• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991-1998  Linus Torvalds
4  * Re-organised Feb 1998 Russell King
5  */
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/ctype.h>
9 #include <linux/genhd.h>
10 #include <linux/vmalloc.h>
11 #include <linux/blktrace_api.h>
12 #include <linux/raid/detect.h>
13 #include "check.h"
14 
15 static int (*check_part[])(struct parsed_partitions *) = {
16 	/*
17 	 * Probe partition formats with tables at disk address 0
18 	 * that also have an ADFS boot block at 0xdc0.
19 	 */
20 #ifdef CONFIG_ACORN_PARTITION_ICS
21 	adfspart_check_ICS,
22 #endif
23 #ifdef CONFIG_ACORN_PARTITION_POWERTEC
24 	adfspart_check_POWERTEC,
25 #endif
26 #ifdef CONFIG_ACORN_PARTITION_EESOX
27 	adfspart_check_EESOX,
28 #endif
29 
30 	/*
31 	 * Now move on to formats that only have partition info at
32 	 * disk address 0xdc0.  Since these may also have stale
33 	 * PC/BIOS partition tables, they need to come before
34 	 * the msdos entry.
35 	 */
36 #ifdef CONFIG_ACORN_PARTITION_CUMANA
37 	adfspart_check_CUMANA,
38 #endif
39 #ifdef CONFIG_ACORN_PARTITION_ADFS
40 	adfspart_check_ADFS,
41 #endif
42 
43 #ifdef CONFIG_CMDLINE_PARTITION
44 	cmdline_partition,
45 #endif
46 #ifdef CONFIG_EFI_PARTITION
47 	efi_partition,		/* this must come before msdos */
48 #endif
49 #ifdef CONFIG_SGI_PARTITION
50 	sgi_partition,
51 #endif
52 #ifdef CONFIG_LDM_PARTITION
53 	ldm_partition,		/* this must come before msdos */
54 #endif
55 #ifdef CONFIG_MSDOS_PARTITION
56 	msdos_partition,
57 #endif
58 #ifdef CONFIG_OSF_PARTITION
59 	osf_partition,
60 #endif
61 #ifdef CONFIG_SUN_PARTITION
62 	sun_partition,
63 #endif
64 #ifdef CONFIG_AMIGA_PARTITION
65 	amiga_partition,
66 #endif
67 #ifdef CONFIG_ATARI_PARTITION
68 	atari_partition,
69 #endif
70 #ifdef CONFIG_MAC_PARTITION
71 	mac_partition,
72 #endif
73 #ifdef CONFIG_ULTRIX_PARTITION
74 	ultrix_partition,
75 #endif
76 #ifdef CONFIG_IBM_PARTITION
77 	ibm_partition,
78 #endif
79 #ifdef CONFIG_KARMA_PARTITION
80 	karma_partition,
81 #endif
82 #ifdef CONFIG_SYSV68_PARTITION
83 	sysv68_partition,
84 #endif
85 	NULL
86 };
87 
allocate_partitions(struct gendisk * hd)88 static struct parsed_partitions *allocate_partitions(struct gendisk *hd)
89 {
90 	struct parsed_partitions *state;
91 	int nr;
92 
93 	state = kzalloc(sizeof(*state), GFP_KERNEL);
94 	if (!state)
95 		return NULL;
96 
97 	nr = disk_max_parts(hd);
98 	state->parts = vzalloc(array_size(nr, sizeof(state->parts[0])));
99 	if (!state->parts) {
100 		kfree(state);
101 		return NULL;
102 	}
103 
104 	state->limit = nr;
105 
106 	return state;
107 }
108 
free_partitions(struct parsed_partitions * state)109 static void free_partitions(struct parsed_partitions *state)
110 {
111 	vfree(state->parts);
112 	kfree(state);
113 }
114 
check_partition(struct gendisk * hd,struct block_device * bdev)115 static struct parsed_partitions *check_partition(struct gendisk *hd,
116 		struct block_device *bdev)
117 {
118 	struct parsed_partitions *state;
119 	int i, res, err;
120 
121 	state = allocate_partitions(hd);
122 	if (!state)
123 		return NULL;
124 	state->pp_buf = (char *)__get_free_page(GFP_KERNEL);
125 	if (!state->pp_buf) {
126 		free_partitions(state);
127 		return NULL;
128 	}
129 	state->pp_buf[0] = '\0';
130 
131 	state->bdev = bdev;
132 	disk_name(hd, 0, state->name);
133 	snprintf(state->pp_buf, PAGE_SIZE, " %s:", state->name);
134 	if (isdigit(state->name[strlen(state->name)-1]))
135 		sprintf(state->name, "p");
136 
137 	i = res = err = 0;
138 	while (!res && check_part[i]) {
139 		memset(state->parts, 0, state->limit * sizeof(state->parts[0]));
140 		res = check_part[i++](state);
141 		if (res < 0) {
142 			/*
143 			 * We have hit an I/O error which we don't report now.
144 			 * But record it, and let the others do their job.
145 			 */
146 			err = res;
147 			res = 0;
148 		}
149 
150 	}
151 	if (res > 0) {
152 		printk(KERN_INFO "%s", state->pp_buf);
153 
154 		free_page((unsigned long)state->pp_buf);
155 		return state;
156 	}
157 	if (state->access_beyond_eod)
158 		err = -ENOSPC;
159 	/*
160 	 * The partition is unrecognized. So report I/O errors if there were any
161 	 */
162 	if (err)
163 		res = err;
164 	if (res) {
165 		strlcat(state->pp_buf,
166 			" unable to read partition table\n", PAGE_SIZE);
167 		printk(KERN_INFO "%s", state->pp_buf);
168 	}
169 
170 	free_page((unsigned long)state->pp_buf);
171 	free_partitions(state);
172 	return ERR_PTR(res);
173 }
174 
part_partition_show(struct device * dev,struct device_attribute * attr,char * buf)175 static ssize_t part_partition_show(struct device *dev,
176 				   struct device_attribute *attr, char *buf)
177 {
178 	struct hd_struct *p = dev_to_part(dev);
179 
180 	return sprintf(buf, "%d\n", p->partno);
181 }
182 
part_start_show(struct device * dev,struct device_attribute * attr,char * buf)183 static ssize_t part_start_show(struct device *dev,
184 			       struct device_attribute *attr, char *buf)
185 {
186 	struct hd_struct *p = dev_to_part(dev);
187 
188 	return sprintf(buf, "%llu\n",(unsigned long long)p->start_sect);
189 }
190 
part_ro_show(struct device * dev,struct device_attribute * attr,char * buf)191 static ssize_t part_ro_show(struct device *dev,
192 			    struct device_attribute *attr, char *buf)
193 {
194 	struct hd_struct *p = dev_to_part(dev);
195 	return sprintf(buf, "%d\n", p->policy ? 1 : 0);
196 }
197 
part_alignment_offset_show(struct device * dev,struct device_attribute * attr,char * buf)198 static ssize_t part_alignment_offset_show(struct device *dev,
199 					  struct device_attribute *attr, char *buf)
200 {
201 	struct hd_struct *p = dev_to_part(dev);
202 
203 	return sprintf(buf, "%u\n",
204 		queue_limit_alignment_offset(&part_to_disk(p)->queue->limits,
205 				p->start_sect));
206 }
207 
part_discard_alignment_show(struct device * dev,struct device_attribute * attr,char * buf)208 static ssize_t part_discard_alignment_show(struct device *dev,
209 					   struct device_attribute *attr, char *buf)
210 {
211 	struct hd_struct *p = dev_to_part(dev);
212 
213 	return sprintf(buf, "%u\n",
214 		queue_limit_discard_alignment(&part_to_disk(p)->queue->limits,
215 				p->start_sect));
216 }
217 
218 static DEVICE_ATTR(partition, 0444, part_partition_show, NULL);
219 static DEVICE_ATTR(start, 0444, part_start_show, NULL);
220 static DEVICE_ATTR(size, 0444, part_size_show, NULL);
221 static DEVICE_ATTR(ro, 0444, part_ro_show, NULL);
222 static DEVICE_ATTR(alignment_offset, 0444, part_alignment_offset_show, NULL);
223 static DEVICE_ATTR(discard_alignment, 0444, part_discard_alignment_show, NULL);
224 static DEVICE_ATTR(stat, 0444, part_stat_show, NULL);
225 static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL);
226 #ifdef CONFIG_FAIL_MAKE_REQUEST
227 static struct device_attribute dev_attr_fail =
228 	__ATTR(make-it-fail, 0644, part_fail_show, part_fail_store);
229 #endif
230 
231 static struct attribute *part_attrs[] = {
232 	&dev_attr_partition.attr,
233 	&dev_attr_start.attr,
234 	&dev_attr_size.attr,
235 	&dev_attr_ro.attr,
236 	&dev_attr_alignment_offset.attr,
237 	&dev_attr_discard_alignment.attr,
238 	&dev_attr_stat.attr,
239 	&dev_attr_inflight.attr,
240 #ifdef CONFIG_FAIL_MAKE_REQUEST
241 	&dev_attr_fail.attr,
242 #endif
243 	NULL
244 };
245 
246 static struct attribute_group part_attr_group = {
247 	.attrs = part_attrs,
248 };
249 
250 static const struct attribute_group *part_attr_groups[] = {
251 	&part_attr_group,
252 #ifdef CONFIG_BLK_DEV_IO_TRACE
253 	&blk_trace_attr_group,
254 #endif
255 	NULL
256 };
257 
part_release(struct device * dev)258 static void part_release(struct device *dev)
259 {
260 	struct hd_struct *p = dev_to_part(dev);
261 	blk_free_devt(dev->devt);
262 	hd_free_part(p);
263 	kfree(p);
264 }
265 
part_uevent(struct device * dev,struct kobj_uevent_env * env)266 static int part_uevent(struct device *dev, struct kobj_uevent_env *env)
267 {
268 	struct hd_struct *part = dev_to_part(dev);
269 
270 	add_uevent_var(env, "PARTN=%u", part->partno);
271 	if (part->info && part->info->volname[0])
272 		add_uevent_var(env, "PARTNAME=%s", part->info->volname);
273 	return 0;
274 }
275 
276 struct device_type part_type = {
277 	.name		= "partition",
278 	.groups		= part_attr_groups,
279 	.release	= part_release,
280 	.uevent		= part_uevent,
281 };
282 
hd_struct_free_work(struct work_struct * work)283 static void hd_struct_free_work(struct work_struct *work)
284 {
285 	struct hd_struct *part =
286 		container_of(to_rcu_work(work), struct hd_struct, rcu_work);
287 	struct gendisk *disk = part_to_disk(part);
288 
289 	/*
290 	 * Release the disk reference acquired in delete_partition here.
291 	 * We can't release it in hd_struct_free because the final put_device
292 	 * needs process context and thus can't be run directly from a
293 	 * percpu_ref ->release handler.
294 	 */
295 	put_device(disk_to_dev(disk));
296 
297 	part->start_sect = 0;
298 	part->nr_sects = 0;
299 	part_stat_set_all(part, 0);
300 	put_device(part_to_dev(part));
301 }
302 
hd_struct_free(struct percpu_ref * ref)303 static void hd_struct_free(struct percpu_ref *ref)
304 {
305 	struct hd_struct *part = container_of(ref, struct hd_struct, ref);
306 	struct gendisk *disk = part_to_disk(part);
307 	struct disk_part_tbl *ptbl =
308 		rcu_dereference_protected(disk->part_tbl, 1);
309 
310 	rcu_assign_pointer(ptbl->last_lookup, NULL);
311 
312 	INIT_RCU_WORK(&part->rcu_work, hd_struct_free_work);
313 	queue_rcu_work(system_wq, &part->rcu_work);
314 }
315 
hd_ref_init(struct hd_struct * part)316 int hd_ref_init(struct hd_struct *part)
317 {
318 	if (percpu_ref_init(&part->ref, hd_struct_free, 0, GFP_KERNEL))
319 		return -ENOMEM;
320 	return 0;
321 }
322 
323 /*
324  * Must be called either with bd_mutex held, before a disk can be opened or
325  * after all disk users are gone.
326  */
delete_partition(struct hd_struct * part)327 void delete_partition(struct hd_struct *part)
328 {
329 	struct gendisk *disk = part_to_disk(part);
330 	struct disk_part_tbl *ptbl =
331 		rcu_dereference_protected(disk->part_tbl, 1);
332 	struct block_device *bdev;
333 
334 	/*
335 	 * ->part_tbl is referenced in this part's release handler, so
336 	 *  we have to hold the disk device
337 	 */
338 	get_device(disk_to_dev(disk));
339 	rcu_assign_pointer(ptbl->part[part->partno], NULL);
340 	kobject_put(part->holder_dir);
341 	device_del(part_to_dev(part));
342 
343 	/*
344 	 * Remove gendisk pointer from idr so that it cannot be looked up
345 	 * while RCU period before freeing gendisk is running to prevent
346 	 * use-after-free issues. Note that the device number stays
347 	 * "in-use" until we really free the gendisk.
348 	 */
349 	blk_invalidate_devt(part_devt(part));
350 
351 	bdev = bdget_part(part);
352 	if (bdev) {
353 		remove_inode_hash(bdev->bd_inode);
354 		bdput(bdev);
355 	}
356 	percpu_ref_kill(&part->ref);
357 }
358 
whole_disk_show(struct device * dev,struct device_attribute * attr,char * buf)359 static ssize_t whole_disk_show(struct device *dev,
360 			       struct device_attribute *attr, char *buf)
361 {
362 	return 0;
363 }
364 static DEVICE_ATTR(whole_disk, 0444, whole_disk_show, NULL);
365 
366 /*
367  * Must be called either with bd_mutex held, before a disk can be opened or
368  * after all disk users are gone.
369  */
add_partition(struct gendisk * disk,int partno,sector_t start,sector_t len,int flags,struct partition_meta_info * info)370 static struct hd_struct *add_partition(struct gendisk *disk, int partno,
371 				sector_t start, sector_t len, int flags,
372 				struct partition_meta_info *info)
373 {
374 	struct hd_struct *p;
375 	dev_t devt = MKDEV(0, 0);
376 	struct device *ddev = disk_to_dev(disk);
377 	struct device *pdev;
378 	struct disk_part_tbl *ptbl;
379 	const char *dname;
380 	int err;
381 
382 	/*
383 	 * Partitions are not supported on zoned block devices that are used as
384 	 * such.
385 	 */
386 	switch (disk->queue->limits.zoned) {
387 	case BLK_ZONED_HM:
388 		pr_warn("%s: partitions not supported on host managed zoned block device\n",
389 			disk->disk_name);
390 		return ERR_PTR(-ENXIO);
391 	case BLK_ZONED_HA:
392 		pr_info("%s: disabling host aware zoned block device support due to partitions\n",
393 			disk->disk_name);
394 		disk->queue->limits.zoned = BLK_ZONED_NONE;
395 		break;
396 	case BLK_ZONED_NONE:
397 		break;
398 	}
399 
400 	err = disk_expand_part_tbl(disk, partno);
401 	if (err)
402 		return ERR_PTR(err);
403 	ptbl = rcu_dereference_protected(disk->part_tbl, 1);
404 
405 	if (ptbl->part[partno])
406 		return ERR_PTR(-EBUSY);
407 
408 	p = kzalloc(sizeof(*p), GFP_KERNEL);
409 	if (!p)
410 		return ERR_PTR(-EBUSY);
411 
412 	p->dkstats = alloc_percpu(struct disk_stats);
413 	if (!p->dkstats) {
414 		err = -ENOMEM;
415 		goto out_free;
416 	}
417 
418 	hd_sects_seq_init(p);
419 	pdev = part_to_dev(p);
420 
421 	p->start_sect = start;
422 	p->nr_sects = len;
423 	p->partno = partno;
424 	p->policy = get_disk_ro(disk);
425 
426 	if (info) {
427 		struct partition_meta_info *pinfo;
428 
429 		pinfo = kzalloc_node(sizeof(*pinfo), GFP_KERNEL, disk->node_id);
430 		if (!pinfo) {
431 			err = -ENOMEM;
432 			goto out_free_stats;
433 		}
434 		memcpy(pinfo, info, sizeof(*info));
435 		p->info = pinfo;
436 	}
437 
438 	dname = dev_name(ddev);
439 	if (isdigit(dname[strlen(dname) - 1]))
440 		dev_set_name(pdev, "%sp%d", dname, partno);
441 	else
442 		dev_set_name(pdev, "%s%d", dname, partno);
443 
444 	device_initialize(pdev);
445 	pdev->class = &block_class;
446 	pdev->type = &part_type;
447 	pdev->parent = ddev;
448 
449 	err = blk_alloc_devt(p, &devt);
450 	if (err)
451 		goto out_free_info;
452 	pdev->devt = devt;
453 
454 	/* delay uevent until 'holders' subdir is created */
455 	dev_set_uevent_suppress(pdev, 1);
456 	err = device_add(pdev);
457 	if (err)
458 		goto out_put;
459 
460 	err = -ENOMEM;
461 	p->holder_dir = kobject_create_and_add("holders", &pdev->kobj);
462 	if (!p->holder_dir)
463 		goto out_del;
464 
465 	dev_set_uevent_suppress(pdev, 0);
466 	if (flags & ADDPART_FLAG_WHOLEDISK) {
467 		err = device_create_file(pdev, &dev_attr_whole_disk);
468 		if (err)
469 			goto out_del;
470 	}
471 
472 	err = hd_ref_init(p);
473 	if (err) {
474 		if (flags & ADDPART_FLAG_WHOLEDISK)
475 			goto out_remove_file;
476 		goto out_del;
477 	}
478 
479 	/* everything is up and running, commence */
480 	rcu_assign_pointer(ptbl->part[partno], p);
481 
482 	/* suppress uevent if the disk suppresses it */
483 	if (!dev_get_uevent_suppress(ddev))
484 		kobject_uevent(&pdev->kobj, KOBJ_ADD);
485 	return p;
486 
487 out_free_info:
488 	kfree(p->info);
489 out_free_stats:
490 	free_percpu(p->dkstats);
491 out_free:
492 	kfree(p);
493 	return ERR_PTR(err);
494 out_remove_file:
495 	device_remove_file(pdev, &dev_attr_whole_disk);
496 out_del:
497 	kobject_put(p->holder_dir);
498 	device_del(pdev);
499 out_put:
500 	put_device(pdev);
501 	return ERR_PTR(err);
502 }
503 
partition_overlaps(struct gendisk * disk,sector_t start,sector_t length,int skip_partno)504 static bool partition_overlaps(struct gendisk *disk, sector_t start,
505 		sector_t length, int skip_partno)
506 {
507 	struct disk_part_iter piter;
508 	struct hd_struct *part;
509 	bool overlap = false;
510 
511 	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
512 	while ((part = disk_part_iter_next(&piter))) {
513 		if (part->partno == skip_partno ||
514 		    start >= part->start_sect + part->nr_sects ||
515 		    start + length <= part->start_sect)
516 			continue;
517 		overlap = true;
518 		break;
519 	}
520 
521 	disk_part_iter_exit(&piter);
522 	return overlap;
523 }
524 
bdev_add_partition(struct block_device * bdev,int partno,sector_t start,sector_t length)525 int bdev_add_partition(struct block_device *bdev, int partno,
526 		sector_t start, sector_t length)
527 {
528 	struct hd_struct *part;
529 
530 	mutex_lock(&bdev->bd_mutex);
531 	if (partition_overlaps(bdev->bd_disk, start, length, -1)) {
532 		mutex_unlock(&bdev->bd_mutex);
533 		return -EBUSY;
534 	}
535 
536 	part = add_partition(bdev->bd_disk, partno, start, length,
537 			ADDPART_FLAG_NONE, NULL);
538 	mutex_unlock(&bdev->bd_mutex);
539 	return PTR_ERR_OR_ZERO(part);
540 }
541 
bdev_del_partition(struct block_device * bdev,int partno)542 int bdev_del_partition(struct block_device *bdev, int partno)
543 {
544 	struct block_device *bdevp;
545 	struct hd_struct *part = NULL;
546 	int ret;
547 
548 	bdevp = bdget_disk(bdev->bd_disk, partno);
549 	if (!bdevp)
550 		return -ENXIO;
551 
552 	mutex_lock(&bdevp->bd_mutex);
553 	mutex_lock_nested(&bdev->bd_mutex, 1);
554 
555 	ret = -ENXIO;
556 	part = disk_get_part(bdev->bd_disk, partno);
557 	if (!part)
558 		goto out_unlock;
559 
560 	ret = -EBUSY;
561 	if (bdevp->bd_openers)
562 		goto out_unlock;
563 
564 	sync_blockdev(bdevp);
565 	invalidate_bdev(bdevp);
566 
567 	delete_partition(part);
568 	ret = 0;
569 out_unlock:
570 	mutex_unlock(&bdev->bd_mutex);
571 	mutex_unlock(&bdevp->bd_mutex);
572 	bdput(bdevp);
573 	if (part)
574 		disk_put_part(part);
575 	return ret;
576 }
577 
bdev_resize_partition(struct block_device * bdev,int partno,sector_t start,sector_t length)578 int bdev_resize_partition(struct block_device *bdev, int partno,
579 		sector_t start, sector_t length)
580 {
581 	struct block_device *bdevp;
582 	struct hd_struct *part;
583 	int ret = 0;
584 
585 	part = disk_get_part(bdev->bd_disk, partno);
586 	if (!part)
587 		return -ENXIO;
588 
589 	ret = -ENOMEM;
590 	bdevp = bdget_part(part);
591 	if (!bdevp)
592 		goto out_put_part;
593 
594 	mutex_lock(&bdevp->bd_mutex);
595 	mutex_lock_nested(&bdev->bd_mutex, 1);
596 
597 	ret = -EINVAL;
598 	if (start != part->start_sect)
599 		goto out_unlock;
600 
601 	ret = -EBUSY;
602 	if (partition_overlaps(bdev->bd_disk, start, length, partno))
603 		goto out_unlock;
604 
605 	part_nr_sects_write(part, length);
606 	bd_set_nr_sectors(bdevp, length);
607 
608 	ret = 0;
609 out_unlock:
610 	mutex_unlock(&bdevp->bd_mutex);
611 	mutex_unlock(&bdev->bd_mutex);
612 	bdput(bdevp);
613 out_put_part:
614 	disk_put_part(part);
615 	return ret;
616 }
617 
disk_unlock_native_capacity(struct gendisk * disk)618 static bool disk_unlock_native_capacity(struct gendisk *disk)
619 {
620 	const struct block_device_operations *bdops = disk->fops;
621 
622 	if (bdops->unlock_native_capacity &&
623 	    !(disk->flags & GENHD_FL_NATIVE_CAPACITY)) {
624 		printk(KERN_CONT "enabling native capacity\n");
625 		bdops->unlock_native_capacity(disk);
626 		disk->flags |= GENHD_FL_NATIVE_CAPACITY;
627 		return true;
628 	} else {
629 		printk(KERN_CONT "truncated\n");
630 		return false;
631 	}
632 }
633 
blk_drop_partitions(struct block_device * bdev)634 int blk_drop_partitions(struct block_device *bdev)
635 {
636 	struct disk_part_iter piter;
637 	struct hd_struct *part;
638 
639 	if (bdev->bd_part_count)
640 		return -EBUSY;
641 
642 	sync_blockdev(bdev);
643 	invalidate_bdev(bdev);
644 
645 	disk_part_iter_init(&piter, bdev->bd_disk, DISK_PITER_INCL_EMPTY);
646 	while ((part = disk_part_iter_next(&piter)))
647 		delete_partition(part);
648 	disk_part_iter_exit(&piter);
649 
650 	return 0;
651 }
652 #ifdef CONFIG_S390
653 /* for historic reasons in the DASD driver */
654 EXPORT_SYMBOL_GPL(blk_drop_partitions);
655 #endif
656 
blk_add_partition(struct gendisk * disk,struct block_device * bdev,struct parsed_partitions * state,int p)657 static bool blk_add_partition(struct gendisk *disk, struct block_device *bdev,
658 		struct parsed_partitions *state, int p)
659 {
660 	sector_t size = state->parts[p].size;
661 	sector_t from = state->parts[p].from;
662 	struct hd_struct *part;
663 
664 	if (!size)
665 		return true;
666 
667 	if (from >= get_capacity(disk)) {
668 		printk(KERN_WARNING
669 		       "%s: p%d start %llu is beyond EOD, ",
670 		       disk->disk_name, p, (unsigned long long) from);
671 		if (disk_unlock_native_capacity(disk))
672 			return false;
673 		return true;
674 	}
675 
676 	if (from + size > get_capacity(disk)) {
677 		printk(KERN_WARNING
678 		       "%s: p%d size %llu extends beyond EOD, ",
679 		       disk->disk_name, p, (unsigned long long) size);
680 
681 		if (disk_unlock_native_capacity(disk))
682 			return false;
683 
684 		/*
685 		 * We can not ignore partitions of broken tables created by for
686 		 * example camera firmware, but we limit them to the end of the
687 		 * disk to avoid creating invalid block devices.
688 		 */
689 		size = get_capacity(disk) - from;
690 	}
691 
692 	part = add_partition(disk, p, from, size, state->parts[p].flags,
693 			     &state->parts[p].info);
694 	if (IS_ERR(part) && PTR_ERR(part) != -ENXIO) {
695 		printk(KERN_ERR " %s: p%d could not be added: %ld\n",
696 		       disk->disk_name, p, -PTR_ERR(part));
697 		return true;
698 	}
699 
700 	if (IS_BUILTIN(CONFIG_BLK_DEV_MD) &&
701 	    (state->parts[p].flags & ADDPART_FLAG_RAID))
702 		md_autodetect_dev(part_to_dev(part)->devt);
703 
704 	return true;
705 }
706 
blk_add_partitions(struct gendisk * disk,struct block_device * bdev)707 int blk_add_partitions(struct gendisk *disk, struct block_device *bdev)
708 {
709 	struct parsed_partitions *state;
710 	int ret = -EAGAIN, p, highest;
711 
712 	if (!disk_part_scan_enabled(disk))
713 		return 0;
714 
715 	state = check_partition(disk, bdev);
716 	if (!state)
717 		return 0;
718 	if (IS_ERR(state)) {
719 		/*
720 		 * I/O error reading the partition table.  If we tried to read
721 		 * beyond EOD, retry after unlocking the native capacity.
722 		 */
723 		if (PTR_ERR(state) == -ENOSPC) {
724 			printk(KERN_WARNING "%s: partition table beyond EOD, ",
725 			       disk->disk_name);
726 			if (disk_unlock_native_capacity(disk))
727 				return -EAGAIN;
728 		}
729 		return -EIO;
730 	}
731 
732 	/*
733 	 * Partitions are not supported on host managed zoned block devices.
734 	 */
735 	if (disk->queue->limits.zoned == BLK_ZONED_HM) {
736 		pr_warn("%s: ignoring partition table on host managed zoned block device\n",
737 			disk->disk_name);
738 		ret = 0;
739 		goto out_free_state;
740 	}
741 
742 	/*
743 	 * If we read beyond EOD, try unlocking native capacity even if the
744 	 * partition table was successfully read as we could be missing some
745 	 * partitions.
746 	 */
747 	if (state->access_beyond_eod) {
748 		printk(KERN_WARNING
749 		       "%s: partition table partially beyond EOD, ",
750 		       disk->disk_name);
751 		if (disk_unlock_native_capacity(disk))
752 			goto out_free_state;
753 	}
754 
755 	/* tell userspace that the media / partition table may have changed */
756 	kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
757 
758 	/*
759 	 * Detect the highest partition number and preallocate disk->part_tbl.
760 	 * This is an optimization and not strictly necessary.
761 	 */
762 	for (p = 1, highest = 0; p < state->limit; p++)
763 		if (state->parts[p].size)
764 			highest = p;
765 	disk_expand_part_tbl(disk, highest);
766 
767 	for (p = 1; p < state->limit; p++)
768 		if (!blk_add_partition(disk, bdev, state, p))
769 			goto out_free_state;
770 
771 	ret = 0;
772 out_free_state:
773 	free_partitions(state);
774 	return ret;
775 }
776 
read_part_sector(struct parsed_partitions * state,sector_t n,Sector * p)777 void *read_part_sector(struct parsed_partitions *state, sector_t n, Sector *p)
778 {
779 	struct address_space *mapping = state->bdev->bd_inode->i_mapping;
780 	struct page *page;
781 
782 	if (n >= get_capacity(state->bdev->bd_disk)) {
783 		state->access_beyond_eod = true;
784 		return NULL;
785 	}
786 
787 	page = read_mapping_page(mapping,
788 			(pgoff_t)(n >> (PAGE_SHIFT - 9)), NULL);
789 	if (IS_ERR(page))
790 		goto out;
791 	if (PageError(page))
792 		goto out_put_page;
793 
794 	p->v = page;
795 	return (unsigned char *)page_address(page) +
796 			((n & ((1 << (PAGE_SHIFT - 9)) - 1)) << SECTOR_SHIFT);
797 out_put_page:
798 	put_page(page);
799 out:
800 	p->v = NULL;
801 	return NULL;
802 }
803