1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
10 #include <linux/sched/mm.h>
11
12 #include <asm/set_memory.h>
13 #include <asm/cpu_device_id.h>
14 #include <asm/e820/api.h>
15 #include <asm/init.h>
16 #include <asm/page.h>
17 #include <asm/page_types.h>
18 #include <asm/sections.h>
19 #include <asm/setup.h>
20 #include <asm/tlbflush.h>
21 #include <asm/tlb.h>
22 #include <asm/proto.h>
23 #include <asm/dma.h> /* for MAX_DMA_PFN */
24 #include <asm/microcode.h>
25 #include <asm/kaslr.h>
26 #include <asm/hypervisor.h>
27 #include <asm/cpufeature.h>
28 #include <asm/pti.h>
29 #include <asm/text-patching.h>
30 #include <asm/memtype.h>
31 #include <asm/paravirt.h>
32
33 /*
34 * We need to define the tracepoints somewhere, and tlb.c
35 * is only compied when SMP=y.
36 */
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/tlb.h>
39
40 #include "mm_internal.h"
41
42 /*
43 * Tables translating between page_cache_type_t and pte encoding.
44 *
45 * The default values are defined statically as minimal supported mode;
46 * WC and WT fall back to UC-. pat_init() updates these values to support
47 * more cache modes, WC and WT, when it is safe to do so. See pat_init()
48 * for the details. Note, __early_ioremap() used during early boot-time
49 * takes pgprot_t (pte encoding) and does not use these tables.
50 *
51 * Index into __cachemode2pte_tbl[] is the cachemode.
52 *
53 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
54 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
55 */
56 static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
57 [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
58 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
59 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
60 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
61 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
62 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
63 };
64
cachemode2protval(enum page_cache_mode pcm)65 unsigned long cachemode2protval(enum page_cache_mode pcm)
66 {
67 if (likely(pcm == 0))
68 return 0;
69 return __cachemode2pte_tbl[pcm];
70 }
71 EXPORT_SYMBOL(cachemode2protval);
72
73 static uint8_t __pte2cachemode_tbl[8] = {
74 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
75 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
76 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
77 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
78 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
79 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
80 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
81 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
82 };
83
84 /*
85 * Check that the write-protect PAT entry is set for write-protect.
86 * To do this without making assumptions how PAT has been set up (Xen has
87 * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
88 * mode via the __cachemode2pte_tbl[] into protection bits (those protection
89 * bits will select a cache mode of WP or better), and then translate the
90 * protection bits back into the cache mode using __pte2cm_idx() and the
91 * __pte2cachemode_tbl[] array. This will return the really used cache mode.
92 */
x86_has_pat_wp(void)93 bool x86_has_pat_wp(void)
94 {
95 uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
96
97 return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
98 }
99
pgprot2cachemode(pgprot_t pgprot)100 enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
101 {
102 unsigned long masked;
103
104 masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
105 if (likely(masked == 0))
106 return 0;
107 return __pte2cachemode_tbl[__pte2cm_idx(masked)];
108 }
109
110 static unsigned long __initdata pgt_buf_start;
111 static unsigned long __initdata pgt_buf_end;
112 static unsigned long __initdata pgt_buf_top;
113
114 static unsigned long min_pfn_mapped;
115
116 static bool __initdata can_use_brk_pgt = true;
117
118 /*
119 * Provide a run-time mean of disabling ZONE_DMA32 if it is enabled via
120 * CONFIG_ZONE_DMA32.
121 */
122 static bool disable_dma32 __ro_after_init;
123
124 /*
125 * Pages returned are already directly mapped.
126 *
127 * Changing that is likely to break Xen, see commit:
128 *
129 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
130 *
131 * for detailed information.
132 */
alloc_low_pages(unsigned int num)133 __ref void *alloc_low_pages(unsigned int num)
134 {
135 unsigned long pfn;
136 int i;
137
138 if (after_bootmem) {
139 unsigned int order;
140
141 order = get_order((unsigned long)num << PAGE_SHIFT);
142 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
143 }
144
145 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
146 unsigned long ret = 0;
147
148 if (min_pfn_mapped < max_pfn_mapped) {
149 ret = memblock_find_in_range(
150 min_pfn_mapped << PAGE_SHIFT,
151 max_pfn_mapped << PAGE_SHIFT,
152 PAGE_SIZE * num , PAGE_SIZE);
153 }
154 if (ret)
155 memblock_reserve(ret, PAGE_SIZE * num);
156 else if (can_use_brk_pgt)
157 ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
158
159 if (!ret)
160 panic("alloc_low_pages: can not alloc memory");
161
162 pfn = ret >> PAGE_SHIFT;
163 } else {
164 pfn = pgt_buf_end;
165 pgt_buf_end += num;
166 }
167
168 for (i = 0; i < num; i++) {
169 void *adr;
170
171 adr = __va((pfn + i) << PAGE_SHIFT);
172 clear_page(adr);
173 }
174
175 return __va(pfn << PAGE_SHIFT);
176 }
177
178 /*
179 * By default need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS.
180 * With KASLR memory randomization, depending on the machine e820 memory
181 * and the PUD alignment. We may need twice more pages when KASLR memory
182 * randomization is enabled.
183 */
184 #ifndef CONFIG_RANDOMIZE_MEMORY
185 #define INIT_PGD_PAGE_COUNT 6
186 #else
187 #define INIT_PGD_PAGE_COUNT 12
188 #endif
189 #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
190 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
early_alloc_pgt_buf(void)191 void __init early_alloc_pgt_buf(void)
192 {
193 unsigned long tables = INIT_PGT_BUF_SIZE;
194 phys_addr_t base;
195
196 base = __pa(extend_brk(tables, PAGE_SIZE));
197
198 pgt_buf_start = base >> PAGE_SHIFT;
199 pgt_buf_end = pgt_buf_start;
200 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
201 }
202
203 int after_bootmem;
204
205 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
206
207 struct map_range {
208 unsigned long start;
209 unsigned long end;
210 unsigned page_size_mask;
211 };
212
213 static int page_size_mask;
214
215 /*
216 * Save some of cr4 feature set we're using (e.g. Pentium 4MB
217 * enable and PPro Global page enable), so that any CPU's that boot
218 * up after us can get the correct flags. Invoked on the boot CPU.
219 */
cr4_set_bits_and_update_boot(unsigned long mask)220 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
221 {
222 mmu_cr4_features |= mask;
223 if (trampoline_cr4_features)
224 *trampoline_cr4_features = mmu_cr4_features;
225 cr4_set_bits(mask);
226 }
227
probe_page_size_mask(void)228 static void __init probe_page_size_mask(void)
229 {
230 /*
231 * For pagealloc debugging, identity mapping will use small pages.
232 * This will simplify cpa(), which otherwise needs to support splitting
233 * large pages into small in interrupt context, etc.
234 */
235 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
236 page_size_mask |= 1 << PG_LEVEL_2M;
237 else
238 direct_gbpages = 0;
239
240 /* Enable PSE if available */
241 if (boot_cpu_has(X86_FEATURE_PSE))
242 cr4_set_bits_and_update_boot(X86_CR4_PSE);
243
244 /* Enable PGE if available */
245 __supported_pte_mask &= ~_PAGE_GLOBAL;
246 if (boot_cpu_has(X86_FEATURE_PGE)) {
247 cr4_set_bits_and_update_boot(X86_CR4_PGE);
248 __supported_pte_mask |= _PAGE_GLOBAL;
249 }
250
251 /* By the default is everything supported: */
252 __default_kernel_pte_mask = __supported_pte_mask;
253 /* Except when with PTI where the kernel is mostly non-Global: */
254 if (cpu_feature_enabled(X86_FEATURE_PTI))
255 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
256
257 /* Enable 1 GB linear kernel mappings if available: */
258 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
259 printk(KERN_INFO "Using GB pages for direct mapping\n");
260 page_size_mask |= 1 << PG_LEVEL_1G;
261 } else {
262 direct_gbpages = 0;
263 }
264 }
265
266 #define INTEL_MATCH(_model) { .vendor = X86_VENDOR_INTEL, \
267 .family = 6, \
268 .model = _model, \
269 }
270 /*
271 * INVLPG may not properly flush Global entries
272 * on these CPUs when PCIDs are enabled.
273 */
274 static const struct x86_cpu_id invlpg_miss_ids[] = {
275 INTEL_MATCH(INTEL_FAM6_ALDERLAKE ),
276 INTEL_MATCH(INTEL_FAM6_ALDERLAKE_L ),
277 INTEL_MATCH(INTEL_FAM6_ALDERLAKE_N ),
278 INTEL_MATCH(INTEL_FAM6_RAPTORLAKE ),
279 INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_P),
280 INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_S),
281 {}
282 };
283
setup_pcid(void)284 static void setup_pcid(void)
285 {
286 if (!IS_ENABLED(CONFIG_X86_64))
287 return;
288
289 if (!boot_cpu_has(X86_FEATURE_PCID))
290 return;
291
292 if (x86_match_cpu(invlpg_miss_ids)) {
293 pr_info("Incomplete global flushes, disabling PCID");
294 setup_clear_cpu_cap(X86_FEATURE_PCID);
295 return;
296 }
297
298 if (boot_cpu_has(X86_FEATURE_PGE)) {
299 /*
300 * This can't be cr4_set_bits_and_update_boot() -- the
301 * trampoline code can't handle CR4.PCIDE and it wouldn't
302 * do any good anyway. Despite the name,
303 * cr4_set_bits_and_update_boot() doesn't actually cause
304 * the bits in question to remain set all the way through
305 * the secondary boot asm.
306 *
307 * Instead, we brute-force it and set CR4.PCIDE manually in
308 * start_secondary().
309 */
310 cr4_set_bits(X86_CR4_PCIDE);
311
312 /*
313 * INVPCID's single-context modes (2/3) only work if we set
314 * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable
315 * on systems that have X86_CR4_PCIDE clear, or that have
316 * no INVPCID support at all.
317 */
318 if (boot_cpu_has(X86_FEATURE_INVPCID))
319 setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
320 } else {
321 /*
322 * flush_tlb_all(), as currently implemented, won't work if
323 * PCID is on but PGE is not. Since that combination
324 * doesn't exist on real hardware, there's no reason to try
325 * to fully support it, but it's polite to avoid corrupting
326 * data if we're on an improperly configured VM.
327 */
328 setup_clear_cpu_cap(X86_FEATURE_PCID);
329 }
330 }
331
332 #ifdef CONFIG_X86_32
333 #define NR_RANGE_MR 3
334 #else /* CONFIG_X86_64 */
335 #define NR_RANGE_MR 5
336 #endif
337
save_mr(struct map_range * mr,int nr_range,unsigned long start_pfn,unsigned long end_pfn,unsigned long page_size_mask)338 static int __meminit save_mr(struct map_range *mr, int nr_range,
339 unsigned long start_pfn, unsigned long end_pfn,
340 unsigned long page_size_mask)
341 {
342 if (start_pfn < end_pfn) {
343 if (nr_range >= NR_RANGE_MR)
344 panic("run out of range for init_memory_mapping\n");
345 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
346 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
347 mr[nr_range].page_size_mask = page_size_mask;
348 nr_range++;
349 }
350
351 return nr_range;
352 }
353
354 /*
355 * adjust the page_size_mask for small range to go with
356 * big page size instead small one if nearby are ram too.
357 */
adjust_range_page_size_mask(struct map_range * mr,int nr_range)358 static void __ref adjust_range_page_size_mask(struct map_range *mr,
359 int nr_range)
360 {
361 int i;
362
363 for (i = 0; i < nr_range; i++) {
364 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
365 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
366 unsigned long start = round_down(mr[i].start, PMD_SIZE);
367 unsigned long end = round_up(mr[i].end, PMD_SIZE);
368
369 #ifdef CONFIG_X86_32
370 if ((end >> PAGE_SHIFT) > max_low_pfn)
371 continue;
372 #endif
373
374 if (memblock_is_region_memory(start, end - start))
375 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
376 }
377 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
378 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
379 unsigned long start = round_down(mr[i].start, PUD_SIZE);
380 unsigned long end = round_up(mr[i].end, PUD_SIZE);
381
382 if (memblock_is_region_memory(start, end - start))
383 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
384 }
385 }
386 }
387
page_size_string(struct map_range * mr)388 static const char *page_size_string(struct map_range *mr)
389 {
390 static const char str_1g[] = "1G";
391 static const char str_2m[] = "2M";
392 static const char str_4m[] = "4M";
393 static const char str_4k[] = "4k";
394
395 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
396 return str_1g;
397 /*
398 * 32-bit without PAE has a 4M large page size.
399 * PG_LEVEL_2M is misnamed, but we can at least
400 * print out the right size in the string.
401 */
402 if (IS_ENABLED(CONFIG_X86_32) &&
403 !IS_ENABLED(CONFIG_X86_PAE) &&
404 mr->page_size_mask & (1<<PG_LEVEL_2M))
405 return str_4m;
406
407 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
408 return str_2m;
409
410 return str_4k;
411 }
412
split_mem_range(struct map_range * mr,int nr_range,unsigned long start,unsigned long end)413 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
414 unsigned long start,
415 unsigned long end)
416 {
417 unsigned long start_pfn, end_pfn, limit_pfn;
418 unsigned long pfn;
419 int i;
420
421 limit_pfn = PFN_DOWN(end);
422
423 /* head if not big page alignment ? */
424 pfn = start_pfn = PFN_DOWN(start);
425 #ifdef CONFIG_X86_32
426 /*
427 * Don't use a large page for the first 2/4MB of memory
428 * because there are often fixed size MTRRs in there
429 * and overlapping MTRRs into large pages can cause
430 * slowdowns.
431 */
432 if (pfn == 0)
433 end_pfn = PFN_DOWN(PMD_SIZE);
434 else
435 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
436 #else /* CONFIG_X86_64 */
437 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
438 #endif
439 if (end_pfn > limit_pfn)
440 end_pfn = limit_pfn;
441 if (start_pfn < end_pfn) {
442 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
443 pfn = end_pfn;
444 }
445
446 /* big page (2M) range */
447 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
448 #ifdef CONFIG_X86_32
449 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
450 #else /* CONFIG_X86_64 */
451 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
452 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
453 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
454 #endif
455
456 if (start_pfn < end_pfn) {
457 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
458 page_size_mask & (1<<PG_LEVEL_2M));
459 pfn = end_pfn;
460 }
461
462 #ifdef CONFIG_X86_64
463 /* big page (1G) range */
464 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
465 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
466 if (start_pfn < end_pfn) {
467 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
468 page_size_mask &
469 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
470 pfn = end_pfn;
471 }
472
473 /* tail is not big page (1G) alignment */
474 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
475 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
476 if (start_pfn < end_pfn) {
477 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
478 page_size_mask & (1<<PG_LEVEL_2M));
479 pfn = end_pfn;
480 }
481 #endif
482
483 /* tail is not big page (2M) alignment */
484 start_pfn = pfn;
485 end_pfn = limit_pfn;
486 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
487
488 if (!after_bootmem)
489 adjust_range_page_size_mask(mr, nr_range);
490
491 /* try to merge same page size and continuous */
492 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
493 unsigned long old_start;
494 if (mr[i].end != mr[i+1].start ||
495 mr[i].page_size_mask != mr[i+1].page_size_mask)
496 continue;
497 /* move it */
498 old_start = mr[i].start;
499 memmove(&mr[i], &mr[i+1],
500 (nr_range - 1 - i) * sizeof(struct map_range));
501 mr[i--].start = old_start;
502 nr_range--;
503 }
504
505 for (i = 0; i < nr_range; i++)
506 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
507 mr[i].start, mr[i].end - 1,
508 page_size_string(&mr[i]));
509
510 return nr_range;
511 }
512
513 struct range pfn_mapped[E820_MAX_ENTRIES];
514 int nr_pfn_mapped;
515
add_pfn_range_mapped(unsigned long start_pfn,unsigned long end_pfn)516 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
517 {
518 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
519 nr_pfn_mapped, start_pfn, end_pfn);
520 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
521
522 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
523
524 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
525 max_low_pfn_mapped = max(max_low_pfn_mapped,
526 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
527 }
528
pfn_range_is_mapped(unsigned long start_pfn,unsigned long end_pfn)529 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
530 {
531 int i;
532
533 for (i = 0; i < nr_pfn_mapped; i++)
534 if ((start_pfn >= pfn_mapped[i].start) &&
535 (end_pfn <= pfn_mapped[i].end))
536 return true;
537
538 return false;
539 }
540
541 /*
542 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
543 * This runs before bootmem is initialized and gets pages directly from
544 * the physical memory. To access them they are temporarily mapped.
545 */
init_memory_mapping(unsigned long start,unsigned long end,pgprot_t prot)546 unsigned long __ref init_memory_mapping(unsigned long start,
547 unsigned long end, pgprot_t prot)
548 {
549 struct map_range mr[NR_RANGE_MR];
550 unsigned long ret = 0;
551 int nr_range, i;
552
553 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
554 start, end - 1);
555
556 memset(mr, 0, sizeof(mr));
557 nr_range = split_mem_range(mr, 0, start, end);
558
559 for (i = 0; i < nr_range; i++)
560 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
561 mr[i].page_size_mask,
562 prot);
563
564 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
565
566 return ret >> PAGE_SHIFT;
567 }
568
569 /*
570 * We need to iterate through the E820 memory map and create direct mappings
571 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
572 * create direct mappings for all pfns from [0 to max_low_pfn) and
573 * [4GB to max_pfn) because of possible memory holes in high addresses
574 * that cannot be marked as UC by fixed/variable range MTRRs.
575 * Depending on the alignment of E820 ranges, this may possibly result
576 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
577 *
578 * init_mem_mapping() calls init_range_memory_mapping() with big range.
579 * That range would have hole in the middle or ends, and only ram parts
580 * will be mapped in init_range_memory_mapping().
581 */
init_range_memory_mapping(unsigned long r_start,unsigned long r_end)582 static unsigned long __init init_range_memory_mapping(
583 unsigned long r_start,
584 unsigned long r_end)
585 {
586 unsigned long start_pfn, end_pfn;
587 unsigned long mapped_ram_size = 0;
588 int i;
589
590 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
591 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
592 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
593 if (start >= end)
594 continue;
595
596 /*
597 * if it is overlapping with brk pgt, we need to
598 * alloc pgt buf from memblock instead.
599 */
600 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
601 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
602 init_memory_mapping(start, end, PAGE_KERNEL);
603 mapped_ram_size += end - start;
604 can_use_brk_pgt = true;
605 }
606
607 return mapped_ram_size;
608 }
609
get_new_step_size(unsigned long step_size)610 static unsigned long __init get_new_step_size(unsigned long step_size)
611 {
612 /*
613 * Initial mapped size is PMD_SIZE (2M).
614 * We can not set step_size to be PUD_SIZE (1G) yet.
615 * In worse case, when we cross the 1G boundary, and
616 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
617 * to map 1G range with PTE. Hence we use one less than the
618 * difference of page table level shifts.
619 *
620 * Don't need to worry about overflow in the top-down case, on 32bit,
621 * when step_size is 0, round_down() returns 0 for start, and that
622 * turns it into 0x100000000ULL.
623 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
624 * needs to be taken into consideration by the code below.
625 */
626 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
627 }
628
629 /**
630 * memory_map_top_down - Map [map_start, map_end) top down
631 * @map_start: start address of the target memory range
632 * @map_end: end address of the target memory range
633 *
634 * This function will setup direct mapping for memory range
635 * [map_start, map_end) in top-down. That said, the page tables
636 * will be allocated at the end of the memory, and we map the
637 * memory in top-down.
638 */
memory_map_top_down(unsigned long map_start,unsigned long map_end)639 static void __init memory_map_top_down(unsigned long map_start,
640 unsigned long map_end)
641 {
642 unsigned long real_end, start, last_start;
643 unsigned long step_size;
644 unsigned long addr;
645 unsigned long mapped_ram_size = 0;
646
647 /* xen has big range in reserved near end of ram, skip it at first.*/
648 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
649 real_end = addr + PMD_SIZE;
650
651 /* step_size need to be small so pgt_buf from BRK could cover it */
652 step_size = PMD_SIZE;
653 max_pfn_mapped = 0; /* will get exact value next */
654 min_pfn_mapped = real_end >> PAGE_SHIFT;
655 last_start = start = real_end;
656
657 /*
658 * We start from the top (end of memory) and go to the bottom.
659 * The memblock_find_in_range() gets us a block of RAM from the
660 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
661 * for page table.
662 */
663 while (last_start > map_start) {
664 if (last_start > step_size) {
665 start = round_down(last_start - 1, step_size);
666 if (start < map_start)
667 start = map_start;
668 } else
669 start = map_start;
670 mapped_ram_size += init_range_memory_mapping(start,
671 last_start);
672 last_start = start;
673 min_pfn_mapped = last_start >> PAGE_SHIFT;
674 if (mapped_ram_size >= step_size)
675 step_size = get_new_step_size(step_size);
676 }
677
678 if (real_end < map_end)
679 init_range_memory_mapping(real_end, map_end);
680 }
681
682 /**
683 * memory_map_bottom_up - Map [map_start, map_end) bottom up
684 * @map_start: start address of the target memory range
685 * @map_end: end address of the target memory range
686 *
687 * This function will setup direct mapping for memory range
688 * [map_start, map_end) in bottom-up. Since we have limited the
689 * bottom-up allocation above the kernel, the page tables will
690 * be allocated just above the kernel and we map the memory
691 * in [map_start, map_end) in bottom-up.
692 */
memory_map_bottom_up(unsigned long map_start,unsigned long map_end)693 static void __init memory_map_bottom_up(unsigned long map_start,
694 unsigned long map_end)
695 {
696 unsigned long next, start;
697 unsigned long mapped_ram_size = 0;
698 /* step_size need to be small so pgt_buf from BRK could cover it */
699 unsigned long step_size = PMD_SIZE;
700
701 start = map_start;
702 min_pfn_mapped = start >> PAGE_SHIFT;
703
704 /*
705 * We start from the bottom (@map_start) and go to the top (@map_end).
706 * The memblock_find_in_range() gets us a block of RAM from the
707 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
708 * for page table.
709 */
710 while (start < map_end) {
711 if (step_size && map_end - start > step_size) {
712 next = round_up(start + 1, step_size);
713 if (next > map_end)
714 next = map_end;
715 } else {
716 next = map_end;
717 }
718
719 mapped_ram_size += init_range_memory_mapping(start, next);
720 start = next;
721
722 if (mapped_ram_size >= step_size)
723 step_size = get_new_step_size(step_size);
724 }
725 }
726
727 /*
728 * The real mode trampoline, which is required for bootstrapping CPUs
729 * occupies only a small area under the low 1MB. See reserve_real_mode()
730 * for details.
731 *
732 * If KASLR is disabled the first PGD entry of the direct mapping is copied
733 * to map the real mode trampoline.
734 *
735 * If KASLR is enabled, copy only the PUD which covers the low 1MB
736 * area. This limits the randomization granularity to 1GB for both 4-level
737 * and 5-level paging.
738 */
init_trampoline(void)739 static void __init init_trampoline(void)
740 {
741 #ifdef CONFIG_X86_64
742 if (!kaslr_memory_enabled())
743 trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
744 else
745 init_trampoline_kaslr();
746 #endif
747 }
748
init_mem_mapping(void)749 void __init init_mem_mapping(void)
750 {
751 unsigned long end;
752
753 pti_check_boottime_disable();
754 probe_page_size_mask();
755 setup_pcid();
756
757 #ifdef CONFIG_X86_64
758 end = max_pfn << PAGE_SHIFT;
759 #else
760 end = max_low_pfn << PAGE_SHIFT;
761 #endif
762
763 /* the ISA range is always mapped regardless of memory holes */
764 init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
765
766 /* Init the trampoline, possibly with KASLR memory offset */
767 init_trampoline();
768
769 /*
770 * If the allocation is in bottom-up direction, we setup direct mapping
771 * in bottom-up, otherwise we setup direct mapping in top-down.
772 */
773 if (memblock_bottom_up()) {
774 unsigned long kernel_end = __pa_symbol(_end);
775
776 /*
777 * we need two separate calls here. This is because we want to
778 * allocate page tables above the kernel. So we first map
779 * [kernel_end, end) to make memory above the kernel be mapped
780 * as soon as possible. And then use page tables allocated above
781 * the kernel to map [ISA_END_ADDRESS, kernel_end).
782 */
783 memory_map_bottom_up(kernel_end, end);
784 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
785 } else {
786 memory_map_top_down(ISA_END_ADDRESS, end);
787 }
788
789 #ifdef CONFIG_X86_64
790 if (max_pfn > max_low_pfn) {
791 /* can we preseve max_low_pfn ?*/
792 max_low_pfn = max_pfn;
793 }
794 #else
795 early_ioremap_page_table_range_init();
796 #endif
797
798 load_cr3(swapper_pg_dir);
799 __flush_tlb_all();
800
801 x86_init.hyper.init_mem_mapping();
802
803 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
804 }
805
806 /*
807 * Initialize an mm_struct to be used during poking and a pointer to be used
808 * during patching.
809 */
poking_init(void)810 void __init poking_init(void)
811 {
812 spinlock_t *ptl;
813 pte_t *ptep;
814
815 poking_mm = mm_alloc();
816 BUG_ON(!poking_mm);
817
818 /* Xen PV guests need the PGD to be pinned. */
819 paravirt_arch_dup_mmap(NULL, poking_mm);
820
821 /*
822 * Randomize the poking address, but make sure that the following page
823 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
824 * and adjust the address if the PMD ends after the first one.
825 */
826 poking_addr = TASK_UNMAPPED_BASE;
827 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
828 poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
829 (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
830
831 if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
832 poking_addr += PAGE_SIZE;
833
834 /*
835 * We need to trigger the allocation of the page-tables that will be
836 * needed for poking now. Later, poking may be performed in an atomic
837 * section, which might cause allocation to fail.
838 */
839 ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
840 BUG_ON(!ptep);
841 pte_unmap_unlock(ptep, ptl);
842 }
843
844 /*
845 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
846 * is valid. The argument is a physical page number.
847 *
848 * On x86, access has to be given to the first megabyte of RAM because that
849 * area traditionally contains BIOS code and data regions used by X, dosemu,
850 * and similar apps. Since they map the entire memory range, the whole range
851 * must be allowed (for mapping), but any areas that would otherwise be
852 * disallowed are flagged as being "zero filled" instead of rejected.
853 * Access has to be given to non-kernel-ram areas as well, these contain the
854 * PCI mmio resources as well as potential bios/acpi data regions.
855 */
devmem_is_allowed(unsigned long pagenr)856 int devmem_is_allowed(unsigned long pagenr)
857 {
858 if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
859 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
860 != REGION_DISJOINT) {
861 /*
862 * For disallowed memory regions in the low 1MB range,
863 * request that the page be shown as all zeros.
864 */
865 if (pagenr < 256)
866 return 2;
867
868 return 0;
869 }
870
871 /*
872 * This must follow RAM test, since System RAM is considered a
873 * restricted resource under CONFIG_STRICT_IOMEM.
874 */
875 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
876 /* Low 1MB bypasses iomem restrictions. */
877 if (pagenr < 256)
878 return 1;
879
880 return 0;
881 }
882
883 return 1;
884 }
885
free_init_pages(const char * what,unsigned long begin,unsigned long end)886 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
887 {
888 unsigned long begin_aligned, end_aligned;
889
890 /* Make sure boundaries are page aligned */
891 begin_aligned = PAGE_ALIGN(begin);
892 end_aligned = end & PAGE_MASK;
893
894 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
895 begin = begin_aligned;
896 end = end_aligned;
897 }
898
899 if (begin >= end)
900 return;
901
902 /*
903 * If debugging page accesses then do not free this memory but
904 * mark them not present - any buggy init-section access will
905 * create a kernel page fault:
906 */
907 if (debug_pagealloc_enabled()) {
908 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
909 begin, end - 1);
910 /*
911 * Inform kmemleak about the hole in the memory since the
912 * corresponding pages will be unmapped.
913 */
914 kmemleak_free_part((void *)begin, end - begin);
915 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
916 } else {
917 /*
918 * We just marked the kernel text read only above, now that
919 * we are going to free part of that, we need to make that
920 * writeable and non-executable first.
921 */
922 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
923 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
924
925 free_reserved_area((void *)begin, (void *)end,
926 POISON_FREE_INITMEM, what);
927 }
928 }
929
930 /*
931 * begin/end can be in the direct map or the "high kernel mapping"
932 * used for the kernel image only. free_init_pages() will do the
933 * right thing for either kind of address.
934 */
free_kernel_image_pages(const char * what,void * begin,void * end)935 void free_kernel_image_pages(const char *what, void *begin, void *end)
936 {
937 unsigned long begin_ul = (unsigned long)begin;
938 unsigned long end_ul = (unsigned long)end;
939 unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
940
941 free_init_pages(what, begin_ul, end_ul);
942
943 /*
944 * PTI maps some of the kernel into userspace. For performance,
945 * this includes some kernel areas that do not contain secrets.
946 * Those areas might be adjacent to the parts of the kernel image
947 * being freed, which may contain secrets. Remove the "high kernel
948 * image mapping" for these freed areas, ensuring they are not even
949 * potentially vulnerable to Meltdown regardless of the specific
950 * optimizations PTI is currently using.
951 *
952 * The "noalias" prevents unmapping the direct map alias which is
953 * needed to access the freed pages.
954 *
955 * This is only valid for 64bit kernels. 32bit has only one mapping
956 * which can't be treated in this way for obvious reasons.
957 */
958 if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
959 set_memory_np_noalias(begin_ul, len_pages);
960 }
961
free_initmem(void)962 void __ref free_initmem(void)
963 {
964 e820__reallocate_tables();
965
966 mem_encrypt_free_decrypted_mem();
967
968 free_kernel_image_pages("unused kernel image (initmem)",
969 &__init_begin, &__init_end);
970 }
971
972 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)973 void __init free_initrd_mem(unsigned long start, unsigned long end)
974 {
975 /*
976 * end could be not aligned, and We can not align that,
977 * decompresser could be confused by aligned initrd_end
978 * We already reserve the end partial page before in
979 * - i386_start_kernel()
980 * - x86_64_start_kernel()
981 * - relocate_initrd()
982 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
983 */
984 free_init_pages("initrd", start, PAGE_ALIGN(end));
985 }
986 #endif
987
988 /*
989 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
990 * and pass it to the MM layer - to help it set zone watermarks more
991 * accurately.
992 *
993 * Done on 64-bit systems only for the time being, although 32-bit systems
994 * might benefit from this as well.
995 */
memblock_find_dma_reserve(void)996 void __init memblock_find_dma_reserve(void)
997 {
998 #ifdef CONFIG_X86_64
999 u64 nr_pages = 0, nr_free_pages = 0;
1000 unsigned long start_pfn, end_pfn;
1001 phys_addr_t start_addr, end_addr;
1002 int i;
1003 u64 u;
1004
1005 /*
1006 * Iterate over all memory ranges (free and reserved ones alike),
1007 * to calculate the total number of pages in the first 16 MB of RAM:
1008 */
1009 nr_pages = 0;
1010 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1011 start_pfn = min(start_pfn, MAX_DMA_PFN);
1012 end_pfn = min(end_pfn, MAX_DMA_PFN);
1013
1014 nr_pages += end_pfn - start_pfn;
1015 }
1016
1017 /*
1018 * Iterate over free memory ranges to calculate the number of free
1019 * pages in the DMA zone, while not counting potential partial
1020 * pages at the beginning or the end of the range:
1021 */
1022 nr_free_pages = 0;
1023 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
1024 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
1025 end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
1026
1027 if (start_pfn < end_pfn)
1028 nr_free_pages += end_pfn - start_pfn;
1029 }
1030
1031 set_dma_reserve(nr_pages - nr_free_pages);
1032 #endif
1033 }
1034
zone_sizes_init(void)1035 void __init zone_sizes_init(void)
1036 {
1037 unsigned long max_zone_pfns[MAX_NR_ZONES];
1038
1039 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1040
1041 #ifdef CONFIG_ZONE_DMA
1042 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
1043 #endif
1044 #ifdef CONFIG_ZONE_DMA32
1045 max_zone_pfns[ZONE_DMA32] = disable_dma32 ? 0 : min(MAX_DMA32_PFN, max_low_pfn);
1046 #endif
1047 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
1048 #ifdef CONFIG_HIGHMEM
1049 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
1050 #endif
1051
1052 free_area_init(max_zone_pfns);
1053 }
1054
early_disable_dma32(char * buf)1055 static int __init early_disable_dma32(char *buf)
1056 {
1057 if (!buf)
1058 return -EINVAL;
1059
1060 if (!strcmp(buf, "on"))
1061 disable_dma32 = true;
1062
1063 return 0;
1064 }
1065 early_param("disable_dma32", early_disable_dma32);
1066
1067 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1068 .loaded_mm = &init_mm,
1069 .next_asid = 1,
1070 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
1071 };
1072
update_cache_mode_entry(unsigned entry,enum page_cache_mode cache)1073 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1074 {
1075 /* entry 0 MUST be WB (hardwired to speed up translations) */
1076 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1077
1078 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1079 __pte2cachemode_tbl[entry] = cache;
1080 }
1081
1082 #ifdef CONFIG_SWAP
max_swapfile_size(void)1083 unsigned long max_swapfile_size(void)
1084 {
1085 unsigned long pages;
1086
1087 pages = generic_max_swapfile_size();
1088
1089 if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1090 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1091 unsigned long long l1tf_limit = l1tf_pfn_limit();
1092 /*
1093 * We encode swap offsets also with 3 bits below those for pfn
1094 * which makes the usable limit higher.
1095 */
1096 #if CONFIG_PGTABLE_LEVELS > 2
1097 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1098 #endif
1099 pages = min_t(unsigned long long, l1tf_limit, pages);
1100 }
1101 return pages;
1102 }
1103 #endif
1104