1 /*
2
3 he.c
4
5 ForeRunnerHE ATM Adapter driver for ATM on Linux
6 Copyright (C) 1999-2001 Naval Research Laboratory
7
8 This library is free software; you can redistribute it and/or
9 modify it under the terms of the GNU Lesser General Public
10 License as published by the Free Software Foundation; either
11 version 2.1 of the License, or (at your option) any later version.
12
13 This library is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 Lesser General Public License for more details.
17
18 You should have received a copy of the GNU Lesser General Public
19 License along with this library; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21
22 */
23
24 /*
25
26 he.c
27
28 ForeRunnerHE ATM Adapter driver for ATM on Linux
29 Copyright (C) 1999-2001 Naval Research Laboratory
30
31 Permission to use, copy, modify and distribute this software and its
32 documentation is hereby granted, provided that both the copyright
33 notice and this permission notice appear in all copies of the software,
34 derivative works or modified versions, and any portions thereof, and
35 that both notices appear in supporting documentation.
36
37 NRL ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION AND
38 DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER
39 RESULTING FROM THE USE OF THIS SOFTWARE.
40
41 This driver was written using the "Programmer's Reference Manual for
42 ForeRunnerHE(tm)", MANU0361-01 - Rev. A, 08/21/98.
43
44 AUTHORS:
45 chas williams <chas@cmf.nrl.navy.mil>
46 eric kinzie <ekinzie@cmf.nrl.navy.mil>
47
48 NOTES:
49 4096 supported 'connections'
50 group 0 is used for all traffic
51 interrupt queue 0 is used for all interrupts
52 aal0 support (based on work from ulrich.u.muller@nokia.com)
53
54 */
55
56 #include <linux/module.h>
57 #include <linux/kernel.h>
58 #include <linux/skbuff.h>
59 #include <linux/pci.h>
60 #include <linux/errno.h>
61 #include <linux/types.h>
62 #include <linux/string.h>
63 #include <linux/delay.h>
64 #include <linux/init.h>
65 #include <linux/mm.h>
66 #include <linux/sched.h>
67 #include <linux/timer.h>
68 #include <linux/interrupt.h>
69 #include <linux/dma-mapping.h>
70 #include <linux/bitmap.h>
71 #include <linux/slab.h>
72 #include <asm/io.h>
73 #include <asm/byteorder.h>
74 #include <linux/uaccess.h>
75
76 #include <linux/atmdev.h>
77 #include <linux/atm.h>
78 #include <linux/sonet.h>
79
80 #undef USE_SCATTERGATHER
81 #undef USE_CHECKSUM_HW /* still confused about this */
82 /* #undef HE_DEBUG */
83
84 #include "he.h"
85 #include "suni.h"
86 #include <linux/atm_he.h>
87
88 #define hprintk(fmt,args...) printk(KERN_ERR DEV_LABEL "%d: " fmt, he_dev->number , ##args)
89
90 #ifdef HE_DEBUG
91 #define HPRINTK(fmt,args...) printk(KERN_DEBUG DEV_LABEL "%d: " fmt, he_dev->number , ##args)
92 #else /* !HE_DEBUG */
93 #define HPRINTK(fmt,args...) do { } while (0)
94 #endif /* HE_DEBUG */
95
96 /* declarations */
97
98 static int he_open(struct atm_vcc *vcc);
99 static void he_close(struct atm_vcc *vcc);
100 static int he_send(struct atm_vcc *vcc, struct sk_buff *skb);
101 static int he_ioctl(struct atm_dev *dev, unsigned int cmd, void __user *arg);
102 static irqreturn_t he_irq_handler(int irq, void *dev_id);
103 static void he_tasklet(unsigned long data);
104 static int he_proc_read(struct atm_dev *dev,loff_t *pos,char *page);
105 static int he_start(struct atm_dev *dev);
106 static void he_stop(struct he_dev *dev);
107 static void he_phy_put(struct atm_dev *, unsigned char, unsigned long);
108 static unsigned char he_phy_get(struct atm_dev *, unsigned long);
109
110 static u8 read_prom_byte(struct he_dev *he_dev, int addr);
111
112 /* globals */
113
114 static struct he_dev *he_devs;
115 static bool disable64;
116 static short nvpibits = -1;
117 static short nvcibits = -1;
118 static short rx_skb_reserve = 16;
119 static bool irq_coalesce = true;
120 static bool sdh;
121
122 /* Read from EEPROM = 0000 0011b */
123 static unsigned int readtab[] = {
124 CS_HIGH | CLK_HIGH,
125 CS_LOW | CLK_LOW,
126 CLK_HIGH, /* 0 */
127 CLK_LOW,
128 CLK_HIGH, /* 0 */
129 CLK_LOW,
130 CLK_HIGH, /* 0 */
131 CLK_LOW,
132 CLK_HIGH, /* 0 */
133 CLK_LOW,
134 CLK_HIGH, /* 0 */
135 CLK_LOW,
136 CLK_HIGH, /* 0 */
137 CLK_LOW | SI_HIGH,
138 CLK_HIGH | SI_HIGH, /* 1 */
139 CLK_LOW | SI_HIGH,
140 CLK_HIGH | SI_HIGH /* 1 */
141 };
142
143 /* Clock to read from/write to the EEPROM */
144 static unsigned int clocktab[] = {
145 CLK_LOW,
146 CLK_HIGH,
147 CLK_LOW,
148 CLK_HIGH,
149 CLK_LOW,
150 CLK_HIGH,
151 CLK_LOW,
152 CLK_HIGH,
153 CLK_LOW,
154 CLK_HIGH,
155 CLK_LOW,
156 CLK_HIGH,
157 CLK_LOW,
158 CLK_HIGH,
159 CLK_LOW,
160 CLK_HIGH,
161 CLK_LOW
162 };
163
164 static const struct atmdev_ops he_ops =
165 {
166 .open = he_open,
167 .close = he_close,
168 .ioctl = he_ioctl,
169 .send = he_send,
170 .phy_put = he_phy_put,
171 .phy_get = he_phy_get,
172 .proc_read = he_proc_read,
173 .owner = THIS_MODULE
174 };
175
176 #define he_writel(dev, val, reg) do { writel(val, (dev)->membase + (reg)); wmb(); } while (0)
177 #define he_readl(dev, reg) readl((dev)->membase + (reg))
178
179 /* section 2.12 connection memory access */
180
181 static __inline__ void
he_writel_internal(struct he_dev * he_dev,unsigned val,unsigned addr,unsigned flags)182 he_writel_internal(struct he_dev *he_dev, unsigned val, unsigned addr,
183 unsigned flags)
184 {
185 he_writel(he_dev, val, CON_DAT);
186 (void) he_readl(he_dev, CON_DAT); /* flush posted writes */
187 he_writel(he_dev, flags | CON_CTL_WRITE | CON_CTL_ADDR(addr), CON_CTL);
188 while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
189 }
190
191 #define he_writel_rcm(dev, val, reg) \
192 he_writel_internal(dev, val, reg, CON_CTL_RCM)
193
194 #define he_writel_tcm(dev, val, reg) \
195 he_writel_internal(dev, val, reg, CON_CTL_TCM)
196
197 #define he_writel_mbox(dev, val, reg) \
198 he_writel_internal(dev, val, reg, CON_CTL_MBOX)
199
200 static unsigned
he_readl_internal(struct he_dev * he_dev,unsigned addr,unsigned flags)201 he_readl_internal(struct he_dev *he_dev, unsigned addr, unsigned flags)
202 {
203 he_writel(he_dev, flags | CON_CTL_READ | CON_CTL_ADDR(addr), CON_CTL);
204 while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
205 return he_readl(he_dev, CON_DAT);
206 }
207
208 #define he_readl_rcm(dev, reg) \
209 he_readl_internal(dev, reg, CON_CTL_RCM)
210
211 #define he_readl_tcm(dev, reg) \
212 he_readl_internal(dev, reg, CON_CTL_TCM)
213
214 #define he_readl_mbox(dev, reg) \
215 he_readl_internal(dev, reg, CON_CTL_MBOX)
216
217
218 /* figure 2.2 connection id */
219
220 #define he_mkcid(dev, vpi, vci) (((vpi << (dev)->vcibits) | vci) & 0x1fff)
221
222 /* 2.5.1 per connection transmit state registers */
223
224 #define he_writel_tsr0(dev, val, cid) \
225 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 0)
226 #define he_readl_tsr0(dev, cid) \
227 he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 0)
228
229 #define he_writel_tsr1(dev, val, cid) \
230 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 1)
231
232 #define he_writel_tsr2(dev, val, cid) \
233 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 2)
234
235 #define he_writel_tsr3(dev, val, cid) \
236 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 3)
237
238 #define he_writel_tsr4(dev, val, cid) \
239 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 4)
240
241 /* from page 2-20
242 *
243 * NOTE While the transmit connection is active, bits 23 through 0
244 * of this register must not be written by the host. Byte
245 * enables should be used during normal operation when writing
246 * the most significant byte.
247 */
248
249 #define he_writel_tsr4_upper(dev, val, cid) \
250 he_writel_internal(dev, val, CONFIG_TSRA | (cid << 3) | 4, \
251 CON_CTL_TCM \
252 | CON_BYTE_DISABLE_2 \
253 | CON_BYTE_DISABLE_1 \
254 | CON_BYTE_DISABLE_0)
255
256 #define he_readl_tsr4(dev, cid) \
257 he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 4)
258
259 #define he_writel_tsr5(dev, val, cid) \
260 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 5)
261
262 #define he_writel_tsr6(dev, val, cid) \
263 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 6)
264
265 #define he_writel_tsr7(dev, val, cid) \
266 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 7)
267
268
269 #define he_writel_tsr8(dev, val, cid) \
270 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 0)
271
272 #define he_writel_tsr9(dev, val, cid) \
273 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 1)
274
275 #define he_writel_tsr10(dev, val, cid) \
276 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 2)
277
278 #define he_writel_tsr11(dev, val, cid) \
279 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 3)
280
281
282 #define he_writel_tsr12(dev, val, cid) \
283 he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 0)
284
285 #define he_writel_tsr13(dev, val, cid) \
286 he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 1)
287
288
289 #define he_writel_tsr14(dev, val, cid) \
290 he_writel_tcm(dev, val, CONFIG_TSRD | cid)
291
292 #define he_writel_tsr14_upper(dev, val, cid) \
293 he_writel_internal(dev, val, CONFIG_TSRD | cid, \
294 CON_CTL_TCM \
295 | CON_BYTE_DISABLE_2 \
296 | CON_BYTE_DISABLE_1 \
297 | CON_BYTE_DISABLE_0)
298
299 /* 2.7.1 per connection receive state registers */
300
301 #define he_writel_rsr0(dev, val, cid) \
302 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 0)
303 #define he_readl_rsr0(dev, cid) \
304 he_readl_rcm(dev, 0x00000 | (cid << 3) | 0)
305
306 #define he_writel_rsr1(dev, val, cid) \
307 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 1)
308
309 #define he_writel_rsr2(dev, val, cid) \
310 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 2)
311
312 #define he_writel_rsr3(dev, val, cid) \
313 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 3)
314
315 #define he_writel_rsr4(dev, val, cid) \
316 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 4)
317
318 #define he_writel_rsr5(dev, val, cid) \
319 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 5)
320
321 #define he_writel_rsr6(dev, val, cid) \
322 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 6)
323
324 #define he_writel_rsr7(dev, val, cid) \
325 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 7)
326
327 static __inline__ struct atm_vcc*
__find_vcc(struct he_dev * he_dev,unsigned cid)328 __find_vcc(struct he_dev *he_dev, unsigned cid)
329 {
330 struct hlist_head *head;
331 struct atm_vcc *vcc;
332 struct sock *s;
333 short vpi;
334 int vci;
335
336 vpi = cid >> he_dev->vcibits;
337 vci = cid & ((1 << he_dev->vcibits) - 1);
338 head = &vcc_hash[vci & (VCC_HTABLE_SIZE -1)];
339
340 sk_for_each(s, head) {
341 vcc = atm_sk(s);
342 if (vcc->dev == he_dev->atm_dev &&
343 vcc->vci == vci && vcc->vpi == vpi &&
344 vcc->qos.rxtp.traffic_class != ATM_NONE) {
345 return vcc;
346 }
347 }
348 return NULL;
349 }
350
he_init_one(struct pci_dev * pci_dev,const struct pci_device_id * pci_ent)351 static int he_init_one(struct pci_dev *pci_dev,
352 const struct pci_device_id *pci_ent)
353 {
354 struct atm_dev *atm_dev = NULL;
355 struct he_dev *he_dev = NULL;
356 int err = 0;
357
358 printk(KERN_INFO "ATM he driver\n");
359
360 if (pci_enable_device(pci_dev))
361 return -EIO;
362 if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32)) != 0) {
363 printk(KERN_WARNING "he: no suitable dma available\n");
364 err = -EIO;
365 goto init_one_failure;
366 }
367
368 atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &he_ops, -1, NULL);
369 if (!atm_dev) {
370 err = -ENODEV;
371 goto init_one_failure;
372 }
373 pci_set_drvdata(pci_dev, atm_dev);
374
375 he_dev = kzalloc(sizeof(struct he_dev),
376 GFP_KERNEL);
377 if (!he_dev) {
378 err = -ENOMEM;
379 goto init_one_failure;
380 }
381 he_dev->pci_dev = pci_dev;
382 he_dev->atm_dev = atm_dev;
383 he_dev->atm_dev->dev_data = he_dev;
384 atm_dev->dev_data = he_dev;
385 he_dev->number = atm_dev->number;
386 tasklet_init(&he_dev->tasklet, he_tasklet, (unsigned long) he_dev);
387 spin_lock_init(&he_dev->global_lock);
388
389 if (he_start(atm_dev)) {
390 he_stop(he_dev);
391 err = -ENODEV;
392 goto init_one_failure;
393 }
394 he_dev->next = NULL;
395 if (he_devs)
396 he_dev->next = he_devs;
397 he_devs = he_dev;
398 return 0;
399
400 init_one_failure:
401 if (atm_dev)
402 atm_dev_deregister(atm_dev);
403 kfree(he_dev);
404 pci_disable_device(pci_dev);
405 return err;
406 }
407
he_remove_one(struct pci_dev * pci_dev)408 static void he_remove_one(struct pci_dev *pci_dev)
409 {
410 struct atm_dev *atm_dev;
411 struct he_dev *he_dev;
412
413 atm_dev = pci_get_drvdata(pci_dev);
414 he_dev = HE_DEV(atm_dev);
415
416 /* need to remove from he_devs */
417
418 he_stop(he_dev);
419 atm_dev_deregister(atm_dev);
420 kfree(he_dev);
421
422 pci_disable_device(pci_dev);
423 }
424
425
426 static unsigned
rate_to_atmf(unsigned rate)427 rate_to_atmf(unsigned rate) /* cps to atm forum format */
428 {
429 #define NONZERO (1 << 14)
430
431 unsigned exp = 0;
432
433 if (rate == 0)
434 return 0;
435
436 rate <<= 9;
437 while (rate > 0x3ff) {
438 ++exp;
439 rate >>= 1;
440 }
441
442 return (NONZERO | (exp << 9) | (rate & 0x1ff));
443 }
444
he_init_rx_lbfp0(struct he_dev * he_dev)445 static void he_init_rx_lbfp0(struct he_dev *he_dev)
446 {
447 unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
448 unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
449 unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
450 unsigned row_offset = he_dev->r0_startrow * he_dev->bytes_per_row;
451
452 lbufd_index = 0;
453 lbm_offset = he_readl(he_dev, RCMLBM_BA);
454
455 he_writel(he_dev, lbufd_index, RLBF0_H);
456
457 for (i = 0, lbuf_count = 0; i < he_dev->r0_numbuffs; ++i) {
458 lbufd_index += 2;
459 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
460
461 he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
462 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
463
464 if (++lbuf_count == lbufs_per_row) {
465 lbuf_count = 0;
466 row_offset += he_dev->bytes_per_row;
467 }
468 lbm_offset += 4;
469 }
470
471 he_writel(he_dev, lbufd_index - 2, RLBF0_T);
472 he_writel(he_dev, he_dev->r0_numbuffs, RLBF0_C);
473 }
474
he_init_rx_lbfp1(struct he_dev * he_dev)475 static void he_init_rx_lbfp1(struct he_dev *he_dev)
476 {
477 unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
478 unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
479 unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
480 unsigned row_offset = he_dev->r1_startrow * he_dev->bytes_per_row;
481
482 lbufd_index = 1;
483 lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
484
485 he_writel(he_dev, lbufd_index, RLBF1_H);
486
487 for (i = 0, lbuf_count = 0; i < he_dev->r1_numbuffs; ++i) {
488 lbufd_index += 2;
489 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
490
491 he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
492 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
493
494 if (++lbuf_count == lbufs_per_row) {
495 lbuf_count = 0;
496 row_offset += he_dev->bytes_per_row;
497 }
498 lbm_offset += 4;
499 }
500
501 he_writel(he_dev, lbufd_index - 2, RLBF1_T);
502 he_writel(he_dev, he_dev->r1_numbuffs, RLBF1_C);
503 }
504
he_init_tx_lbfp(struct he_dev * he_dev)505 static void he_init_tx_lbfp(struct he_dev *he_dev)
506 {
507 unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
508 unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
509 unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
510 unsigned row_offset = he_dev->tx_startrow * he_dev->bytes_per_row;
511
512 lbufd_index = he_dev->r0_numbuffs + he_dev->r1_numbuffs;
513 lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
514
515 he_writel(he_dev, lbufd_index, TLBF_H);
516
517 for (i = 0, lbuf_count = 0; i < he_dev->tx_numbuffs; ++i) {
518 lbufd_index += 1;
519 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
520
521 he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
522 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
523
524 if (++lbuf_count == lbufs_per_row) {
525 lbuf_count = 0;
526 row_offset += he_dev->bytes_per_row;
527 }
528 lbm_offset += 2;
529 }
530
531 he_writel(he_dev, lbufd_index - 1, TLBF_T);
532 }
533
he_init_tpdrq(struct he_dev * he_dev)534 static int he_init_tpdrq(struct he_dev *he_dev)
535 {
536 he_dev->tpdrq_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
537 CONFIG_TPDRQ_SIZE * sizeof(struct he_tpdrq),
538 &he_dev->tpdrq_phys,
539 GFP_KERNEL);
540 if (he_dev->tpdrq_base == NULL) {
541 hprintk("failed to alloc tpdrq\n");
542 return -ENOMEM;
543 }
544
545 he_dev->tpdrq_tail = he_dev->tpdrq_base;
546 he_dev->tpdrq_head = he_dev->tpdrq_base;
547
548 he_writel(he_dev, he_dev->tpdrq_phys, TPDRQ_B_H);
549 he_writel(he_dev, 0, TPDRQ_T);
550 he_writel(he_dev, CONFIG_TPDRQ_SIZE - 1, TPDRQ_S);
551
552 return 0;
553 }
554
he_init_cs_block(struct he_dev * he_dev)555 static void he_init_cs_block(struct he_dev *he_dev)
556 {
557 unsigned clock, rate, delta;
558 int reg;
559
560 /* 5.1.7 cs block initialization */
561
562 for (reg = 0; reg < 0x20; ++reg)
563 he_writel_mbox(he_dev, 0x0, CS_STTIM0 + reg);
564
565 /* rate grid timer reload values */
566
567 clock = he_is622(he_dev) ? 66667000 : 50000000;
568 rate = he_dev->atm_dev->link_rate;
569 delta = rate / 16 / 2;
570
571 for (reg = 0; reg < 0x10; ++reg) {
572 /* 2.4 internal transmit function
573 *
574 * we initialize the first row in the rate grid.
575 * values are period (in clock cycles) of timer
576 */
577 unsigned period = clock / rate;
578
579 he_writel_mbox(he_dev, period, CS_TGRLD0 + reg);
580 rate -= delta;
581 }
582
583 if (he_is622(he_dev)) {
584 /* table 5.2 (4 cells per lbuf) */
585 he_writel_mbox(he_dev, 0x000800fa, CS_ERTHR0);
586 he_writel_mbox(he_dev, 0x000c33cb, CS_ERTHR1);
587 he_writel_mbox(he_dev, 0x0010101b, CS_ERTHR2);
588 he_writel_mbox(he_dev, 0x00181dac, CS_ERTHR3);
589 he_writel_mbox(he_dev, 0x00280600, CS_ERTHR4);
590
591 /* table 5.3, 5.4, 5.5, 5.6, 5.7 */
592 he_writel_mbox(he_dev, 0x023de8b3, CS_ERCTL0);
593 he_writel_mbox(he_dev, 0x1801, CS_ERCTL1);
594 he_writel_mbox(he_dev, 0x68b3, CS_ERCTL2);
595 he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
596 he_writel_mbox(he_dev, 0x68b3, CS_ERSTAT1);
597 he_writel_mbox(he_dev, 0x14585, CS_RTFWR);
598
599 he_writel_mbox(he_dev, 0x4680, CS_RTATR);
600
601 /* table 5.8 */
602 he_writel_mbox(he_dev, 0x00159ece, CS_TFBSET);
603 he_writel_mbox(he_dev, 0x68b3, CS_WCRMAX);
604 he_writel_mbox(he_dev, 0x5eb3, CS_WCRMIN);
605 he_writel_mbox(he_dev, 0xe8b3, CS_WCRINC);
606 he_writel_mbox(he_dev, 0xdeb3, CS_WCRDEC);
607 he_writel_mbox(he_dev, 0x68b3, CS_WCRCEIL);
608
609 /* table 5.9 */
610 he_writel_mbox(he_dev, 0x5, CS_OTPPER);
611 he_writel_mbox(he_dev, 0x14, CS_OTWPER);
612 } else {
613 /* table 5.1 (4 cells per lbuf) */
614 he_writel_mbox(he_dev, 0x000400ea, CS_ERTHR0);
615 he_writel_mbox(he_dev, 0x00063388, CS_ERTHR1);
616 he_writel_mbox(he_dev, 0x00081018, CS_ERTHR2);
617 he_writel_mbox(he_dev, 0x000c1dac, CS_ERTHR3);
618 he_writel_mbox(he_dev, 0x0014051a, CS_ERTHR4);
619
620 /* table 5.3, 5.4, 5.5, 5.6, 5.7 */
621 he_writel_mbox(he_dev, 0x0235e4b1, CS_ERCTL0);
622 he_writel_mbox(he_dev, 0x4701, CS_ERCTL1);
623 he_writel_mbox(he_dev, 0x64b1, CS_ERCTL2);
624 he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
625 he_writel_mbox(he_dev, 0x64b1, CS_ERSTAT1);
626 he_writel_mbox(he_dev, 0xf424, CS_RTFWR);
627
628 he_writel_mbox(he_dev, 0x4680, CS_RTATR);
629
630 /* table 5.8 */
631 he_writel_mbox(he_dev, 0x000563b7, CS_TFBSET);
632 he_writel_mbox(he_dev, 0x64b1, CS_WCRMAX);
633 he_writel_mbox(he_dev, 0x5ab1, CS_WCRMIN);
634 he_writel_mbox(he_dev, 0xe4b1, CS_WCRINC);
635 he_writel_mbox(he_dev, 0xdab1, CS_WCRDEC);
636 he_writel_mbox(he_dev, 0x64b1, CS_WCRCEIL);
637
638 /* table 5.9 */
639 he_writel_mbox(he_dev, 0x6, CS_OTPPER);
640 he_writel_mbox(he_dev, 0x1e, CS_OTWPER);
641 }
642
643 he_writel_mbox(he_dev, 0x8, CS_OTTLIM);
644
645 for (reg = 0; reg < 0x8; ++reg)
646 he_writel_mbox(he_dev, 0x0, CS_HGRRT0 + reg);
647
648 }
649
he_init_cs_block_rcm(struct he_dev * he_dev)650 static int he_init_cs_block_rcm(struct he_dev *he_dev)
651 {
652 unsigned (*rategrid)[16][16];
653 unsigned rate, delta;
654 int i, j, reg;
655
656 unsigned rate_atmf, exp, man;
657 unsigned long long rate_cps;
658 int mult, buf, buf_limit = 4;
659
660 rategrid = kmalloc( sizeof(unsigned) * 16 * 16, GFP_KERNEL);
661 if (!rategrid)
662 return -ENOMEM;
663
664 /* initialize rate grid group table */
665
666 for (reg = 0x0; reg < 0xff; ++reg)
667 he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
668
669 /* initialize rate controller groups */
670
671 for (reg = 0x100; reg < 0x1ff; ++reg)
672 he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
673
674 /* initialize tNrm lookup table */
675
676 /* the manual makes reference to a routine in a sample driver
677 for proper configuration; fortunately, we only need this
678 in order to support abr connection */
679
680 /* initialize rate to group table */
681
682 rate = he_dev->atm_dev->link_rate;
683 delta = rate / 32;
684
685 /*
686 * 2.4 transmit internal functions
687 *
688 * we construct a copy of the rate grid used by the scheduler
689 * in order to construct the rate to group table below
690 */
691
692 for (j = 0; j < 16; j++) {
693 (*rategrid)[0][j] = rate;
694 rate -= delta;
695 }
696
697 for (i = 1; i < 16; i++)
698 for (j = 0; j < 16; j++)
699 if (i > 14)
700 (*rategrid)[i][j] = (*rategrid)[i - 1][j] / 4;
701 else
702 (*rategrid)[i][j] = (*rategrid)[i - 1][j] / 2;
703
704 /*
705 * 2.4 transmit internal function
706 *
707 * this table maps the upper 5 bits of exponent and mantissa
708 * of the atm forum representation of the rate into an index
709 * on rate grid
710 */
711
712 rate_atmf = 0;
713 while (rate_atmf < 0x400) {
714 man = (rate_atmf & 0x1f) << 4;
715 exp = rate_atmf >> 5;
716
717 /*
718 instead of '/ 512', use '>> 9' to prevent a call
719 to divdu3 on x86 platforms
720 */
721 rate_cps = (unsigned long long) (1UL << exp) * (man + 512) >> 9;
722
723 if (rate_cps < 10)
724 rate_cps = 10; /* 2.2.1 minimum payload rate is 10 cps */
725
726 for (i = 255; i > 0; i--)
727 if ((*rategrid)[i/16][i%16] >= rate_cps)
728 break; /* pick nearest rate instead? */
729
730 /*
731 * each table entry is 16 bits: (rate grid index (8 bits)
732 * and a buffer limit (8 bits)
733 * there are two table entries in each 32-bit register
734 */
735
736 #ifdef notdef
737 buf = rate_cps * he_dev->tx_numbuffs /
738 (he_dev->atm_dev->link_rate * 2);
739 #else
740 /* this is pretty, but avoids _divdu3 and is mostly correct */
741 mult = he_dev->atm_dev->link_rate / ATM_OC3_PCR;
742 if (rate_cps > (272ULL * mult))
743 buf = 4;
744 else if (rate_cps > (204ULL * mult))
745 buf = 3;
746 else if (rate_cps > (136ULL * mult))
747 buf = 2;
748 else if (rate_cps > (68ULL * mult))
749 buf = 1;
750 else
751 buf = 0;
752 #endif
753 if (buf > buf_limit)
754 buf = buf_limit;
755 reg = (reg << 16) | ((i << 8) | buf);
756
757 #define RTGTBL_OFFSET 0x400
758
759 if (rate_atmf & 0x1)
760 he_writel_rcm(he_dev, reg,
761 CONFIG_RCMABR + RTGTBL_OFFSET + (rate_atmf >> 1));
762
763 ++rate_atmf;
764 }
765
766 kfree(rategrid);
767 return 0;
768 }
769
he_init_group(struct he_dev * he_dev,int group)770 static int he_init_group(struct he_dev *he_dev, int group)
771 {
772 struct he_buff *heb, *next;
773 dma_addr_t mapping;
774 int i;
775
776 he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
777 he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
778 he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
779 he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
780 G0_RBPS_BS + (group * 32));
781
782 /* bitmap table */
783 he_dev->rbpl_table = kmalloc_array(BITS_TO_LONGS(RBPL_TABLE_SIZE),
784 sizeof(*he_dev->rbpl_table),
785 GFP_KERNEL);
786 if (!he_dev->rbpl_table) {
787 hprintk("unable to allocate rbpl bitmap table\n");
788 return -ENOMEM;
789 }
790 bitmap_zero(he_dev->rbpl_table, RBPL_TABLE_SIZE);
791
792 /* rbpl_virt 64-bit pointers */
793 he_dev->rbpl_virt = kmalloc_array(RBPL_TABLE_SIZE,
794 sizeof(*he_dev->rbpl_virt),
795 GFP_KERNEL);
796 if (!he_dev->rbpl_virt) {
797 hprintk("unable to allocate rbpl virt table\n");
798 goto out_free_rbpl_table;
799 }
800
801 /* large buffer pool */
802 he_dev->rbpl_pool = dma_pool_create("rbpl", &he_dev->pci_dev->dev,
803 CONFIG_RBPL_BUFSIZE, 64, 0);
804 if (he_dev->rbpl_pool == NULL) {
805 hprintk("unable to create rbpl pool\n");
806 goto out_free_rbpl_virt;
807 }
808
809 he_dev->rbpl_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
810 CONFIG_RBPL_SIZE * sizeof(struct he_rbp),
811 &he_dev->rbpl_phys, GFP_KERNEL);
812 if (he_dev->rbpl_base == NULL) {
813 hprintk("failed to alloc rbpl_base\n");
814 goto out_destroy_rbpl_pool;
815 }
816
817 INIT_LIST_HEAD(&he_dev->rbpl_outstanding);
818
819 for (i = 0; i < CONFIG_RBPL_SIZE; ++i) {
820
821 heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_KERNEL, &mapping);
822 if (!heb)
823 goto out_free_rbpl;
824 heb->mapping = mapping;
825 list_add(&heb->entry, &he_dev->rbpl_outstanding);
826
827 set_bit(i, he_dev->rbpl_table);
828 he_dev->rbpl_virt[i] = heb;
829 he_dev->rbpl_hint = i + 1;
830 he_dev->rbpl_base[i].idx = i << RBP_IDX_OFFSET;
831 he_dev->rbpl_base[i].phys = mapping + offsetof(struct he_buff, data);
832 }
833 he_dev->rbpl_tail = &he_dev->rbpl_base[CONFIG_RBPL_SIZE - 1];
834
835 he_writel(he_dev, he_dev->rbpl_phys, G0_RBPL_S + (group * 32));
836 he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail),
837 G0_RBPL_T + (group * 32));
838 he_writel(he_dev, (CONFIG_RBPL_BUFSIZE - sizeof(struct he_buff))/4,
839 G0_RBPL_BS + (group * 32));
840 he_writel(he_dev,
841 RBP_THRESH(CONFIG_RBPL_THRESH) |
842 RBP_QSIZE(CONFIG_RBPL_SIZE - 1) |
843 RBP_INT_ENB,
844 G0_RBPL_QI + (group * 32));
845
846 /* rx buffer ready queue */
847
848 he_dev->rbrq_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
849 CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq),
850 &he_dev->rbrq_phys, GFP_KERNEL);
851 if (he_dev->rbrq_base == NULL) {
852 hprintk("failed to allocate rbrq\n");
853 goto out_free_rbpl;
854 }
855
856 he_dev->rbrq_head = he_dev->rbrq_base;
857 he_writel(he_dev, he_dev->rbrq_phys, G0_RBRQ_ST + (group * 16));
858 he_writel(he_dev, 0, G0_RBRQ_H + (group * 16));
859 he_writel(he_dev,
860 RBRQ_THRESH(CONFIG_RBRQ_THRESH) | RBRQ_SIZE(CONFIG_RBRQ_SIZE - 1),
861 G0_RBRQ_Q + (group * 16));
862 if (irq_coalesce) {
863 hprintk("coalescing interrupts\n");
864 he_writel(he_dev, RBRQ_TIME(768) | RBRQ_COUNT(7),
865 G0_RBRQ_I + (group * 16));
866 } else
867 he_writel(he_dev, RBRQ_TIME(0) | RBRQ_COUNT(1),
868 G0_RBRQ_I + (group * 16));
869
870 /* tx buffer ready queue */
871
872 he_dev->tbrq_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
873 CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
874 &he_dev->tbrq_phys, GFP_KERNEL);
875 if (he_dev->tbrq_base == NULL) {
876 hprintk("failed to allocate tbrq\n");
877 goto out_free_rbpq_base;
878 }
879
880 he_dev->tbrq_head = he_dev->tbrq_base;
881
882 he_writel(he_dev, he_dev->tbrq_phys, G0_TBRQ_B_T + (group * 16));
883 he_writel(he_dev, 0, G0_TBRQ_H + (group * 16));
884 he_writel(he_dev, CONFIG_TBRQ_SIZE - 1, G0_TBRQ_S + (group * 16));
885 he_writel(he_dev, CONFIG_TBRQ_THRESH, G0_TBRQ_THRESH + (group * 16));
886
887 return 0;
888
889 out_free_rbpq_base:
890 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE *
891 sizeof(struct he_rbrq), he_dev->rbrq_base,
892 he_dev->rbrq_phys);
893 out_free_rbpl:
894 list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
895 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
896
897 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE *
898 sizeof(struct he_rbp), he_dev->rbpl_base,
899 he_dev->rbpl_phys);
900 out_destroy_rbpl_pool:
901 dma_pool_destroy(he_dev->rbpl_pool);
902 out_free_rbpl_virt:
903 kfree(he_dev->rbpl_virt);
904 out_free_rbpl_table:
905 kfree(he_dev->rbpl_table);
906
907 return -ENOMEM;
908 }
909
he_init_irq(struct he_dev * he_dev)910 static int he_init_irq(struct he_dev *he_dev)
911 {
912 int i;
913
914 /* 2.9.3.5 tail offset for each interrupt queue is located after the
915 end of the interrupt queue */
916
917 he_dev->irq_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
918 (CONFIG_IRQ_SIZE + 1) * sizeof(struct he_irq),
919 &he_dev->irq_phys, GFP_KERNEL);
920 if (he_dev->irq_base == NULL) {
921 hprintk("failed to allocate irq\n");
922 return -ENOMEM;
923 }
924 he_dev->irq_tailoffset = (unsigned *)
925 &he_dev->irq_base[CONFIG_IRQ_SIZE];
926 *he_dev->irq_tailoffset = 0;
927 he_dev->irq_head = he_dev->irq_base;
928 he_dev->irq_tail = he_dev->irq_base;
929
930 for (i = 0; i < CONFIG_IRQ_SIZE; ++i)
931 he_dev->irq_base[i].isw = ITYPE_INVALID;
932
933 he_writel(he_dev, he_dev->irq_phys, IRQ0_BASE);
934 he_writel(he_dev,
935 IRQ_SIZE(CONFIG_IRQ_SIZE) | IRQ_THRESH(CONFIG_IRQ_THRESH),
936 IRQ0_HEAD);
937 he_writel(he_dev, IRQ_INT_A | IRQ_TYPE_LINE, IRQ0_CNTL);
938 he_writel(he_dev, 0x0, IRQ0_DATA);
939
940 he_writel(he_dev, 0x0, IRQ1_BASE);
941 he_writel(he_dev, 0x0, IRQ1_HEAD);
942 he_writel(he_dev, 0x0, IRQ1_CNTL);
943 he_writel(he_dev, 0x0, IRQ1_DATA);
944
945 he_writel(he_dev, 0x0, IRQ2_BASE);
946 he_writel(he_dev, 0x0, IRQ2_HEAD);
947 he_writel(he_dev, 0x0, IRQ2_CNTL);
948 he_writel(he_dev, 0x0, IRQ2_DATA);
949
950 he_writel(he_dev, 0x0, IRQ3_BASE);
951 he_writel(he_dev, 0x0, IRQ3_HEAD);
952 he_writel(he_dev, 0x0, IRQ3_CNTL);
953 he_writel(he_dev, 0x0, IRQ3_DATA);
954
955 /* 2.9.3.2 interrupt queue mapping registers */
956
957 he_writel(he_dev, 0x0, GRP_10_MAP);
958 he_writel(he_dev, 0x0, GRP_32_MAP);
959 he_writel(he_dev, 0x0, GRP_54_MAP);
960 he_writel(he_dev, 0x0, GRP_76_MAP);
961
962 if (request_irq(he_dev->pci_dev->irq,
963 he_irq_handler, IRQF_SHARED, DEV_LABEL, he_dev)) {
964 hprintk("irq %d already in use\n", he_dev->pci_dev->irq);
965 return -EINVAL;
966 }
967
968 he_dev->irq = he_dev->pci_dev->irq;
969
970 return 0;
971 }
972
he_start(struct atm_dev * dev)973 static int he_start(struct atm_dev *dev)
974 {
975 struct he_dev *he_dev;
976 struct pci_dev *pci_dev;
977 unsigned long membase;
978
979 u16 command;
980 u32 gen_cntl_0, host_cntl, lb_swap;
981 u8 cache_size, timer;
982
983 unsigned err;
984 unsigned int status, reg;
985 int i, group;
986
987 he_dev = HE_DEV(dev);
988 pci_dev = he_dev->pci_dev;
989
990 membase = pci_resource_start(pci_dev, 0);
991 HPRINTK("membase = 0x%lx irq = %d.\n", membase, pci_dev->irq);
992
993 /*
994 * pci bus controller initialization
995 */
996
997 /* 4.3 pci bus controller-specific initialization */
998 if (pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0) != 0) {
999 hprintk("can't read GEN_CNTL_0\n");
1000 return -EINVAL;
1001 }
1002 gen_cntl_0 |= (MRL_ENB | MRM_ENB | IGNORE_TIMEOUT);
1003 if (pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0) != 0) {
1004 hprintk("can't write GEN_CNTL_0.\n");
1005 return -EINVAL;
1006 }
1007
1008 if (pci_read_config_word(pci_dev, PCI_COMMAND, &command) != 0) {
1009 hprintk("can't read PCI_COMMAND.\n");
1010 return -EINVAL;
1011 }
1012
1013 command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE);
1014 if (pci_write_config_word(pci_dev, PCI_COMMAND, command) != 0) {
1015 hprintk("can't enable memory.\n");
1016 return -EINVAL;
1017 }
1018
1019 if (pci_read_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, &cache_size)) {
1020 hprintk("can't read cache line size?\n");
1021 return -EINVAL;
1022 }
1023
1024 if (cache_size < 16) {
1025 cache_size = 16;
1026 if (pci_write_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, cache_size))
1027 hprintk("can't set cache line size to %d\n", cache_size);
1028 }
1029
1030 if (pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &timer)) {
1031 hprintk("can't read latency timer?\n");
1032 return -EINVAL;
1033 }
1034
1035 /* from table 3.9
1036 *
1037 * LAT_TIMER = 1 + AVG_LAT + BURST_SIZE/BUS_SIZE
1038 *
1039 * AVG_LAT: The average first data read/write latency [maximum 16 clock cycles]
1040 * BURST_SIZE: 1536 bytes (read) for 622, 768 bytes (read) for 155 [192 clock cycles]
1041 *
1042 */
1043 #define LAT_TIMER 209
1044 if (timer < LAT_TIMER) {
1045 HPRINTK("latency timer was %d, setting to %d\n", timer, LAT_TIMER);
1046 timer = LAT_TIMER;
1047 if (pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, timer))
1048 hprintk("can't set latency timer to %d\n", timer);
1049 }
1050
1051 if (!(he_dev->membase = ioremap(membase, HE_REGMAP_SIZE))) {
1052 hprintk("can't set up page mapping\n");
1053 return -EINVAL;
1054 }
1055
1056 /* 4.4 card reset */
1057 he_writel(he_dev, 0x0, RESET_CNTL);
1058 he_writel(he_dev, 0xff, RESET_CNTL);
1059
1060 msleep(16); /* 16 ms */
1061 status = he_readl(he_dev, RESET_CNTL);
1062 if ((status & BOARD_RST_STATUS) == 0) {
1063 hprintk("reset failed\n");
1064 return -EINVAL;
1065 }
1066
1067 /* 4.5 set bus width */
1068 host_cntl = he_readl(he_dev, HOST_CNTL);
1069 if (host_cntl & PCI_BUS_SIZE64)
1070 gen_cntl_0 |= ENBL_64;
1071 else
1072 gen_cntl_0 &= ~ENBL_64;
1073
1074 if (disable64 == 1) {
1075 hprintk("disabling 64-bit pci bus transfers\n");
1076 gen_cntl_0 &= ~ENBL_64;
1077 }
1078
1079 if (gen_cntl_0 & ENBL_64)
1080 hprintk("64-bit transfers enabled\n");
1081
1082 pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1083
1084 /* 4.7 read prom contents */
1085 for (i = 0; i < PROD_ID_LEN; ++i)
1086 he_dev->prod_id[i] = read_prom_byte(he_dev, PROD_ID + i);
1087
1088 he_dev->media = read_prom_byte(he_dev, MEDIA);
1089
1090 for (i = 0; i < 6; ++i)
1091 dev->esi[i] = read_prom_byte(he_dev, MAC_ADDR + i);
1092
1093 hprintk("%s%s, %pM\n", he_dev->prod_id,
1094 he_dev->media & 0x40 ? "SM" : "MM", dev->esi);
1095 he_dev->atm_dev->link_rate = he_is622(he_dev) ?
1096 ATM_OC12_PCR : ATM_OC3_PCR;
1097
1098 /* 4.6 set host endianess */
1099 lb_swap = he_readl(he_dev, LB_SWAP);
1100 if (he_is622(he_dev))
1101 lb_swap &= ~XFER_SIZE; /* 4 cells */
1102 else
1103 lb_swap |= XFER_SIZE; /* 8 cells */
1104 #ifdef __BIG_ENDIAN
1105 lb_swap |= DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST;
1106 #else
1107 lb_swap &= ~(DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST |
1108 DATA_WR_SWAP | DATA_RD_SWAP | DESC_RD_SWAP);
1109 #endif /* __BIG_ENDIAN */
1110 he_writel(he_dev, lb_swap, LB_SWAP);
1111
1112 /* 4.8 sdram controller initialization */
1113 he_writel(he_dev, he_is622(he_dev) ? LB_64_ENB : 0x0, SDRAM_CTL);
1114
1115 /* 4.9 initialize rnum value */
1116 lb_swap |= SWAP_RNUM_MAX(0xf);
1117 he_writel(he_dev, lb_swap, LB_SWAP);
1118
1119 /* 4.10 initialize the interrupt queues */
1120 if ((err = he_init_irq(he_dev)) != 0)
1121 return err;
1122
1123 /* 4.11 enable pci bus controller state machines */
1124 host_cntl |= (OUTFF_ENB | CMDFF_ENB |
1125 QUICK_RD_RETRY | QUICK_WR_RETRY | PERR_INT_ENB);
1126 he_writel(he_dev, host_cntl, HOST_CNTL);
1127
1128 gen_cntl_0 |= INT_PROC_ENBL|INIT_ENB;
1129 pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1130
1131 /*
1132 * atm network controller initialization
1133 */
1134
1135 /* 5.1.1 generic configuration state */
1136
1137 /*
1138 * local (cell) buffer memory map
1139 *
1140 * HE155 HE622
1141 *
1142 * 0 ____________1023 bytes 0 _______________________2047 bytes
1143 * | | | | |
1144 * | utility | | rx0 | |
1145 * 5|____________| 255|___________________| u |
1146 * 6| | 256| | t |
1147 * | | | | i |
1148 * | rx0 | row | tx | l |
1149 * | | | | i |
1150 * | | 767|___________________| t |
1151 * 517|____________| 768| | y |
1152 * row 518| | | rx1 | |
1153 * | | 1023|___________________|___|
1154 * | |
1155 * | tx |
1156 * | |
1157 * | |
1158 * 1535|____________|
1159 * 1536| |
1160 * | rx1 |
1161 * 2047|____________|
1162 *
1163 */
1164
1165 /* total 4096 connections */
1166 he_dev->vcibits = CONFIG_DEFAULT_VCIBITS;
1167 he_dev->vpibits = CONFIG_DEFAULT_VPIBITS;
1168
1169 if (nvpibits != -1 && nvcibits != -1 && nvpibits+nvcibits != HE_MAXCIDBITS) {
1170 hprintk("nvpibits + nvcibits != %d\n", HE_MAXCIDBITS);
1171 return -ENODEV;
1172 }
1173
1174 if (nvpibits != -1) {
1175 he_dev->vpibits = nvpibits;
1176 he_dev->vcibits = HE_MAXCIDBITS - nvpibits;
1177 }
1178
1179 if (nvcibits != -1) {
1180 he_dev->vcibits = nvcibits;
1181 he_dev->vpibits = HE_MAXCIDBITS - nvcibits;
1182 }
1183
1184
1185 if (he_is622(he_dev)) {
1186 he_dev->cells_per_row = 40;
1187 he_dev->bytes_per_row = 2048;
1188 he_dev->r0_numrows = 256;
1189 he_dev->tx_numrows = 512;
1190 he_dev->r1_numrows = 256;
1191 he_dev->r0_startrow = 0;
1192 he_dev->tx_startrow = 256;
1193 he_dev->r1_startrow = 768;
1194 } else {
1195 he_dev->cells_per_row = 20;
1196 he_dev->bytes_per_row = 1024;
1197 he_dev->r0_numrows = 512;
1198 he_dev->tx_numrows = 1018;
1199 he_dev->r1_numrows = 512;
1200 he_dev->r0_startrow = 6;
1201 he_dev->tx_startrow = 518;
1202 he_dev->r1_startrow = 1536;
1203 }
1204
1205 he_dev->cells_per_lbuf = 4;
1206 he_dev->buffer_limit = 4;
1207 he_dev->r0_numbuffs = he_dev->r0_numrows *
1208 he_dev->cells_per_row / he_dev->cells_per_lbuf;
1209 if (he_dev->r0_numbuffs > 2560)
1210 he_dev->r0_numbuffs = 2560;
1211
1212 he_dev->r1_numbuffs = he_dev->r1_numrows *
1213 he_dev->cells_per_row / he_dev->cells_per_lbuf;
1214 if (he_dev->r1_numbuffs > 2560)
1215 he_dev->r1_numbuffs = 2560;
1216
1217 he_dev->tx_numbuffs = he_dev->tx_numrows *
1218 he_dev->cells_per_row / he_dev->cells_per_lbuf;
1219 if (he_dev->tx_numbuffs > 5120)
1220 he_dev->tx_numbuffs = 5120;
1221
1222 /* 5.1.2 configure hardware dependent registers */
1223
1224 he_writel(he_dev,
1225 SLICE_X(0x2) | ARB_RNUM_MAX(0xf) | TH_PRTY(0x3) |
1226 RH_PRTY(0x3) | TL_PRTY(0x2) | RL_PRTY(0x1) |
1227 (he_is622(he_dev) ? BUS_MULTI(0x28) : BUS_MULTI(0x46)) |
1228 (he_is622(he_dev) ? NET_PREF(0x50) : NET_PREF(0x8c)),
1229 LBARB);
1230
1231 he_writel(he_dev, BANK_ON |
1232 (he_is622(he_dev) ? (REF_RATE(0x384) | WIDE_DATA) : REF_RATE(0x150)),
1233 SDRAMCON);
1234
1235 he_writel(he_dev,
1236 (he_is622(he_dev) ? RM_BANK_WAIT(1) : RM_BANK_WAIT(0)) |
1237 RM_RW_WAIT(1), RCMCONFIG);
1238 he_writel(he_dev,
1239 (he_is622(he_dev) ? TM_BANK_WAIT(2) : TM_BANK_WAIT(1)) |
1240 TM_RW_WAIT(1), TCMCONFIG);
1241
1242 he_writel(he_dev, he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD, LB_CONFIG);
1243
1244 he_writel(he_dev,
1245 (he_is622(he_dev) ? UT_RD_DELAY(8) : UT_RD_DELAY(0)) |
1246 (he_is622(he_dev) ? RC_UT_MODE(0) : RC_UT_MODE(1)) |
1247 RX_VALVP(he_dev->vpibits) |
1248 RX_VALVC(he_dev->vcibits), RC_CONFIG);
1249
1250 he_writel(he_dev, DRF_THRESH(0x20) |
1251 (he_is622(he_dev) ? TX_UT_MODE(0) : TX_UT_MODE(1)) |
1252 TX_VCI_MASK(he_dev->vcibits) |
1253 LBFREE_CNT(he_dev->tx_numbuffs), TX_CONFIG);
1254
1255 he_writel(he_dev, 0x0, TXAAL5_PROTO);
1256
1257 he_writel(he_dev, PHY_INT_ENB |
1258 (he_is622(he_dev) ? PTMR_PRE(67 - 1) : PTMR_PRE(50 - 1)),
1259 RH_CONFIG);
1260
1261 /* 5.1.3 initialize connection memory */
1262
1263 for (i = 0; i < TCM_MEM_SIZE; ++i)
1264 he_writel_tcm(he_dev, 0, i);
1265
1266 for (i = 0; i < RCM_MEM_SIZE; ++i)
1267 he_writel_rcm(he_dev, 0, i);
1268
1269 /*
1270 * transmit connection memory map
1271 *
1272 * tx memory
1273 * 0x0 ___________________
1274 * | |
1275 * | |
1276 * | TSRa |
1277 * | |
1278 * | |
1279 * 0x8000|___________________|
1280 * | |
1281 * | TSRb |
1282 * 0xc000|___________________|
1283 * | |
1284 * | TSRc |
1285 * 0xe000|___________________|
1286 * | TSRd |
1287 * 0xf000|___________________|
1288 * | tmABR |
1289 * 0x10000|___________________|
1290 * | |
1291 * | tmTPD |
1292 * |___________________|
1293 * | |
1294 * ....
1295 * 0x1ffff|___________________|
1296 *
1297 *
1298 */
1299
1300 he_writel(he_dev, CONFIG_TSRB, TSRB_BA);
1301 he_writel(he_dev, CONFIG_TSRC, TSRC_BA);
1302 he_writel(he_dev, CONFIG_TSRD, TSRD_BA);
1303 he_writel(he_dev, CONFIG_TMABR, TMABR_BA);
1304 he_writel(he_dev, CONFIG_TPDBA, TPD_BA);
1305
1306
1307 /*
1308 * receive connection memory map
1309 *
1310 * 0x0 ___________________
1311 * | |
1312 * | |
1313 * | RSRa |
1314 * | |
1315 * | |
1316 * 0x8000|___________________|
1317 * | |
1318 * | rx0/1 |
1319 * | LBM | link lists of local
1320 * | tx | buffer memory
1321 * | |
1322 * 0xd000|___________________|
1323 * | |
1324 * | rmABR |
1325 * 0xe000|___________________|
1326 * | |
1327 * | RSRb |
1328 * |___________________|
1329 * | |
1330 * ....
1331 * 0xffff|___________________|
1332 */
1333
1334 he_writel(he_dev, 0x08000, RCMLBM_BA);
1335 he_writel(he_dev, 0x0e000, RCMRSRB_BA);
1336 he_writel(he_dev, 0x0d800, RCMABR_BA);
1337
1338 /* 5.1.4 initialize local buffer free pools linked lists */
1339
1340 he_init_rx_lbfp0(he_dev);
1341 he_init_rx_lbfp1(he_dev);
1342
1343 he_writel(he_dev, 0x0, RLBC_H);
1344 he_writel(he_dev, 0x0, RLBC_T);
1345 he_writel(he_dev, 0x0, RLBC_H2);
1346
1347 he_writel(he_dev, 512, RXTHRSH); /* 10% of r0+r1 buffers */
1348 he_writel(he_dev, 256, LITHRSH); /* 5% of r0+r1 buffers */
1349
1350 he_init_tx_lbfp(he_dev);
1351
1352 he_writel(he_dev, he_is622(he_dev) ? 0x104780 : 0x800, UBUFF_BA);
1353
1354 /* 5.1.5 initialize intermediate receive queues */
1355
1356 if (he_is622(he_dev)) {
1357 he_writel(he_dev, 0x000f, G0_INMQ_S);
1358 he_writel(he_dev, 0x200f, G0_INMQ_L);
1359
1360 he_writel(he_dev, 0x001f, G1_INMQ_S);
1361 he_writel(he_dev, 0x201f, G1_INMQ_L);
1362
1363 he_writel(he_dev, 0x002f, G2_INMQ_S);
1364 he_writel(he_dev, 0x202f, G2_INMQ_L);
1365
1366 he_writel(he_dev, 0x003f, G3_INMQ_S);
1367 he_writel(he_dev, 0x203f, G3_INMQ_L);
1368
1369 he_writel(he_dev, 0x004f, G4_INMQ_S);
1370 he_writel(he_dev, 0x204f, G4_INMQ_L);
1371
1372 he_writel(he_dev, 0x005f, G5_INMQ_S);
1373 he_writel(he_dev, 0x205f, G5_INMQ_L);
1374
1375 he_writel(he_dev, 0x006f, G6_INMQ_S);
1376 he_writel(he_dev, 0x206f, G6_INMQ_L);
1377
1378 he_writel(he_dev, 0x007f, G7_INMQ_S);
1379 he_writel(he_dev, 0x207f, G7_INMQ_L);
1380 } else {
1381 he_writel(he_dev, 0x0000, G0_INMQ_S);
1382 he_writel(he_dev, 0x0008, G0_INMQ_L);
1383
1384 he_writel(he_dev, 0x0001, G1_INMQ_S);
1385 he_writel(he_dev, 0x0009, G1_INMQ_L);
1386
1387 he_writel(he_dev, 0x0002, G2_INMQ_S);
1388 he_writel(he_dev, 0x000a, G2_INMQ_L);
1389
1390 he_writel(he_dev, 0x0003, G3_INMQ_S);
1391 he_writel(he_dev, 0x000b, G3_INMQ_L);
1392
1393 he_writel(he_dev, 0x0004, G4_INMQ_S);
1394 he_writel(he_dev, 0x000c, G4_INMQ_L);
1395
1396 he_writel(he_dev, 0x0005, G5_INMQ_S);
1397 he_writel(he_dev, 0x000d, G5_INMQ_L);
1398
1399 he_writel(he_dev, 0x0006, G6_INMQ_S);
1400 he_writel(he_dev, 0x000e, G6_INMQ_L);
1401
1402 he_writel(he_dev, 0x0007, G7_INMQ_S);
1403 he_writel(he_dev, 0x000f, G7_INMQ_L);
1404 }
1405
1406 /* 5.1.6 application tunable parameters */
1407
1408 he_writel(he_dev, 0x0, MCC);
1409 he_writel(he_dev, 0x0, OEC);
1410 he_writel(he_dev, 0x0, DCC);
1411 he_writel(he_dev, 0x0, CEC);
1412
1413 /* 5.1.7 cs block initialization */
1414
1415 he_init_cs_block(he_dev);
1416
1417 /* 5.1.8 cs block connection memory initialization */
1418
1419 if (he_init_cs_block_rcm(he_dev) < 0)
1420 return -ENOMEM;
1421
1422 /* 5.1.10 initialize host structures */
1423
1424 he_init_tpdrq(he_dev);
1425
1426 he_dev->tpd_pool = dma_pool_create("tpd", &he_dev->pci_dev->dev,
1427 sizeof(struct he_tpd), TPD_ALIGNMENT, 0);
1428 if (he_dev->tpd_pool == NULL) {
1429 hprintk("unable to create tpd dma_pool\n");
1430 return -ENOMEM;
1431 }
1432
1433 INIT_LIST_HEAD(&he_dev->outstanding_tpds);
1434
1435 if (he_init_group(he_dev, 0) != 0)
1436 return -ENOMEM;
1437
1438 for (group = 1; group < HE_NUM_GROUPS; ++group) {
1439 he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
1440 he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
1441 he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
1442 he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
1443 G0_RBPS_BS + (group * 32));
1444
1445 he_writel(he_dev, 0x0, G0_RBPL_S + (group * 32));
1446 he_writel(he_dev, 0x0, G0_RBPL_T + (group * 32));
1447 he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
1448 G0_RBPL_QI + (group * 32));
1449 he_writel(he_dev, 0x0, G0_RBPL_BS + (group * 32));
1450
1451 he_writel(he_dev, 0x0, G0_RBRQ_ST + (group * 16));
1452 he_writel(he_dev, 0x0, G0_RBRQ_H + (group * 16));
1453 he_writel(he_dev, RBRQ_THRESH(0x1) | RBRQ_SIZE(0x0),
1454 G0_RBRQ_Q + (group * 16));
1455 he_writel(he_dev, 0x0, G0_RBRQ_I + (group * 16));
1456
1457 he_writel(he_dev, 0x0, G0_TBRQ_B_T + (group * 16));
1458 he_writel(he_dev, 0x0, G0_TBRQ_H + (group * 16));
1459 he_writel(he_dev, TBRQ_THRESH(0x1),
1460 G0_TBRQ_THRESH + (group * 16));
1461 he_writel(he_dev, 0x0, G0_TBRQ_S + (group * 16));
1462 }
1463
1464 /* host status page */
1465
1466 he_dev->hsp = dma_alloc_coherent(&he_dev->pci_dev->dev,
1467 sizeof(struct he_hsp),
1468 &he_dev->hsp_phys, GFP_KERNEL);
1469 if (he_dev->hsp == NULL) {
1470 hprintk("failed to allocate host status page\n");
1471 return -ENOMEM;
1472 }
1473 he_writel(he_dev, he_dev->hsp_phys, HSP_BA);
1474
1475 /* initialize framer */
1476
1477 #ifdef CONFIG_ATM_HE_USE_SUNI
1478 if (he_isMM(he_dev))
1479 suni_init(he_dev->atm_dev);
1480 if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->start)
1481 he_dev->atm_dev->phy->start(he_dev->atm_dev);
1482 #endif /* CONFIG_ATM_HE_USE_SUNI */
1483
1484 if (sdh) {
1485 /* this really should be in suni.c but for now... */
1486 int val;
1487
1488 val = he_phy_get(he_dev->atm_dev, SUNI_TPOP_APM);
1489 val = (val & ~SUNI_TPOP_APM_S) | (SUNI_TPOP_S_SDH << SUNI_TPOP_APM_S_SHIFT);
1490 he_phy_put(he_dev->atm_dev, val, SUNI_TPOP_APM);
1491 he_phy_put(he_dev->atm_dev, SUNI_TACP_IUCHP_CLP, SUNI_TACP_IUCHP);
1492 }
1493
1494 /* 5.1.12 enable transmit and receive */
1495
1496 reg = he_readl_mbox(he_dev, CS_ERCTL0);
1497 reg |= TX_ENABLE|ER_ENABLE;
1498 he_writel_mbox(he_dev, reg, CS_ERCTL0);
1499
1500 reg = he_readl(he_dev, RC_CONFIG);
1501 reg |= RX_ENABLE;
1502 he_writel(he_dev, reg, RC_CONFIG);
1503
1504 for (i = 0; i < HE_NUM_CS_STPER; ++i) {
1505 he_dev->cs_stper[i].inuse = 0;
1506 he_dev->cs_stper[i].pcr = -1;
1507 }
1508 he_dev->total_bw = 0;
1509
1510
1511 /* atm linux initialization */
1512
1513 he_dev->atm_dev->ci_range.vpi_bits = he_dev->vpibits;
1514 he_dev->atm_dev->ci_range.vci_bits = he_dev->vcibits;
1515
1516 he_dev->irq_peak = 0;
1517 he_dev->rbrq_peak = 0;
1518 he_dev->rbpl_peak = 0;
1519 he_dev->tbrq_peak = 0;
1520
1521 HPRINTK("hell bent for leather!\n");
1522
1523 return 0;
1524 }
1525
1526 static void
he_stop(struct he_dev * he_dev)1527 he_stop(struct he_dev *he_dev)
1528 {
1529 struct he_buff *heb, *next;
1530 struct pci_dev *pci_dev;
1531 u32 gen_cntl_0, reg;
1532 u16 command;
1533
1534 pci_dev = he_dev->pci_dev;
1535
1536 /* disable interrupts */
1537
1538 if (he_dev->membase) {
1539 pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0);
1540 gen_cntl_0 &= ~(INT_PROC_ENBL | INIT_ENB);
1541 pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1542
1543 tasklet_disable(&he_dev->tasklet);
1544
1545 /* disable recv and transmit */
1546
1547 reg = he_readl_mbox(he_dev, CS_ERCTL0);
1548 reg &= ~(TX_ENABLE|ER_ENABLE);
1549 he_writel_mbox(he_dev, reg, CS_ERCTL0);
1550
1551 reg = he_readl(he_dev, RC_CONFIG);
1552 reg &= ~(RX_ENABLE);
1553 he_writel(he_dev, reg, RC_CONFIG);
1554 }
1555
1556 #ifdef CONFIG_ATM_HE_USE_SUNI
1557 if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->stop)
1558 he_dev->atm_dev->phy->stop(he_dev->atm_dev);
1559 #endif /* CONFIG_ATM_HE_USE_SUNI */
1560
1561 if (he_dev->irq)
1562 free_irq(he_dev->irq, he_dev);
1563
1564 if (he_dev->irq_base)
1565 dma_free_coherent(&he_dev->pci_dev->dev, (CONFIG_IRQ_SIZE + 1)
1566 * sizeof(struct he_irq), he_dev->irq_base, he_dev->irq_phys);
1567
1568 if (he_dev->hsp)
1569 dma_free_coherent(&he_dev->pci_dev->dev, sizeof(struct he_hsp),
1570 he_dev->hsp, he_dev->hsp_phys);
1571
1572 if (he_dev->rbpl_base) {
1573 list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
1574 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1575
1576 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE
1577 * sizeof(struct he_rbp), he_dev->rbpl_base, he_dev->rbpl_phys);
1578 }
1579
1580 kfree(he_dev->rbpl_virt);
1581 kfree(he_dev->rbpl_table);
1582 dma_pool_destroy(he_dev->rbpl_pool);
1583
1584 if (he_dev->rbrq_base)
1585 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq),
1586 he_dev->rbrq_base, he_dev->rbrq_phys);
1587
1588 if (he_dev->tbrq_base)
1589 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
1590 he_dev->tbrq_base, he_dev->tbrq_phys);
1591
1592 if (he_dev->tpdrq_base)
1593 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
1594 he_dev->tpdrq_base, he_dev->tpdrq_phys);
1595
1596 dma_pool_destroy(he_dev->tpd_pool);
1597
1598 if (he_dev->pci_dev) {
1599 pci_read_config_word(he_dev->pci_dev, PCI_COMMAND, &command);
1600 command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
1601 pci_write_config_word(he_dev->pci_dev, PCI_COMMAND, command);
1602 }
1603
1604 if (he_dev->membase)
1605 iounmap(he_dev->membase);
1606 }
1607
1608 static struct he_tpd *
__alloc_tpd(struct he_dev * he_dev)1609 __alloc_tpd(struct he_dev *he_dev)
1610 {
1611 struct he_tpd *tpd;
1612 dma_addr_t mapping;
1613
1614 tpd = dma_pool_alloc(he_dev->tpd_pool, GFP_ATOMIC, &mapping);
1615 if (tpd == NULL)
1616 return NULL;
1617
1618 tpd->status = TPD_ADDR(mapping);
1619 tpd->reserved = 0;
1620 tpd->iovec[0].addr = 0; tpd->iovec[0].len = 0;
1621 tpd->iovec[1].addr = 0; tpd->iovec[1].len = 0;
1622 tpd->iovec[2].addr = 0; tpd->iovec[2].len = 0;
1623
1624 return tpd;
1625 }
1626
1627 #define AAL5_LEN(buf,len) \
1628 ((((unsigned char *)(buf))[(len)-6] << 8) | \
1629 (((unsigned char *)(buf))[(len)-5]))
1630
1631 /* 2.10.1.2 receive
1632 *
1633 * aal5 packets can optionally return the tcp checksum in the lower
1634 * 16 bits of the crc (RSR0_TCP_CKSUM)
1635 */
1636
1637 #define TCP_CKSUM(buf,len) \
1638 ((((unsigned char *)(buf))[(len)-2] << 8) | \
1639 (((unsigned char *)(buf))[(len-1)]))
1640
1641 static int
he_service_rbrq(struct he_dev * he_dev,int group)1642 he_service_rbrq(struct he_dev *he_dev, int group)
1643 {
1644 struct he_rbrq *rbrq_tail = (struct he_rbrq *)
1645 ((unsigned long)he_dev->rbrq_base |
1646 he_dev->hsp->group[group].rbrq_tail);
1647 unsigned cid, lastcid = -1;
1648 struct sk_buff *skb;
1649 struct atm_vcc *vcc = NULL;
1650 struct he_vcc *he_vcc;
1651 struct he_buff *heb, *next;
1652 int i;
1653 int pdus_assembled = 0;
1654 int updated = 0;
1655
1656 read_lock(&vcc_sklist_lock);
1657 while (he_dev->rbrq_head != rbrq_tail) {
1658 ++updated;
1659
1660 HPRINTK("%p rbrq%d 0x%x len=%d cid=0x%x %s%s%s%s%s%s\n",
1661 he_dev->rbrq_head, group,
1662 RBRQ_ADDR(he_dev->rbrq_head),
1663 RBRQ_BUFLEN(he_dev->rbrq_head),
1664 RBRQ_CID(he_dev->rbrq_head),
1665 RBRQ_CRC_ERR(he_dev->rbrq_head) ? " CRC_ERR" : "",
1666 RBRQ_LEN_ERR(he_dev->rbrq_head) ? " LEN_ERR" : "",
1667 RBRQ_END_PDU(he_dev->rbrq_head) ? " END_PDU" : "",
1668 RBRQ_AAL5_PROT(he_dev->rbrq_head) ? " AAL5_PROT" : "",
1669 RBRQ_CON_CLOSED(he_dev->rbrq_head) ? " CON_CLOSED" : "",
1670 RBRQ_HBUF_ERR(he_dev->rbrq_head) ? " HBUF_ERR" : "");
1671
1672 i = RBRQ_ADDR(he_dev->rbrq_head) >> RBP_IDX_OFFSET;
1673 heb = he_dev->rbpl_virt[i];
1674
1675 cid = RBRQ_CID(he_dev->rbrq_head);
1676 if (cid != lastcid)
1677 vcc = __find_vcc(he_dev, cid);
1678 lastcid = cid;
1679
1680 if (vcc == NULL || (he_vcc = HE_VCC(vcc)) == NULL) {
1681 hprintk("vcc/he_vcc == NULL (cid 0x%x)\n", cid);
1682 if (!RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
1683 clear_bit(i, he_dev->rbpl_table);
1684 list_del(&heb->entry);
1685 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1686 }
1687
1688 goto next_rbrq_entry;
1689 }
1690
1691 if (RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
1692 hprintk("HBUF_ERR! (cid 0x%x)\n", cid);
1693 atomic_inc(&vcc->stats->rx_drop);
1694 goto return_host_buffers;
1695 }
1696
1697 heb->len = RBRQ_BUFLEN(he_dev->rbrq_head) * 4;
1698 clear_bit(i, he_dev->rbpl_table);
1699 list_move_tail(&heb->entry, &he_vcc->buffers);
1700 he_vcc->pdu_len += heb->len;
1701
1702 if (RBRQ_CON_CLOSED(he_dev->rbrq_head)) {
1703 lastcid = -1;
1704 HPRINTK("wake_up rx_waitq (cid 0x%x)\n", cid);
1705 wake_up(&he_vcc->rx_waitq);
1706 goto return_host_buffers;
1707 }
1708
1709 if (!RBRQ_END_PDU(he_dev->rbrq_head))
1710 goto next_rbrq_entry;
1711
1712 if (RBRQ_LEN_ERR(he_dev->rbrq_head)
1713 || RBRQ_CRC_ERR(he_dev->rbrq_head)) {
1714 HPRINTK("%s%s (%d.%d)\n",
1715 RBRQ_CRC_ERR(he_dev->rbrq_head)
1716 ? "CRC_ERR " : "",
1717 RBRQ_LEN_ERR(he_dev->rbrq_head)
1718 ? "LEN_ERR" : "",
1719 vcc->vpi, vcc->vci);
1720 atomic_inc(&vcc->stats->rx_err);
1721 goto return_host_buffers;
1722 }
1723
1724 skb = atm_alloc_charge(vcc, he_vcc->pdu_len + rx_skb_reserve,
1725 GFP_ATOMIC);
1726 if (!skb) {
1727 HPRINTK("charge failed (%d.%d)\n", vcc->vpi, vcc->vci);
1728 goto return_host_buffers;
1729 }
1730
1731 if (rx_skb_reserve > 0)
1732 skb_reserve(skb, rx_skb_reserve);
1733
1734 __net_timestamp(skb);
1735
1736 list_for_each_entry(heb, &he_vcc->buffers, entry)
1737 skb_put_data(skb, &heb->data, heb->len);
1738
1739 switch (vcc->qos.aal) {
1740 case ATM_AAL0:
1741 /* 2.10.1.5 raw cell receive */
1742 skb->len = ATM_AAL0_SDU;
1743 skb_set_tail_pointer(skb, skb->len);
1744 break;
1745 case ATM_AAL5:
1746 /* 2.10.1.2 aal5 receive */
1747
1748 skb->len = AAL5_LEN(skb->data, he_vcc->pdu_len);
1749 skb_set_tail_pointer(skb, skb->len);
1750 #ifdef USE_CHECKSUM_HW
1751 if (vcc->vpi == 0 && vcc->vci >= ATM_NOT_RSV_VCI) {
1752 skb->ip_summed = CHECKSUM_COMPLETE;
1753 skb->csum = TCP_CKSUM(skb->data,
1754 he_vcc->pdu_len);
1755 }
1756 #endif
1757 break;
1758 }
1759
1760 #ifdef should_never_happen
1761 if (skb->len > vcc->qos.rxtp.max_sdu)
1762 hprintk("pdu_len (%d) > vcc->qos.rxtp.max_sdu (%d)! cid 0x%x\n", skb->len, vcc->qos.rxtp.max_sdu, cid);
1763 #endif
1764
1765 #ifdef notdef
1766 ATM_SKB(skb)->vcc = vcc;
1767 #endif
1768 spin_unlock(&he_dev->global_lock);
1769 vcc->push(vcc, skb);
1770 spin_lock(&he_dev->global_lock);
1771
1772 atomic_inc(&vcc->stats->rx);
1773
1774 return_host_buffers:
1775 ++pdus_assembled;
1776
1777 list_for_each_entry_safe(heb, next, &he_vcc->buffers, entry)
1778 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1779 INIT_LIST_HEAD(&he_vcc->buffers);
1780 he_vcc->pdu_len = 0;
1781
1782 next_rbrq_entry:
1783 he_dev->rbrq_head = (struct he_rbrq *)
1784 ((unsigned long) he_dev->rbrq_base |
1785 RBRQ_MASK(he_dev->rbrq_head + 1));
1786
1787 }
1788 read_unlock(&vcc_sklist_lock);
1789
1790 if (updated) {
1791 if (updated > he_dev->rbrq_peak)
1792 he_dev->rbrq_peak = updated;
1793
1794 he_writel(he_dev, RBRQ_MASK(he_dev->rbrq_head),
1795 G0_RBRQ_H + (group * 16));
1796 }
1797
1798 return pdus_assembled;
1799 }
1800
1801 static void
he_service_tbrq(struct he_dev * he_dev,int group)1802 he_service_tbrq(struct he_dev *he_dev, int group)
1803 {
1804 struct he_tbrq *tbrq_tail = (struct he_tbrq *)
1805 ((unsigned long)he_dev->tbrq_base |
1806 he_dev->hsp->group[group].tbrq_tail);
1807 struct he_tpd *tpd;
1808 int slot, updated = 0;
1809 struct he_tpd *__tpd;
1810
1811 /* 2.1.6 transmit buffer return queue */
1812
1813 while (he_dev->tbrq_head != tbrq_tail) {
1814 ++updated;
1815
1816 HPRINTK("tbrq%d 0x%x%s%s\n",
1817 group,
1818 TBRQ_TPD(he_dev->tbrq_head),
1819 TBRQ_EOS(he_dev->tbrq_head) ? " EOS" : "",
1820 TBRQ_MULTIPLE(he_dev->tbrq_head) ? " MULTIPLE" : "");
1821 tpd = NULL;
1822 list_for_each_entry(__tpd, &he_dev->outstanding_tpds, entry) {
1823 if (TPD_ADDR(__tpd->status) == TBRQ_TPD(he_dev->tbrq_head)) {
1824 tpd = __tpd;
1825 list_del(&__tpd->entry);
1826 break;
1827 }
1828 }
1829
1830 if (tpd == NULL) {
1831 hprintk("unable to locate tpd for dma buffer %x\n",
1832 TBRQ_TPD(he_dev->tbrq_head));
1833 goto next_tbrq_entry;
1834 }
1835
1836 if (TBRQ_EOS(he_dev->tbrq_head)) {
1837 HPRINTK("wake_up(tx_waitq) cid 0x%x\n",
1838 he_mkcid(he_dev, tpd->vcc->vpi, tpd->vcc->vci));
1839 if (tpd->vcc)
1840 wake_up(&HE_VCC(tpd->vcc)->tx_waitq);
1841
1842 goto next_tbrq_entry;
1843 }
1844
1845 for (slot = 0; slot < TPD_MAXIOV; ++slot) {
1846 if (tpd->iovec[slot].addr)
1847 dma_unmap_single(&he_dev->pci_dev->dev,
1848 tpd->iovec[slot].addr,
1849 tpd->iovec[slot].len & TPD_LEN_MASK,
1850 DMA_TO_DEVICE);
1851 if (tpd->iovec[slot].len & TPD_LST)
1852 break;
1853
1854 }
1855
1856 if (tpd->skb) { /* && !TBRQ_MULTIPLE(he_dev->tbrq_head) */
1857 if (tpd->vcc && tpd->vcc->pop)
1858 tpd->vcc->pop(tpd->vcc, tpd->skb);
1859 else
1860 dev_kfree_skb_any(tpd->skb);
1861 }
1862
1863 next_tbrq_entry:
1864 if (tpd)
1865 dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
1866 he_dev->tbrq_head = (struct he_tbrq *)
1867 ((unsigned long) he_dev->tbrq_base |
1868 TBRQ_MASK(he_dev->tbrq_head + 1));
1869 }
1870
1871 if (updated) {
1872 if (updated > he_dev->tbrq_peak)
1873 he_dev->tbrq_peak = updated;
1874
1875 he_writel(he_dev, TBRQ_MASK(he_dev->tbrq_head),
1876 G0_TBRQ_H + (group * 16));
1877 }
1878 }
1879
1880 static void
he_service_rbpl(struct he_dev * he_dev,int group)1881 he_service_rbpl(struct he_dev *he_dev, int group)
1882 {
1883 struct he_rbp *new_tail;
1884 struct he_rbp *rbpl_head;
1885 struct he_buff *heb;
1886 dma_addr_t mapping;
1887 int i;
1888 int moved = 0;
1889
1890 rbpl_head = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
1891 RBPL_MASK(he_readl(he_dev, G0_RBPL_S)));
1892
1893 for (;;) {
1894 new_tail = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
1895 RBPL_MASK(he_dev->rbpl_tail+1));
1896
1897 /* table 3.42 -- rbpl_tail should never be set to rbpl_head */
1898 if (new_tail == rbpl_head)
1899 break;
1900
1901 i = find_next_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE, he_dev->rbpl_hint);
1902 if (i > (RBPL_TABLE_SIZE - 1)) {
1903 i = find_first_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE);
1904 if (i > (RBPL_TABLE_SIZE - 1))
1905 break;
1906 }
1907 he_dev->rbpl_hint = i + 1;
1908
1909 heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_ATOMIC, &mapping);
1910 if (!heb)
1911 break;
1912 heb->mapping = mapping;
1913 list_add(&heb->entry, &he_dev->rbpl_outstanding);
1914 he_dev->rbpl_virt[i] = heb;
1915 set_bit(i, he_dev->rbpl_table);
1916 new_tail->idx = i << RBP_IDX_OFFSET;
1917 new_tail->phys = mapping + offsetof(struct he_buff, data);
1918
1919 he_dev->rbpl_tail = new_tail;
1920 ++moved;
1921 }
1922
1923 if (moved)
1924 he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail), G0_RBPL_T);
1925 }
1926
1927 static void
he_tasklet(unsigned long data)1928 he_tasklet(unsigned long data)
1929 {
1930 unsigned long flags;
1931 struct he_dev *he_dev = (struct he_dev *) data;
1932 int group, type;
1933 int updated = 0;
1934
1935 HPRINTK("tasklet (0x%lx)\n", data);
1936 spin_lock_irqsave(&he_dev->global_lock, flags);
1937
1938 while (he_dev->irq_head != he_dev->irq_tail) {
1939 ++updated;
1940
1941 type = ITYPE_TYPE(he_dev->irq_head->isw);
1942 group = ITYPE_GROUP(he_dev->irq_head->isw);
1943
1944 switch (type) {
1945 case ITYPE_RBRQ_THRESH:
1946 HPRINTK("rbrq%d threshold\n", group);
1947 fallthrough;
1948 case ITYPE_RBRQ_TIMER:
1949 if (he_service_rbrq(he_dev, group))
1950 he_service_rbpl(he_dev, group);
1951 break;
1952 case ITYPE_TBRQ_THRESH:
1953 HPRINTK("tbrq%d threshold\n", group);
1954 fallthrough;
1955 case ITYPE_TPD_COMPLETE:
1956 he_service_tbrq(he_dev, group);
1957 break;
1958 case ITYPE_RBPL_THRESH:
1959 he_service_rbpl(he_dev, group);
1960 break;
1961 case ITYPE_RBPS_THRESH:
1962 /* shouldn't happen unless small buffers enabled */
1963 break;
1964 case ITYPE_PHY:
1965 HPRINTK("phy interrupt\n");
1966 #ifdef CONFIG_ATM_HE_USE_SUNI
1967 spin_unlock_irqrestore(&he_dev->global_lock, flags);
1968 if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->interrupt)
1969 he_dev->atm_dev->phy->interrupt(he_dev->atm_dev);
1970 spin_lock_irqsave(&he_dev->global_lock, flags);
1971 #endif
1972 break;
1973 case ITYPE_OTHER:
1974 switch (type|group) {
1975 case ITYPE_PARITY:
1976 hprintk("parity error\n");
1977 break;
1978 case ITYPE_ABORT:
1979 hprintk("abort 0x%x\n", he_readl(he_dev, ABORT_ADDR));
1980 break;
1981 }
1982 break;
1983 case ITYPE_TYPE(ITYPE_INVALID):
1984 /* see 8.1.1 -- check all queues */
1985
1986 HPRINTK("isw not updated 0x%x\n", he_dev->irq_head->isw);
1987
1988 he_service_rbrq(he_dev, 0);
1989 he_service_rbpl(he_dev, 0);
1990 he_service_tbrq(he_dev, 0);
1991 break;
1992 default:
1993 hprintk("bad isw 0x%x?\n", he_dev->irq_head->isw);
1994 }
1995
1996 he_dev->irq_head->isw = ITYPE_INVALID;
1997
1998 he_dev->irq_head = (struct he_irq *) NEXT_ENTRY(he_dev->irq_base, he_dev->irq_head, IRQ_MASK);
1999 }
2000
2001 if (updated) {
2002 if (updated > he_dev->irq_peak)
2003 he_dev->irq_peak = updated;
2004
2005 he_writel(he_dev,
2006 IRQ_SIZE(CONFIG_IRQ_SIZE) |
2007 IRQ_THRESH(CONFIG_IRQ_THRESH) |
2008 IRQ_TAIL(he_dev->irq_tail), IRQ0_HEAD);
2009 (void) he_readl(he_dev, INT_FIFO); /* 8.1.2 controller errata; flush posted writes */
2010 }
2011 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2012 }
2013
2014 static irqreturn_t
he_irq_handler(int irq,void * dev_id)2015 he_irq_handler(int irq, void *dev_id)
2016 {
2017 unsigned long flags;
2018 struct he_dev *he_dev = (struct he_dev * )dev_id;
2019 int handled = 0;
2020
2021 if (he_dev == NULL)
2022 return IRQ_NONE;
2023
2024 spin_lock_irqsave(&he_dev->global_lock, flags);
2025
2026 he_dev->irq_tail = (struct he_irq *) (((unsigned long)he_dev->irq_base) |
2027 (*he_dev->irq_tailoffset << 2));
2028
2029 if (he_dev->irq_tail == he_dev->irq_head) {
2030 HPRINTK("tailoffset not updated?\n");
2031 he_dev->irq_tail = (struct he_irq *) ((unsigned long)he_dev->irq_base |
2032 ((he_readl(he_dev, IRQ0_BASE) & IRQ_MASK) << 2));
2033 (void) he_readl(he_dev, INT_FIFO); /* 8.1.2 controller errata */
2034 }
2035
2036 #ifdef DEBUG
2037 if (he_dev->irq_head == he_dev->irq_tail /* && !IRQ_PENDING */)
2038 hprintk("spurious (or shared) interrupt?\n");
2039 #endif
2040
2041 if (he_dev->irq_head != he_dev->irq_tail) {
2042 handled = 1;
2043 tasklet_schedule(&he_dev->tasklet);
2044 he_writel(he_dev, INT_CLEAR_A, INT_FIFO); /* clear interrupt */
2045 (void) he_readl(he_dev, INT_FIFO); /* flush posted writes */
2046 }
2047 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2048 return IRQ_RETVAL(handled);
2049
2050 }
2051
2052 static __inline__ void
__enqueue_tpd(struct he_dev * he_dev,struct he_tpd * tpd,unsigned cid)2053 __enqueue_tpd(struct he_dev *he_dev, struct he_tpd *tpd, unsigned cid)
2054 {
2055 struct he_tpdrq *new_tail;
2056
2057 HPRINTK("tpdrq %p cid 0x%x -> tpdrq_tail %p\n",
2058 tpd, cid, he_dev->tpdrq_tail);
2059
2060 /* new_tail = he_dev->tpdrq_tail; */
2061 new_tail = (struct he_tpdrq *) ((unsigned long) he_dev->tpdrq_base |
2062 TPDRQ_MASK(he_dev->tpdrq_tail+1));
2063
2064 /*
2065 * check to see if we are about to set the tail == head
2066 * if true, update the head pointer from the adapter
2067 * to see if this is really the case (reading the queue
2068 * head for every enqueue would be unnecessarily slow)
2069 */
2070
2071 if (new_tail == he_dev->tpdrq_head) {
2072 he_dev->tpdrq_head = (struct he_tpdrq *)
2073 (((unsigned long)he_dev->tpdrq_base) |
2074 TPDRQ_MASK(he_readl(he_dev, TPDRQ_B_H)));
2075
2076 if (new_tail == he_dev->tpdrq_head) {
2077 int slot;
2078
2079 hprintk("tpdrq full (cid 0x%x)\n", cid);
2080 /*
2081 * FIXME
2082 * push tpd onto a transmit backlog queue
2083 * after service_tbrq, service the backlog
2084 * for now, we just drop the pdu
2085 */
2086 for (slot = 0; slot < TPD_MAXIOV; ++slot) {
2087 if (tpd->iovec[slot].addr)
2088 dma_unmap_single(&he_dev->pci_dev->dev,
2089 tpd->iovec[slot].addr,
2090 tpd->iovec[slot].len & TPD_LEN_MASK,
2091 DMA_TO_DEVICE);
2092 }
2093 if (tpd->skb) {
2094 if (tpd->vcc->pop)
2095 tpd->vcc->pop(tpd->vcc, tpd->skb);
2096 else
2097 dev_kfree_skb_any(tpd->skb);
2098 atomic_inc(&tpd->vcc->stats->tx_err);
2099 }
2100 dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
2101 return;
2102 }
2103 }
2104
2105 /* 2.1.5 transmit packet descriptor ready queue */
2106 list_add_tail(&tpd->entry, &he_dev->outstanding_tpds);
2107 he_dev->tpdrq_tail->tpd = TPD_ADDR(tpd->status);
2108 he_dev->tpdrq_tail->cid = cid;
2109 wmb();
2110
2111 he_dev->tpdrq_tail = new_tail;
2112
2113 he_writel(he_dev, TPDRQ_MASK(he_dev->tpdrq_tail), TPDRQ_T);
2114 (void) he_readl(he_dev, TPDRQ_T); /* flush posted writes */
2115 }
2116
2117 static int
he_open(struct atm_vcc * vcc)2118 he_open(struct atm_vcc *vcc)
2119 {
2120 unsigned long flags;
2121 struct he_dev *he_dev = HE_DEV(vcc->dev);
2122 struct he_vcc *he_vcc;
2123 int err = 0;
2124 unsigned cid, rsr0, rsr1, rsr4, tsr0, tsr0_aal, tsr4, period, reg, clock;
2125 short vpi = vcc->vpi;
2126 int vci = vcc->vci;
2127
2128 if (vci == ATM_VCI_UNSPEC || vpi == ATM_VPI_UNSPEC)
2129 return 0;
2130
2131 HPRINTK("open vcc %p %d.%d\n", vcc, vpi, vci);
2132
2133 set_bit(ATM_VF_ADDR, &vcc->flags);
2134
2135 cid = he_mkcid(he_dev, vpi, vci);
2136
2137 he_vcc = kmalloc(sizeof(struct he_vcc), GFP_ATOMIC);
2138 if (he_vcc == NULL) {
2139 hprintk("unable to allocate he_vcc during open\n");
2140 return -ENOMEM;
2141 }
2142
2143 INIT_LIST_HEAD(&he_vcc->buffers);
2144 he_vcc->pdu_len = 0;
2145 he_vcc->rc_index = -1;
2146
2147 init_waitqueue_head(&he_vcc->rx_waitq);
2148 init_waitqueue_head(&he_vcc->tx_waitq);
2149
2150 vcc->dev_data = he_vcc;
2151
2152 if (vcc->qos.txtp.traffic_class != ATM_NONE) {
2153 int pcr_goal;
2154
2155 pcr_goal = atm_pcr_goal(&vcc->qos.txtp);
2156 if (pcr_goal == 0)
2157 pcr_goal = he_dev->atm_dev->link_rate;
2158 if (pcr_goal < 0) /* means round down, technically */
2159 pcr_goal = -pcr_goal;
2160
2161 HPRINTK("open tx cid 0x%x pcr_goal %d\n", cid, pcr_goal);
2162
2163 switch (vcc->qos.aal) {
2164 case ATM_AAL5:
2165 tsr0_aal = TSR0_AAL5;
2166 tsr4 = TSR4_AAL5;
2167 break;
2168 case ATM_AAL0:
2169 tsr0_aal = TSR0_AAL0_SDU;
2170 tsr4 = TSR4_AAL0_SDU;
2171 break;
2172 default:
2173 err = -EINVAL;
2174 goto open_failed;
2175 }
2176
2177 spin_lock_irqsave(&he_dev->global_lock, flags);
2178 tsr0 = he_readl_tsr0(he_dev, cid);
2179 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2180
2181 if (TSR0_CONN_STATE(tsr0) != 0) {
2182 hprintk("cid 0x%x not idle (tsr0 = 0x%x)\n", cid, tsr0);
2183 err = -EBUSY;
2184 goto open_failed;
2185 }
2186
2187 switch (vcc->qos.txtp.traffic_class) {
2188 case ATM_UBR:
2189 /* 2.3.3.1 open connection ubr */
2190
2191 tsr0 = TSR0_UBR | TSR0_GROUP(0) | tsr0_aal |
2192 TSR0_USE_WMIN | TSR0_UPDATE_GER;
2193 break;
2194
2195 case ATM_CBR:
2196 /* 2.3.3.2 open connection cbr */
2197
2198 /* 8.2.3 cbr scheduler wrap problem -- limit to 90% total link rate */
2199 if ((he_dev->total_bw + pcr_goal)
2200 > (he_dev->atm_dev->link_rate * 9 / 10))
2201 {
2202 err = -EBUSY;
2203 goto open_failed;
2204 }
2205
2206 spin_lock_irqsave(&he_dev->global_lock, flags); /* also protects he_dev->cs_stper[] */
2207
2208 /* find an unused cs_stper register */
2209 for (reg = 0; reg < HE_NUM_CS_STPER; ++reg)
2210 if (he_dev->cs_stper[reg].inuse == 0 ||
2211 he_dev->cs_stper[reg].pcr == pcr_goal)
2212 break;
2213
2214 if (reg == HE_NUM_CS_STPER) {
2215 err = -EBUSY;
2216 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2217 goto open_failed;
2218 }
2219
2220 he_dev->total_bw += pcr_goal;
2221
2222 he_vcc->rc_index = reg;
2223 ++he_dev->cs_stper[reg].inuse;
2224 he_dev->cs_stper[reg].pcr = pcr_goal;
2225
2226 clock = he_is622(he_dev) ? 66667000 : 50000000;
2227 period = clock / pcr_goal;
2228
2229 HPRINTK("rc_index = %d period = %d\n",
2230 reg, period);
2231
2232 he_writel_mbox(he_dev, rate_to_atmf(period/2),
2233 CS_STPER0 + reg);
2234 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2235
2236 tsr0 = TSR0_CBR | TSR0_GROUP(0) | tsr0_aal |
2237 TSR0_RC_INDEX(reg);
2238
2239 break;
2240 default:
2241 err = -EINVAL;
2242 goto open_failed;
2243 }
2244
2245 spin_lock_irqsave(&he_dev->global_lock, flags);
2246
2247 he_writel_tsr0(he_dev, tsr0, cid);
2248 he_writel_tsr4(he_dev, tsr4 | 1, cid);
2249 he_writel_tsr1(he_dev, TSR1_MCR(rate_to_atmf(0)) |
2250 TSR1_PCR(rate_to_atmf(pcr_goal)), cid);
2251 he_writel_tsr2(he_dev, TSR2_ACR(rate_to_atmf(pcr_goal)), cid);
2252 he_writel_tsr9(he_dev, TSR9_OPEN_CONN, cid);
2253
2254 he_writel_tsr3(he_dev, 0x0, cid);
2255 he_writel_tsr5(he_dev, 0x0, cid);
2256 he_writel_tsr6(he_dev, 0x0, cid);
2257 he_writel_tsr7(he_dev, 0x0, cid);
2258 he_writel_tsr8(he_dev, 0x0, cid);
2259 he_writel_tsr10(he_dev, 0x0, cid);
2260 he_writel_tsr11(he_dev, 0x0, cid);
2261 he_writel_tsr12(he_dev, 0x0, cid);
2262 he_writel_tsr13(he_dev, 0x0, cid);
2263 he_writel_tsr14(he_dev, 0x0, cid);
2264 (void) he_readl_tsr0(he_dev, cid); /* flush posted writes */
2265 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2266 }
2267
2268 if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
2269 unsigned aal;
2270
2271 HPRINTK("open rx cid 0x%x (rx_waitq %p)\n", cid,
2272 &HE_VCC(vcc)->rx_waitq);
2273
2274 switch (vcc->qos.aal) {
2275 case ATM_AAL5:
2276 aal = RSR0_AAL5;
2277 break;
2278 case ATM_AAL0:
2279 aal = RSR0_RAWCELL;
2280 break;
2281 default:
2282 err = -EINVAL;
2283 goto open_failed;
2284 }
2285
2286 spin_lock_irqsave(&he_dev->global_lock, flags);
2287
2288 rsr0 = he_readl_rsr0(he_dev, cid);
2289 if (rsr0 & RSR0_OPEN_CONN) {
2290 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2291
2292 hprintk("cid 0x%x not idle (rsr0 = 0x%x)\n", cid, rsr0);
2293 err = -EBUSY;
2294 goto open_failed;
2295 }
2296
2297 rsr1 = RSR1_GROUP(0) | RSR1_RBPL_ONLY;
2298 rsr4 = RSR4_GROUP(0) | RSR4_RBPL_ONLY;
2299 rsr0 = vcc->qos.rxtp.traffic_class == ATM_UBR ?
2300 (RSR0_EPD_ENABLE|RSR0_PPD_ENABLE) : 0;
2301
2302 #ifdef USE_CHECKSUM_HW
2303 if (vpi == 0 && vci >= ATM_NOT_RSV_VCI)
2304 rsr0 |= RSR0_TCP_CKSUM;
2305 #endif
2306
2307 he_writel_rsr4(he_dev, rsr4, cid);
2308 he_writel_rsr1(he_dev, rsr1, cid);
2309 /* 5.1.11 last parameter initialized should be
2310 the open/closed indication in rsr0 */
2311 he_writel_rsr0(he_dev,
2312 rsr0 | RSR0_START_PDU | RSR0_OPEN_CONN | aal, cid);
2313 (void) he_readl_rsr0(he_dev, cid); /* flush posted writes */
2314
2315 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2316 }
2317
2318 open_failed:
2319
2320 if (err) {
2321 kfree(he_vcc);
2322 clear_bit(ATM_VF_ADDR, &vcc->flags);
2323 }
2324 else
2325 set_bit(ATM_VF_READY, &vcc->flags);
2326
2327 return err;
2328 }
2329
2330 static void
he_close(struct atm_vcc * vcc)2331 he_close(struct atm_vcc *vcc)
2332 {
2333 unsigned long flags;
2334 DECLARE_WAITQUEUE(wait, current);
2335 struct he_dev *he_dev = HE_DEV(vcc->dev);
2336 struct he_tpd *tpd;
2337 unsigned cid;
2338 struct he_vcc *he_vcc = HE_VCC(vcc);
2339 #define MAX_RETRY 30
2340 int retry = 0, sleep = 1, tx_inuse;
2341
2342 HPRINTK("close vcc %p %d.%d\n", vcc, vcc->vpi, vcc->vci);
2343
2344 clear_bit(ATM_VF_READY, &vcc->flags);
2345 cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
2346
2347 if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
2348 int timeout;
2349
2350 HPRINTK("close rx cid 0x%x\n", cid);
2351
2352 /* 2.7.2.2 close receive operation */
2353
2354 /* wait for previous close (if any) to finish */
2355
2356 spin_lock_irqsave(&he_dev->global_lock, flags);
2357 while (he_readl(he_dev, RCC_STAT) & RCC_BUSY) {
2358 HPRINTK("close cid 0x%x RCC_BUSY\n", cid);
2359 udelay(250);
2360 }
2361
2362 set_current_state(TASK_UNINTERRUPTIBLE);
2363 add_wait_queue(&he_vcc->rx_waitq, &wait);
2364
2365 he_writel_rsr0(he_dev, RSR0_CLOSE_CONN, cid);
2366 (void) he_readl_rsr0(he_dev, cid); /* flush posted writes */
2367 he_writel_mbox(he_dev, cid, RXCON_CLOSE);
2368 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2369
2370 timeout = schedule_timeout(30*HZ);
2371
2372 remove_wait_queue(&he_vcc->rx_waitq, &wait);
2373 set_current_state(TASK_RUNNING);
2374
2375 if (timeout == 0)
2376 hprintk("close rx timeout cid 0x%x\n", cid);
2377
2378 HPRINTK("close rx cid 0x%x complete\n", cid);
2379
2380 }
2381
2382 if (vcc->qos.txtp.traffic_class != ATM_NONE) {
2383 volatile unsigned tsr4, tsr0;
2384 int timeout;
2385
2386 HPRINTK("close tx cid 0x%x\n", cid);
2387
2388 /* 2.1.2
2389 *
2390 * ... the host must first stop queueing packets to the TPDRQ
2391 * on the connection to be closed, then wait for all outstanding
2392 * packets to be transmitted and their buffers returned to the
2393 * TBRQ. When the last packet on the connection arrives in the
2394 * TBRQ, the host issues the close command to the adapter.
2395 */
2396
2397 while (((tx_inuse = refcount_read(&sk_atm(vcc)->sk_wmem_alloc)) > 1) &&
2398 (retry < MAX_RETRY)) {
2399 msleep(sleep);
2400 if (sleep < 250)
2401 sleep = sleep * 2;
2402
2403 ++retry;
2404 }
2405
2406 if (tx_inuse > 1)
2407 hprintk("close tx cid 0x%x tx_inuse = %d\n", cid, tx_inuse);
2408
2409 /* 2.3.1.1 generic close operations with flush */
2410
2411 spin_lock_irqsave(&he_dev->global_lock, flags);
2412 he_writel_tsr4_upper(he_dev, TSR4_FLUSH_CONN, cid);
2413 /* also clears TSR4_SESSION_ENDED */
2414
2415 switch (vcc->qos.txtp.traffic_class) {
2416 case ATM_UBR:
2417 he_writel_tsr1(he_dev,
2418 TSR1_MCR(rate_to_atmf(200000))
2419 | TSR1_PCR(0), cid);
2420 break;
2421 case ATM_CBR:
2422 he_writel_tsr14_upper(he_dev, TSR14_DELETE, cid);
2423 break;
2424 }
2425 (void) he_readl_tsr4(he_dev, cid); /* flush posted writes */
2426
2427 tpd = __alloc_tpd(he_dev);
2428 if (tpd == NULL) {
2429 hprintk("close tx he_alloc_tpd failed cid 0x%x\n", cid);
2430 goto close_tx_incomplete;
2431 }
2432 tpd->status |= TPD_EOS | TPD_INT;
2433 tpd->skb = NULL;
2434 tpd->vcc = vcc;
2435 wmb();
2436
2437 set_current_state(TASK_UNINTERRUPTIBLE);
2438 add_wait_queue(&he_vcc->tx_waitq, &wait);
2439 __enqueue_tpd(he_dev, tpd, cid);
2440 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2441
2442 timeout = schedule_timeout(30*HZ);
2443
2444 remove_wait_queue(&he_vcc->tx_waitq, &wait);
2445 set_current_state(TASK_RUNNING);
2446
2447 spin_lock_irqsave(&he_dev->global_lock, flags);
2448
2449 if (timeout == 0) {
2450 hprintk("close tx timeout cid 0x%x\n", cid);
2451 goto close_tx_incomplete;
2452 }
2453
2454 while (!((tsr4 = he_readl_tsr4(he_dev, cid)) & TSR4_SESSION_ENDED)) {
2455 HPRINTK("close tx cid 0x%x !TSR4_SESSION_ENDED (tsr4 = 0x%x)\n", cid, tsr4);
2456 udelay(250);
2457 }
2458
2459 while (TSR0_CONN_STATE(tsr0 = he_readl_tsr0(he_dev, cid)) != 0) {
2460 HPRINTK("close tx cid 0x%x TSR0_CONN_STATE != 0 (tsr0 = 0x%x)\n", cid, tsr0);
2461 udelay(250);
2462 }
2463
2464 close_tx_incomplete:
2465
2466 if (vcc->qos.txtp.traffic_class == ATM_CBR) {
2467 int reg = he_vcc->rc_index;
2468
2469 HPRINTK("cs_stper reg = %d\n", reg);
2470
2471 if (he_dev->cs_stper[reg].inuse == 0)
2472 hprintk("cs_stper[%d].inuse = 0!\n", reg);
2473 else
2474 --he_dev->cs_stper[reg].inuse;
2475
2476 he_dev->total_bw -= he_dev->cs_stper[reg].pcr;
2477 }
2478 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2479
2480 HPRINTK("close tx cid 0x%x complete\n", cid);
2481 }
2482
2483 kfree(he_vcc);
2484
2485 clear_bit(ATM_VF_ADDR, &vcc->flags);
2486 }
2487
2488 static int
he_send(struct atm_vcc * vcc,struct sk_buff * skb)2489 he_send(struct atm_vcc *vcc, struct sk_buff *skb)
2490 {
2491 unsigned long flags;
2492 struct he_dev *he_dev = HE_DEV(vcc->dev);
2493 unsigned cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
2494 struct he_tpd *tpd;
2495 #ifdef USE_SCATTERGATHER
2496 int i, slot = 0;
2497 #endif
2498
2499 #define HE_TPD_BUFSIZE 0xffff
2500
2501 HPRINTK("send %d.%d\n", vcc->vpi, vcc->vci);
2502
2503 if ((skb->len > HE_TPD_BUFSIZE) ||
2504 ((vcc->qos.aal == ATM_AAL0) && (skb->len != ATM_AAL0_SDU))) {
2505 hprintk("buffer too large (or small) -- %d bytes\n", skb->len );
2506 if (vcc->pop)
2507 vcc->pop(vcc, skb);
2508 else
2509 dev_kfree_skb_any(skb);
2510 atomic_inc(&vcc->stats->tx_err);
2511 return -EINVAL;
2512 }
2513
2514 #ifndef USE_SCATTERGATHER
2515 if (skb_shinfo(skb)->nr_frags) {
2516 hprintk("no scatter/gather support\n");
2517 if (vcc->pop)
2518 vcc->pop(vcc, skb);
2519 else
2520 dev_kfree_skb_any(skb);
2521 atomic_inc(&vcc->stats->tx_err);
2522 return -EINVAL;
2523 }
2524 #endif
2525 spin_lock_irqsave(&he_dev->global_lock, flags);
2526
2527 tpd = __alloc_tpd(he_dev);
2528 if (tpd == NULL) {
2529 if (vcc->pop)
2530 vcc->pop(vcc, skb);
2531 else
2532 dev_kfree_skb_any(skb);
2533 atomic_inc(&vcc->stats->tx_err);
2534 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2535 return -ENOMEM;
2536 }
2537
2538 if (vcc->qos.aal == ATM_AAL5)
2539 tpd->status |= TPD_CELLTYPE(TPD_USERCELL);
2540 else {
2541 char *pti_clp = (void *) (skb->data + 3);
2542 int clp, pti;
2543
2544 pti = (*pti_clp & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
2545 clp = (*pti_clp & ATM_HDR_CLP);
2546 tpd->status |= TPD_CELLTYPE(pti);
2547 if (clp)
2548 tpd->status |= TPD_CLP;
2549
2550 skb_pull(skb, ATM_AAL0_SDU - ATM_CELL_PAYLOAD);
2551 }
2552
2553 #ifdef USE_SCATTERGATHER
2554 tpd->iovec[slot].addr = dma_map_single(&he_dev->pci_dev->dev, skb->data,
2555 skb_headlen(skb), DMA_TO_DEVICE);
2556 tpd->iovec[slot].len = skb_headlen(skb);
2557 ++slot;
2558
2559 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2560 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2561
2562 if (slot == TPD_MAXIOV) { /* queue tpd; start new tpd */
2563 tpd->vcc = vcc;
2564 tpd->skb = NULL; /* not the last fragment
2565 so dont ->push() yet */
2566 wmb();
2567
2568 __enqueue_tpd(he_dev, tpd, cid);
2569 tpd = __alloc_tpd(he_dev);
2570 if (tpd == NULL) {
2571 if (vcc->pop)
2572 vcc->pop(vcc, skb);
2573 else
2574 dev_kfree_skb_any(skb);
2575 atomic_inc(&vcc->stats->tx_err);
2576 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2577 return -ENOMEM;
2578 }
2579 tpd->status |= TPD_USERCELL;
2580 slot = 0;
2581 }
2582
2583 tpd->iovec[slot].addr = skb_frag_dma_map(&he_dev->pci_dev->dev,
2584 frag, 0, skb_frag_size(frag), DMA_TO_DEVICE);
2585 tpd->iovec[slot].len = skb_frag_size(frag);
2586 ++slot;
2587
2588 }
2589
2590 tpd->iovec[slot - 1].len |= TPD_LST;
2591 #else
2592 tpd->address0 = dma_map_single(&he_dev->pci_dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
2593 tpd->length0 = skb->len | TPD_LST;
2594 #endif
2595 tpd->status |= TPD_INT;
2596
2597 tpd->vcc = vcc;
2598 tpd->skb = skb;
2599 wmb();
2600 ATM_SKB(skb)->vcc = vcc;
2601
2602 __enqueue_tpd(he_dev, tpd, cid);
2603 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2604
2605 atomic_inc(&vcc->stats->tx);
2606
2607 return 0;
2608 }
2609
2610 static int
he_ioctl(struct atm_dev * atm_dev,unsigned int cmd,void __user * arg)2611 he_ioctl(struct atm_dev *atm_dev, unsigned int cmd, void __user *arg)
2612 {
2613 unsigned long flags;
2614 struct he_dev *he_dev = HE_DEV(atm_dev);
2615 struct he_ioctl_reg reg;
2616 int err = 0;
2617
2618 switch (cmd) {
2619 case HE_GET_REG:
2620 if (!capable(CAP_NET_ADMIN))
2621 return -EPERM;
2622
2623 if (copy_from_user(®, arg,
2624 sizeof(struct he_ioctl_reg)))
2625 return -EFAULT;
2626
2627 spin_lock_irqsave(&he_dev->global_lock, flags);
2628 switch (reg.type) {
2629 case HE_REGTYPE_PCI:
2630 if (reg.addr >= HE_REGMAP_SIZE) {
2631 err = -EINVAL;
2632 break;
2633 }
2634
2635 reg.val = he_readl(he_dev, reg.addr);
2636 break;
2637 case HE_REGTYPE_RCM:
2638 reg.val =
2639 he_readl_rcm(he_dev, reg.addr);
2640 break;
2641 case HE_REGTYPE_TCM:
2642 reg.val =
2643 he_readl_tcm(he_dev, reg.addr);
2644 break;
2645 case HE_REGTYPE_MBOX:
2646 reg.val =
2647 he_readl_mbox(he_dev, reg.addr);
2648 break;
2649 default:
2650 err = -EINVAL;
2651 break;
2652 }
2653 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2654 if (err == 0)
2655 if (copy_to_user(arg, ®,
2656 sizeof(struct he_ioctl_reg)))
2657 return -EFAULT;
2658 break;
2659 default:
2660 #ifdef CONFIG_ATM_HE_USE_SUNI
2661 if (atm_dev->phy && atm_dev->phy->ioctl)
2662 err = atm_dev->phy->ioctl(atm_dev, cmd, arg);
2663 #else /* CONFIG_ATM_HE_USE_SUNI */
2664 err = -EINVAL;
2665 #endif /* CONFIG_ATM_HE_USE_SUNI */
2666 break;
2667 }
2668
2669 return err;
2670 }
2671
2672 static void
he_phy_put(struct atm_dev * atm_dev,unsigned char val,unsigned long addr)2673 he_phy_put(struct atm_dev *atm_dev, unsigned char val, unsigned long addr)
2674 {
2675 unsigned long flags;
2676 struct he_dev *he_dev = HE_DEV(atm_dev);
2677
2678 HPRINTK("phy_put(val 0x%x, addr 0x%lx)\n", val, addr);
2679
2680 spin_lock_irqsave(&he_dev->global_lock, flags);
2681 he_writel(he_dev, val, FRAMER + (addr*4));
2682 (void) he_readl(he_dev, FRAMER + (addr*4)); /* flush posted writes */
2683 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2684 }
2685
2686
2687 static unsigned char
he_phy_get(struct atm_dev * atm_dev,unsigned long addr)2688 he_phy_get(struct atm_dev *atm_dev, unsigned long addr)
2689 {
2690 unsigned long flags;
2691 struct he_dev *he_dev = HE_DEV(atm_dev);
2692 unsigned reg;
2693
2694 spin_lock_irqsave(&he_dev->global_lock, flags);
2695 reg = he_readl(he_dev, FRAMER + (addr*4));
2696 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2697
2698 HPRINTK("phy_get(addr 0x%lx) =0x%x\n", addr, reg);
2699 return reg;
2700 }
2701
2702 static int
he_proc_read(struct atm_dev * dev,loff_t * pos,char * page)2703 he_proc_read(struct atm_dev *dev, loff_t *pos, char *page)
2704 {
2705 unsigned long flags;
2706 struct he_dev *he_dev = HE_DEV(dev);
2707 int left, i;
2708 #ifdef notdef
2709 struct he_rbrq *rbrq_tail;
2710 struct he_tpdrq *tpdrq_head;
2711 int rbpl_head, rbpl_tail;
2712 #endif
2713 static long mcc = 0, oec = 0, dcc = 0, cec = 0;
2714
2715
2716 left = *pos;
2717 if (!left--)
2718 return sprintf(page, "ATM he driver\n");
2719
2720 if (!left--)
2721 return sprintf(page, "%s%s\n\n",
2722 he_dev->prod_id, he_dev->media & 0x40 ? "SM" : "MM");
2723
2724 if (!left--)
2725 return sprintf(page, "Mismatched Cells VPI/VCI Not Open Dropped Cells RCM Dropped Cells\n");
2726
2727 spin_lock_irqsave(&he_dev->global_lock, flags);
2728 mcc += he_readl(he_dev, MCC);
2729 oec += he_readl(he_dev, OEC);
2730 dcc += he_readl(he_dev, DCC);
2731 cec += he_readl(he_dev, CEC);
2732 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2733
2734 if (!left--)
2735 return sprintf(page, "%16ld %16ld %13ld %17ld\n\n",
2736 mcc, oec, dcc, cec);
2737
2738 if (!left--)
2739 return sprintf(page, "irq_size = %d inuse = ? peak = %d\n",
2740 CONFIG_IRQ_SIZE, he_dev->irq_peak);
2741
2742 if (!left--)
2743 return sprintf(page, "tpdrq_size = %d inuse = ?\n",
2744 CONFIG_TPDRQ_SIZE);
2745
2746 if (!left--)
2747 return sprintf(page, "rbrq_size = %d inuse = ? peak = %d\n",
2748 CONFIG_RBRQ_SIZE, he_dev->rbrq_peak);
2749
2750 if (!left--)
2751 return sprintf(page, "tbrq_size = %d peak = %d\n",
2752 CONFIG_TBRQ_SIZE, he_dev->tbrq_peak);
2753
2754
2755 #ifdef notdef
2756 rbpl_head = RBPL_MASK(he_readl(he_dev, G0_RBPL_S));
2757 rbpl_tail = RBPL_MASK(he_readl(he_dev, G0_RBPL_T));
2758
2759 inuse = rbpl_head - rbpl_tail;
2760 if (inuse < 0)
2761 inuse += CONFIG_RBPL_SIZE * sizeof(struct he_rbp);
2762 inuse /= sizeof(struct he_rbp);
2763
2764 if (!left--)
2765 return sprintf(page, "rbpl_size = %d inuse = %d\n\n",
2766 CONFIG_RBPL_SIZE, inuse);
2767 #endif
2768
2769 if (!left--)
2770 return sprintf(page, "rate controller periods (cbr)\n pcr #vc\n");
2771
2772 for (i = 0; i < HE_NUM_CS_STPER; ++i)
2773 if (!left--)
2774 return sprintf(page, "cs_stper%-2d %8ld %3d\n", i,
2775 he_dev->cs_stper[i].pcr,
2776 he_dev->cs_stper[i].inuse);
2777
2778 if (!left--)
2779 return sprintf(page, "total bw (cbr): %d (limit %d)\n",
2780 he_dev->total_bw, he_dev->atm_dev->link_rate * 10 / 9);
2781
2782 return 0;
2783 }
2784
2785 /* eeprom routines -- see 4.7 */
2786
read_prom_byte(struct he_dev * he_dev,int addr)2787 static u8 read_prom_byte(struct he_dev *he_dev, int addr)
2788 {
2789 u32 val = 0, tmp_read = 0;
2790 int i, j = 0;
2791 u8 byte_read = 0;
2792
2793 val = readl(he_dev->membase + HOST_CNTL);
2794 val &= 0xFFFFE0FF;
2795
2796 /* Turn on write enable */
2797 val |= 0x800;
2798 he_writel(he_dev, val, HOST_CNTL);
2799
2800 /* Send READ instruction */
2801 for (i = 0; i < ARRAY_SIZE(readtab); i++) {
2802 he_writel(he_dev, val | readtab[i], HOST_CNTL);
2803 udelay(EEPROM_DELAY);
2804 }
2805
2806 /* Next, we need to send the byte address to read from */
2807 for (i = 7; i >= 0; i--) {
2808 he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
2809 udelay(EEPROM_DELAY);
2810 he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
2811 udelay(EEPROM_DELAY);
2812 }
2813
2814 j = 0;
2815
2816 val &= 0xFFFFF7FF; /* Turn off write enable */
2817 he_writel(he_dev, val, HOST_CNTL);
2818
2819 /* Now, we can read data from the EEPROM by clocking it in */
2820 for (i = 7; i >= 0; i--) {
2821 he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
2822 udelay(EEPROM_DELAY);
2823 tmp_read = he_readl(he_dev, HOST_CNTL);
2824 byte_read |= (unsigned char)
2825 ((tmp_read & ID_DOUT) >> ID_DOFFSET << i);
2826 he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
2827 udelay(EEPROM_DELAY);
2828 }
2829
2830 he_writel(he_dev, val | ID_CS, HOST_CNTL);
2831 udelay(EEPROM_DELAY);
2832
2833 return byte_read;
2834 }
2835
2836 MODULE_LICENSE("GPL");
2837 MODULE_AUTHOR("chas williams <chas@cmf.nrl.navy.mil>");
2838 MODULE_DESCRIPTION("ForeRunnerHE ATM Adapter driver");
2839 module_param(disable64, bool, 0);
2840 MODULE_PARM_DESC(disable64, "disable 64-bit pci bus transfers");
2841 module_param(nvpibits, short, 0);
2842 MODULE_PARM_DESC(nvpibits, "numbers of bits for vpi (default 0)");
2843 module_param(nvcibits, short, 0);
2844 MODULE_PARM_DESC(nvcibits, "numbers of bits for vci (default 12)");
2845 module_param(rx_skb_reserve, short, 0);
2846 MODULE_PARM_DESC(rx_skb_reserve, "padding for receive skb (default 16)");
2847 module_param(irq_coalesce, bool, 0);
2848 MODULE_PARM_DESC(irq_coalesce, "use interrupt coalescing (default 1)");
2849 module_param(sdh, bool, 0);
2850 MODULE_PARM_DESC(sdh, "use SDH framing (default 0)");
2851
2852 static const struct pci_device_id he_pci_tbl[] = {
2853 { PCI_VDEVICE(FORE, PCI_DEVICE_ID_FORE_HE), 0 },
2854 { 0, }
2855 };
2856
2857 MODULE_DEVICE_TABLE(pci, he_pci_tbl);
2858
2859 static struct pci_driver he_driver = {
2860 .name = "he",
2861 .probe = he_init_one,
2862 .remove = he_remove_one,
2863 .id_table = he_pci_tbl,
2864 };
2865
2866 module_pci_driver(he_driver);
2867