1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9 #include <linux/kdebug.h> /* oops_begin/end, ... */
10 #include <linux/extable.h> /* search_exception_tables */
11 #include <linux/memblock.h> /* max_low_pfn */
12 #include <linux/kfence.h> /* kfence_handle_page_fault */
13 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
14 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
15 #include <linux/perf_event.h> /* perf_sw_event */
16 #include <linux/hugetlb.h> /* hstate_index_to_shift */
17 #include <linux/prefetch.h> /* prefetchw */
18 #include <linux/context_tracking.h> /* exception_enter(), ... */
19 #include <linux/uaccess.h> /* faulthandler_disabled() */
20 #include <linux/efi.h> /* efi_recover_from_page_fault()*/
21 #include <linux/mm_types.h>
22
23 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
24 #include <asm/traps.h> /* dotraplinkage, ... */
25 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
26 #include <asm/vsyscall.h> /* emulate_vsyscall */
27 #include <asm/vm86.h> /* struct vm86 */
28 #include <asm/mmu_context.h> /* vma_pkey() */
29 #include <asm/efi.h> /* efi_recover_from_page_fault()*/
30 #include <asm/desc.h> /* store_idt(), ... */
31 #include <asm/cpu_entry_area.h> /* exception stack */
32 #include <asm/pgtable_areas.h> /* VMALLOC_START, ... */
33 #include <asm/kvm_para.h> /* kvm_handle_async_pf */
34
35 #define CREATE_TRACE_POINTS
36 #include <asm/trace/exceptions.h>
37
38 /*
39 * Returns 0 if mmiotrace is disabled, or if the fault is not
40 * handled by mmiotrace:
41 */
42 static nokprobe_inline int
kmmio_fault(struct pt_regs * regs,unsigned long addr)43 kmmio_fault(struct pt_regs *regs, unsigned long addr)
44 {
45 if (unlikely(is_kmmio_active()))
46 if (kmmio_handler(regs, addr) == 1)
47 return -1;
48 return 0;
49 }
50
51 /*
52 * Prefetch quirks:
53 *
54 * 32-bit mode:
55 *
56 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
57 * Check that here and ignore it. This is AMD erratum #91.
58 *
59 * 64-bit mode:
60 *
61 * Sometimes the CPU reports invalid exceptions on prefetch.
62 * Check that here and ignore it.
63 *
64 * Opcode checker based on code by Richard Brunner.
65 */
66 static inline int
check_prefetch_opcode(struct pt_regs * regs,unsigned char * instr,unsigned char opcode,int * prefetch)67 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
68 unsigned char opcode, int *prefetch)
69 {
70 unsigned char instr_hi = opcode & 0xf0;
71 unsigned char instr_lo = opcode & 0x0f;
72
73 switch (instr_hi) {
74 case 0x20:
75 case 0x30:
76 /*
77 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
78 * In X86_64 long mode, the CPU will signal invalid
79 * opcode if some of these prefixes are present so
80 * X86_64 will never get here anyway
81 */
82 return ((instr_lo & 7) == 0x6);
83 #ifdef CONFIG_X86_64
84 case 0x40:
85 /*
86 * In 64-bit mode 0x40..0x4F are valid REX prefixes
87 */
88 return (!user_mode(regs) || user_64bit_mode(regs));
89 #endif
90 case 0x60:
91 /* 0x64 thru 0x67 are valid prefixes in all modes. */
92 return (instr_lo & 0xC) == 0x4;
93 case 0xF0:
94 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
95 return !instr_lo || (instr_lo>>1) == 1;
96 case 0x00:
97 /* Prefetch instruction is 0x0F0D or 0x0F18 */
98 if (get_kernel_nofault(opcode, instr))
99 return 0;
100
101 *prefetch = (instr_lo == 0xF) &&
102 (opcode == 0x0D || opcode == 0x18);
103 return 0;
104 default:
105 return 0;
106 }
107 }
108
109 static int
is_prefetch(struct pt_regs * regs,unsigned long error_code,unsigned long addr)110 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
111 {
112 unsigned char *max_instr;
113 unsigned char *instr;
114 int prefetch = 0;
115
116 /*
117 * If it was a exec (instruction fetch) fault on NX page, then
118 * do not ignore the fault:
119 */
120 if (error_code & X86_PF_INSTR)
121 return 0;
122
123 instr = (void *)convert_ip_to_linear(current, regs);
124 max_instr = instr + 15;
125
126 /*
127 * This code has historically always bailed out if IP points to a
128 * not-present page (e.g. due to a race). No one has ever
129 * complained about this.
130 */
131 pagefault_disable();
132
133 while (instr < max_instr) {
134 unsigned char opcode;
135
136 if (user_mode(regs)) {
137 if (get_user(opcode, instr))
138 break;
139 } else {
140 if (get_kernel_nofault(opcode, instr))
141 break;
142 }
143
144 instr++;
145
146 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
147 break;
148 }
149
150 pagefault_enable();
151 return prefetch;
152 }
153
154 DEFINE_SPINLOCK(pgd_lock);
155 LIST_HEAD(pgd_list);
156
157 #ifdef CONFIG_X86_32
vmalloc_sync_one(pgd_t * pgd,unsigned long address)158 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
159 {
160 unsigned index = pgd_index(address);
161 pgd_t *pgd_k;
162 p4d_t *p4d, *p4d_k;
163 pud_t *pud, *pud_k;
164 pmd_t *pmd, *pmd_k;
165
166 pgd += index;
167 pgd_k = init_mm.pgd + index;
168
169 if (!pgd_present(*pgd_k))
170 return NULL;
171
172 /*
173 * set_pgd(pgd, *pgd_k); here would be useless on PAE
174 * and redundant with the set_pmd() on non-PAE. As would
175 * set_p4d/set_pud.
176 */
177 p4d = p4d_offset(pgd, address);
178 p4d_k = p4d_offset(pgd_k, address);
179 if (!p4d_present(*p4d_k))
180 return NULL;
181
182 pud = pud_offset(p4d, address);
183 pud_k = pud_offset(p4d_k, address);
184 if (!pud_present(*pud_k))
185 return NULL;
186
187 pmd = pmd_offset(pud, address);
188 pmd_k = pmd_offset(pud_k, address);
189
190 if (pmd_present(*pmd) != pmd_present(*pmd_k))
191 set_pmd(pmd, *pmd_k);
192
193 if (!pmd_present(*pmd_k))
194 return NULL;
195 else
196 BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
197
198 return pmd_k;
199 }
200
201 /*
202 * Handle a fault on the vmalloc or module mapping area
203 *
204 * This is needed because there is a race condition between the time
205 * when the vmalloc mapping code updates the PMD to the point in time
206 * where it synchronizes this update with the other page-tables in the
207 * system.
208 *
209 * In this race window another thread/CPU can map an area on the same
210 * PMD, finds it already present and does not synchronize it with the
211 * rest of the system yet. As a result v[mz]alloc might return areas
212 * which are not mapped in every page-table in the system, causing an
213 * unhandled page-fault when they are accessed.
214 */
vmalloc_fault(unsigned long address)215 static noinline int vmalloc_fault(unsigned long address)
216 {
217 unsigned long pgd_paddr;
218 pmd_t *pmd_k;
219 pte_t *pte_k;
220
221 /* Make sure we are in vmalloc area: */
222 if (!(address >= VMALLOC_START && address < VMALLOC_END))
223 return -1;
224
225 /*
226 * Synchronize this task's top level page-table
227 * with the 'reference' page table.
228 *
229 * Do _not_ use "current" here. We might be inside
230 * an interrupt in the middle of a task switch..
231 */
232 pgd_paddr = read_cr3_pa();
233 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
234 if (!pmd_k)
235 return -1;
236
237 if (pmd_large(*pmd_k))
238 return 0;
239
240 pte_k = pte_offset_kernel(pmd_k, address);
241 if (!pte_present(*pte_k))
242 return -1;
243
244 return 0;
245 }
246 NOKPROBE_SYMBOL(vmalloc_fault);
247
arch_sync_kernel_mappings(unsigned long start,unsigned long end)248 void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
249 {
250 unsigned long addr;
251
252 for (addr = start & PMD_MASK;
253 addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
254 addr += PMD_SIZE) {
255 struct page *page;
256
257 spin_lock(&pgd_lock);
258 list_for_each_entry(page, &pgd_list, lru) {
259 spinlock_t *pgt_lock;
260
261 /* the pgt_lock only for Xen */
262 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
263
264 spin_lock(pgt_lock);
265 vmalloc_sync_one(page_address(page), addr);
266 spin_unlock(pgt_lock);
267 }
268 spin_unlock(&pgd_lock);
269 }
270 }
271
272 /*
273 * Did it hit the DOS screen memory VA from vm86 mode?
274 */
275 static inline void
check_v8086_mode(struct pt_regs * regs,unsigned long address,struct task_struct * tsk)276 check_v8086_mode(struct pt_regs *regs, unsigned long address,
277 struct task_struct *tsk)
278 {
279 #ifdef CONFIG_VM86
280 unsigned long bit;
281
282 if (!v8086_mode(regs) || !tsk->thread.vm86)
283 return;
284
285 bit = (address - 0xA0000) >> PAGE_SHIFT;
286 if (bit < 32)
287 tsk->thread.vm86->screen_bitmap |= 1 << bit;
288 #endif
289 }
290
low_pfn(unsigned long pfn)291 static bool low_pfn(unsigned long pfn)
292 {
293 return pfn < max_low_pfn;
294 }
295
dump_pagetable(unsigned long address)296 static void dump_pagetable(unsigned long address)
297 {
298 pgd_t *base = __va(read_cr3_pa());
299 pgd_t *pgd = &base[pgd_index(address)];
300 p4d_t *p4d;
301 pud_t *pud;
302 pmd_t *pmd;
303 pte_t *pte;
304
305 #ifdef CONFIG_X86_PAE
306 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
307 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
308 goto out;
309 #define pr_pde pr_cont
310 #else
311 #define pr_pde pr_info
312 #endif
313 p4d = p4d_offset(pgd, address);
314 pud = pud_offset(p4d, address);
315 pmd = pmd_offset(pud, address);
316 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
317 #undef pr_pde
318
319 /*
320 * We must not directly access the pte in the highpte
321 * case if the page table is located in highmem.
322 * And let's rather not kmap-atomic the pte, just in case
323 * it's allocated already:
324 */
325 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
326 goto out;
327
328 pte = pte_offset_kernel(pmd, address);
329 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
330 out:
331 pr_cont("\n");
332 }
333
334 #else /* CONFIG_X86_64: */
335
336 #ifdef CONFIG_CPU_SUP_AMD
337 static const char errata93_warning[] =
338 KERN_ERR
339 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
340 "******* Working around it, but it may cause SEGVs or burn power.\n"
341 "******* Please consider a BIOS update.\n"
342 "******* Disabling USB legacy in the BIOS may also help.\n";
343 #endif
344
345 /*
346 * No vm86 mode in 64-bit mode:
347 */
348 static inline void
check_v8086_mode(struct pt_regs * regs,unsigned long address,struct task_struct * tsk)349 check_v8086_mode(struct pt_regs *regs, unsigned long address,
350 struct task_struct *tsk)
351 {
352 }
353
bad_address(void * p)354 static int bad_address(void *p)
355 {
356 unsigned long dummy;
357
358 return get_kernel_nofault(dummy, (unsigned long *)p);
359 }
360
dump_pagetable(unsigned long address)361 static void dump_pagetable(unsigned long address)
362 {
363 pgd_t *base = __va(read_cr3_pa());
364 pgd_t *pgd = base + pgd_index(address);
365 p4d_t *p4d;
366 pud_t *pud;
367 pmd_t *pmd;
368 pte_t *pte;
369
370 if (bad_address(pgd))
371 goto bad;
372
373 pr_info("PGD %lx ", pgd_val(*pgd));
374
375 if (!pgd_present(*pgd))
376 goto out;
377
378 p4d = p4d_offset(pgd, address);
379 if (bad_address(p4d))
380 goto bad;
381
382 pr_cont("P4D %lx ", p4d_val(*p4d));
383 if (!p4d_present(*p4d) || p4d_large(*p4d))
384 goto out;
385
386 pud = pud_offset(p4d, address);
387 if (bad_address(pud))
388 goto bad;
389
390 pr_cont("PUD %lx ", pud_val(*pud));
391 if (!pud_present(*pud) || pud_large(*pud))
392 goto out;
393
394 pmd = pmd_offset(pud, address);
395 if (bad_address(pmd))
396 goto bad;
397
398 pr_cont("PMD %lx ", pmd_val(*pmd));
399 if (!pmd_present(*pmd) || pmd_large(*pmd))
400 goto out;
401
402 pte = pte_offset_kernel(pmd, address);
403 if (bad_address(pte))
404 goto bad;
405
406 pr_cont("PTE %lx", pte_val(*pte));
407 out:
408 pr_cont("\n");
409 return;
410 bad:
411 pr_info("BAD\n");
412 }
413
414 #endif /* CONFIG_X86_64 */
415
416 /*
417 * Workaround for K8 erratum #93 & buggy BIOS.
418 *
419 * BIOS SMM functions are required to use a specific workaround
420 * to avoid corruption of the 64bit RIP register on C stepping K8.
421 *
422 * A lot of BIOS that didn't get tested properly miss this.
423 *
424 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
425 * Try to work around it here.
426 *
427 * Note we only handle faults in kernel here.
428 * Does nothing on 32-bit.
429 */
is_errata93(struct pt_regs * regs,unsigned long address)430 static int is_errata93(struct pt_regs *regs, unsigned long address)
431 {
432 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
433 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
434 || boot_cpu_data.x86 != 0xf)
435 return 0;
436
437 if (address != regs->ip)
438 return 0;
439
440 if ((address >> 32) != 0)
441 return 0;
442
443 address |= 0xffffffffUL << 32;
444 if ((address >= (u64)_stext && address <= (u64)_etext) ||
445 (address >= MODULES_VADDR && address <= MODULES_END)) {
446 printk_once(errata93_warning);
447 regs->ip = address;
448 return 1;
449 }
450 #endif
451 return 0;
452 }
453
454 /*
455 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
456 * to illegal addresses >4GB.
457 *
458 * We catch this in the page fault handler because these addresses
459 * are not reachable. Just detect this case and return. Any code
460 * segment in LDT is compatibility mode.
461 */
is_errata100(struct pt_regs * regs,unsigned long address)462 static int is_errata100(struct pt_regs *regs, unsigned long address)
463 {
464 #ifdef CONFIG_X86_64
465 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
466 return 1;
467 #endif
468 return 0;
469 }
470
471 /* Pentium F0 0F C7 C8 bug workaround: */
is_f00f_bug(struct pt_regs * regs,unsigned long address)472 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
473 {
474 #ifdef CONFIG_X86_F00F_BUG
475 if (boot_cpu_has_bug(X86_BUG_F00F) && idt_is_f00f_address(address)) {
476 handle_invalid_op(regs);
477 return 1;
478 }
479 #endif
480 return 0;
481 }
482
show_ldttss(const struct desc_ptr * gdt,const char * name,u16 index)483 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
484 {
485 u32 offset = (index >> 3) * sizeof(struct desc_struct);
486 unsigned long addr;
487 struct ldttss_desc desc;
488
489 if (index == 0) {
490 pr_alert("%s: NULL\n", name);
491 return;
492 }
493
494 if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
495 pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
496 return;
497 }
498
499 if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
500 sizeof(struct ldttss_desc))) {
501 pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
502 name, index);
503 return;
504 }
505
506 addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
507 #ifdef CONFIG_X86_64
508 addr |= ((u64)desc.base3 << 32);
509 #endif
510 pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
511 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
512 }
513
514 static void
show_fault_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address)515 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
516 {
517 if (!oops_may_print())
518 return;
519
520 if (error_code & X86_PF_INSTR) {
521 unsigned int level;
522 pgd_t *pgd;
523 pte_t *pte;
524
525 pgd = __va(read_cr3_pa());
526 pgd += pgd_index(address);
527
528 pte = lookup_address_in_pgd(pgd, address, &level);
529
530 if (pte && pte_present(*pte) && !pte_exec(*pte))
531 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
532 from_kuid(&init_user_ns, current_uid()));
533 if (pte && pte_present(*pte) && pte_exec(*pte) &&
534 (pgd_flags(*pgd) & _PAGE_USER) &&
535 (__read_cr4() & X86_CR4_SMEP))
536 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
537 from_kuid(&init_user_ns, current_uid()));
538 }
539
540 if (address < PAGE_SIZE && !user_mode(regs))
541 pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
542 (void *)address);
543 else
544 pr_alert("BUG: unable to handle page fault for address: %px\n",
545 (void *)address);
546
547 pr_alert("#PF: %s %s in %s mode\n",
548 (error_code & X86_PF_USER) ? "user" : "supervisor",
549 (error_code & X86_PF_INSTR) ? "instruction fetch" :
550 (error_code & X86_PF_WRITE) ? "write access" :
551 "read access",
552 user_mode(regs) ? "user" : "kernel");
553 pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
554 !(error_code & X86_PF_PROT) ? "not-present page" :
555 (error_code & X86_PF_RSVD) ? "reserved bit violation" :
556 (error_code & X86_PF_PK) ? "protection keys violation" :
557 "permissions violation");
558
559 if (!(error_code & X86_PF_USER) && user_mode(regs)) {
560 struct desc_ptr idt, gdt;
561 u16 ldtr, tr;
562
563 /*
564 * This can happen for quite a few reasons. The more obvious
565 * ones are faults accessing the GDT, or LDT. Perhaps
566 * surprisingly, if the CPU tries to deliver a benign or
567 * contributory exception from user code and gets a page fault
568 * during delivery, the page fault can be delivered as though
569 * it originated directly from user code. This could happen
570 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
571 * kernel or IST stack.
572 */
573 store_idt(&idt);
574
575 /* Usable even on Xen PV -- it's just slow. */
576 native_store_gdt(&gdt);
577
578 pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
579 idt.address, idt.size, gdt.address, gdt.size);
580
581 store_ldt(ldtr);
582 show_ldttss(&gdt, "LDTR", ldtr);
583
584 store_tr(tr);
585 show_ldttss(&gdt, "TR", tr);
586 }
587
588 dump_pagetable(address);
589 }
590
591 static noinline void
pgtable_bad(struct pt_regs * regs,unsigned long error_code,unsigned long address)592 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
593 unsigned long address)
594 {
595 struct task_struct *tsk;
596 unsigned long flags;
597 int sig;
598
599 flags = oops_begin();
600 tsk = current;
601 sig = SIGKILL;
602
603 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
604 tsk->comm, address);
605 dump_pagetable(address);
606
607 if (__die("Bad pagetable", regs, error_code))
608 sig = 0;
609
610 oops_end(flags, regs, sig);
611 }
612
set_signal_archinfo(unsigned long address,unsigned long error_code)613 static void set_signal_archinfo(unsigned long address,
614 unsigned long error_code)
615 {
616 struct task_struct *tsk = current;
617
618 /*
619 * To avoid leaking information about the kernel page
620 * table layout, pretend that user-mode accesses to
621 * kernel addresses are always protection faults.
622 *
623 * NB: This means that failed vsyscalls with vsyscall=none
624 * will have the PROT bit. This doesn't leak any
625 * information and does not appear to cause any problems.
626 */
627 if (address >= TASK_SIZE_MAX)
628 error_code |= X86_PF_PROT;
629
630 tsk->thread.trap_nr = X86_TRAP_PF;
631 tsk->thread.error_code = error_code | X86_PF_USER;
632 tsk->thread.cr2 = address;
633 }
634
635 static noinline void
no_context(struct pt_regs * regs,unsigned long error_code,unsigned long address,int signal,int si_code)636 no_context(struct pt_regs *regs, unsigned long error_code,
637 unsigned long address, int signal, int si_code)
638 {
639 struct task_struct *tsk = current;
640 unsigned long flags;
641 int sig;
642
643 if (user_mode(regs)) {
644 /*
645 * This is an implicit supervisor-mode access from user
646 * mode. Bypass all the kernel-mode recovery code and just
647 * OOPS.
648 */
649 goto oops;
650 }
651
652 /* Are we prepared to handle this kernel fault? */
653 if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
654 /*
655 * Any interrupt that takes a fault gets the fixup. This makes
656 * the below recursive fault logic only apply to a faults from
657 * task context.
658 */
659 if (in_interrupt())
660 return;
661
662 /*
663 * Per the above we're !in_interrupt(), aka. task context.
664 *
665 * In this case we need to make sure we're not recursively
666 * faulting through the emulate_vsyscall() logic.
667 */
668 if (current->thread.sig_on_uaccess_err && signal) {
669 set_signal_archinfo(address, error_code);
670
671 /* XXX: hwpoison faults will set the wrong code. */
672 force_sig_fault(signal, si_code, (void __user *)address);
673 }
674
675 /*
676 * Barring that, we can do the fixup and be happy.
677 */
678 return;
679 }
680
681 #ifdef CONFIG_VMAP_STACK
682 /*
683 * Stack overflow? During boot, we can fault near the initial
684 * stack in the direct map, but that's not an overflow -- check
685 * that we're in vmalloc space to avoid this.
686 */
687 if (is_vmalloc_addr((void *)address) &&
688 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
689 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
690 unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *);
691 /*
692 * We're likely to be running with very little stack space
693 * left. It's plausible that we'd hit this condition but
694 * double-fault even before we get this far, in which case
695 * we're fine: the double-fault handler will deal with it.
696 *
697 * We don't want to make it all the way into the oops code
698 * and then double-fault, though, because we're likely to
699 * break the console driver and lose most of the stack dump.
700 */
701 asm volatile ("movq %[stack], %%rsp\n\t"
702 "call handle_stack_overflow\n\t"
703 "1: jmp 1b"
704 : ASM_CALL_CONSTRAINT
705 : "D" ("kernel stack overflow (page fault)"),
706 "S" (regs), "d" (address),
707 [stack] "rm" (stack));
708 unreachable();
709 }
710 #endif
711
712 /*
713 * 32-bit:
714 *
715 * Valid to do another page fault here, because if this fault
716 * had been triggered by is_prefetch fixup_exception would have
717 * handled it.
718 *
719 * 64-bit:
720 *
721 * Hall of shame of CPU/BIOS bugs.
722 */
723 if (is_prefetch(regs, error_code, address))
724 return;
725
726 if (is_errata93(regs, address))
727 return;
728
729 /*
730 * Buggy firmware could access regions which might page fault, try to
731 * recover from such faults.
732 */
733 if (IS_ENABLED(CONFIG_EFI))
734 efi_recover_from_page_fault(address);
735
736 /* Only not-present faults should be handled by KFENCE. */
737 if (!(error_code & X86_PF_PROT) &&
738 kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
739 return;
740
741 oops:
742 /*
743 * Oops. The kernel tried to access some bad page. We'll have to
744 * terminate things with extreme prejudice:
745 */
746 flags = oops_begin();
747
748 show_fault_oops(regs, error_code, address);
749
750 if (task_stack_end_corrupted(tsk))
751 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
752
753 sig = SIGKILL;
754 if (__die("Oops", regs, error_code))
755 sig = 0;
756
757 /* Executive summary in case the body of the oops scrolled away */
758 printk(KERN_DEFAULT "CR2: %016lx\n", address);
759
760 oops_end(flags, regs, sig);
761 }
762
763 /*
764 * Print out info about fatal segfaults, if the show_unhandled_signals
765 * sysctl is set:
766 */
767 static inline void
show_signal_msg(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct task_struct * tsk)768 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
769 unsigned long address, struct task_struct *tsk)
770 {
771 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
772
773 if (!unhandled_signal(tsk, SIGSEGV))
774 return;
775
776 if (!printk_ratelimit())
777 return;
778
779 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
780 loglvl, tsk->comm, task_pid_nr(tsk), address,
781 (void *)regs->ip, (void *)regs->sp, error_code);
782
783 print_vma_addr(KERN_CONT " in ", regs->ip);
784
785 printk(KERN_CONT "\n");
786
787 show_opcodes(regs, loglvl);
788 }
789
790 /*
791 * The (legacy) vsyscall page is the long page in the kernel portion
792 * of the address space that has user-accessible permissions.
793 */
is_vsyscall_vaddr(unsigned long vaddr)794 static bool is_vsyscall_vaddr(unsigned long vaddr)
795 {
796 return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
797 }
798
799 static void
__bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address,u32 pkey,int si_code)800 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
801 unsigned long address, u32 pkey, int si_code)
802 {
803 struct task_struct *tsk = current;
804
805 /* User mode accesses just cause a SIGSEGV */
806 if (user_mode(regs) && (error_code & X86_PF_USER)) {
807 /*
808 * It's possible to have interrupts off here:
809 */
810 local_irq_enable();
811
812 /*
813 * Valid to do another page fault here because this one came
814 * from user space:
815 */
816 if (is_prefetch(regs, error_code, address))
817 return;
818
819 if (is_errata100(regs, address))
820 return;
821
822 /*
823 * To avoid leaking information about the kernel page table
824 * layout, pretend that user-mode accesses to kernel addresses
825 * are always protection faults.
826 */
827 if (address >= TASK_SIZE_MAX)
828 error_code |= X86_PF_PROT;
829
830 if (likely(show_unhandled_signals))
831 show_signal_msg(regs, error_code, address, tsk);
832
833 set_signal_archinfo(address, error_code);
834
835 if (si_code == SEGV_PKUERR)
836 force_sig_pkuerr((void __user *)address, pkey);
837
838 force_sig_fault(SIGSEGV, si_code, (void __user *)address);
839
840 local_irq_disable();
841
842 return;
843 }
844
845 if (is_f00f_bug(regs, address))
846 return;
847
848 no_context(regs, error_code, address, SIGSEGV, si_code);
849 }
850
851 static noinline void
bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address)852 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
853 unsigned long address)
854 {
855 __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
856 }
857
858 static void
__bad_area(struct pt_regs * regs,unsigned long error_code,unsigned long address,u32 pkey,int si_code)859 __bad_area(struct pt_regs *regs, unsigned long error_code,
860 unsigned long address, u32 pkey, int si_code)
861 {
862 struct mm_struct *mm = current->mm;
863 /*
864 * Something tried to access memory that isn't in our memory map..
865 * Fix it, but check if it's kernel or user first..
866 */
867 mmap_read_unlock(mm);
868
869 __bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
870 }
871
872 static noinline void
bad_area(struct pt_regs * regs,unsigned long error_code,unsigned long address)873 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
874 {
875 __bad_area(regs, error_code, address, 0, SEGV_MAPERR);
876 }
877
bad_area_access_from_pkeys(unsigned long error_code,struct vm_area_struct * vma)878 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
879 struct vm_area_struct *vma)
880 {
881 /* This code is always called on the current mm */
882 bool foreign = false;
883
884 if (!boot_cpu_has(X86_FEATURE_OSPKE))
885 return false;
886 if (error_code & X86_PF_PK)
887 return true;
888 /* this checks permission keys on the VMA: */
889 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
890 (error_code & X86_PF_INSTR), foreign))
891 return true;
892 return false;
893 }
894
895 static noinline void
bad_area_access_error(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct vm_area_struct * vma)896 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
897 unsigned long address, struct vm_area_struct *vma)
898 {
899 /*
900 * This OSPKE check is not strictly necessary at runtime.
901 * But, doing it this way allows compiler optimizations
902 * if pkeys are compiled out.
903 */
904 if (bad_area_access_from_pkeys(error_code, vma)) {
905 /*
906 * A protection key fault means that the PKRU value did not allow
907 * access to some PTE. Userspace can figure out what PKRU was
908 * from the XSAVE state. This function captures the pkey from
909 * the vma and passes it to userspace so userspace can discover
910 * which protection key was set on the PTE.
911 *
912 * If we get here, we know that the hardware signaled a X86_PF_PK
913 * fault and that there was a VMA once we got in the fault
914 * handler. It does *not* guarantee that the VMA we find here
915 * was the one that we faulted on.
916 *
917 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
918 * 2. T1 : set PKRU to deny access to pkey=4, touches page
919 * 3. T1 : faults...
920 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
921 * 5. T1 : enters fault handler, takes mmap_lock, etc...
922 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
923 * faulted on a pte with its pkey=4.
924 */
925 u32 pkey = vma_pkey(vma);
926
927 __bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
928 } else {
929 __bad_area(regs, error_code, address, 0, SEGV_ACCERR);
930 }
931 }
932
933 static void
do_sigbus(struct pt_regs * regs,unsigned long error_code,unsigned long address,vm_fault_t fault)934 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
935 vm_fault_t fault)
936 {
937 /* Kernel mode? Handle exceptions or die: */
938 if (!(error_code & X86_PF_USER)) {
939 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
940 return;
941 }
942
943 /* User-space => ok to do another page fault: */
944 if (is_prefetch(regs, error_code, address))
945 return;
946
947 set_signal_archinfo(address, error_code);
948
949 #ifdef CONFIG_MEMORY_FAILURE
950 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
951 struct task_struct *tsk = current;
952 unsigned lsb = 0;
953
954 pr_err(
955 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
956 tsk->comm, tsk->pid, address);
957 if (fault & VM_FAULT_HWPOISON_LARGE)
958 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
959 if (fault & VM_FAULT_HWPOISON)
960 lsb = PAGE_SHIFT;
961 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
962 return;
963 }
964 #endif
965 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
966 }
967
968 static noinline void
mm_fault_error(struct pt_regs * regs,unsigned long error_code,unsigned long address,vm_fault_t fault)969 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
970 unsigned long address, vm_fault_t fault)
971 {
972 if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
973 no_context(regs, error_code, address, 0, 0);
974 return;
975 }
976
977 if (fault & VM_FAULT_OOM) {
978 /* Kernel mode? Handle exceptions or die: */
979 if (!(error_code & X86_PF_USER)) {
980 no_context(regs, error_code, address,
981 SIGSEGV, SEGV_MAPERR);
982 return;
983 }
984
985 /*
986 * We ran out of memory, call the OOM killer, and return the
987 * userspace (which will retry the fault, or kill us if we got
988 * oom-killed):
989 */
990 pagefault_out_of_memory();
991 } else {
992 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
993 VM_FAULT_HWPOISON_LARGE))
994 do_sigbus(regs, error_code, address, fault);
995 else if (fault & VM_FAULT_SIGSEGV)
996 bad_area_nosemaphore(regs, error_code, address);
997 else
998 BUG();
999 }
1000 }
1001
spurious_kernel_fault_check(unsigned long error_code,pte_t * pte)1002 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
1003 {
1004 if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1005 return 0;
1006
1007 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1008 return 0;
1009
1010 return 1;
1011 }
1012
1013 /*
1014 * Handle a spurious fault caused by a stale TLB entry.
1015 *
1016 * This allows us to lazily refresh the TLB when increasing the
1017 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1018 * eagerly is very expensive since that implies doing a full
1019 * cross-processor TLB flush, even if no stale TLB entries exist
1020 * on other processors.
1021 *
1022 * Spurious faults may only occur if the TLB contains an entry with
1023 * fewer permission than the page table entry. Non-present (P = 0)
1024 * and reserved bit (R = 1) faults are never spurious.
1025 *
1026 * There are no security implications to leaving a stale TLB when
1027 * increasing the permissions on a page.
1028 *
1029 * Returns non-zero if a spurious fault was handled, zero otherwise.
1030 *
1031 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1032 * (Optional Invalidation).
1033 */
1034 static noinline int
spurious_kernel_fault(unsigned long error_code,unsigned long address)1035 spurious_kernel_fault(unsigned long error_code, unsigned long address)
1036 {
1037 pgd_t *pgd;
1038 p4d_t *p4d;
1039 pud_t *pud;
1040 pmd_t *pmd;
1041 pte_t *pte;
1042 int ret;
1043
1044 /*
1045 * Only writes to RO or instruction fetches from NX may cause
1046 * spurious faults.
1047 *
1048 * These could be from user or supervisor accesses but the TLB
1049 * is only lazily flushed after a kernel mapping protection
1050 * change, so user accesses are not expected to cause spurious
1051 * faults.
1052 */
1053 if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1054 error_code != (X86_PF_INSTR | X86_PF_PROT))
1055 return 0;
1056
1057 pgd = init_mm.pgd + pgd_index(address);
1058 if (!pgd_present(*pgd))
1059 return 0;
1060
1061 p4d = p4d_offset(pgd, address);
1062 if (!p4d_present(*p4d))
1063 return 0;
1064
1065 if (p4d_large(*p4d))
1066 return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1067
1068 pud = pud_offset(p4d, address);
1069 if (!pud_present(*pud))
1070 return 0;
1071
1072 if (pud_large(*pud))
1073 return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1074
1075 pmd = pmd_offset(pud, address);
1076 if (!pmd_present(*pmd))
1077 return 0;
1078
1079 if (pmd_large(*pmd))
1080 return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1081
1082 pte = pte_offset_kernel(pmd, address);
1083 if (!pte_present(*pte))
1084 return 0;
1085
1086 ret = spurious_kernel_fault_check(error_code, pte);
1087 if (!ret)
1088 return 0;
1089
1090 /*
1091 * Make sure we have permissions in PMD.
1092 * If not, then there's a bug in the page tables:
1093 */
1094 ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1095 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1096
1097 return ret;
1098 }
1099 NOKPROBE_SYMBOL(spurious_kernel_fault);
1100
1101 int show_unhandled_signals = 1;
1102
1103 static inline int
access_error(unsigned long error_code,struct vm_area_struct * vma)1104 access_error(unsigned long error_code, struct vm_area_struct *vma)
1105 {
1106 /* This is only called for the current mm, so: */
1107 bool foreign = false;
1108
1109 /*
1110 * Read or write was blocked by protection keys. This is
1111 * always an unconditional error and can never result in
1112 * a follow-up action to resolve the fault, like a COW.
1113 */
1114 if (error_code & X86_PF_PK)
1115 return 1;
1116
1117 /*
1118 * Make sure to check the VMA so that we do not perform
1119 * faults just to hit a X86_PF_PK as soon as we fill in a
1120 * page.
1121 */
1122 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1123 (error_code & X86_PF_INSTR), foreign))
1124 return 1;
1125
1126 if (error_code & X86_PF_WRITE) {
1127 /* write, present and write, not present: */
1128 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1129 return 1;
1130 return 0;
1131 }
1132
1133 /* read, present: */
1134 if (unlikely(error_code & X86_PF_PROT))
1135 return 1;
1136
1137 /* read, not present: */
1138 if (unlikely(!vma_is_accessible(vma)))
1139 return 1;
1140
1141 return 0;
1142 }
1143
fault_in_kernel_space(unsigned long address)1144 bool fault_in_kernel_space(unsigned long address)
1145 {
1146 /*
1147 * On 64-bit systems, the vsyscall page is at an address above
1148 * TASK_SIZE_MAX, but is not considered part of the kernel
1149 * address space.
1150 */
1151 if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1152 return false;
1153
1154 return address >= TASK_SIZE_MAX;
1155 }
1156
1157 /*
1158 * Called for all faults where 'address' is part of the kernel address
1159 * space. Might get called for faults that originate from *code* that
1160 * ran in userspace or the kernel.
1161 */
1162 static void
do_kern_addr_fault(struct pt_regs * regs,unsigned long hw_error_code,unsigned long address)1163 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1164 unsigned long address)
1165 {
1166 /*
1167 * Protection keys exceptions only happen on user pages. We
1168 * have no user pages in the kernel portion of the address
1169 * space, so do not expect them here.
1170 */
1171 WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1172
1173 #ifdef CONFIG_X86_32
1174 /*
1175 * We can fault-in kernel-space virtual memory on-demand. The
1176 * 'reference' page table is init_mm.pgd.
1177 *
1178 * NOTE! We MUST NOT take any locks for this case. We may
1179 * be in an interrupt or a critical region, and should
1180 * only copy the information from the master page table,
1181 * nothing more.
1182 *
1183 * Before doing this on-demand faulting, ensure that the
1184 * fault is not any of the following:
1185 * 1. A fault on a PTE with a reserved bit set.
1186 * 2. A fault caused by a user-mode access. (Do not demand-
1187 * fault kernel memory due to user-mode accesses).
1188 * 3. A fault caused by a page-level protection violation.
1189 * (A demand fault would be on a non-present page which
1190 * would have X86_PF_PROT==0).
1191 *
1192 * This is only needed to close a race condition on x86-32 in
1193 * the vmalloc mapping/unmapping code. See the comment above
1194 * vmalloc_fault() for details. On x86-64 the race does not
1195 * exist as the vmalloc mappings don't need to be synchronized
1196 * there.
1197 */
1198 if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1199 if (vmalloc_fault(address) >= 0)
1200 return;
1201 }
1202 #endif
1203
1204 /* Was the fault spurious, caused by lazy TLB invalidation? */
1205 if (spurious_kernel_fault(hw_error_code, address))
1206 return;
1207
1208 /* kprobes don't want to hook the spurious faults: */
1209 if (kprobe_page_fault(regs, X86_TRAP_PF))
1210 return;
1211
1212 /*
1213 * Note, despite being a "bad area", there are quite a few
1214 * acceptable reasons to get here, such as erratum fixups
1215 * and handling kernel code that can fault, like get_user().
1216 *
1217 * Don't take the mm semaphore here. If we fixup a prefetch
1218 * fault we could otherwise deadlock:
1219 */
1220 bad_area_nosemaphore(regs, hw_error_code, address);
1221 }
1222 NOKPROBE_SYMBOL(do_kern_addr_fault);
1223
1224 /* Handle faults in the user portion of the address space */
1225 static inline
do_user_addr_fault(struct pt_regs * regs,unsigned long hw_error_code,unsigned long address)1226 void do_user_addr_fault(struct pt_regs *regs,
1227 unsigned long hw_error_code,
1228 unsigned long address)
1229 {
1230 struct vm_area_struct *vma = NULL;
1231 struct task_struct *tsk;
1232 struct mm_struct *mm;
1233 vm_fault_t fault;
1234 unsigned int flags = FAULT_FLAG_DEFAULT;
1235
1236 tsk = current;
1237 mm = tsk->mm;
1238
1239 /* kprobes don't want to hook the spurious faults: */
1240 if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF)))
1241 return;
1242
1243 /*
1244 * Reserved bits are never expected to be set on
1245 * entries in the user portion of the page tables.
1246 */
1247 if (unlikely(hw_error_code & X86_PF_RSVD))
1248 pgtable_bad(regs, hw_error_code, address);
1249
1250 /*
1251 * If SMAP is on, check for invalid kernel (supervisor) access to user
1252 * pages in the user address space. The odd case here is WRUSS,
1253 * which, according to the preliminary documentation, does not respect
1254 * SMAP and will have the USER bit set so, in all cases, SMAP
1255 * enforcement appears to be consistent with the USER bit.
1256 */
1257 if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1258 !(hw_error_code & X86_PF_USER) &&
1259 !(regs->flags & X86_EFLAGS_AC)))
1260 {
1261 bad_area_nosemaphore(regs, hw_error_code, address);
1262 return;
1263 }
1264
1265 /*
1266 * If we're in an interrupt, have no user context or are running
1267 * in a region with pagefaults disabled then we must not take the fault
1268 */
1269 if (unlikely(faulthandler_disabled() || !mm)) {
1270 bad_area_nosemaphore(regs, hw_error_code, address);
1271 return;
1272 }
1273
1274 /*
1275 * It's safe to allow irq's after cr2 has been saved and the
1276 * vmalloc fault has been handled.
1277 *
1278 * User-mode registers count as a user access even for any
1279 * potential system fault or CPU buglet:
1280 */
1281 if (user_mode(regs)) {
1282 local_irq_enable();
1283 flags |= FAULT_FLAG_USER;
1284 } else {
1285 if (regs->flags & X86_EFLAGS_IF)
1286 local_irq_enable();
1287 }
1288
1289 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1290
1291 if (hw_error_code & X86_PF_WRITE)
1292 flags |= FAULT_FLAG_WRITE;
1293 if (hw_error_code & X86_PF_INSTR)
1294 flags |= FAULT_FLAG_INSTRUCTION;
1295
1296 #ifdef CONFIG_X86_64
1297 /*
1298 * Faults in the vsyscall page might need emulation. The
1299 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1300 * considered to be part of the user address space.
1301 *
1302 * The vsyscall page does not have a "real" VMA, so do this
1303 * emulation before we go searching for VMAs.
1304 *
1305 * PKRU never rejects instruction fetches, so we don't need
1306 * to consider the PF_PK bit.
1307 */
1308 if (is_vsyscall_vaddr(address)) {
1309 if (emulate_vsyscall(hw_error_code, regs, address))
1310 return;
1311 }
1312 #endif
1313
1314 /*
1315 * Do not try to do a speculative page fault if the fault was due to
1316 * protection keys since it can't be resolved.
1317 */
1318 if (!(hw_error_code & X86_PF_PK)) {
1319 fault = handle_speculative_fault(mm, address, flags, &vma, regs);
1320 if (fault != VM_FAULT_RETRY)
1321 goto done;
1322 }
1323
1324 /*
1325 * Kernel-mode access to the user address space should only occur
1326 * on well-defined single instructions listed in the exception
1327 * tables. But, an erroneous kernel fault occurring outside one of
1328 * those areas which also holds mmap_lock might deadlock attempting
1329 * to validate the fault against the address space.
1330 *
1331 * Only do the expensive exception table search when we might be at
1332 * risk of a deadlock. This happens if we
1333 * 1. Failed to acquire mmap_lock, and
1334 * 2. The access did not originate in userspace.
1335 */
1336 if (unlikely(!mmap_read_trylock(mm))) {
1337 if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1338 /*
1339 * Fault from code in kernel from
1340 * which we do not expect faults.
1341 */
1342 bad_area_nosemaphore(regs, hw_error_code, address);
1343 return;
1344 }
1345 retry:
1346 mmap_read_lock(mm);
1347 } else {
1348 /*
1349 * The above down_read_trylock() might have succeeded in
1350 * which case we'll have missed the might_sleep() from
1351 * down_read():
1352 */
1353 might_sleep();
1354 }
1355
1356 if (!vma || !can_reuse_spf_vma(vma, address))
1357 vma = find_vma(mm, address);
1358 if (unlikely(!vma)) {
1359 bad_area(regs, hw_error_code, address);
1360 return;
1361 }
1362 if (likely(vma->vm_start <= address))
1363 goto good_area;
1364 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1365 bad_area(regs, hw_error_code, address);
1366 return;
1367 }
1368 if (unlikely(expand_stack(vma, address))) {
1369 bad_area(regs, hw_error_code, address);
1370 return;
1371 }
1372
1373 /*
1374 * Ok, we have a good vm_area for this memory access, so
1375 * we can handle it..
1376 */
1377 good_area:
1378 if (unlikely(access_error(hw_error_code, vma))) {
1379 bad_area_access_error(regs, hw_error_code, address, vma);
1380 return;
1381 }
1382
1383 /*
1384 * If for any reason at all we couldn't handle the fault,
1385 * make sure we exit gracefully rather than endlessly redo
1386 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1387 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1388 *
1389 * Note that handle_userfault() may also release and reacquire mmap_lock
1390 * (and not return with VM_FAULT_RETRY), when returning to userland to
1391 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1392 * (potentially after handling any pending signal during the return to
1393 * userland). The return to userland is identified whenever
1394 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1395 */
1396 fault = handle_mm_fault(vma, address, flags, regs);
1397
1398 /* Quick path to respond to signals */
1399 if (fault_signal_pending(fault, regs)) {
1400 if (!user_mode(regs))
1401 no_context(regs, hw_error_code, address, SIGBUS,
1402 BUS_ADRERR);
1403 return;
1404 }
1405
1406 /*
1407 * If we need to retry the mmap_lock has already been released,
1408 * and if there is a fatal signal pending there is no guarantee
1409 * that we made any progress. Handle this case first.
1410 */
1411 if (unlikely((fault & VM_FAULT_RETRY) &&
1412 (flags & FAULT_FLAG_ALLOW_RETRY))) {
1413 flags |= FAULT_FLAG_TRIED;
1414
1415 /*
1416 * Do not try to reuse this vma and fetch it
1417 * again since we will release the mmap_sem.
1418 */
1419 vma = NULL;
1420
1421 goto retry;
1422 }
1423
1424 mmap_read_unlock(mm);
1425
1426 done:
1427 if (unlikely(fault & VM_FAULT_ERROR)) {
1428 mm_fault_error(regs, hw_error_code, address, fault);
1429 return;
1430 }
1431
1432 check_v8086_mode(regs, address, tsk);
1433 }
1434 NOKPROBE_SYMBOL(do_user_addr_fault);
1435
1436 static __always_inline void
trace_page_fault_entries(struct pt_regs * regs,unsigned long error_code,unsigned long address)1437 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1438 unsigned long address)
1439 {
1440 if (!trace_pagefault_enabled())
1441 return;
1442
1443 if (user_mode(regs))
1444 trace_page_fault_user(address, regs, error_code);
1445 else
1446 trace_page_fault_kernel(address, regs, error_code);
1447 }
1448
1449 static __always_inline void
handle_page_fault(struct pt_regs * regs,unsigned long error_code,unsigned long address)1450 handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1451 unsigned long address)
1452 {
1453 trace_page_fault_entries(regs, error_code, address);
1454
1455 if (unlikely(kmmio_fault(regs, address)))
1456 return;
1457
1458 /* Was the fault on kernel-controlled part of the address space? */
1459 if (unlikely(fault_in_kernel_space(address))) {
1460 do_kern_addr_fault(regs, error_code, address);
1461 } else {
1462 do_user_addr_fault(regs, error_code, address);
1463 /*
1464 * User address page fault handling might have reenabled
1465 * interrupts. Fixing up all potential exit points of
1466 * do_user_addr_fault() and its leaf functions is just not
1467 * doable w/o creating an unholy mess or turning the code
1468 * upside down.
1469 */
1470 local_irq_disable();
1471 }
1472 }
1473
DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)1474 DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1475 {
1476 unsigned long address = read_cr2();
1477 irqentry_state_t state;
1478
1479 prefetchw(¤t->mm->mmap_lock);
1480
1481 /*
1482 * KVM uses #PF vector to deliver 'page not present' events to guests
1483 * (asynchronous page fault mechanism). The event happens when a
1484 * userspace task is trying to access some valid (from guest's point of
1485 * view) memory which is not currently mapped by the host (e.g. the
1486 * memory is swapped out). Note, the corresponding "page ready" event
1487 * which is injected when the memory becomes available, is delived via
1488 * an interrupt mechanism and not a #PF exception
1489 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1490 *
1491 * We are relying on the interrupted context being sane (valid RSP,
1492 * relevant locks not held, etc.), which is fine as long as the
1493 * interrupted context had IF=1. We are also relying on the KVM
1494 * async pf type field and CR2 being read consistently instead of
1495 * getting values from real and async page faults mixed up.
1496 *
1497 * Fingers crossed.
1498 *
1499 * The async #PF handling code takes care of idtentry handling
1500 * itself.
1501 */
1502 if (kvm_handle_async_pf(regs, (u32)address))
1503 return;
1504
1505 /*
1506 * Entry handling for valid #PF from kernel mode is slightly
1507 * different: RCU is already watching and rcu_irq_enter() must not
1508 * be invoked because a kernel fault on a user space address might
1509 * sleep.
1510 *
1511 * In case the fault hit a RCU idle region the conditional entry
1512 * code reenabled RCU to avoid subsequent wreckage which helps
1513 * debugability.
1514 */
1515 state = irqentry_enter(regs);
1516
1517 instrumentation_begin();
1518 handle_page_fault(regs, error_code, address);
1519 instrumentation_end();
1520
1521 irqentry_exit(regs, state);
1522 }
1523