• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to segment and merge handling
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
10 #ifndef __GENKSYMS__
11 #include <linux/blk-cgroup.h>
12 #endif
13 
14 #include <trace/events/block.h>
15 
16 #include "blk.h"
17 #include "blk-rq-qos.h"
18 
bio_will_gap(struct request_queue * q,struct request * prev_rq,struct bio * prev,struct bio * next)19 static inline bool bio_will_gap(struct request_queue *q,
20 		struct request *prev_rq, struct bio *prev, struct bio *next)
21 {
22 	struct bio_vec pb, nb;
23 
24 	if (!bio_has_data(prev) || !queue_virt_boundary(q))
25 		return false;
26 
27 	/*
28 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
29 	 * is quite difficult to respect the sg gap limit.  We work hard to
30 	 * merge a huge number of small single bios in case of mkfs.
31 	 */
32 	if (prev_rq)
33 		bio_get_first_bvec(prev_rq->bio, &pb);
34 	else
35 		bio_get_first_bvec(prev, &pb);
36 	if (pb.bv_offset & queue_virt_boundary(q))
37 		return true;
38 
39 	/*
40 	 * We don't need to worry about the situation that the merged segment
41 	 * ends in unaligned virt boundary:
42 	 *
43 	 * - if 'pb' ends aligned, the merged segment ends aligned
44 	 * - if 'pb' ends unaligned, the next bio must include
45 	 *   one single bvec of 'nb', otherwise the 'nb' can't
46 	 *   merge with 'pb'
47 	 */
48 	bio_get_last_bvec(prev, &pb);
49 	bio_get_first_bvec(next, &nb);
50 	if (biovec_phys_mergeable(q, &pb, &nb))
51 		return false;
52 	return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
53 }
54 
req_gap_back_merge(struct request * req,struct bio * bio)55 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
56 {
57 	return bio_will_gap(req->q, req, req->biotail, bio);
58 }
59 
req_gap_front_merge(struct request * req,struct bio * bio)60 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
61 {
62 	return bio_will_gap(req->q, NULL, bio, req->bio);
63 }
64 
blk_bio_discard_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * nsegs)65 static struct bio *blk_bio_discard_split(struct request_queue *q,
66 					 struct bio *bio,
67 					 struct bio_set *bs,
68 					 unsigned *nsegs)
69 {
70 	unsigned int max_discard_sectors, granularity;
71 	int alignment;
72 	sector_t tmp;
73 	unsigned split_sectors;
74 
75 	*nsegs = 1;
76 
77 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
78 	granularity = max(q->limits.discard_granularity >> 9, 1U);
79 
80 	max_discard_sectors = min(q->limits.max_discard_sectors,
81 			bio_allowed_max_sectors(q));
82 	max_discard_sectors -= max_discard_sectors % granularity;
83 
84 	if (unlikely(!max_discard_sectors)) {
85 		/* XXX: warn */
86 		return NULL;
87 	}
88 
89 	if (bio_sectors(bio) <= max_discard_sectors)
90 		return NULL;
91 
92 	split_sectors = max_discard_sectors;
93 
94 	/*
95 	 * If the next starting sector would be misaligned, stop the discard at
96 	 * the previous aligned sector.
97 	 */
98 	alignment = (q->limits.discard_alignment >> 9) % granularity;
99 
100 	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
101 	tmp = sector_div(tmp, granularity);
102 
103 	if (split_sectors > tmp)
104 		split_sectors -= tmp;
105 
106 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
107 }
108 
blk_bio_write_zeroes_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * nsegs)109 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
110 		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
111 {
112 	*nsegs = 0;
113 
114 	if (!q->limits.max_write_zeroes_sectors)
115 		return NULL;
116 
117 	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
118 		return NULL;
119 
120 	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
121 }
122 
blk_bio_write_same_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * nsegs)123 static struct bio *blk_bio_write_same_split(struct request_queue *q,
124 					    struct bio *bio,
125 					    struct bio_set *bs,
126 					    unsigned *nsegs)
127 {
128 	*nsegs = 1;
129 
130 	if (!q->limits.max_write_same_sectors)
131 		return NULL;
132 
133 	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
134 		return NULL;
135 
136 	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
137 }
138 
139 /*
140  * Return the maximum number of sectors from the start of a bio that may be
141  * submitted as a single request to a block device. If enough sectors remain,
142  * align the end to the physical block size. Otherwise align the end to the
143  * logical block size. This approach minimizes the number of non-aligned
144  * requests that are submitted to a block device if the start of a bio is not
145  * aligned to a physical block boundary.
146  */
get_max_io_size(struct request_queue * q,struct bio * bio)147 static inline unsigned get_max_io_size(struct request_queue *q,
148 				       struct bio *bio)
149 {
150 	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0);
151 	unsigned max_sectors = sectors;
152 	unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
153 	unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
154 	unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
155 
156 	max_sectors += start_offset;
157 	max_sectors &= ~(pbs - 1);
158 	if (max_sectors > start_offset)
159 		return max_sectors - start_offset;
160 
161 	return sectors & ~(lbs - 1);
162 }
163 
get_max_segment_size(const struct request_queue * q,struct page * start_page,unsigned long offset)164 static inline unsigned get_max_segment_size(const struct request_queue *q,
165 					    struct page *start_page,
166 					    unsigned long offset)
167 {
168 	unsigned long mask = queue_segment_boundary(q);
169 
170 	offset = mask & (page_to_phys(start_page) + offset);
171 
172 	/*
173 	 * overflow may be triggered in case of zero page physical address
174 	 * on 32bit arch, use queue's max segment size when that happens.
175 	 */
176 	return min_not_zero(mask - offset + 1,
177 			(unsigned long)queue_max_segment_size(q));
178 }
179 
180 /**
181  * bvec_split_segs - verify whether or not a bvec should be split in the middle
182  * @q:        [in] request queue associated with the bio associated with @bv
183  * @bv:       [in] bvec to examine
184  * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
185  *            by the number of segments from @bv that may be appended to that
186  *            bio without exceeding @max_segs
187  * @sectors:  [in,out] Number of sectors in the bio being built. Incremented
188  *            by the number of sectors from @bv that may be appended to that
189  *            bio without exceeding @max_sectors
190  * @max_segs: [in] upper bound for *@nsegs
191  * @max_sectors: [in] upper bound for *@sectors
192  *
193  * When splitting a bio, it can happen that a bvec is encountered that is too
194  * big to fit in a single segment and hence that it has to be split in the
195  * middle. This function verifies whether or not that should happen. The value
196  * %true is returned if and only if appending the entire @bv to a bio with
197  * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
198  * the block driver.
199  */
bvec_split_segs(const struct request_queue * q,const struct bio_vec * bv,unsigned * nsegs,unsigned * sectors,unsigned max_segs,unsigned max_sectors)200 static bool bvec_split_segs(const struct request_queue *q,
201 			    const struct bio_vec *bv, unsigned *nsegs,
202 			    unsigned *sectors, unsigned max_segs,
203 			    unsigned max_sectors)
204 {
205 	unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
206 	unsigned len = min(bv->bv_len, max_len);
207 	unsigned total_len = 0;
208 	unsigned seg_size = 0;
209 
210 	while (len && *nsegs < max_segs) {
211 		seg_size = get_max_segment_size(q, bv->bv_page,
212 						bv->bv_offset + total_len);
213 		seg_size = min(seg_size, len);
214 
215 		(*nsegs)++;
216 		total_len += seg_size;
217 		len -= seg_size;
218 
219 		if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
220 			break;
221 	}
222 
223 	*sectors += total_len >> 9;
224 
225 	/* tell the caller to split the bvec if it is too big to fit */
226 	return len > 0 || bv->bv_len > max_len;
227 }
228 
229 /**
230  * blk_bio_segment_split - split a bio in two bios
231  * @q:    [in] request queue pointer
232  * @bio:  [in] bio to be split
233  * @bs:	  [in] bio set to allocate the clone from
234  * @segs: [out] number of segments in the bio with the first half of the sectors
235  *
236  * Clone @bio, update the bi_iter of the clone to represent the first sectors
237  * of @bio and update @bio->bi_iter to represent the remaining sectors. The
238  * following is guaranteed for the cloned bio:
239  * - That it has at most get_max_io_size(@q, @bio) sectors.
240  * - That it has at most queue_max_segments(@q) segments.
241  *
242  * Except for discard requests the cloned bio will point at the bi_io_vec of
243  * the original bio. It is the responsibility of the caller to ensure that the
244  * original bio is not freed before the cloned bio. The caller is also
245  * responsible for ensuring that @bs is only destroyed after processing of the
246  * split bio has finished.
247  */
blk_bio_segment_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * segs)248 static struct bio *blk_bio_segment_split(struct request_queue *q,
249 					 struct bio *bio,
250 					 struct bio_set *bs,
251 					 unsigned *segs)
252 {
253 	struct bio_vec bv, bvprv, *bvprvp = NULL;
254 	struct bvec_iter iter;
255 	unsigned nsegs = 0, sectors = 0;
256 	const unsigned max_sectors = get_max_io_size(q, bio);
257 	const unsigned max_segs = queue_max_segments(q);
258 
259 	bio_for_each_bvec(bv, bio, iter) {
260 		/*
261 		 * If the queue doesn't support SG gaps and adding this
262 		 * offset would create a gap, disallow it.
263 		 */
264 		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
265 			goto split;
266 
267 		if (nsegs < max_segs &&
268 		    sectors + (bv.bv_len >> 9) <= max_sectors &&
269 		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
270 			nsegs++;
271 			sectors += bv.bv_len >> 9;
272 		} else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
273 					 max_sectors)) {
274 			goto split;
275 		}
276 
277 		bvprv = bv;
278 		bvprvp = &bvprv;
279 	}
280 
281 	*segs = nsegs;
282 	return NULL;
283 split:
284 	*segs = nsegs;
285 	return bio_split(bio, sectors, GFP_NOIO, bs);
286 }
287 
288 /**
289  * __blk_queue_split - split a bio and submit the second half
290  * @bio:     [in, out] bio to be split
291  * @nr_segs: [out] number of segments in the first bio
292  *
293  * Split a bio into two bios, chain the two bios, submit the second half and
294  * store a pointer to the first half in *@bio. If the second bio is still too
295  * big it will be split by a recursive call to this function. Since this
296  * function may allocate a new bio from @bio->bi_disk->queue->bio_split, it is
297  * the responsibility of the caller to ensure that
298  * @bio->bi_disk->queue->bio_split is only released after processing of the
299  * split bio has finished.
300  */
__blk_queue_split(struct bio ** bio,unsigned int * nr_segs)301 void __blk_queue_split(struct bio **bio, unsigned int *nr_segs)
302 {
303 	struct request_queue *q = (*bio)->bi_disk->queue;
304 	struct bio *split = NULL;
305 
306 	switch (bio_op(*bio)) {
307 	case REQ_OP_DISCARD:
308 	case REQ_OP_SECURE_ERASE:
309 		split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
310 		break;
311 	case REQ_OP_WRITE_ZEROES:
312 		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
313 				nr_segs);
314 		break;
315 	case REQ_OP_WRITE_SAME:
316 		split = blk_bio_write_same_split(q, *bio, &q->bio_split,
317 				nr_segs);
318 		break;
319 	default:
320 		/*
321 		 * All drivers must accept single-segments bios that are <=
322 		 * PAGE_SIZE.  This is a quick and dirty check that relies on
323 		 * the fact that bi_io_vec[0] is always valid if a bio has data.
324 		 * The check might lead to occasional false negatives when bios
325 		 * are cloned, but compared to the performance impact of cloned
326 		 * bios themselves the loop below doesn't matter anyway.
327 		 */
328 		if (!q->limits.chunk_sectors &&
329 		    (*bio)->bi_vcnt == 1 &&
330 		    ((*bio)->bi_io_vec[0].bv_len +
331 		     (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) {
332 			*nr_segs = 1;
333 			break;
334 		}
335 		split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
336 		break;
337 	}
338 
339 	if (split) {
340 		/* there isn't chance to merge the splitted bio */
341 		split->bi_opf |= REQ_NOMERGE;
342 
343 		bio_chain(split, *bio);
344 		trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
345 		submit_bio_noacct(*bio);
346 		*bio = split;
347 
348 		blk_throtl_charge_bio_split(*bio);
349 	}
350 }
351 
352 /**
353  * blk_queue_split - split a bio and submit the second half
354  * @bio: [in, out] bio to be split
355  *
356  * Split a bio into two bios, chains the two bios, submit the second half and
357  * store a pointer to the first half in *@bio. Since this function may allocate
358  * a new bio from @bio->bi_disk->queue->bio_split, it is the responsibility of
359  * the caller to ensure that @bio->bi_disk->queue->bio_split is only released
360  * after processing of the split bio has finished.
361  */
blk_queue_split(struct bio ** bio)362 void blk_queue_split(struct bio **bio)
363 {
364 	unsigned int nr_segs;
365 
366 	__blk_queue_split(bio, &nr_segs);
367 }
368 EXPORT_SYMBOL(blk_queue_split);
369 
blk_recalc_rq_segments(struct request * rq)370 unsigned int blk_recalc_rq_segments(struct request *rq)
371 {
372 	unsigned int nr_phys_segs = 0;
373 	unsigned int nr_sectors = 0;
374 	struct req_iterator iter;
375 	struct bio_vec bv;
376 
377 	if (!rq->bio)
378 		return 0;
379 
380 	switch (bio_op(rq->bio)) {
381 	case REQ_OP_DISCARD:
382 	case REQ_OP_SECURE_ERASE:
383 		if (queue_max_discard_segments(rq->q) > 1) {
384 			struct bio *bio = rq->bio;
385 
386 			for_each_bio(bio)
387 				nr_phys_segs++;
388 			return nr_phys_segs;
389 		}
390 		return 1;
391 	case REQ_OP_WRITE_ZEROES:
392 		return 0;
393 	case REQ_OP_WRITE_SAME:
394 		return 1;
395 	}
396 
397 	rq_for_each_bvec(bv, rq, iter)
398 		bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
399 				UINT_MAX, UINT_MAX);
400 	return nr_phys_segs;
401 }
402 
blk_next_sg(struct scatterlist ** sg,struct scatterlist * sglist)403 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
404 		struct scatterlist *sglist)
405 {
406 	if (!*sg)
407 		return sglist;
408 
409 	/*
410 	 * If the driver previously mapped a shorter list, we could see a
411 	 * termination bit prematurely unless it fully inits the sg table
412 	 * on each mapping. We KNOW that there must be more entries here
413 	 * or the driver would be buggy, so force clear the termination bit
414 	 * to avoid doing a full sg_init_table() in drivers for each command.
415 	 */
416 	sg_unmark_end(*sg);
417 	return sg_next(*sg);
418 }
419 
blk_bvec_map_sg(struct request_queue * q,struct bio_vec * bvec,struct scatterlist * sglist,struct scatterlist ** sg)420 static unsigned blk_bvec_map_sg(struct request_queue *q,
421 		struct bio_vec *bvec, struct scatterlist *sglist,
422 		struct scatterlist **sg)
423 {
424 	unsigned nbytes = bvec->bv_len;
425 	unsigned nsegs = 0, total = 0;
426 
427 	while (nbytes > 0) {
428 		unsigned offset = bvec->bv_offset + total;
429 		unsigned len = min(get_max_segment_size(q, bvec->bv_page,
430 					offset), nbytes);
431 		struct page *page = bvec->bv_page;
432 
433 		/*
434 		 * Unfortunately a fair number of drivers barf on scatterlists
435 		 * that have an offset larger than PAGE_SIZE, despite other
436 		 * subsystems dealing with that invariant just fine.  For now
437 		 * stick to the legacy format where we never present those from
438 		 * the block layer, but the code below should be removed once
439 		 * these offenders (mostly MMC/SD drivers) are fixed.
440 		 */
441 		page += (offset >> PAGE_SHIFT);
442 		offset &= ~PAGE_MASK;
443 
444 		*sg = blk_next_sg(sg, sglist);
445 		sg_set_page(*sg, page, len, offset);
446 
447 		total += len;
448 		nbytes -= len;
449 		nsegs++;
450 	}
451 
452 	return nsegs;
453 }
454 
__blk_bvec_map_sg(struct bio_vec bv,struct scatterlist * sglist,struct scatterlist ** sg)455 static inline int __blk_bvec_map_sg(struct bio_vec bv,
456 		struct scatterlist *sglist, struct scatterlist **sg)
457 {
458 	*sg = blk_next_sg(sg, sglist);
459 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
460 	return 1;
461 }
462 
463 /* only try to merge bvecs into one sg if they are from two bios */
464 static inline bool
__blk_segment_map_sg_merge(struct request_queue * q,struct bio_vec * bvec,struct bio_vec * bvprv,struct scatterlist ** sg)465 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
466 			   struct bio_vec *bvprv, struct scatterlist **sg)
467 {
468 
469 	int nbytes = bvec->bv_len;
470 
471 	if (!*sg)
472 		return false;
473 
474 	if ((*sg)->length + nbytes > queue_max_segment_size(q))
475 		return false;
476 
477 	if (!biovec_phys_mergeable(q, bvprv, bvec))
478 		return false;
479 
480 	(*sg)->length += nbytes;
481 
482 	return true;
483 }
484 
__blk_bios_map_sg(struct request_queue * q,struct bio * bio,struct scatterlist * sglist,struct scatterlist ** sg)485 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
486 			     struct scatterlist *sglist,
487 			     struct scatterlist **sg)
488 {
489 	struct bio_vec bvec, bvprv = { NULL };
490 	struct bvec_iter iter;
491 	int nsegs = 0;
492 	bool new_bio = false;
493 
494 	for_each_bio(bio) {
495 		bio_for_each_bvec(bvec, bio, iter) {
496 			/*
497 			 * Only try to merge bvecs from two bios given we
498 			 * have done bio internal merge when adding pages
499 			 * to bio
500 			 */
501 			if (new_bio &&
502 			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
503 				goto next_bvec;
504 
505 			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
506 				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
507 			else
508 				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
509  next_bvec:
510 			new_bio = false;
511 		}
512 		if (likely(bio->bi_iter.bi_size)) {
513 			bvprv = bvec;
514 			new_bio = true;
515 		}
516 	}
517 
518 	return nsegs;
519 }
520 
521 /*
522  * map a request to scatterlist, return number of sg entries setup. Caller
523  * must make sure sg can hold rq->nr_phys_segments entries
524  */
__blk_rq_map_sg(struct request_queue * q,struct request * rq,struct scatterlist * sglist,struct scatterlist ** last_sg)525 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
526 		struct scatterlist *sglist, struct scatterlist **last_sg)
527 {
528 	int nsegs = 0;
529 
530 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
531 		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
532 	else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
533 		nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg);
534 	else if (rq->bio)
535 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
536 
537 	if (*last_sg)
538 		sg_mark_end(*last_sg);
539 
540 	/*
541 	 * Something must have been wrong if the figured number of
542 	 * segment is bigger than number of req's physical segments
543 	 */
544 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
545 
546 	return nsegs;
547 }
548 EXPORT_SYMBOL(__blk_rq_map_sg);
549 
blk_rq_get_max_segments(struct request * rq)550 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
551 {
552 	if (req_op(rq) == REQ_OP_DISCARD)
553 		return queue_max_discard_segments(rq->q);
554 	return queue_max_segments(rq->q);
555 }
556 
ll_new_hw_segment(struct request * req,struct bio * bio,unsigned int nr_phys_segs)557 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
558 		unsigned int nr_phys_segs)
559 {
560 	if (!blk_cgroup_mergeable(req, bio))
561 		goto no_merge;
562 
563 	if (blk_integrity_merge_bio(req->q, req, bio) == false)
564 		goto no_merge;
565 
566 	/* discard request merge won't add new segment */
567 	if (req_op(req) == REQ_OP_DISCARD)
568 		return 1;
569 
570 	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
571 		goto no_merge;
572 
573 	/*
574 	 * This will form the start of a new hw segment.  Bump both
575 	 * counters.
576 	 */
577 	req->nr_phys_segments += nr_phys_segs;
578 	return 1;
579 
580 no_merge:
581 	req_set_nomerge(req->q, req);
582 	return 0;
583 }
584 
ll_back_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)585 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
586 {
587 	if (req_gap_back_merge(req, bio))
588 		return 0;
589 	if (blk_integrity_rq(req) &&
590 	    integrity_req_gap_back_merge(req, bio))
591 		return 0;
592 	if (!bio_crypt_ctx_back_mergeable(req, bio))
593 		return 0;
594 	if (blk_rq_sectors(req) + bio_sectors(bio) >
595 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
596 		req_set_nomerge(req->q, req);
597 		return 0;
598 	}
599 
600 	return ll_new_hw_segment(req, bio, nr_segs);
601 }
602 
ll_front_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)603 static int ll_front_merge_fn(struct request *req, struct bio *bio,
604 		unsigned int nr_segs)
605 {
606 	if (req_gap_front_merge(req, bio))
607 		return 0;
608 	if (blk_integrity_rq(req) &&
609 	    integrity_req_gap_front_merge(req, bio))
610 		return 0;
611 	if (!bio_crypt_ctx_front_mergeable(req, bio))
612 		return 0;
613 	if (blk_rq_sectors(req) + bio_sectors(bio) >
614 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
615 		req_set_nomerge(req->q, req);
616 		return 0;
617 	}
618 
619 	return ll_new_hw_segment(req, bio, nr_segs);
620 }
621 
req_attempt_discard_merge(struct request_queue * q,struct request * req,struct request * next)622 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
623 		struct request *next)
624 {
625 	unsigned short segments = blk_rq_nr_discard_segments(req);
626 
627 	if (segments >= queue_max_discard_segments(q))
628 		goto no_merge;
629 	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
630 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
631 		goto no_merge;
632 
633 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
634 	return true;
635 no_merge:
636 	req_set_nomerge(q, req);
637 	return false;
638 }
639 
ll_merge_requests_fn(struct request_queue * q,struct request * req,struct request * next)640 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
641 				struct request *next)
642 {
643 	int total_phys_segments;
644 
645 	if (req_gap_back_merge(req, next->bio))
646 		return 0;
647 
648 	/*
649 	 * Will it become too large?
650 	 */
651 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
652 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
653 		return 0;
654 
655 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
656 	if (total_phys_segments > blk_rq_get_max_segments(req))
657 		return 0;
658 
659 	if (!blk_cgroup_mergeable(req, next->bio))
660 		return 0;
661 
662 	if (blk_integrity_merge_rq(q, req, next) == false)
663 		return 0;
664 
665 	if (!bio_crypt_ctx_merge_rq(req, next))
666 		return 0;
667 
668 	/* Merge is OK... */
669 	req->nr_phys_segments = total_phys_segments;
670 	return 1;
671 }
672 
673 /**
674  * blk_rq_set_mixed_merge - mark a request as mixed merge
675  * @rq: request to mark as mixed merge
676  *
677  * Description:
678  *     @rq is about to be mixed merged.  Make sure the attributes
679  *     which can be mixed are set in each bio and mark @rq as mixed
680  *     merged.
681  */
blk_rq_set_mixed_merge(struct request * rq)682 void blk_rq_set_mixed_merge(struct request *rq)
683 {
684 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
685 	struct bio *bio;
686 
687 	if (rq->rq_flags & RQF_MIXED_MERGE)
688 		return;
689 
690 	/*
691 	 * @rq will no longer represent mixable attributes for all the
692 	 * contained bios.  It will just track those of the first one.
693 	 * Distributes the attributs to each bio.
694 	 */
695 	for (bio = rq->bio; bio; bio = bio->bi_next) {
696 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
697 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
698 		bio->bi_opf |= ff;
699 	}
700 	rq->rq_flags |= RQF_MIXED_MERGE;
701 }
702 
blk_account_io_merge_request(struct request * req)703 static void blk_account_io_merge_request(struct request *req)
704 {
705 	if (blk_do_io_stat(req)) {
706 		part_stat_lock();
707 		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
708 		part_stat_unlock();
709 
710 		hd_struct_put(req->part);
711 	}
712 }
713 
blk_try_req_merge(struct request * req,struct request * next)714 static enum elv_merge blk_try_req_merge(struct request *req,
715 					struct request *next)
716 {
717 	if (blk_discard_mergable(req))
718 		return ELEVATOR_DISCARD_MERGE;
719 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
720 		return ELEVATOR_BACK_MERGE;
721 
722 	return ELEVATOR_NO_MERGE;
723 }
724 
725 /*
726  * For non-mq, this has to be called with the request spinlock acquired.
727  * For mq with scheduling, the appropriate queue wide lock should be held.
728  */
attempt_merge(struct request_queue * q,struct request * req,struct request * next)729 static struct request *attempt_merge(struct request_queue *q,
730 				     struct request *req, struct request *next)
731 {
732 	if (!rq_mergeable(req) || !rq_mergeable(next))
733 		return NULL;
734 
735 	if (req_op(req) != req_op(next))
736 		return NULL;
737 
738 	if (rq_data_dir(req) != rq_data_dir(next)
739 	    || req->rq_disk != next->rq_disk)
740 		return NULL;
741 
742 	if (req_op(req) == REQ_OP_WRITE_SAME &&
743 	    !blk_write_same_mergeable(req->bio, next->bio))
744 		return NULL;
745 
746 	/*
747 	 * Don't allow merge of different write hints, or for a hint with
748 	 * non-hint IO.
749 	 */
750 	if (req->write_hint != next->write_hint)
751 		return NULL;
752 
753 	if (req->ioprio != next->ioprio)
754 		return NULL;
755 
756 	/*
757 	 * If we are allowed to merge, then append bio list
758 	 * from next to rq and release next. merge_requests_fn
759 	 * will have updated segment counts, update sector
760 	 * counts here. Handle DISCARDs separately, as they
761 	 * have separate settings.
762 	 */
763 
764 	switch (blk_try_req_merge(req, next)) {
765 	case ELEVATOR_DISCARD_MERGE:
766 		if (!req_attempt_discard_merge(q, req, next))
767 			return NULL;
768 		break;
769 	case ELEVATOR_BACK_MERGE:
770 		if (!ll_merge_requests_fn(q, req, next))
771 			return NULL;
772 		break;
773 	default:
774 		return NULL;
775 	}
776 
777 	/*
778 	 * If failfast settings disagree or any of the two is already
779 	 * a mixed merge, mark both as mixed before proceeding.  This
780 	 * makes sure that all involved bios have mixable attributes
781 	 * set properly.
782 	 */
783 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
784 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
785 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
786 		blk_rq_set_mixed_merge(req);
787 		blk_rq_set_mixed_merge(next);
788 	}
789 
790 	/*
791 	 * At this point we have either done a back merge or front merge. We
792 	 * need the smaller start_time_ns of the merged requests to be the
793 	 * current request for accounting purposes.
794 	 */
795 	if (next->start_time_ns < req->start_time_ns)
796 		req->start_time_ns = next->start_time_ns;
797 
798 	req->biotail->bi_next = next->bio;
799 	req->biotail = next->biotail;
800 
801 	req->__data_len += blk_rq_bytes(next);
802 
803 	if (!blk_discard_mergable(req))
804 		elv_merge_requests(q, req, next);
805 
806 	blk_crypto_rq_put_keyslot(next);
807 
808 	/*
809 	 * 'next' is going away, so update stats accordingly
810 	 */
811 	blk_account_io_merge_request(next);
812 
813 	trace_block_rq_merge(q, next);
814 
815 	/*
816 	 * ownership of bio passed from next to req, return 'next' for
817 	 * the caller to free
818 	 */
819 	next->bio = NULL;
820 	return next;
821 }
822 
attempt_back_merge(struct request_queue * q,struct request * rq)823 static struct request *attempt_back_merge(struct request_queue *q,
824 		struct request *rq)
825 {
826 	struct request *next = elv_latter_request(q, rq);
827 
828 	if (next)
829 		return attempt_merge(q, rq, next);
830 
831 	return NULL;
832 }
833 
attempt_front_merge(struct request_queue * q,struct request * rq)834 static struct request *attempt_front_merge(struct request_queue *q,
835 		struct request *rq)
836 {
837 	struct request *prev = elv_former_request(q, rq);
838 
839 	if (prev)
840 		return attempt_merge(q, prev, rq);
841 
842 	return NULL;
843 }
844 
blk_attempt_req_merge(struct request_queue * q,struct request * rq,struct request * next)845 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
846 			  struct request *next)
847 {
848 	struct request *free;
849 
850 	free = attempt_merge(q, rq, next);
851 	if (free) {
852 		blk_put_request(free);
853 		return 1;
854 	}
855 
856 	return 0;
857 }
858 
blk_rq_merge_ok(struct request * rq,struct bio * bio)859 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
860 {
861 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
862 		return false;
863 
864 	if (req_op(rq) != bio_op(bio))
865 		return false;
866 
867 	/* different data direction or already started, don't merge */
868 	if (bio_data_dir(bio) != rq_data_dir(rq))
869 		return false;
870 
871 	/* must be same device */
872 	if (rq->rq_disk != bio->bi_disk)
873 		return false;
874 
875 	/* don't merge across cgroup boundaries */
876 	if (!blk_cgroup_mergeable(rq, bio))
877 		return false;
878 
879 	/* only merge integrity protected bio into ditto rq */
880 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
881 		return false;
882 
883 	/* Only merge if the crypt contexts are compatible */
884 	if (!bio_crypt_rq_ctx_compatible(rq, bio))
885 		return false;
886 
887 	/* must be using the same buffer */
888 	if (req_op(rq) == REQ_OP_WRITE_SAME &&
889 	    !blk_write_same_mergeable(rq->bio, bio))
890 		return false;
891 
892 	/*
893 	 * Don't allow merge of different write hints, or for a hint with
894 	 * non-hint IO.
895 	 */
896 	if (rq->write_hint != bio->bi_write_hint)
897 		return false;
898 
899 	if (rq->ioprio != bio_prio(bio))
900 		return false;
901 
902 	return true;
903 }
904 
blk_try_merge(struct request * rq,struct bio * bio)905 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
906 {
907 	if (blk_discard_mergable(rq))
908 		return ELEVATOR_DISCARD_MERGE;
909 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
910 		return ELEVATOR_BACK_MERGE;
911 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
912 		return ELEVATOR_FRONT_MERGE;
913 	return ELEVATOR_NO_MERGE;
914 }
915 
blk_account_io_merge_bio(struct request * req)916 static void blk_account_io_merge_bio(struct request *req)
917 {
918 	if (!blk_do_io_stat(req))
919 		return;
920 
921 	part_stat_lock();
922 	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
923 	part_stat_unlock();
924 }
925 
926 enum bio_merge_status {
927 	BIO_MERGE_OK,
928 	BIO_MERGE_NONE,
929 	BIO_MERGE_FAILED,
930 };
931 
bio_attempt_back_merge(struct request * req,struct bio * bio,unsigned int nr_segs)932 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
933 		struct bio *bio, unsigned int nr_segs)
934 {
935 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
936 
937 	if (!ll_back_merge_fn(req, bio, nr_segs))
938 		return BIO_MERGE_FAILED;
939 
940 	trace_block_bio_backmerge(req->q, req, bio);
941 	rq_qos_merge(req->q, req, bio);
942 
943 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
944 		blk_rq_set_mixed_merge(req);
945 
946 	req->biotail->bi_next = bio;
947 	req->biotail = bio;
948 	req->__data_len += bio->bi_iter.bi_size;
949 
950 	bio_crypt_free_ctx(bio);
951 
952 	blk_account_io_merge_bio(req);
953 	return BIO_MERGE_OK;
954 }
955 
bio_attempt_front_merge(struct request * req,struct bio * bio,unsigned int nr_segs)956 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
957 		struct bio *bio, unsigned int nr_segs)
958 {
959 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
960 
961 	if (!ll_front_merge_fn(req, bio, nr_segs))
962 		return BIO_MERGE_FAILED;
963 
964 	trace_block_bio_frontmerge(req->q, req, bio);
965 	rq_qos_merge(req->q, req, bio);
966 
967 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
968 		blk_rq_set_mixed_merge(req);
969 
970 	bio->bi_next = req->bio;
971 	req->bio = bio;
972 
973 	req->__sector = bio->bi_iter.bi_sector;
974 	req->__data_len += bio->bi_iter.bi_size;
975 
976 	bio_crypt_do_front_merge(req, bio);
977 
978 	blk_account_io_merge_bio(req);
979 	return BIO_MERGE_OK;
980 }
981 
bio_attempt_discard_merge(struct request_queue * q,struct request * req,struct bio * bio)982 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
983 		struct request *req, struct bio *bio)
984 {
985 	unsigned short segments = blk_rq_nr_discard_segments(req);
986 
987 	if (segments >= queue_max_discard_segments(q))
988 		goto no_merge;
989 	if (blk_rq_sectors(req) + bio_sectors(bio) >
990 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
991 		goto no_merge;
992 
993 	rq_qos_merge(q, req, bio);
994 
995 	req->biotail->bi_next = bio;
996 	req->biotail = bio;
997 	req->__data_len += bio->bi_iter.bi_size;
998 	req->nr_phys_segments = segments + 1;
999 
1000 	blk_account_io_merge_bio(req);
1001 	return BIO_MERGE_OK;
1002 no_merge:
1003 	req_set_nomerge(q, req);
1004 	return BIO_MERGE_FAILED;
1005 }
1006 
blk_attempt_bio_merge(struct request_queue * q,struct request * rq,struct bio * bio,unsigned int nr_segs,bool sched_allow_merge)1007 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1008 						   struct request *rq,
1009 						   struct bio *bio,
1010 						   unsigned int nr_segs,
1011 						   bool sched_allow_merge)
1012 {
1013 	if (!blk_rq_merge_ok(rq, bio))
1014 		return BIO_MERGE_NONE;
1015 
1016 	switch (blk_try_merge(rq, bio)) {
1017 	case ELEVATOR_BACK_MERGE:
1018 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1019 			return bio_attempt_back_merge(rq, bio, nr_segs);
1020 		break;
1021 	case ELEVATOR_FRONT_MERGE:
1022 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1023 			return bio_attempt_front_merge(rq, bio, nr_segs);
1024 		break;
1025 	case ELEVATOR_DISCARD_MERGE:
1026 		return bio_attempt_discard_merge(q, rq, bio);
1027 	default:
1028 		return BIO_MERGE_NONE;
1029 	}
1030 
1031 	return BIO_MERGE_FAILED;
1032 }
1033 
1034 /**
1035  * blk_attempt_plug_merge - try to merge with %current's plugged list
1036  * @q: request_queue new bio is being queued at
1037  * @bio: new bio being queued
1038  * @nr_segs: number of segments in @bio
1039  * @same_queue_rq: pointer to &struct request that gets filled in when
1040  * another request associated with @q is found on the plug list
1041  * (optional, may be %NULL)
1042  *
1043  * Determine whether @bio being queued on @q can be merged with a request
1044  * on %current's plugged list.  Returns %true if merge was successful,
1045  * otherwise %false.
1046  *
1047  * Plugging coalesces IOs from the same issuer for the same purpose without
1048  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1049  * than scheduling, and the request, while may have elvpriv data, is not
1050  * added on the elevator at this point.  In addition, we don't have
1051  * reliable access to the elevator outside queue lock.  Only check basic
1052  * merging parameters without querying the elevator.
1053  *
1054  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1055  */
blk_attempt_plug_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs,struct request ** same_queue_rq)1056 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1057 		unsigned int nr_segs, struct request **same_queue_rq)
1058 {
1059 	struct blk_plug *plug;
1060 	struct request *rq;
1061 	struct list_head *plug_list;
1062 
1063 	plug = blk_mq_plug(q, bio);
1064 	if (!plug)
1065 		return false;
1066 
1067 	plug_list = &plug->mq_list;
1068 
1069 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1070 		if (rq->q == q && same_queue_rq) {
1071 			/*
1072 			 * Only blk-mq multiple hardware queues case checks the
1073 			 * rq in the same queue, there should be only one such
1074 			 * rq in a queue
1075 			 **/
1076 			*same_queue_rq = rq;
1077 		}
1078 
1079 		if (rq->q != q)
1080 			continue;
1081 
1082 		if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1083 		    BIO_MERGE_OK)
1084 			return true;
1085 	}
1086 
1087 	return false;
1088 }
1089 
1090 /*
1091  * Iterate list of requests and see if we can merge this bio with any
1092  * of them.
1093  */
blk_bio_list_merge(struct request_queue * q,struct list_head * list,struct bio * bio,unsigned int nr_segs)1094 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1095 			struct bio *bio, unsigned int nr_segs)
1096 {
1097 	struct request *rq;
1098 	int checked = 8;
1099 
1100 	list_for_each_entry_reverse(rq, list, queuelist) {
1101 		if (!checked--)
1102 			break;
1103 
1104 		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1105 		case BIO_MERGE_NONE:
1106 			continue;
1107 		case BIO_MERGE_OK:
1108 			return true;
1109 		case BIO_MERGE_FAILED:
1110 			return false;
1111 		}
1112 
1113 	}
1114 
1115 	return false;
1116 }
1117 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1118 
blk_mq_sched_try_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs,struct request ** merged_request)1119 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1120 		unsigned int nr_segs, struct request **merged_request)
1121 {
1122 	struct request *rq;
1123 
1124 	switch (elv_merge(q, &rq, bio)) {
1125 	case ELEVATOR_BACK_MERGE:
1126 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1127 			return false;
1128 		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1129 			return false;
1130 		*merged_request = attempt_back_merge(q, rq);
1131 		if (!*merged_request)
1132 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1133 		return true;
1134 	case ELEVATOR_FRONT_MERGE:
1135 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1136 			return false;
1137 		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1138 			return false;
1139 		*merged_request = attempt_front_merge(q, rq);
1140 		if (!*merged_request)
1141 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1142 		return true;
1143 	case ELEVATOR_DISCARD_MERGE:
1144 		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1145 	default:
1146 		return false;
1147 	}
1148 }
1149 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1150