• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
10 #include <linux/sched/mm.h>
11 
12 #include <asm/set_memory.h>
13 #include <asm/cpu_device_id.h>
14 #include <asm/e820/api.h>
15 #include <asm/init.h>
16 #include <asm/page.h>
17 #include <asm/page_types.h>
18 #include <asm/sections.h>
19 #include <asm/setup.h>
20 #include <asm/tlbflush.h>
21 #include <asm/tlb.h>
22 #include <asm/proto.h>
23 #include <asm/dma.h>		/* for MAX_DMA_PFN */
24 #include <asm/microcode.h>
25 #include <asm/kaslr.h>
26 #include <asm/hypervisor.h>
27 #include <asm/cpufeature.h>
28 #include <asm/pti.h>
29 #include <asm/text-patching.h>
30 #include <asm/memtype.h>
31 #include <asm/paravirt.h>
32 
33 /*
34  * We need to define the tracepoints somewhere, and tlb.c
35  * is only compied when SMP=y.
36  */
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/tlb.h>
39 
40 #include "mm_internal.h"
41 
42 /*
43  * Tables translating between page_cache_type_t and pte encoding.
44  *
45  * The default values are defined statically as minimal supported mode;
46  * WC and WT fall back to UC-.  pat_init() updates these values to support
47  * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
48  * for the details.  Note, __early_ioremap() used during early boot-time
49  * takes pgprot_t (pte encoding) and does not use these tables.
50  *
51  *   Index into __cachemode2pte_tbl[] is the cachemode.
52  *
53  *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
54  *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
55  */
56 static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
57 	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
58 	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
59 	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
60 	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
61 	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
62 	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
63 };
64 
cachemode2protval(enum page_cache_mode pcm)65 unsigned long cachemode2protval(enum page_cache_mode pcm)
66 {
67 	if (likely(pcm == 0))
68 		return 0;
69 	return __cachemode2pte_tbl[pcm];
70 }
71 EXPORT_SYMBOL(cachemode2protval);
72 
73 static uint8_t __pte2cachemode_tbl[8] = {
74 	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
75 	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
76 	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
77 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
78 	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
79 	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
80 	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
81 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
82 };
83 
84 /*
85  * Check that the write-protect PAT entry is set for write-protect.
86  * To do this without making assumptions how PAT has been set up (Xen has
87  * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
88  * mode via the __cachemode2pte_tbl[] into protection bits (those protection
89  * bits will select a cache mode of WP or better), and then translate the
90  * protection bits back into the cache mode using __pte2cm_idx() and the
91  * __pte2cachemode_tbl[] array. This will return the really used cache mode.
92  */
x86_has_pat_wp(void)93 bool x86_has_pat_wp(void)
94 {
95 	uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
96 
97 	return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
98 }
99 
pgprot2cachemode(pgprot_t pgprot)100 enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
101 {
102 	unsigned long masked;
103 
104 	masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
105 	if (likely(masked == 0))
106 		return 0;
107 	return __pte2cachemode_tbl[__pte2cm_idx(masked)];
108 }
109 
110 static unsigned long __initdata pgt_buf_start;
111 static unsigned long __initdata pgt_buf_end;
112 static unsigned long __initdata pgt_buf_top;
113 
114 static unsigned long min_pfn_mapped;
115 
116 static bool __initdata can_use_brk_pgt = true;
117 
118 /*
119  * Provide a run-time mean of disabling ZONE_DMA32 if it is enabled via
120  * CONFIG_ZONE_DMA32.
121  */
122 static bool disable_dma32 __ro_after_init;
123 
124 /*
125  * Pages returned are already directly mapped.
126  *
127  * Changing that is likely to break Xen, see commit:
128  *
129  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
130  *
131  * for detailed information.
132  */
alloc_low_pages(unsigned int num)133 __ref void *alloc_low_pages(unsigned int num)
134 {
135 	unsigned long pfn;
136 	int i;
137 
138 	if (after_bootmem) {
139 		unsigned int order;
140 
141 		order = get_order((unsigned long)num << PAGE_SHIFT);
142 		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
143 	}
144 
145 	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
146 		unsigned long ret = 0;
147 
148 		if (min_pfn_mapped < max_pfn_mapped) {
149 			ret = memblock_find_in_range(
150 					min_pfn_mapped << PAGE_SHIFT,
151 					max_pfn_mapped << PAGE_SHIFT,
152 					PAGE_SIZE * num , PAGE_SIZE);
153 		}
154 		if (ret)
155 			memblock_reserve(ret, PAGE_SIZE * num);
156 		else if (can_use_brk_pgt)
157 			ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
158 
159 		if (!ret)
160 			panic("alloc_low_pages: can not alloc memory");
161 
162 		pfn = ret >> PAGE_SHIFT;
163 	} else {
164 		pfn = pgt_buf_end;
165 		pgt_buf_end += num;
166 	}
167 
168 	for (i = 0; i < num; i++) {
169 		void *adr;
170 
171 		adr = __va((pfn + i) << PAGE_SHIFT);
172 		clear_page(adr);
173 	}
174 
175 	return __va(pfn << PAGE_SHIFT);
176 }
177 
178 /*
179  * By default need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS.
180  * With KASLR memory randomization, depending on the machine e820 memory
181  * and the PUD alignment. We may need twice more pages when KASLR memory
182  * randomization is enabled.
183  */
184 #ifndef CONFIG_RANDOMIZE_MEMORY
185 #define INIT_PGD_PAGE_COUNT      6
186 #else
187 #define INIT_PGD_PAGE_COUNT      12
188 #endif
189 #define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
190 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
early_alloc_pgt_buf(void)191 void  __init early_alloc_pgt_buf(void)
192 {
193 	unsigned long tables = INIT_PGT_BUF_SIZE;
194 	phys_addr_t base;
195 
196 	base = __pa(extend_brk(tables, PAGE_SIZE));
197 
198 	pgt_buf_start = base >> PAGE_SHIFT;
199 	pgt_buf_end = pgt_buf_start;
200 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
201 }
202 
203 int after_bootmem;
204 
205 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
206 
207 struct map_range {
208 	unsigned long start;
209 	unsigned long end;
210 	unsigned page_size_mask;
211 };
212 
213 static int page_size_mask;
214 
215 /*
216  * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
217  * enable and PPro Global page enable), so that any CPU's that boot
218  * up after us can get the correct flags. Invoked on the boot CPU.
219  */
cr4_set_bits_and_update_boot(unsigned long mask)220 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
221 {
222 	mmu_cr4_features |= mask;
223 	if (trampoline_cr4_features)
224 		*trampoline_cr4_features = mmu_cr4_features;
225 	cr4_set_bits(mask);
226 }
227 
probe_page_size_mask(void)228 static void __init probe_page_size_mask(void)
229 {
230 	/*
231 	 * For pagealloc debugging, identity mapping will use small pages.
232 	 * This will simplify cpa(), which otherwise needs to support splitting
233 	 * large pages into small in interrupt context, etc.
234 	 */
235 	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
236 		page_size_mask |= 1 << PG_LEVEL_2M;
237 	else
238 		direct_gbpages = 0;
239 
240 	/* Enable PSE if available */
241 	if (boot_cpu_has(X86_FEATURE_PSE))
242 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
243 
244 	/* Enable PGE if available */
245 	__supported_pte_mask &= ~_PAGE_GLOBAL;
246 	if (boot_cpu_has(X86_FEATURE_PGE)) {
247 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
248 		__supported_pte_mask |= _PAGE_GLOBAL;
249 	}
250 
251 	/* By the default is everything supported: */
252 	__default_kernel_pte_mask = __supported_pte_mask;
253 	/* Except when with PTI where the kernel is mostly non-Global: */
254 	if (cpu_feature_enabled(X86_FEATURE_PTI))
255 		__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
256 
257 	/* Enable 1 GB linear kernel mappings if available: */
258 	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
259 		printk(KERN_INFO "Using GB pages for direct mapping\n");
260 		page_size_mask |= 1 << PG_LEVEL_1G;
261 	} else {
262 		direct_gbpages = 0;
263 	}
264 }
265 
266 #define INTEL_MATCH(_model) { .vendor  = X86_VENDOR_INTEL,	\
267 			      .family  = 6,			\
268 			      .model = _model,			\
269 			    }
270 /*
271  * INVLPG may not properly flush Global entries
272  * on these CPUs when PCIDs are enabled.
273  */
274 static const struct x86_cpu_id invlpg_miss_ids[] = {
275 	INTEL_MATCH(INTEL_FAM6_ALDERLAKE   ),
276 	INTEL_MATCH(INTEL_FAM6_ALDERLAKE_L ),
277 	INTEL_MATCH(INTEL_FAM6_ALDERLAKE_N ),
278 	INTEL_MATCH(INTEL_FAM6_RAPTORLAKE  ),
279 	INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_P),
280 	INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_S),
281 	{}
282 };
283 
setup_pcid(void)284 static void setup_pcid(void)
285 {
286 	if (!IS_ENABLED(CONFIG_X86_64))
287 		return;
288 
289 	if (!boot_cpu_has(X86_FEATURE_PCID))
290 		return;
291 
292 	if (x86_match_cpu(invlpg_miss_ids)) {
293 		pr_info("Incomplete global flushes, disabling PCID");
294 		setup_clear_cpu_cap(X86_FEATURE_PCID);
295 		return;
296 	}
297 
298 	if (boot_cpu_has(X86_FEATURE_PGE)) {
299 		/*
300 		 * This can't be cr4_set_bits_and_update_boot() -- the
301 		 * trampoline code can't handle CR4.PCIDE and it wouldn't
302 		 * do any good anyway.  Despite the name,
303 		 * cr4_set_bits_and_update_boot() doesn't actually cause
304 		 * the bits in question to remain set all the way through
305 		 * the secondary boot asm.
306 		 *
307 		 * Instead, we brute-force it and set CR4.PCIDE manually in
308 		 * start_secondary().
309 		 */
310 		cr4_set_bits(X86_CR4_PCIDE);
311 
312 		/*
313 		 * INVPCID's single-context modes (2/3) only work if we set
314 		 * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable
315 		 * on systems that have X86_CR4_PCIDE clear, or that have
316 		 * no INVPCID support at all.
317 		 */
318 		if (boot_cpu_has(X86_FEATURE_INVPCID))
319 			setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
320 	} else {
321 		/*
322 		 * flush_tlb_all(), as currently implemented, won't work if
323 		 * PCID is on but PGE is not.  Since that combination
324 		 * doesn't exist on real hardware, there's no reason to try
325 		 * to fully support it, but it's polite to avoid corrupting
326 		 * data if we're on an improperly configured VM.
327 		 */
328 		setup_clear_cpu_cap(X86_FEATURE_PCID);
329 	}
330 }
331 
332 #ifdef CONFIG_X86_32
333 #define NR_RANGE_MR 3
334 #else /* CONFIG_X86_64 */
335 #define NR_RANGE_MR 5
336 #endif
337 
save_mr(struct map_range * mr,int nr_range,unsigned long start_pfn,unsigned long end_pfn,unsigned long page_size_mask)338 static int __meminit save_mr(struct map_range *mr, int nr_range,
339 			     unsigned long start_pfn, unsigned long end_pfn,
340 			     unsigned long page_size_mask)
341 {
342 	if (start_pfn < end_pfn) {
343 		if (nr_range >= NR_RANGE_MR)
344 			panic("run out of range for init_memory_mapping\n");
345 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
346 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
347 		mr[nr_range].page_size_mask = page_size_mask;
348 		nr_range++;
349 	}
350 
351 	return nr_range;
352 }
353 
354 /*
355  * adjust the page_size_mask for small range to go with
356  *	big page size instead small one if nearby are ram too.
357  */
adjust_range_page_size_mask(struct map_range * mr,int nr_range)358 static void __ref adjust_range_page_size_mask(struct map_range *mr,
359 							 int nr_range)
360 {
361 	int i;
362 
363 	for (i = 0; i < nr_range; i++) {
364 		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
365 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
366 			unsigned long start = round_down(mr[i].start, PMD_SIZE);
367 			unsigned long end = round_up(mr[i].end, PMD_SIZE);
368 
369 #ifdef CONFIG_X86_32
370 			if ((end >> PAGE_SHIFT) > max_low_pfn)
371 				continue;
372 #endif
373 
374 			if (memblock_is_region_memory(start, end - start))
375 				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
376 		}
377 		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
378 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
379 			unsigned long start = round_down(mr[i].start, PUD_SIZE);
380 			unsigned long end = round_up(mr[i].end, PUD_SIZE);
381 
382 			if (memblock_is_region_memory(start, end - start))
383 				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
384 		}
385 	}
386 }
387 
page_size_string(struct map_range * mr)388 static const char *page_size_string(struct map_range *mr)
389 {
390 	static const char str_1g[] = "1G";
391 	static const char str_2m[] = "2M";
392 	static const char str_4m[] = "4M";
393 	static const char str_4k[] = "4k";
394 
395 	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
396 		return str_1g;
397 	/*
398 	 * 32-bit without PAE has a 4M large page size.
399 	 * PG_LEVEL_2M is misnamed, but we can at least
400 	 * print out the right size in the string.
401 	 */
402 	if (IS_ENABLED(CONFIG_X86_32) &&
403 	    !IS_ENABLED(CONFIG_X86_PAE) &&
404 	    mr->page_size_mask & (1<<PG_LEVEL_2M))
405 		return str_4m;
406 
407 	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
408 		return str_2m;
409 
410 	return str_4k;
411 }
412 
split_mem_range(struct map_range * mr,int nr_range,unsigned long start,unsigned long end)413 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
414 				     unsigned long start,
415 				     unsigned long end)
416 {
417 	unsigned long start_pfn, end_pfn, limit_pfn;
418 	unsigned long pfn;
419 	int i;
420 
421 	limit_pfn = PFN_DOWN(end);
422 
423 	/* head if not big page alignment ? */
424 	pfn = start_pfn = PFN_DOWN(start);
425 #ifdef CONFIG_X86_32
426 	/*
427 	 * Don't use a large page for the first 2/4MB of memory
428 	 * because there are often fixed size MTRRs in there
429 	 * and overlapping MTRRs into large pages can cause
430 	 * slowdowns.
431 	 */
432 	if (pfn == 0)
433 		end_pfn = PFN_DOWN(PMD_SIZE);
434 	else
435 		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
436 #else /* CONFIG_X86_64 */
437 	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
438 #endif
439 	if (end_pfn > limit_pfn)
440 		end_pfn = limit_pfn;
441 	if (start_pfn < end_pfn) {
442 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
443 		pfn = end_pfn;
444 	}
445 
446 	/* big page (2M) range */
447 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
448 #ifdef CONFIG_X86_32
449 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
450 #else /* CONFIG_X86_64 */
451 	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
452 	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
453 		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
454 #endif
455 
456 	if (start_pfn < end_pfn) {
457 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
458 				page_size_mask & (1<<PG_LEVEL_2M));
459 		pfn = end_pfn;
460 	}
461 
462 #ifdef CONFIG_X86_64
463 	/* big page (1G) range */
464 	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
465 	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
466 	if (start_pfn < end_pfn) {
467 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
468 				page_size_mask &
469 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
470 		pfn = end_pfn;
471 	}
472 
473 	/* tail is not big page (1G) alignment */
474 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
475 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
476 	if (start_pfn < end_pfn) {
477 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
478 				page_size_mask & (1<<PG_LEVEL_2M));
479 		pfn = end_pfn;
480 	}
481 #endif
482 
483 	/* tail is not big page (2M) alignment */
484 	start_pfn = pfn;
485 	end_pfn = limit_pfn;
486 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
487 
488 	if (!after_bootmem)
489 		adjust_range_page_size_mask(mr, nr_range);
490 
491 	/* try to merge same page size and continuous */
492 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
493 		unsigned long old_start;
494 		if (mr[i].end != mr[i+1].start ||
495 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
496 			continue;
497 		/* move it */
498 		old_start = mr[i].start;
499 		memmove(&mr[i], &mr[i+1],
500 			(nr_range - 1 - i) * sizeof(struct map_range));
501 		mr[i--].start = old_start;
502 		nr_range--;
503 	}
504 
505 	for (i = 0; i < nr_range; i++)
506 		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
507 				mr[i].start, mr[i].end - 1,
508 				page_size_string(&mr[i]));
509 
510 	return nr_range;
511 }
512 
513 struct range pfn_mapped[E820_MAX_ENTRIES];
514 int nr_pfn_mapped;
515 
add_pfn_range_mapped(unsigned long start_pfn,unsigned long end_pfn)516 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
517 {
518 	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
519 					     nr_pfn_mapped, start_pfn, end_pfn);
520 	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
521 
522 	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
523 
524 	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
525 		max_low_pfn_mapped = max(max_low_pfn_mapped,
526 					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
527 }
528 
pfn_range_is_mapped(unsigned long start_pfn,unsigned long end_pfn)529 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
530 {
531 	int i;
532 
533 	for (i = 0; i < nr_pfn_mapped; i++)
534 		if ((start_pfn >= pfn_mapped[i].start) &&
535 		    (end_pfn <= pfn_mapped[i].end))
536 			return true;
537 
538 	return false;
539 }
540 
541 /*
542  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
543  * This runs before bootmem is initialized and gets pages directly from
544  * the physical memory. To access them they are temporarily mapped.
545  */
init_memory_mapping(unsigned long start,unsigned long end,pgprot_t prot)546 unsigned long __ref init_memory_mapping(unsigned long start,
547 					unsigned long end, pgprot_t prot)
548 {
549 	struct map_range mr[NR_RANGE_MR];
550 	unsigned long ret = 0;
551 	int nr_range, i;
552 
553 	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
554 	       start, end - 1);
555 
556 	memset(mr, 0, sizeof(mr));
557 	nr_range = split_mem_range(mr, 0, start, end);
558 
559 	for (i = 0; i < nr_range; i++)
560 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
561 						   mr[i].page_size_mask,
562 						   prot);
563 
564 	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
565 
566 	return ret >> PAGE_SHIFT;
567 }
568 
569 /*
570  * We need to iterate through the E820 memory map and create direct mappings
571  * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
572  * create direct mappings for all pfns from [0 to max_low_pfn) and
573  * [4GB to max_pfn) because of possible memory holes in high addresses
574  * that cannot be marked as UC by fixed/variable range MTRRs.
575  * Depending on the alignment of E820 ranges, this may possibly result
576  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
577  *
578  * init_mem_mapping() calls init_range_memory_mapping() with big range.
579  * That range would have hole in the middle or ends, and only ram parts
580  * will be mapped in init_range_memory_mapping().
581  */
init_range_memory_mapping(unsigned long r_start,unsigned long r_end)582 static unsigned long __init init_range_memory_mapping(
583 					   unsigned long r_start,
584 					   unsigned long r_end)
585 {
586 	unsigned long start_pfn, end_pfn;
587 	unsigned long mapped_ram_size = 0;
588 	int i;
589 
590 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
591 		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
592 		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
593 		if (start >= end)
594 			continue;
595 
596 		/*
597 		 * if it is overlapping with brk pgt, we need to
598 		 * alloc pgt buf from memblock instead.
599 		 */
600 		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
601 				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
602 		init_memory_mapping(start, end, PAGE_KERNEL);
603 		mapped_ram_size += end - start;
604 		can_use_brk_pgt = true;
605 	}
606 
607 	return mapped_ram_size;
608 }
609 
get_new_step_size(unsigned long step_size)610 static unsigned long __init get_new_step_size(unsigned long step_size)
611 {
612 	/*
613 	 * Initial mapped size is PMD_SIZE (2M).
614 	 * We can not set step_size to be PUD_SIZE (1G) yet.
615 	 * In worse case, when we cross the 1G boundary, and
616 	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
617 	 * to map 1G range with PTE. Hence we use one less than the
618 	 * difference of page table level shifts.
619 	 *
620 	 * Don't need to worry about overflow in the top-down case, on 32bit,
621 	 * when step_size is 0, round_down() returns 0 for start, and that
622 	 * turns it into 0x100000000ULL.
623 	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
624 	 * needs to be taken into consideration by the code below.
625 	 */
626 	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
627 }
628 
629 /**
630  * memory_map_top_down - Map [map_start, map_end) top down
631  * @map_start: start address of the target memory range
632  * @map_end: end address of the target memory range
633  *
634  * This function will setup direct mapping for memory range
635  * [map_start, map_end) in top-down. That said, the page tables
636  * will be allocated at the end of the memory, and we map the
637  * memory in top-down.
638  */
memory_map_top_down(unsigned long map_start,unsigned long map_end)639 static void __init memory_map_top_down(unsigned long map_start,
640 				       unsigned long map_end)
641 {
642 	unsigned long real_end, start, last_start;
643 	unsigned long step_size;
644 	unsigned long addr;
645 	unsigned long mapped_ram_size = 0;
646 
647 	/* xen has big range in reserved near end of ram, skip it at first.*/
648 	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
649 	real_end = addr + PMD_SIZE;
650 
651 	/* step_size need to be small so pgt_buf from BRK could cover it */
652 	step_size = PMD_SIZE;
653 	max_pfn_mapped = 0; /* will get exact value next */
654 	min_pfn_mapped = real_end >> PAGE_SHIFT;
655 	last_start = start = real_end;
656 
657 	/*
658 	 * We start from the top (end of memory) and go to the bottom.
659 	 * The memblock_find_in_range() gets us a block of RAM from the
660 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
661 	 * for page table.
662 	 */
663 	while (last_start > map_start) {
664 		if (last_start > step_size) {
665 			start = round_down(last_start - 1, step_size);
666 			if (start < map_start)
667 				start = map_start;
668 		} else
669 			start = map_start;
670 		mapped_ram_size += init_range_memory_mapping(start,
671 							last_start);
672 		last_start = start;
673 		min_pfn_mapped = last_start >> PAGE_SHIFT;
674 		if (mapped_ram_size >= step_size)
675 			step_size = get_new_step_size(step_size);
676 	}
677 
678 	if (real_end < map_end)
679 		init_range_memory_mapping(real_end, map_end);
680 }
681 
682 /**
683  * memory_map_bottom_up - Map [map_start, map_end) bottom up
684  * @map_start: start address of the target memory range
685  * @map_end: end address of the target memory range
686  *
687  * This function will setup direct mapping for memory range
688  * [map_start, map_end) in bottom-up. Since we have limited the
689  * bottom-up allocation above the kernel, the page tables will
690  * be allocated just above the kernel and we map the memory
691  * in [map_start, map_end) in bottom-up.
692  */
memory_map_bottom_up(unsigned long map_start,unsigned long map_end)693 static void __init memory_map_bottom_up(unsigned long map_start,
694 					unsigned long map_end)
695 {
696 	unsigned long next, start;
697 	unsigned long mapped_ram_size = 0;
698 	/* step_size need to be small so pgt_buf from BRK could cover it */
699 	unsigned long step_size = PMD_SIZE;
700 
701 	start = map_start;
702 	min_pfn_mapped = start >> PAGE_SHIFT;
703 
704 	/*
705 	 * We start from the bottom (@map_start) and go to the top (@map_end).
706 	 * The memblock_find_in_range() gets us a block of RAM from the
707 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
708 	 * for page table.
709 	 */
710 	while (start < map_end) {
711 		if (step_size && map_end - start > step_size) {
712 			next = round_up(start + 1, step_size);
713 			if (next > map_end)
714 				next = map_end;
715 		} else {
716 			next = map_end;
717 		}
718 
719 		mapped_ram_size += init_range_memory_mapping(start, next);
720 		start = next;
721 
722 		if (mapped_ram_size >= step_size)
723 			step_size = get_new_step_size(step_size);
724 	}
725 }
726 
727 /*
728  * The real mode trampoline, which is required for bootstrapping CPUs
729  * occupies only a small area under the low 1MB.  See reserve_real_mode()
730  * for details.
731  *
732  * If KASLR is disabled the first PGD entry of the direct mapping is copied
733  * to map the real mode trampoline.
734  *
735  * If KASLR is enabled, copy only the PUD which covers the low 1MB
736  * area. This limits the randomization granularity to 1GB for both 4-level
737  * and 5-level paging.
738  */
init_trampoline(void)739 static void __init init_trampoline(void)
740 {
741 #ifdef CONFIG_X86_64
742 	if (!kaslr_memory_enabled())
743 		trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
744 	else
745 		init_trampoline_kaslr();
746 #endif
747 }
748 
init_mem_mapping(void)749 void __init init_mem_mapping(void)
750 {
751 	unsigned long end;
752 
753 	pti_check_boottime_disable();
754 	probe_page_size_mask();
755 	setup_pcid();
756 
757 #ifdef CONFIG_X86_64
758 	end = max_pfn << PAGE_SHIFT;
759 #else
760 	end = max_low_pfn << PAGE_SHIFT;
761 #endif
762 
763 	/* the ISA range is always mapped regardless of memory holes */
764 	init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
765 
766 	/* Init the trampoline, possibly with KASLR memory offset */
767 	init_trampoline();
768 
769 	/*
770 	 * If the allocation is in bottom-up direction, we setup direct mapping
771 	 * in bottom-up, otherwise we setup direct mapping in top-down.
772 	 */
773 	if (memblock_bottom_up()) {
774 		unsigned long kernel_end = __pa_symbol(_end);
775 
776 		/*
777 		 * we need two separate calls here. This is because we want to
778 		 * allocate page tables above the kernel. So we first map
779 		 * [kernel_end, end) to make memory above the kernel be mapped
780 		 * as soon as possible. And then use page tables allocated above
781 		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
782 		 */
783 		memory_map_bottom_up(kernel_end, end);
784 		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
785 	} else {
786 		memory_map_top_down(ISA_END_ADDRESS, end);
787 	}
788 
789 #ifdef CONFIG_X86_64
790 	if (max_pfn > max_low_pfn) {
791 		/* can we preseve max_low_pfn ?*/
792 		max_low_pfn = max_pfn;
793 	}
794 #else
795 	early_ioremap_page_table_range_init();
796 #endif
797 
798 	load_cr3(swapper_pg_dir);
799 	__flush_tlb_all();
800 
801 	x86_init.hyper.init_mem_mapping();
802 
803 	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
804 }
805 
806 /*
807  * Initialize an mm_struct to be used during poking and a pointer to be used
808  * during patching.
809  */
poking_init(void)810 void __init poking_init(void)
811 {
812 	spinlock_t *ptl;
813 	pte_t *ptep;
814 
815 	poking_mm = mm_alloc();
816 	BUG_ON(!poking_mm);
817 
818 	/* Xen PV guests need the PGD to be pinned. */
819 	paravirt_arch_dup_mmap(NULL, poking_mm);
820 
821 	/*
822 	 * Randomize the poking address, but make sure that the following page
823 	 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
824 	 * and adjust the address if the PMD ends after the first one.
825 	 */
826 	poking_addr = TASK_UNMAPPED_BASE;
827 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
828 		poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
829 			(TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
830 
831 	if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
832 		poking_addr += PAGE_SIZE;
833 
834 	/*
835 	 * We need to trigger the allocation of the page-tables that will be
836 	 * needed for poking now. Later, poking may be performed in an atomic
837 	 * section, which might cause allocation to fail.
838 	 */
839 	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
840 	BUG_ON(!ptep);
841 	pte_unmap_unlock(ptep, ptl);
842 }
843 
844 /*
845  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
846  * is valid. The argument is a physical page number.
847  *
848  * On x86, access has to be given to the first megabyte of RAM because that
849  * area traditionally contains BIOS code and data regions used by X, dosemu,
850  * and similar apps. Since they map the entire memory range, the whole range
851  * must be allowed (for mapping), but any areas that would otherwise be
852  * disallowed are flagged as being "zero filled" instead of rejected.
853  * Access has to be given to non-kernel-ram areas as well, these contain the
854  * PCI mmio resources as well as potential bios/acpi data regions.
855  */
devmem_is_allowed(unsigned long pagenr)856 int devmem_is_allowed(unsigned long pagenr)
857 {
858 	if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
859 				IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
860 			!= REGION_DISJOINT) {
861 		/*
862 		 * For disallowed memory regions in the low 1MB range,
863 		 * request that the page be shown as all zeros.
864 		 */
865 		if (pagenr < 256)
866 			return 2;
867 
868 		return 0;
869 	}
870 
871 	/*
872 	 * This must follow RAM test, since System RAM is considered a
873 	 * restricted resource under CONFIG_STRICT_IOMEM.
874 	 */
875 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
876 		/* Low 1MB bypasses iomem restrictions. */
877 		if (pagenr < 256)
878 			return 1;
879 
880 		return 0;
881 	}
882 
883 	return 1;
884 }
885 
free_init_pages(const char * what,unsigned long begin,unsigned long end)886 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
887 {
888 	unsigned long begin_aligned, end_aligned;
889 
890 	/* Make sure boundaries are page aligned */
891 	begin_aligned = PAGE_ALIGN(begin);
892 	end_aligned   = end & PAGE_MASK;
893 
894 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
895 		begin = begin_aligned;
896 		end   = end_aligned;
897 	}
898 
899 	if (begin >= end)
900 		return;
901 
902 	/*
903 	 * If debugging page accesses then do not free this memory but
904 	 * mark them not present - any buggy init-section access will
905 	 * create a kernel page fault:
906 	 */
907 	if (debug_pagealloc_enabled()) {
908 		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
909 			begin, end - 1);
910 		/*
911 		 * Inform kmemleak about the hole in the memory since the
912 		 * corresponding pages will be unmapped.
913 		 */
914 		kmemleak_free_part((void *)begin, end - begin);
915 		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
916 	} else {
917 		/*
918 		 * We just marked the kernel text read only above, now that
919 		 * we are going to free part of that, we need to make that
920 		 * writeable and non-executable first.
921 		 */
922 		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
923 		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
924 
925 		free_reserved_area((void *)begin, (void *)end,
926 				   POISON_FREE_INITMEM, what);
927 	}
928 }
929 
930 /*
931  * begin/end can be in the direct map or the "high kernel mapping"
932  * used for the kernel image only.  free_init_pages() will do the
933  * right thing for either kind of address.
934  */
free_kernel_image_pages(const char * what,void * begin,void * end)935 void free_kernel_image_pages(const char *what, void *begin, void *end)
936 {
937 	unsigned long begin_ul = (unsigned long)begin;
938 	unsigned long end_ul = (unsigned long)end;
939 	unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
940 
941 	free_init_pages(what, begin_ul, end_ul);
942 
943 	/*
944 	 * PTI maps some of the kernel into userspace.  For performance,
945 	 * this includes some kernel areas that do not contain secrets.
946 	 * Those areas might be adjacent to the parts of the kernel image
947 	 * being freed, which may contain secrets.  Remove the "high kernel
948 	 * image mapping" for these freed areas, ensuring they are not even
949 	 * potentially vulnerable to Meltdown regardless of the specific
950 	 * optimizations PTI is currently using.
951 	 *
952 	 * The "noalias" prevents unmapping the direct map alias which is
953 	 * needed to access the freed pages.
954 	 *
955 	 * This is only valid for 64bit kernels. 32bit has only one mapping
956 	 * which can't be treated in this way for obvious reasons.
957 	 */
958 	if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
959 		set_memory_np_noalias(begin_ul, len_pages);
960 }
961 
free_initmem(void)962 void __ref free_initmem(void)
963 {
964 	e820__reallocate_tables();
965 
966 	mem_encrypt_free_decrypted_mem();
967 
968 	free_kernel_image_pages("unused kernel image (initmem)",
969 				&__init_begin, &__init_end);
970 }
971 
972 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)973 void __init free_initrd_mem(unsigned long start, unsigned long end)
974 {
975 	/*
976 	 * end could be not aligned, and We can not align that,
977 	 * decompresser could be confused by aligned initrd_end
978 	 * We already reserve the end partial page before in
979 	 *   - i386_start_kernel()
980 	 *   - x86_64_start_kernel()
981 	 *   - relocate_initrd()
982 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
983 	 */
984 	free_init_pages("initrd", start, PAGE_ALIGN(end));
985 }
986 #endif
987 
988 /*
989  * Calculate the precise size of the DMA zone (first 16 MB of RAM),
990  * and pass it to the MM layer - to help it set zone watermarks more
991  * accurately.
992  *
993  * Done on 64-bit systems only for the time being, although 32-bit systems
994  * might benefit from this as well.
995  */
memblock_find_dma_reserve(void)996 void __init memblock_find_dma_reserve(void)
997 {
998 #ifdef CONFIG_X86_64
999 	u64 nr_pages = 0, nr_free_pages = 0;
1000 	unsigned long start_pfn, end_pfn;
1001 	phys_addr_t start_addr, end_addr;
1002 	int i;
1003 	u64 u;
1004 
1005 	/*
1006 	 * Iterate over all memory ranges (free and reserved ones alike),
1007 	 * to calculate the total number of pages in the first 16 MB of RAM:
1008 	 */
1009 	nr_pages = 0;
1010 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1011 		start_pfn = min(start_pfn, MAX_DMA_PFN);
1012 		end_pfn   = min(end_pfn,   MAX_DMA_PFN);
1013 
1014 		nr_pages += end_pfn - start_pfn;
1015 	}
1016 
1017 	/*
1018 	 * Iterate over free memory ranges to calculate the number of free
1019 	 * pages in the DMA zone, while not counting potential partial
1020 	 * pages at the beginning or the end of the range:
1021 	 */
1022 	nr_free_pages = 0;
1023 	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
1024 		start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
1025 		end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
1026 
1027 		if (start_pfn < end_pfn)
1028 			nr_free_pages += end_pfn - start_pfn;
1029 	}
1030 
1031 	set_dma_reserve(nr_pages - nr_free_pages);
1032 #endif
1033 }
1034 
zone_sizes_init(void)1035 void __init zone_sizes_init(void)
1036 {
1037 	unsigned long max_zone_pfns[MAX_NR_ZONES];
1038 
1039 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1040 
1041 #ifdef CONFIG_ZONE_DMA
1042 	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
1043 #endif
1044 #ifdef CONFIG_ZONE_DMA32
1045 	max_zone_pfns[ZONE_DMA32]	= disable_dma32 ? 0 : min(MAX_DMA32_PFN, max_low_pfn);
1046 #endif
1047 	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
1048 #ifdef CONFIG_HIGHMEM
1049 	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
1050 #endif
1051 
1052 	free_area_init(max_zone_pfns);
1053 }
1054 
early_disable_dma32(char * buf)1055 static int __init early_disable_dma32(char *buf)
1056 {
1057 	if (!buf)
1058 		return -EINVAL;
1059 
1060 	if (!strcmp(buf, "on"))
1061 		disable_dma32 = true;
1062 
1063 	return 0;
1064 }
1065 early_param("disable_dma32", early_disable_dma32);
1066 
1067 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1068 	.loaded_mm = &init_mm,
1069 	.next_asid = 1,
1070 	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
1071 };
1072 
update_cache_mode_entry(unsigned entry,enum page_cache_mode cache)1073 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1074 {
1075 	/* entry 0 MUST be WB (hardwired to speed up translations) */
1076 	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1077 
1078 	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1079 	__pte2cachemode_tbl[entry] = cache;
1080 }
1081 
1082 #ifdef CONFIG_SWAP
max_swapfile_size(void)1083 unsigned long max_swapfile_size(void)
1084 {
1085 	unsigned long pages;
1086 
1087 	pages = generic_max_swapfile_size();
1088 
1089 	if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1090 		/* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1091 		unsigned long long l1tf_limit = l1tf_pfn_limit();
1092 		/*
1093 		 * We encode swap offsets also with 3 bits below those for pfn
1094 		 * which makes the usable limit higher.
1095 		 */
1096 #if CONFIG_PGTABLE_LEVELS > 2
1097 		l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1098 #endif
1099 		pages = min_t(unsigned long long, l1tf_limit, pages);
1100 	}
1101 	return pages;
1102 }
1103 #endif
1104