6158 kvm_state.hdr.vmx.flags |=
6159 KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6160 kvm_state.hdr.vmx.preemption_timer_deadline =
6161 vmx->nested.preemption_timer_deadline;
6162 }
6163 }
6164 }
6165
6166 if (user_data_size < kvm_state.size)
6167 goto out;
6168
6169 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6170 return -EFAULT;
6171
6172 if (!vmx_has_valid_vmcs12(vcpu))
6173 goto out;
6174
6175 /*
6176 * When running L2, the authoritative vmcs12 state is in the
6177 * vmcs02. When running L1, the authoritative vmcs12 state is
6178 * in the shadow or enlightened vmcs linked to vmcs01, unless
6179 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6180 * vmcs12 state is in the vmcs12 already.
6181 */
6182 if (is_guest_mode(vcpu)) {
6183 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6184 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6185 } else {
6186 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6187 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6188 if (vmx->nested.hv_evmcs)
6189 copy_enlightened_to_vmcs12(vmx);
6190 else if (enable_shadow_vmcs)
6191 copy_shadow_to_vmcs12(vmx);
6192 }
6193 }
6194
6195 BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6196 BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6197
6198 /*
6199 * Copy over the full allocated size of vmcs12 rather than just the size
6200 * of the struct.
6201 */
6202 if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6203 return -EFAULT;
6204
6205 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6206 vmcs12->vmcs_link_pointer != -1ull) {
6207 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6208 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6209 return -EFAULT;
6210 }
6211 out:
6212 return kvm_state.size;
6213 }
6214
6215 /*
6216 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
6217 */
vmx_leave_nested(struct kvm_vcpu * vcpu)6218 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6219 {
6220 if (is_guest_mode(vcpu)) {
6221 to_vmx(vcpu)->nested.nested_run_pending = 0;
6222 nested_vmx_vmexit(vcpu, -1, 0, 0);
6223 }
6224 free_nested(vcpu);
6225 }
6226
vmx_set_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,struct kvm_nested_state * kvm_state)6227 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6228 struct kvm_nested_state __user *user_kvm_nested_state,
6229 struct kvm_nested_state *kvm_state)
6230 {
6231 struct vcpu_vmx *vmx = to_vmx(vcpu);
6232 struct vmcs12 *vmcs12;
6233 enum vm_entry_failure_code ignored;
6234 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6235 &user_kvm_nested_state->data.vmx[0];
6236 int ret;
6237
6238 if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6239 return -EINVAL;
6240
6241 if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
6242 if (kvm_state->hdr.vmx.smm.flags)
6243 return -EINVAL;
6244
6245 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
6246 return -EINVAL;
6247
6248 /*
6249 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6250 * enable eVMCS capability on vCPU. However, since then
6251 * code was changed such that flag signals vmcs12 should
6252 * be copied into eVMCS in guest memory.
6253 *
6254 * To preserve backwards compatability, allow user
6255 * to set this flag even when there is no VMXON region.
6256 */
6257 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6258 return -EINVAL;
6259 } else {
6260 if (!nested_vmx_allowed(vcpu))
6261 return -EINVAL;
6262
6263 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6264 return -EINVAL;
6265 }
6266
6267 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6268 (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6269 return -EINVAL;
6270
6271 if (kvm_state->hdr.vmx.smm.flags &
6272 ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6273 return -EINVAL;
6274
6275 if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6276 return -EINVAL;
6277
6278 /*
6279 * SMM temporarily disables VMX, so we cannot be in guest mode,
6280 * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
6281 * must be zero.
6282 */
6283 if (is_smm(vcpu) ?
6284 (kvm_state->flags &
6285 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6286 : kvm_state->hdr.vmx.smm.flags)
6287 return -EINVAL;
6288
6289 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6290 !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6291 return -EINVAL;
6292
6293 if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6294 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6295 return -EINVAL;
6296
6297 vmx_leave_nested(vcpu);
6298
6299 if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
6300 return 0;
6301
6302 vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6303 ret = enter_vmx_operation(vcpu);
6304 if (ret)
6305 return ret;
6306
6307 /* Empty 'VMXON' state is permitted if no VMCS loaded */
6308 if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6309 /* See vmx_has_valid_vmcs12. */
6310 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6311 (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6312 (kvm_state->hdr.vmx.vmcs12_pa != -1ull))
6313 return -EINVAL;
6314 else
6315 return 0;
6316 }
6317
6318 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
6319 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6320 !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6321 return -EINVAL;
6322
6323 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6324 } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6325 /*
6326 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6327 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6328 * restored yet. EVMCS will be mapped from
6329 * nested_get_vmcs12_pages().
6330 */
6331 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6332 } else {
6333 return -EINVAL;
6334 }
6335
6336 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6337 vmx->nested.smm.vmxon = true;
6338 vmx->nested.vmxon = false;
6339
6340 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6341 vmx->nested.smm.guest_mode = true;
6342 }
6343
6344 vmcs12 = get_vmcs12(vcpu);
6345 if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6346 return -EFAULT;
6347
6348 if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6349 return -EINVAL;
6350
6351 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6352 return 0;
6353
6354 vmx->nested.nested_run_pending =
6355 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6356
6357 vmx->nested.mtf_pending =
6358 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6359
6360 ret = -EINVAL;
6361 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6362 vmcs12->vmcs_link_pointer != -1ull) {
6363 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6364
6365 if (kvm_state->size <
6366 sizeof(*kvm_state) +
6367 sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6368 goto error_guest_mode;
6369
6370 if (copy_from_user(shadow_vmcs12,
6371 user_vmx_nested_state->shadow_vmcs12,
6372 sizeof(*shadow_vmcs12))) {
6373 ret = -EFAULT;
6374 goto error_guest_mode;
6375 }
6376
6377 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6378 !shadow_vmcs12->hdr.shadow_vmcs)
6379 goto error_guest_mode;
6380 }
6381
6382 vmx->nested.has_preemption_timer_deadline = false;
6383 if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6384 vmx->nested.has_preemption_timer_deadline = true;
6385 vmx->nested.preemption_timer_deadline =
6386 kvm_state->hdr.vmx.preemption_timer_deadline;
6387 }
6388
6389 if (nested_vmx_check_controls(vcpu, vmcs12) ||
6390 nested_vmx_check_host_state(vcpu, vmcs12) ||
6391 nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6392 goto error_guest_mode;
6393
6394 vmx->nested.dirty_vmcs12 = true;
6395 ret = nested_vmx_enter_non_root_mode(vcpu, false);
6396 if (ret)
6397 goto error_guest_mode;
6398
6399 return 0;
6400
6401 error_guest_mode:
6402 vmx->nested.nested_run_pending = 0;
6403 return ret;
6404 }
6405
nested_vmx_set_vmcs_shadowing_bitmap(void)6406 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6407 {
6408 if (enable_shadow_vmcs) {
6409 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6410 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6411 }
6412 }
6413
6414 /*
6415 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6416 * returned for the various VMX controls MSRs when nested VMX is enabled.
6417 * The same values should also be used to verify that vmcs12 control fields are
6418 * valid during nested entry from L1 to L2.
6419 * Each of these control msrs has a low and high 32-bit half: A low bit is on
6420 * if the corresponding bit in the (32-bit) control field *must* be on, and a
6421 * bit in the high half is on if the corresponding bit in the control field
6422 * may be on. See also vmx_control_verify().
6423 */
nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs * msrs,u32 ept_caps)6424 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6425 {
6426 /*
6427 * Note that as a general rule, the high half of the MSRs (bits in
6428 * the control fields which may be 1) should be initialized by the
6429 * intersection of the underlying hardware's MSR (i.e., features which
6430 * can be supported) and the list of features we want to expose -
6431 * because they are known to be properly supported in our code.
6432 * Also, usually, the low half of the MSRs (bits which must be 1) can
6433 * be set to 0, meaning that L1 may turn off any of these bits. The
6434 * reason is that if one of these bits is necessary, it will appear
6435 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6436 * fields of vmcs01 and vmcs02, will turn these bits off - and
6437 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6438 * These rules have exceptions below.
6439 */
6440
6441 /* pin-based controls */
6442 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6443 msrs->pinbased_ctls_low,
6444 msrs->pinbased_ctls_high);
6445 msrs->pinbased_ctls_low |=
6446 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6447 msrs->pinbased_ctls_high &=
6448 PIN_BASED_EXT_INTR_MASK |
6449 PIN_BASED_NMI_EXITING |
6450 PIN_BASED_VIRTUAL_NMIS |
6451 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6452 msrs->pinbased_ctls_high |=
6453 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6454 PIN_BASED_VMX_PREEMPTION_TIMER;
6455
6456 /* exit controls */
6457 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6458 msrs->exit_ctls_low,
6459 msrs->exit_ctls_high);
6460 msrs->exit_ctls_low =
6461 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6462
6463 msrs->exit_ctls_high &=
6464 #ifdef CONFIG_X86_64
6465 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6466 #endif
6467 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6468 VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6469 msrs->exit_ctls_high |=
6470 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6471 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6472 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6473
6474 /* We support free control of debug control saving. */
6475 msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6476
6477 /* entry controls */
6478 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6479 msrs->entry_ctls_low,
6480 msrs->entry_ctls_high);
6481 msrs->entry_ctls_low =
6482 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6483 msrs->entry_ctls_high &=
6484 #ifdef CONFIG_X86_64
6485 VM_ENTRY_IA32E_MODE |
6486 #endif
6487 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
6488 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
6489 msrs->entry_ctls_high |=
6490 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6491
6492 /* We support free control of debug control loading. */
6493 msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6494
6495 /* cpu-based controls */
6496 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6497 msrs->procbased_ctls_low,
6498 msrs->procbased_ctls_high);
6499 msrs->procbased_ctls_low =
6500 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6501 msrs->procbased_ctls_high &=
6502 CPU_BASED_INTR_WINDOW_EXITING |
6503 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6504 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6505 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6506 CPU_BASED_CR3_STORE_EXITING |
6507 #ifdef CONFIG_X86_64
6508 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6509 #endif
6510 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6511 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6512 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6513 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6514 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6515 /*
6516 * We can allow some features even when not supported by the
6517 * hardware. For example, L1 can specify an MSR bitmap - and we
6518 * can use it to avoid exits to L1 - even when L0 runs L2
6519 * without MSR bitmaps.
6520 */
6521 msrs->procbased_ctls_high |=
6522 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6523 CPU_BASED_USE_MSR_BITMAPS;
6524
6525 /* We support free control of CR3 access interception. */
6526 msrs->procbased_ctls_low &=
6527 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6528
6529 /*
6530 * secondary cpu-based controls. Do not include those that
6531 * depend on CPUID bits, they are added later by
6532 * vmx_vcpu_after_set_cpuid.
6533 */
6534 if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6535 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6536 msrs->secondary_ctls_low,
6537 msrs->secondary_ctls_high);
6538
6539 msrs->secondary_ctls_low = 0;
6540 msrs->secondary_ctls_high &=
6541 SECONDARY_EXEC_DESC |
6542 SECONDARY_EXEC_ENABLE_RDTSCP |
6543 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6544 SECONDARY_EXEC_WBINVD_EXITING |
6545 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6546 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6547 SECONDARY_EXEC_RDRAND_EXITING |
6548 SECONDARY_EXEC_ENABLE_INVPCID |
6549 SECONDARY_EXEC_RDSEED_EXITING |
6550 SECONDARY_EXEC_XSAVES;
6551
6552 /*
6553 * We can emulate "VMCS shadowing," even if the hardware
6554 * doesn't support it.
6555 */
6556 msrs->secondary_ctls_high |=
6557 SECONDARY_EXEC_SHADOW_VMCS;
6558
6559 if (enable_ept) {
6560 /* nested EPT: emulate EPT also to L1 */
6561 msrs->secondary_ctls_high |=
6562 SECONDARY_EXEC_ENABLE_EPT;
6563 msrs->ept_caps =
6564 VMX_EPT_PAGE_WALK_4_BIT |
6565 VMX_EPT_PAGE_WALK_5_BIT |
6566 VMX_EPTP_WB_BIT |
6567 VMX_EPT_INVEPT_BIT |
6568 VMX_EPT_EXECUTE_ONLY_BIT;
6569
6570 msrs->ept_caps &= ept_caps;
6571 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6572 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6573 VMX_EPT_1GB_PAGE_BIT;
6574 if (enable_ept_ad_bits) {
6575 msrs->secondary_ctls_high |=
6576 SECONDARY_EXEC_ENABLE_PML;
6577 msrs->ept_caps |= VMX_EPT_AD_BIT;
6578 }
6579 }
6580
6581 if (cpu_has_vmx_vmfunc()) {
6582 msrs->secondary_ctls_high |=
6583 SECONDARY_EXEC_ENABLE_VMFUNC;
6584 /*
6585 * Advertise EPTP switching unconditionally
6586 * since we emulate it
6587 */
6588 if (enable_ept)
6589 msrs->vmfunc_controls =
6590 VMX_VMFUNC_EPTP_SWITCHING;
6591 }
6592
6593 /*
6594 * Old versions of KVM use the single-context version without
6595 * checking for support, so declare that it is supported even
6596 * though it is treated as global context. The alternative is
6597 * not failing the single-context invvpid, and it is worse.
6598 */
6599 if (enable_vpid) {
6600 msrs->secondary_ctls_high |=
6601 SECONDARY_EXEC_ENABLE_VPID;
6602 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6603 VMX_VPID_EXTENT_SUPPORTED_MASK;
6604 }
6605
6606 if (enable_unrestricted_guest)
6607 msrs->secondary_ctls_high |=
6608 SECONDARY_EXEC_UNRESTRICTED_GUEST;
6609
6610 if (flexpriority_enabled)
6611 msrs->secondary_ctls_high |=
6612 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6613
6614 /* miscellaneous data */
6615 rdmsr(MSR_IA32_VMX_MISC,
6616 msrs->misc_low,
6617 msrs->misc_high);
6618 msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6619 msrs->misc_low |=
6620 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6621 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6622 VMX_MISC_ACTIVITY_HLT;
6623 msrs->misc_high = 0;
6624
6625 /*
6626 * This MSR reports some information about VMX support. We
6627 * should return information about the VMX we emulate for the
6628 * guest, and the VMCS structure we give it - not about the
6629 * VMX support of the underlying hardware.
6630 */
6631 msrs->basic =
6632 VMCS12_REVISION |
6633 VMX_BASIC_TRUE_CTLS |
6634 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6635 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6636
6637 if (cpu_has_vmx_basic_inout())
6638 msrs->basic |= VMX_BASIC_INOUT;
6639
6640 /*
6641 * These MSRs specify bits which the guest must keep fixed on
6642 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6643 * We picked the standard core2 setting.
6644 */
6645 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6646 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
6647 msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6648 msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6649
6650 /* These MSRs specify bits which the guest must keep fixed off. */
6651 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6652 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6653
6654 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
6655 msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
6656 }
6657
nested_vmx_hardware_unsetup(void)6658 void nested_vmx_hardware_unsetup(void)
6659 {
6660 int i;
6661
6662 if (enable_shadow_vmcs) {
6663 for (i = 0; i < VMX_BITMAP_NR; i++)
6664 free_page((unsigned long)vmx_bitmap[i]);
6665 }
6666 }
6667
nested_vmx_hardware_setup(int (* exit_handlers[])(struct kvm_vcpu *))6668 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6669 {
6670 int i;
6671
6672 if (!cpu_has_vmx_shadow_vmcs())
6673 enable_shadow_vmcs = 0;
6674 if (enable_shadow_vmcs) {
6675 for (i = 0; i < VMX_BITMAP_NR; i++) {
6676 /*
6677 * The vmx_bitmap is not tied to a VM and so should
6678 * not be charged to a memcg.
6679 */
6680 vmx_bitmap[i] = (unsigned long *)
6681 __get_free_page(GFP_KERNEL);
6682 if (!vmx_bitmap[i]) {
6683 nested_vmx_hardware_unsetup();
6684 return -ENOMEM;
6685 }
6686 }
6687
6688 init_vmcs_shadow_fields();
6689 }
6690
6691 exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear;
6692 exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch;
6693 exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld;
6694 exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst;
6695 exit_handlers[EXIT_REASON_VMREAD] = handle_vmread;
6696 exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume;
6697 exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite;
6698 exit_handlers[EXIT_REASON_VMOFF] = handle_vmoff;
6699 exit_handlers[EXIT_REASON_VMON] = handle_vmon;
6700 exit_handlers[EXIT_REASON_INVEPT] = handle_invept;
6701 exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid;
6702 exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc;
6703
6704 return 0;
6705 }
6706
6707 struct kvm_x86_nested_ops vmx_nested_ops = {
6708 .leave_nested = vmx_leave_nested,
6709 .check_events = vmx_check_nested_events,
6710 .hv_timer_pending = nested_vmx_preemption_timer_pending,
6711 .get_state = vmx_get_nested_state,
6712 .set_state = vmx_set_nested_state,
6713 .get_nested_state_pages = vmx_get_nested_state_pages,
6714 .write_log_dirty = nested_vmx_write_pml_buffer,
6715 .enable_evmcs = nested_enable_evmcs,
6716 .get_evmcs_version = nested_get_evmcs_version,
6717 };
6718