1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * drivers/acpi/power.c - ACPI Power Resources management.
4 *
5 * Copyright (C) 2001 - 2015 Intel Corp.
6 * Author: Andy Grover <andrew.grover@intel.com>
7 * Author: Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
9 */
10
11 /*
12 * ACPI power-managed devices may be controlled in two ways:
13 * 1. via "Device Specific (D-State) Control"
14 * 2. via "Power Resource Control".
15 * The code below deals with ACPI Power Resources control.
16 *
17 * An ACPI "power resource object" represents a software controllable power
18 * plane, clock plane, or other resource depended on by a device.
19 *
20 * A device may rely on multiple power resources, and a power resource
21 * may be shared by multiple devices.
22 */
23
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/sysfs.h>
31 #include <linux/acpi.h>
32 #include "sleep.h"
33 #include "internal.h"
34
35 #define _COMPONENT ACPI_POWER_COMPONENT
36 ACPI_MODULE_NAME("power");
37 #define ACPI_POWER_CLASS "power_resource"
38 #define ACPI_POWER_DEVICE_NAME "Power Resource"
39 #define ACPI_POWER_RESOURCE_STATE_OFF 0x00
40 #define ACPI_POWER_RESOURCE_STATE_ON 0x01
41 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
42
43 struct acpi_power_dependent_device {
44 struct device *dev;
45 struct list_head node;
46 };
47
48 struct acpi_power_resource {
49 struct acpi_device device;
50 struct list_head list_node;
51 char *name;
52 u32 system_level;
53 u32 order;
54 unsigned int ref_count;
55 bool wakeup_enabled;
56 struct mutex resource_lock;
57 struct list_head dependents;
58 };
59
60 struct acpi_power_resource_entry {
61 struct list_head node;
62 struct acpi_power_resource *resource;
63 };
64
65 static LIST_HEAD(acpi_power_resource_list);
66 static DEFINE_MUTEX(power_resource_list_lock);
67
68 /* --------------------------------------------------------------------------
69 Power Resource Management
70 -------------------------------------------------------------------------- */
71
72 static inline
to_power_resource(struct acpi_device * device)73 struct acpi_power_resource *to_power_resource(struct acpi_device *device)
74 {
75 return container_of(device, struct acpi_power_resource, device);
76 }
77
acpi_power_get_context(acpi_handle handle)78 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle)
79 {
80 struct acpi_device *device;
81
82 if (acpi_bus_get_device(handle, &device))
83 return NULL;
84
85 return to_power_resource(device);
86 }
87
acpi_power_resources_list_add(acpi_handle handle,struct list_head * list)88 static int acpi_power_resources_list_add(acpi_handle handle,
89 struct list_head *list)
90 {
91 struct acpi_power_resource *resource = acpi_power_get_context(handle);
92 struct acpi_power_resource_entry *entry;
93
94 if (!resource || !list)
95 return -EINVAL;
96
97 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
98 if (!entry)
99 return -ENOMEM;
100
101 entry->resource = resource;
102 if (!list_empty(list)) {
103 struct acpi_power_resource_entry *e;
104
105 list_for_each_entry(e, list, node)
106 if (e->resource->order > resource->order) {
107 list_add_tail(&entry->node, &e->node);
108 return 0;
109 }
110 }
111 list_add_tail(&entry->node, list);
112 return 0;
113 }
114
acpi_power_resources_list_free(struct list_head * list)115 void acpi_power_resources_list_free(struct list_head *list)
116 {
117 struct acpi_power_resource_entry *entry, *e;
118
119 list_for_each_entry_safe(entry, e, list, node) {
120 list_del(&entry->node);
121 kfree(entry);
122 }
123 }
124
acpi_power_resource_is_dup(union acpi_object * package,unsigned int start,unsigned int i)125 static bool acpi_power_resource_is_dup(union acpi_object *package,
126 unsigned int start, unsigned int i)
127 {
128 acpi_handle rhandle, dup;
129 unsigned int j;
130
131 /* The caller is expected to check the package element types */
132 rhandle = package->package.elements[i].reference.handle;
133 for (j = start; j < i; j++) {
134 dup = package->package.elements[j].reference.handle;
135 if (dup == rhandle)
136 return true;
137 }
138
139 return false;
140 }
141
acpi_extract_power_resources(union acpi_object * package,unsigned int start,struct list_head * list)142 int acpi_extract_power_resources(union acpi_object *package, unsigned int start,
143 struct list_head *list)
144 {
145 unsigned int i;
146 int err = 0;
147
148 for (i = start; i < package->package.count; i++) {
149 union acpi_object *element = &package->package.elements[i];
150 acpi_handle rhandle;
151
152 if (element->type != ACPI_TYPE_LOCAL_REFERENCE) {
153 err = -ENODATA;
154 break;
155 }
156 rhandle = element->reference.handle;
157 if (!rhandle) {
158 err = -ENODEV;
159 break;
160 }
161
162 /* Some ACPI tables contain duplicate power resource references */
163 if (acpi_power_resource_is_dup(package, start, i))
164 continue;
165
166 err = acpi_add_power_resource(rhandle);
167 if (err)
168 break;
169
170 err = acpi_power_resources_list_add(rhandle, list);
171 if (err)
172 break;
173 }
174 if (err)
175 acpi_power_resources_list_free(list);
176
177 return err;
178 }
179
acpi_power_get_state(acpi_handle handle,int * state)180 static int acpi_power_get_state(acpi_handle handle, int *state)
181 {
182 acpi_status status = AE_OK;
183 unsigned long long sta = 0;
184 char node_name[5];
185 struct acpi_buffer buffer = { sizeof(node_name), node_name };
186
187
188 if (!handle || !state)
189 return -EINVAL;
190
191 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
192 if (ACPI_FAILURE(status))
193 return -ENODEV;
194
195 *state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON:
196 ACPI_POWER_RESOURCE_STATE_OFF;
197
198 acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
199
200 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] is %s\n",
201 node_name,
202 *state ? "on" : "off"));
203
204 return 0;
205 }
206
acpi_power_get_list_state(struct list_head * list,int * state)207 static int acpi_power_get_list_state(struct list_head *list, int *state)
208 {
209 struct acpi_power_resource_entry *entry;
210 int cur_state;
211
212 if (!list || !state)
213 return -EINVAL;
214
215 /* The state of the list is 'on' IFF all resources are 'on'. */
216 cur_state = 0;
217 list_for_each_entry(entry, list, node) {
218 struct acpi_power_resource *resource = entry->resource;
219 acpi_handle handle = resource->device.handle;
220 int result;
221
222 mutex_lock(&resource->resource_lock);
223 result = acpi_power_get_state(handle, &cur_state);
224 mutex_unlock(&resource->resource_lock);
225 if (result)
226 return result;
227
228 if (cur_state != ACPI_POWER_RESOURCE_STATE_ON)
229 break;
230 }
231
232 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource list is %s\n",
233 cur_state ? "on" : "off"));
234
235 *state = cur_state;
236 return 0;
237 }
238
239 static int
acpi_power_resource_add_dependent(struct acpi_power_resource * resource,struct device * dev)240 acpi_power_resource_add_dependent(struct acpi_power_resource *resource,
241 struct device *dev)
242 {
243 struct acpi_power_dependent_device *dep;
244 int ret = 0;
245
246 mutex_lock(&resource->resource_lock);
247 list_for_each_entry(dep, &resource->dependents, node) {
248 /* Only add it once */
249 if (dep->dev == dev)
250 goto unlock;
251 }
252
253 dep = kzalloc(sizeof(*dep), GFP_KERNEL);
254 if (!dep) {
255 ret = -ENOMEM;
256 goto unlock;
257 }
258
259 dep->dev = dev;
260 list_add_tail(&dep->node, &resource->dependents);
261 dev_dbg(dev, "added power dependency to [%s]\n", resource->name);
262
263 unlock:
264 mutex_unlock(&resource->resource_lock);
265 return ret;
266 }
267
268 static void
acpi_power_resource_remove_dependent(struct acpi_power_resource * resource,struct device * dev)269 acpi_power_resource_remove_dependent(struct acpi_power_resource *resource,
270 struct device *dev)
271 {
272 struct acpi_power_dependent_device *dep;
273
274 mutex_lock(&resource->resource_lock);
275 list_for_each_entry(dep, &resource->dependents, node) {
276 if (dep->dev == dev) {
277 list_del(&dep->node);
278 kfree(dep);
279 dev_dbg(dev, "removed power dependency to [%s]\n",
280 resource->name);
281 break;
282 }
283 }
284 mutex_unlock(&resource->resource_lock);
285 }
286
287 /**
288 * acpi_device_power_add_dependent - Add dependent device of this ACPI device
289 * @adev: ACPI device pointer
290 * @dev: Dependent device
291 *
292 * If @adev has non-empty _PR0 the @dev is added as dependent device to all
293 * power resources returned by it. This means that whenever these power
294 * resources are turned _ON the dependent devices get runtime resumed. This
295 * is needed for devices such as PCI to allow its driver to re-initialize
296 * it after it went to D0uninitialized.
297 *
298 * If @adev does not have _PR0 this does nothing.
299 *
300 * Returns %0 in case of success and negative errno otherwise.
301 */
acpi_device_power_add_dependent(struct acpi_device * adev,struct device * dev)302 int acpi_device_power_add_dependent(struct acpi_device *adev,
303 struct device *dev)
304 {
305 struct acpi_power_resource_entry *entry;
306 struct list_head *resources;
307 int ret;
308
309 if (!adev->flags.power_manageable)
310 return 0;
311
312 resources = &adev->power.states[ACPI_STATE_D0].resources;
313 list_for_each_entry(entry, resources, node) {
314 ret = acpi_power_resource_add_dependent(entry->resource, dev);
315 if (ret)
316 goto err;
317 }
318
319 return 0;
320
321 err:
322 list_for_each_entry(entry, resources, node)
323 acpi_power_resource_remove_dependent(entry->resource, dev);
324
325 return ret;
326 }
327
328 /**
329 * acpi_device_power_remove_dependent - Remove dependent device
330 * @adev: ACPI device pointer
331 * @dev: Dependent device
332 *
333 * Does the opposite of acpi_device_power_add_dependent() and removes the
334 * dependent device if it is found. Can be called to @adev that does not
335 * have _PR0 as well.
336 */
acpi_device_power_remove_dependent(struct acpi_device * adev,struct device * dev)337 void acpi_device_power_remove_dependent(struct acpi_device *adev,
338 struct device *dev)
339 {
340 struct acpi_power_resource_entry *entry;
341 struct list_head *resources;
342
343 if (!adev->flags.power_manageable)
344 return;
345
346 resources = &adev->power.states[ACPI_STATE_D0].resources;
347 list_for_each_entry_reverse(entry, resources, node)
348 acpi_power_resource_remove_dependent(entry->resource, dev);
349 }
350
__acpi_power_on(struct acpi_power_resource * resource)351 static int __acpi_power_on(struct acpi_power_resource *resource)
352 {
353 struct acpi_power_dependent_device *dep;
354 acpi_status status = AE_OK;
355
356 status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL);
357 if (ACPI_FAILURE(status))
358 return -ENODEV;
359
360 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned on\n",
361 resource->name));
362
363 /*
364 * If there are other dependents on this power resource we need to
365 * resume them now so that their drivers can re-initialize the
366 * hardware properly after it went back to D0.
367 */
368 if (list_empty(&resource->dependents) ||
369 list_is_singular(&resource->dependents))
370 return 0;
371
372 list_for_each_entry(dep, &resource->dependents, node) {
373 dev_dbg(dep->dev, "runtime resuming because [%s] turned on\n",
374 resource->name);
375 pm_request_resume(dep->dev);
376 }
377
378 return 0;
379 }
380
acpi_power_on_unlocked(struct acpi_power_resource * resource)381 static int acpi_power_on_unlocked(struct acpi_power_resource *resource)
382 {
383 int result = 0;
384
385 if (resource->ref_count++) {
386 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
387 "Power resource [%s] already on\n",
388 resource->name));
389 } else {
390 result = __acpi_power_on(resource);
391 if (result)
392 resource->ref_count--;
393 }
394 return result;
395 }
396
acpi_power_on(struct acpi_power_resource * resource)397 static int acpi_power_on(struct acpi_power_resource *resource)
398 {
399 int result;
400
401 mutex_lock(&resource->resource_lock);
402 result = acpi_power_on_unlocked(resource);
403 mutex_unlock(&resource->resource_lock);
404 return result;
405 }
406
__acpi_power_off(struct acpi_power_resource * resource)407 static int __acpi_power_off(struct acpi_power_resource *resource)
408 {
409 acpi_status status;
410
411 status = acpi_evaluate_object(resource->device.handle, "_OFF",
412 NULL, NULL);
413 if (ACPI_FAILURE(status))
414 return -ENODEV;
415
416 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned off\n",
417 resource->name));
418 return 0;
419 }
420
acpi_power_off_unlocked(struct acpi_power_resource * resource)421 static int acpi_power_off_unlocked(struct acpi_power_resource *resource)
422 {
423 int result = 0;
424
425 if (!resource->ref_count) {
426 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
427 "Power resource [%s] already off\n",
428 resource->name));
429 return 0;
430 }
431
432 if (--resource->ref_count) {
433 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
434 "Power resource [%s] still in use\n",
435 resource->name));
436 } else {
437 result = __acpi_power_off(resource);
438 if (result)
439 resource->ref_count++;
440 }
441 return result;
442 }
443
acpi_power_off(struct acpi_power_resource * resource)444 static int acpi_power_off(struct acpi_power_resource *resource)
445 {
446 int result;
447
448 mutex_lock(&resource->resource_lock);
449 result = acpi_power_off_unlocked(resource);
450 mutex_unlock(&resource->resource_lock);
451 return result;
452 }
453
acpi_power_off_list(struct list_head * list)454 static int acpi_power_off_list(struct list_head *list)
455 {
456 struct acpi_power_resource_entry *entry;
457 int result = 0;
458
459 list_for_each_entry_reverse(entry, list, node) {
460 result = acpi_power_off(entry->resource);
461 if (result)
462 goto err;
463 }
464 return 0;
465
466 err:
467 list_for_each_entry_continue(entry, list, node)
468 acpi_power_on(entry->resource);
469
470 return result;
471 }
472
acpi_power_on_list(struct list_head * list)473 static int acpi_power_on_list(struct list_head *list)
474 {
475 struct acpi_power_resource_entry *entry;
476 int result = 0;
477
478 list_for_each_entry(entry, list, node) {
479 result = acpi_power_on(entry->resource);
480 if (result)
481 goto err;
482 }
483 return 0;
484
485 err:
486 list_for_each_entry_continue_reverse(entry, list, node)
487 acpi_power_off(entry->resource);
488
489 return result;
490 }
491
492 static struct attribute *attrs[] = {
493 NULL,
494 };
495
496 static const struct attribute_group attr_groups[] = {
497 [ACPI_STATE_D0] = {
498 .name = "power_resources_D0",
499 .attrs = attrs,
500 },
501 [ACPI_STATE_D1] = {
502 .name = "power_resources_D1",
503 .attrs = attrs,
504 },
505 [ACPI_STATE_D2] = {
506 .name = "power_resources_D2",
507 .attrs = attrs,
508 },
509 [ACPI_STATE_D3_HOT] = {
510 .name = "power_resources_D3hot",
511 .attrs = attrs,
512 },
513 };
514
515 static const struct attribute_group wakeup_attr_group = {
516 .name = "power_resources_wakeup",
517 .attrs = attrs,
518 };
519
acpi_power_hide_list(struct acpi_device * adev,struct list_head * resources,const struct attribute_group * attr_group)520 static void acpi_power_hide_list(struct acpi_device *adev,
521 struct list_head *resources,
522 const struct attribute_group *attr_group)
523 {
524 struct acpi_power_resource_entry *entry;
525
526 if (list_empty(resources))
527 return;
528
529 list_for_each_entry_reverse(entry, resources, node) {
530 struct acpi_device *res_dev = &entry->resource->device;
531
532 sysfs_remove_link_from_group(&adev->dev.kobj,
533 attr_group->name,
534 dev_name(&res_dev->dev));
535 }
536 sysfs_remove_group(&adev->dev.kobj, attr_group);
537 }
538
acpi_power_expose_list(struct acpi_device * adev,struct list_head * resources,const struct attribute_group * attr_group)539 static void acpi_power_expose_list(struct acpi_device *adev,
540 struct list_head *resources,
541 const struct attribute_group *attr_group)
542 {
543 struct acpi_power_resource_entry *entry;
544 int ret;
545
546 if (list_empty(resources))
547 return;
548
549 ret = sysfs_create_group(&adev->dev.kobj, attr_group);
550 if (ret)
551 return;
552
553 list_for_each_entry(entry, resources, node) {
554 struct acpi_device *res_dev = &entry->resource->device;
555
556 ret = sysfs_add_link_to_group(&adev->dev.kobj,
557 attr_group->name,
558 &res_dev->dev.kobj,
559 dev_name(&res_dev->dev));
560 if (ret) {
561 acpi_power_hide_list(adev, resources, attr_group);
562 break;
563 }
564 }
565 }
566
acpi_power_expose_hide(struct acpi_device * adev,struct list_head * resources,const struct attribute_group * attr_group,bool expose)567 static void acpi_power_expose_hide(struct acpi_device *adev,
568 struct list_head *resources,
569 const struct attribute_group *attr_group,
570 bool expose)
571 {
572 if (expose)
573 acpi_power_expose_list(adev, resources, attr_group);
574 else
575 acpi_power_hide_list(adev, resources, attr_group);
576 }
577
acpi_power_add_remove_device(struct acpi_device * adev,bool add)578 void acpi_power_add_remove_device(struct acpi_device *adev, bool add)
579 {
580 int state;
581
582 if (adev->wakeup.flags.valid)
583 acpi_power_expose_hide(adev, &adev->wakeup.resources,
584 &wakeup_attr_group, add);
585
586 if (!adev->power.flags.power_resources)
587 return;
588
589 for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++)
590 acpi_power_expose_hide(adev,
591 &adev->power.states[state].resources,
592 &attr_groups[state], add);
593 }
594
acpi_power_wakeup_list_init(struct list_head * list,int * system_level_p)595 int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p)
596 {
597 struct acpi_power_resource_entry *entry;
598 int system_level = 5;
599
600 list_for_each_entry(entry, list, node) {
601 struct acpi_power_resource *resource = entry->resource;
602 acpi_handle handle = resource->device.handle;
603 int result;
604 int state;
605
606 mutex_lock(&resource->resource_lock);
607
608 result = acpi_power_get_state(handle, &state);
609 if (result) {
610 mutex_unlock(&resource->resource_lock);
611 return result;
612 }
613 if (state == ACPI_POWER_RESOURCE_STATE_ON) {
614 resource->ref_count++;
615 resource->wakeup_enabled = true;
616 }
617 if (system_level > resource->system_level)
618 system_level = resource->system_level;
619
620 mutex_unlock(&resource->resource_lock);
621 }
622 *system_level_p = system_level;
623 return 0;
624 }
625
626 /* --------------------------------------------------------------------------
627 Device Power Management
628 -------------------------------------------------------------------------- */
629
630 /**
631 * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
632 * ACPI 3.0) _PSW (Power State Wake)
633 * @dev: Device to handle.
634 * @enable: 0 - disable, 1 - enable the wake capabilities of the device.
635 * @sleep_state: Target sleep state of the system.
636 * @dev_state: Target power state of the device.
637 *
638 * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
639 * State Wake) for the device, if present. On failure reset the device's
640 * wakeup.flags.valid flag.
641 *
642 * RETURN VALUE:
643 * 0 if either _DSW or _PSW has been successfully executed
644 * 0 if neither _DSW nor _PSW has been found
645 * -ENODEV if the execution of either _DSW or _PSW has failed
646 */
acpi_device_sleep_wake(struct acpi_device * dev,int enable,int sleep_state,int dev_state)647 int acpi_device_sleep_wake(struct acpi_device *dev,
648 int enable, int sleep_state, int dev_state)
649 {
650 union acpi_object in_arg[3];
651 struct acpi_object_list arg_list = { 3, in_arg };
652 acpi_status status = AE_OK;
653
654 /*
655 * Try to execute _DSW first.
656 *
657 * Three arguments are needed for the _DSW object:
658 * Argument 0: enable/disable the wake capabilities
659 * Argument 1: target system state
660 * Argument 2: target device state
661 * When _DSW object is called to disable the wake capabilities, maybe
662 * the first argument is filled. The values of the other two arguments
663 * are meaningless.
664 */
665 in_arg[0].type = ACPI_TYPE_INTEGER;
666 in_arg[0].integer.value = enable;
667 in_arg[1].type = ACPI_TYPE_INTEGER;
668 in_arg[1].integer.value = sleep_state;
669 in_arg[2].type = ACPI_TYPE_INTEGER;
670 in_arg[2].integer.value = dev_state;
671 status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
672 if (ACPI_SUCCESS(status)) {
673 return 0;
674 } else if (status != AE_NOT_FOUND) {
675 printk(KERN_ERR PREFIX "_DSW execution failed\n");
676 dev->wakeup.flags.valid = 0;
677 return -ENODEV;
678 }
679
680 /* Execute _PSW */
681 status = acpi_execute_simple_method(dev->handle, "_PSW", enable);
682 if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
683 printk(KERN_ERR PREFIX "_PSW execution failed\n");
684 dev->wakeup.flags.valid = 0;
685 return -ENODEV;
686 }
687
688 return 0;
689 }
690
691 /*
692 * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
693 * 1. Power on the power resources required for the wakeup device
694 * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
695 * State Wake) for the device, if present
696 */
acpi_enable_wakeup_device_power(struct acpi_device * dev,int sleep_state)697 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
698 {
699 struct acpi_power_resource_entry *entry;
700 int err = 0;
701
702 if (!dev || !dev->wakeup.flags.valid)
703 return -EINVAL;
704
705 mutex_lock(&acpi_device_lock);
706
707 if (dev->wakeup.prepare_count++)
708 goto out;
709
710 list_for_each_entry(entry, &dev->wakeup.resources, node) {
711 struct acpi_power_resource *resource = entry->resource;
712
713 mutex_lock(&resource->resource_lock);
714
715 if (!resource->wakeup_enabled) {
716 err = acpi_power_on_unlocked(resource);
717 if (!err)
718 resource->wakeup_enabled = true;
719 }
720
721 mutex_unlock(&resource->resource_lock);
722
723 if (err) {
724 dev_err(&dev->dev,
725 "Cannot turn wakeup power resources on\n");
726 dev->wakeup.flags.valid = 0;
727 goto out;
728 }
729 }
730 /*
731 * Passing 3 as the third argument below means the device may be
732 * put into arbitrary power state afterward.
733 */
734 err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
735 if (err)
736 dev->wakeup.prepare_count = 0;
737
738 out:
739 mutex_unlock(&acpi_device_lock);
740 return err;
741 }
742
743 /*
744 * Shutdown a wakeup device, counterpart of above method
745 * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
746 * State Wake) for the device, if present
747 * 2. Shutdown down the power resources
748 */
acpi_disable_wakeup_device_power(struct acpi_device * dev)749 int acpi_disable_wakeup_device_power(struct acpi_device *dev)
750 {
751 struct acpi_power_resource_entry *entry;
752 int err = 0;
753
754 if (!dev || !dev->wakeup.flags.valid)
755 return -EINVAL;
756
757 mutex_lock(&acpi_device_lock);
758
759 if (--dev->wakeup.prepare_count > 0)
760 goto out;
761
762 /*
763 * Executing the code below even if prepare_count is already zero when
764 * the function is called may be useful, for example for initialisation.
765 */
766 if (dev->wakeup.prepare_count < 0)
767 dev->wakeup.prepare_count = 0;
768
769 err = acpi_device_sleep_wake(dev, 0, 0, 0);
770 if (err)
771 goto out;
772
773 list_for_each_entry(entry, &dev->wakeup.resources, node) {
774 struct acpi_power_resource *resource = entry->resource;
775
776 mutex_lock(&resource->resource_lock);
777
778 if (resource->wakeup_enabled) {
779 err = acpi_power_off_unlocked(resource);
780 if (!err)
781 resource->wakeup_enabled = false;
782 }
783
784 mutex_unlock(&resource->resource_lock);
785
786 if (err) {
787 dev_err(&dev->dev,
788 "Cannot turn wakeup power resources off\n");
789 dev->wakeup.flags.valid = 0;
790 break;
791 }
792 }
793
794 out:
795 mutex_unlock(&acpi_device_lock);
796 return err;
797 }
798
acpi_power_get_inferred_state(struct acpi_device * device,int * state)799 int acpi_power_get_inferred_state(struct acpi_device *device, int *state)
800 {
801 int result = 0;
802 int list_state = 0;
803 int i = 0;
804
805 if (!device || !state)
806 return -EINVAL;
807
808 /*
809 * We know a device's inferred power state when all the resources
810 * required for a given D-state are 'on'.
811 */
812 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
813 struct list_head *list = &device->power.states[i].resources;
814
815 if (list_empty(list))
816 continue;
817
818 result = acpi_power_get_list_state(list, &list_state);
819 if (result)
820 return result;
821
822 if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
823 *state = i;
824 return 0;
825 }
826 }
827
828 *state = device->power.states[ACPI_STATE_D3_COLD].flags.valid ?
829 ACPI_STATE_D3_COLD : ACPI_STATE_D3_HOT;
830 return 0;
831 }
832
acpi_power_on_resources(struct acpi_device * device,int state)833 int acpi_power_on_resources(struct acpi_device *device, int state)
834 {
835 if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT)
836 return -EINVAL;
837
838 return acpi_power_on_list(&device->power.states[state].resources);
839 }
840
acpi_power_transition(struct acpi_device * device,int state)841 int acpi_power_transition(struct acpi_device *device, int state)
842 {
843 int result = 0;
844
845 if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
846 return -EINVAL;
847
848 if (device->power.state == state || !device->flags.power_manageable)
849 return 0;
850
851 if ((device->power.state < ACPI_STATE_D0)
852 || (device->power.state > ACPI_STATE_D3_COLD))
853 return -ENODEV;
854
855 /*
856 * First we reference all power resources required in the target list
857 * (e.g. so the device doesn't lose power while transitioning). Then,
858 * we dereference all power resources used in the current list.
859 */
860 if (state < ACPI_STATE_D3_COLD)
861 result = acpi_power_on_list(
862 &device->power.states[state].resources);
863
864 if (!result && device->power.state < ACPI_STATE_D3_COLD)
865 acpi_power_off_list(
866 &device->power.states[device->power.state].resources);
867
868 /* We shouldn't change the state unless the above operations succeed. */
869 device->power.state = result ? ACPI_STATE_UNKNOWN : state;
870
871 return result;
872 }
873
acpi_release_power_resource(struct device * dev)874 static void acpi_release_power_resource(struct device *dev)
875 {
876 struct acpi_device *device = to_acpi_device(dev);
877 struct acpi_power_resource *resource;
878
879 resource = container_of(device, struct acpi_power_resource, device);
880
881 mutex_lock(&power_resource_list_lock);
882 list_del(&resource->list_node);
883 mutex_unlock(&power_resource_list_lock);
884
885 acpi_free_pnp_ids(&device->pnp);
886 kfree(resource);
887 }
888
resource_in_use_show(struct device * dev,struct device_attribute * attr,char * buf)889 static ssize_t resource_in_use_show(struct device *dev,
890 struct device_attribute *attr,
891 char *buf)
892 {
893 struct acpi_power_resource *resource;
894
895 resource = to_power_resource(to_acpi_device(dev));
896 return sprintf(buf, "%u\n", !!resource->ref_count);
897 }
898 static DEVICE_ATTR_RO(resource_in_use);
899
acpi_power_sysfs_remove(struct acpi_device * device)900 static void acpi_power_sysfs_remove(struct acpi_device *device)
901 {
902 device_remove_file(&device->dev, &dev_attr_resource_in_use);
903 }
904
acpi_power_add_resource_to_list(struct acpi_power_resource * resource)905 static void acpi_power_add_resource_to_list(struct acpi_power_resource *resource)
906 {
907 mutex_lock(&power_resource_list_lock);
908
909 if (!list_empty(&acpi_power_resource_list)) {
910 struct acpi_power_resource *r;
911
912 list_for_each_entry(r, &acpi_power_resource_list, list_node)
913 if (r->order > resource->order) {
914 list_add_tail(&resource->list_node, &r->list_node);
915 goto out;
916 }
917 }
918 list_add_tail(&resource->list_node, &acpi_power_resource_list);
919
920 out:
921 mutex_unlock(&power_resource_list_lock);
922 }
923
acpi_add_power_resource(acpi_handle handle)924 int acpi_add_power_resource(acpi_handle handle)
925 {
926 struct acpi_power_resource *resource;
927 struct acpi_device *device = NULL;
928 union acpi_object acpi_object;
929 struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
930 acpi_status status;
931 int state, result = -ENODEV;
932
933 acpi_bus_get_device(handle, &device);
934 if (device)
935 return 0;
936
937 resource = kzalloc(sizeof(*resource), GFP_KERNEL);
938 if (!resource)
939 return -ENOMEM;
940
941 device = &resource->device;
942 acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER,
943 ACPI_STA_DEFAULT);
944 mutex_init(&resource->resource_lock);
945 INIT_LIST_HEAD(&resource->list_node);
946 INIT_LIST_HEAD(&resource->dependents);
947 resource->name = device->pnp.bus_id;
948 strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
949 strcpy(acpi_device_class(device), ACPI_POWER_CLASS);
950 device->power.state = ACPI_STATE_UNKNOWN;
951
952 /* Evalute the object to get the system level and resource order. */
953 status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
954 if (ACPI_FAILURE(status))
955 goto err;
956
957 resource->system_level = acpi_object.power_resource.system_level;
958 resource->order = acpi_object.power_resource.resource_order;
959
960 result = acpi_power_get_state(handle, &state);
961 if (result)
962 goto err;
963
964 printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device),
965 acpi_device_bid(device), state ? "on" : "off");
966
967 device->flags.match_driver = true;
968 result = acpi_device_add(device, acpi_release_power_resource);
969 if (result)
970 goto err;
971
972 if (!device_create_file(&device->dev, &dev_attr_resource_in_use))
973 device->remove = acpi_power_sysfs_remove;
974
975 acpi_power_add_resource_to_list(resource);
976 acpi_device_add_finalize(device);
977 return 0;
978
979 err:
980 acpi_release_power_resource(&device->dev);
981 return result;
982 }
983
984 #ifdef CONFIG_ACPI_SLEEP
acpi_resume_power_resources(void)985 void acpi_resume_power_resources(void)
986 {
987 struct acpi_power_resource *resource;
988
989 mutex_lock(&power_resource_list_lock);
990
991 list_for_each_entry(resource, &acpi_power_resource_list, list_node) {
992 int result, state;
993
994 mutex_lock(&resource->resource_lock);
995
996 result = acpi_power_get_state(resource->device.handle, &state);
997 if (result) {
998 mutex_unlock(&resource->resource_lock);
999 continue;
1000 }
1001
1002 if (state == ACPI_POWER_RESOURCE_STATE_OFF
1003 && resource->ref_count) {
1004 dev_info(&resource->device.dev, "Turning ON\n");
1005 __acpi_power_on(resource);
1006 }
1007
1008 mutex_unlock(&resource->resource_lock);
1009 }
1010
1011 mutex_unlock(&power_resource_list_lock);
1012 }
1013
acpi_turn_off_unused_power_resources(void)1014 void acpi_turn_off_unused_power_resources(void)
1015 {
1016 struct acpi_power_resource *resource;
1017
1018 mutex_lock(&power_resource_list_lock);
1019
1020 list_for_each_entry_reverse(resource, &acpi_power_resource_list, list_node) {
1021 int result, state;
1022
1023 mutex_lock(&resource->resource_lock);
1024
1025 result = acpi_power_get_state(resource->device.handle, &state);
1026 if (result) {
1027 mutex_unlock(&resource->resource_lock);
1028 continue;
1029 }
1030
1031 if (state == ACPI_POWER_RESOURCE_STATE_ON
1032 && !resource->ref_count) {
1033 dev_info(&resource->device.dev, "Turning OFF\n");
1034 __acpi_power_off(resource);
1035 }
1036
1037 mutex_unlock(&resource->resource_lock);
1038 }
1039
1040 mutex_unlock(&power_resource_list_lock);
1041 }
1042 #endif
1043