1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5 *
6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst
7 */
8
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24
25 #include "clk.h"
26
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32
33 static int prepare_refcnt;
34 static int enable_refcnt;
35
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39
40 static struct hlist_head *all_lists[] = {
41 &clk_root_list,
42 &clk_orphan_list,
43 NULL,
44 };
45
46 /*** private data structures ***/
47
48 struct clk_parent_map {
49 const struct clk_hw *hw;
50 struct clk_core *core;
51 const char *fw_name;
52 const char *name;
53 int index;
54 };
55
56 struct clk_core {
57 const char *name;
58 const struct clk_ops *ops;
59 struct clk_hw *hw;
60 struct module *owner;
61 struct device *dev;
62 struct device_node *of_node;
63 struct clk_core *parent;
64 struct clk_parent_map *parents;
65 u8 num_parents;
66 u8 new_parent_index;
67 unsigned long rate;
68 unsigned long req_rate;
69 unsigned long new_rate;
70 struct clk_core *new_parent;
71 struct clk_core *new_child;
72 unsigned long flags;
73 bool orphan;
74 bool rpm_enabled;
75 bool need_sync;
76 bool boot_enabled;
77 unsigned int enable_count;
78 unsigned int prepare_count;
79 unsigned int protect_count;
80 unsigned long min_rate;
81 unsigned long max_rate;
82 unsigned long accuracy;
83 int phase;
84 struct clk_duty duty;
85 struct hlist_head children;
86 struct hlist_node child_node;
87 struct hlist_head clks;
88 unsigned int notifier_count;
89 #ifdef CONFIG_DEBUG_FS
90 struct dentry *dentry;
91 struct hlist_node debug_node;
92 #endif
93 struct kref ref;
94 };
95
96 #define CREATE_TRACE_POINTS
97 #include <trace/events/clk.h>
98
99 struct clk {
100 struct clk_core *core;
101 struct device *dev;
102 const char *dev_id;
103 const char *con_id;
104 unsigned long min_rate;
105 unsigned long max_rate;
106 unsigned int exclusive_count;
107 struct hlist_node clks_node;
108 };
109
110 /*** runtime pm ***/
clk_pm_runtime_get(struct clk_core * core)111 static int clk_pm_runtime_get(struct clk_core *core)
112 {
113 int ret;
114
115 if (!core->rpm_enabled)
116 return 0;
117
118 ret = pm_runtime_get_sync(core->dev);
119 if (ret < 0) {
120 pm_runtime_put_noidle(core->dev);
121 return ret;
122 }
123 return 0;
124 }
125
clk_pm_runtime_put(struct clk_core * core)126 static void clk_pm_runtime_put(struct clk_core *core)
127 {
128 if (!core->rpm_enabled)
129 return;
130
131 pm_runtime_put_sync(core->dev);
132 }
133
134 /*** locking ***/
clk_prepare_lock(void)135 static void clk_prepare_lock(void)
136 {
137 if (!mutex_trylock(&prepare_lock)) {
138 if (prepare_owner == current) {
139 prepare_refcnt++;
140 return;
141 }
142 mutex_lock(&prepare_lock);
143 }
144 WARN_ON_ONCE(prepare_owner != NULL);
145 WARN_ON_ONCE(prepare_refcnt != 0);
146 prepare_owner = current;
147 prepare_refcnt = 1;
148 }
149
clk_prepare_unlock(void)150 static void clk_prepare_unlock(void)
151 {
152 WARN_ON_ONCE(prepare_owner != current);
153 WARN_ON_ONCE(prepare_refcnt == 0);
154
155 if (--prepare_refcnt)
156 return;
157 prepare_owner = NULL;
158 mutex_unlock(&prepare_lock);
159 }
160
clk_enable_lock(void)161 static unsigned long clk_enable_lock(void)
162 __acquires(enable_lock)
163 {
164 unsigned long flags;
165
166 /*
167 * On UP systems, spin_trylock_irqsave() always returns true, even if
168 * we already hold the lock. So, in that case, we rely only on
169 * reference counting.
170 */
171 if (!IS_ENABLED(CONFIG_SMP) ||
172 !spin_trylock_irqsave(&enable_lock, flags)) {
173 if (enable_owner == current) {
174 enable_refcnt++;
175 __acquire(enable_lock);
176 if (!IS_ENABLED(CONFIG_SMP))
177 local_save_flags(flags);
178 return flags;
179 }
180 spin_lock_irqsave(&enable_lock, flags);
181 }
182 WARN_ON_ONCE(enable_owner != NULL);
183 WARN_ON_ONCE(enable_refcnt != 0);
184 enable_owner = current;
185 enable_refcnt = 1;
186 return flags;
187 }
188
clk_enable_unlock(unsigned long flags)189 static void clk_enable_unlock(unsigned long flags)
190 __releases(enable_lock)
191 {
192 WARN_ON_ONCE(enable_owner != current);
193 WARN_ON_ONCE(enable_refcnt == 0);
194
195 if (--enable_refcnt) {
196 __release(enable_lock);
197 return;
198 }
199 enable_owner = NULL;
200 spin_unlock_irqrestore(&enable_lock, flags);
201 }
202
clk_core_rate_is_protected(struct clk_core * core)203 static bool clk_core_rate_is_protected(struct clk_core *core)
204 {
205 return core->protect_count;
206 }
207
clk_core_is_prepared(struct clk_core * core)208 static bool clk_core_is_prepared(struct clk_core *core)
209 {
210 bool ret = false;
211
212 /*
213 * .is_prepared is optional for clocks that can prepare
214 * fall back to software usage counter if it is missing
215 */
216 if (!core->ops->is_prepared)
217 return core->prepare_count;
218
219 if (!clk_pm_runtime_get(core)) {
220 ret = core->ops->is_prepared(core->hw);
221 clk_pm_runtime_put(core);
222 }
223
224 return ret;
225 }
226
clk_core_is_enabled(struct clk_core * core)227 static bool clk_core_is_enabled(struct clk_core *core)
228 {
229 bool ret = false;
230
231 /*
232 * .is_enabled is only mandatory for clocks that gate
233 * fall back to software usage counter if .is_enabled is missing
234 */
235 if (!core->ops->is_enabled)
236 return core->enable_count;
237
238 /*
239 * Check if clock controller's device is runtime active before
240 * calling .is_enabled callback. If not, assume that clock is
241 * disabled, because we might be called from atomic context, from
242 * which pm_runtime_get() is not allowed.
243 * This function is called mainly from clk_disable_unused_subtree,
244 * which ensures proper runtime pm activation of controller before
245 * taking enable spinlock, but the below check is needed if one tries
246 * to call it from other places.
247 */
248 if (core->rpm_enabled) {
249 pm_runtime_get_noresume(core->dev);
250 if (!pm_runtime_active(core->dev)) {
251 ret = false;
252 goto done;
253 }
254 }
255
256 /*
257 * This could be called with the enable lock held, or from atomic
258 * context. If the parent isn't enabled already, we can't do
259 * anything here. We can also assume this clock isn't enabled.
260 */
261 if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent)
262 if (!clk_core_is_enabled(core->parent)) {
263 ret = false;
264 goto done;
265 }
266
267 ret = core->ops->is_enabled(core->hw);
268 done:
269 if (core->rpm_enabled)
270 pm_runtime_put(core->dev);
271
272 return ret;
273 }
274
275 /*** helper functions ***/
276
__clk_get_name(const struct clk * clk)277 const char *__clk_get_name(const struct clk *clk)
278 {
279 return !clk ? NULL : clk->core->name;
280 }
281 EXPORT_SYMBOL_GPL(__clk_get_name);
282
clk_hw_get_name(const struct clk_hw * hw)283 const char *clk_hw_get_name(const struct clk_hw *hw)
284 {
285 return hw->core->name;
286 }
287 EXPORT_SYMBOL_GPL(clk_hw_get_name);
288
__clk_get_hw(struct clk * clk)289 struct clk_hw *__clk_get_hw(struct clk *clk)
290 {
291 return !clk ? NULL : clk->core->hw;
292 }
293 EXPORT_SYMBOL_GPL(__clk_get_hw);
294
clk_hw_get_num_parents(const struct clk_hw * hw)295 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
296 {
297 return hw->core->num_parents;
298 }
299 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
300
clk_hw_get_parent(const struct clk_hw * hw)301 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
302 {
303 return hw->core->parent ? hw->core->parent->hw : NULL;
304 }
305 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
306
__clk_lookup_subtree(const char * name,struct clk_core * core)307 static struct clk_core *__clk_lookup_subtree(const char *name,
308 struct clk_core *core)
309 {
310 struct clk_core *child;
311 struct clk_core *ret;
312
313 if (!strcmp(core->name, name))
314 return core;
315
316 hlist_for_each_entry(child, &core->children, child_node) {
317 ret = __clk_lookup_subtree(name, child);
318 if (ret)
319 return ret;
320 }
321
322 return NULL;
323 }
324
clk_core_lookup(const char * name)325 static struct clk_core *clk_core_lookup(const char *name)
326 {
327 struct clk_core *root_clk;
328 struct clk_core *ret;
329
330 if (!name)
331 return NULL;
332
333 /* search the 'proper' clk tree first */
334 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
335 ret = __clk_lookup_subtree(name, root_clk);
336 if (ret)
337 return ret;
338 }
339
340 /* if not found, then search the orphan tree */
341 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
342 ret = __clk_lookup_subtree(name, root_clk);
343 if (ret)
344 return ret;
345 }
346
347 return NULL;
348 }
349
350 #ifdef CONFIG_OF
351 static int of_parse_clkspec(const struct device_node *np, int index,
352 const char *name, struct of_phandle_args *out_args);
353 static struct clk_hw *
354 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
355 #else
of_parse_clkspec(const struct device_node * np,int index,const char * name,struct of_phandle_args * out_args)356 static inline int of_parse_clkspec(const struct device_node *np, int index,
357 const char *name,
358 struct of_phandle_args *out_args)
359 {
360 return -ENOENT;
361 }
362 static inline struct clk_hw *
of_clk_get_hw_from_clkspec(struct of_phandle_args * clkspec)363 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
364 {
365 return ERR_PTR(-ENOENT);
366 }
367 #endif
368
369 /**
370 * clk_core_get - Find the clk_core parent of a clk
371 * @core: clk to find parent of
372 * @p_index: parent index to search for
373 *
374 * This is the preferred method for clk providers to find the parent of a
375 * clk when that parent is external to the clk controller. The parent_names
376 * array is indexed and treated as a local name matching a string in the device
377 * node's 'clock-names' property or as the 'con_id' matching the device's
378 * dev_name() in a clk_lookup. This allows clk providers to use their own
379 * namespace instead of looking for a globally unique parent string.
380 *
381 * For example the following DT snippet would allow a clock registered by the
382 * clock-controller@c001 that has a clk_init_data::parent_data array
383 * with 'xtal' in the 'name' member to find the clock provided by the
384 * clock-controller@f00abcd without needing to get the globally unique name of
385 * the xtal clk.
386 *
387 * parent: clock-controller@f00abcd {
388 * reg = <0xf00abcd 0xabcd>;
389 * #clock-cells = <0>;
390 * };
391 *
392 * clock-controller@c001 {
393 * reg = <0xc001 0xf00d>;
394 * clocks = <&parent>;
395 * clock-names = "xtal";
396 * #clock-cells = <1>;
397 * };
398 *
399 * Returns: -ENOENT when the provider can't be found or the clk doesn't
400 * exist in the provider or the name can't be found in the DT node or
401 * in a clkdev lookup. NULL when the provider knows about the clk but it
402 * isn't provided on this system.
403 * A valid clk_core pointer when the clk can be found in the provider.
404 */
clk_core_get(struct clk_core * core,u8 p_index)405 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
406 {
407 const char *name = core->parents[p_index].fw_name;
408 int index = core->parents[p_index].index;
409 struct clk_hw *hw = ERR_PTR(-ENOENT);
410 struct device *dev = core->dev;
411 const char *dev_id = dev ? dev_name(dev) : NULL;
412 struct device_node *np = core->of_node;
413 struct of_phandle_args clkspec;
414
415 if (np && (name || index >= 0) &&
416 !of_parse_clkspec(np, index, name, &clkspec)) {
417 hw = of_clk_get_hw_from_clkspec(&clkspec);
418 of_node_put(clkspec.np);
419 } else if (name) {
420 /*
421 * If the DT search above couldn't find the provider fallback to
422 * looking up via clkdev based clk_lookups.
423 */
424 hw = clk_find_hw(dev_id, name);
425 }
426
427 if (IS_ERR(hw))
428 return ERR_CAST(hw);
429
430 return hw->core;
431 }
432
clk_core_fill_parent_index(struct clk_core * core,u8 index)433 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
434 {
435 struct clk_parent_map *entry = &core->parents[index];
436 struct clk_core *parent = ERR_PTR(-ENOENT);
437
438 if (entry->hw) {
439 parent = entry->hw->core;
440 /*
441 * We have a direct reference but it isn't registered yet?
442 * Orphan it and let clk_reparent() update the orphan status
443 * when the parent is registered.
444 */
445 if (!parent)
446 parent = ERR_PTR(-EPROBE_DEFER);
447 } else {
448 parent = clk_core_get(core, index);
449 if (PTR_ERR(parent) == -ENOENT && entry->name)
450 parent = clk_core_lookup(entry->name);
451 }
452
453 /* Only cache it if it's not an error */
454 if (!IS_ERR(parent))
455 entry->core = parent;
456 }
457
clk_core_get_parent_by_index(struct clk_core * core,u8 index)458 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
459 u8 index)
460 {
461 if (!core || index >= core->num_parents || !core->parents)
462 return NULL;
463
464 if (!core->parents[index].core)
465 clk_core_fill_parent_index(core, index);
466
467 return core->parents[index].core;
468 }
469
470 struct clk_hw *
clk_hw_get_parent_by_index(const struct clk_hw * hw,unsigned int index)471 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
472 {
473 struct clk_core *parent;
474
475 parent = clk_core_get_parent_by_index(hw->core, index);
476
477 return !parent ? NULL : parent->hw;
478 }
479 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
480
__clk_get_enable_count(struct clk * clk)481 unsigned int __clk_get_enable_count(struct clk *clk)
482 {
483 return !clk ? 0 : clk->core->enable_count;
484 }
485
clk_core_get_rate_nolock(struct clk_core * core)486 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
487 {
488 if (!core)
489 return 0;
490
491 if (!core->num_parents || core->parent)
492 return core->rate;
493
494 /*
495 * Clk must have a parent because num_parents > 0 but the parent isn't
496 * known yet. Best to return 0 as the rate of this clk until we can
497 * properly recalc the rate based on the parent's rate.
498 */
499 return 0;
500 }
501
clk_hw_get_rate(const struct clk_hw * hw)502 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
503 {
504 return clk_core_get_rate_nolock(hw->core);
505 }
506 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
507
clk_core_get_accuracy_no_lock(struct clk_core * core)508 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
509 {
510 if (!core)
511 return 0;
512
513 return core->accuracy;
514 }
515
clk_hw_get_flags(const struct clk_hw * hw)516 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
517 {
518 return hw->core->flags;
519 }
520 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
521
clk_hw_is_prepared(const struct clk_hw * hw)522 bool clk_hw_is_prepared(const struct clk_hw *hw)
523 {
524 return clk_core_is_prepared(hw->core);
525 }
526 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
527
clk_hw_rate_is_protected(const struct clk_hw * hw)528 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
529 {
530 return clk_core_rate_is_protected(hw->core);
531 }
532 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
533
clk_hw_is_enabled(const struct clk_hw * hw)534 bool clk_hw_is_enabled(const struct clk_hw *hw)
535 {
536 return clk_core_is_enabled(hw->core);
537 }
538 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
539
__clk_is_enabled(struct clk * clk)540 bool __clk_is_enabled(struct clk *clk)
541 {
542 if (!clk)
543 return false;
544
545 return clk_core_is_enabled(clk->core);
546 }
547 EXPORT_SYMBOL_GPL(__clk_is_enabled);
548
mux_is_better_rate(unsigned long rate,unsigned long now,unsigned long best,unsigned long flags)549 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
550 unsigned long best, unsigned long flags)
551 {
552 if (flags & CLK_MUX_ROUND_CLOSEST)
553 return abs(now - rate) < abs(best - rate);
554
555 return now <= rate && now > best;
556 }
557
clk_mux_determine_rate_flags(struct clk_hw * hw,struct clk_rate_request * req,unsigned long flags)558 int clk_mux_determine_rate_flags(struct clk_hw *hw,
559 struct clk_rate_request *req,
560 unsigned long flags)
561 {
562 struct clk_core *core = hw->core, *parent, *best_parent = NULL;
563 int i, num_parents, ret;
564 unsigned long best = 0;
565 struct clk_rate_request parent_req = *req;
566
567 /* if NO_REPARENT flag set, pass through to current parent */
568 if (core->flags & CLK_SET_RATE_NO_REPARENT) {
569 parent = core->parent;
570 if (core->flags & CLK_SET_RATE_PARENT) {
571 ret = __clk_determine_rate(parent ? parent->hw : NULL,
572 &parent_req);
573 if (ret)
574 return ret;
575
576 best = parent_req.rate;
577 } else if (parent) {
578 best = clk_core_get_rate_nolock(parent);
579 } else {
580 best = clk_core_get_rate_nolock(core);
581 }
582
583 goto out;
584 }
585
586 /* find the parent that can provide the fastest rate <= rate */
587 num_parents = core->num_parents;
588 for (i = 0; i < num_parents; i++) {
589 parent = clk_core_get_parent_by_index(core, i);
590 if (!parent)
591 continue;
592
593 if (core->flags & CLK_SET_RATE_PARENT) {
594 parent_req = *req;
595 ret = __clk_determine_rate(parent->hw, &parent_req);
596 if (ret)
597 continue;
598 } else {
599 parent_req.rate = clk_core_get_rate_nolock(parent);
600 }
601
602 if (mux_is_better_rate(req->rate, parent_req.rate,
603 best, flags)) {
604 best_parent = parent;
605 best = parent_req.rate;
606 }
607 }
608
609 if (!best_parent)
610 return -EINVAL;
611
612 out:
613 if (best_parent)
614 req->best_parent_hw = best_parent->hw;
615 req->best_parent_rate = best;
616 req->rate = best;
617
618 return 0;
619 }
620 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
621
__clk_lookup(const char * name)622 struct clk *__clk_lookup(const char *name)
623 {
624 struct clk_core *core = clk_core_lookup(name);
625
626 return !core ? NULL : core->hw->clk;
627 }
628
clk_core_get_boundaries(struct clk_core * core,unsigned long * min_rate,unsigned long * max_rate)629 static void clk_core_get_boundaries(struct clk_core *core,
630 unsigned long *min_rate,
631 unsigned long *max_rate)
632 {
633 struct clk *clk_user;
634
635 lockdep_assert_held(&prepare_lock);
636
637 *min_rate = core->min_rate;
638 *max_rate = core->max_rate;
639
640 hlist_for_each_entry(clk_user, &core->clks, clks_node)
641 *min_rate = max(*min_rate, clk_user->min_rate);
642
643 hlist_for_each_entry(clk_user, &core->clks, clks_node)
644 *max_rate = min(*max_rate, clk_user->max_rate);
645 }
646
clk_core_check_boundaries(struct clk_core * core,unsigned long min_rate,unsigned long max_rate)647 static bool clk_core_check_boundaries(struct clk_core *core,
648 unsigned long min_rate,
649 unsigned long max_rate)
650 {
651 struct clk *user;
652
653 lockdep_assert_held(&prepare_lock);
654
655 if (min_rate > core->max_rate || max_rate < core->min_rate)
656 return false;
657
658 hlist_for_each_entry(user, &core->clks, clks_node)
659 if (min_rate > user->max_rate || max_rate < user->min_rate)
660 return false;
661
662 return true;
663 }
664
clk_hw_set_rate_range(struct clk_hw * hw,unsigned long min_rate,unsigned long max_rate)665 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
666 unsigned long max_rate)
667 {
668 hw->core->min_rate = min_rate;
669 hw->core->max_rate = max_rate;
670 }
671 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
672
673 /*
674 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
675 * @hw: mux type clk to determine rate on
676 * @req: rate request, also used to return preferred parent and frequencies
677 *
678 * Helper for finding best parent to provide a given frequency. This can be used
679 * directly as a determine_rate callback (e.g. for a mux), or from a more
680 * complex clock that may combine a mux with other operations.
681 *
682 * Returns: 0 on success, -EERROR value on error
683 */
__clk_mux_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)684 int __clk_mux_determine_rate(struct clk_hw *hw,
685 struct clk_rate_request *req)
686 {
687 return clk_mux_determine_rate_flags(hw, req, 0);
688 }
689 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
690
__clk_mux_determine_rate_closest(struct clk_hw * hw,struct clk_rate_request * req)691 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
692 struct clk_rate_request *req)
693 {
694 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
695 }
696 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
697
698 /*** clk api ***/
699
clk_core_rate_unprotect(struct clk_core * core)700 static void clk_core_rate_unprotect(struct clk_core *core)
701 {
702 lockdep_assert_held(&prepare_lock);
703
704 if (!core)
705 return;
706
707 if (WARN(core->protect_count == 0,
708 "%s already unprotected\n", core->name))
709 return;
710
711 if (--core->protect_count > 0)
712 return;
713
714 clk_core_rate_unprotect(core->parent);
715 }
716
clk_core_rate_nuke_protect(struct clk_core * core)717 static int clk_core_rate_nuke_protect(struct clk_core *core)
718 {
719 int ret;
720
721 lockdep_assert_held(&prepare_lock);
722
723 if (!core)
724 return -EINVAL;
725
726 if (core->protect_count == 0)
727 return 0;
728
729 ret = core->protect_count;
730 core->protect_count = 1;
731 clk_core_rate_unprotect(core);
732
733 return ret;
734 }
735
736 /**
737 * clk_rate_exclusive_put - release exclusivity over clock rate control
738 * @clk: the clk over which the exclusivity is released
739 *
740 * clk_rate_exclusive_put() completes a critical section during which a clock
741 * consumer cannot tolerate any other consumer making any operation on the
742 * clock which could result in a rate change or rate glitch. Exclusive clocks
743 * cannot have their rate changed, either directly or indirectly due to changes
744 * further up the parent chain of clocks. As a result, clocks up parent chain
745 * also get under exclusive control of the calling consumer.
746 *
747 * If exlusivity is claimed more than once on clock, even by the same consumer,
748 * the rate effectively gets locked as exclusivity can't be preempted.
749 *
750 * Calls to clk_rate_exclusive_put() must be balanced with calls to
751 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
752 * error status.
753 */
clk_rate_exclusive_put(struct clk * clk)754 void clk_rate_exclusive_put(struct clk *clk)
755 {
756 if (!clk)
757 return;
758
759 clk_prepare_lock();
760
761 /*
762 * if there is something wrong with this consumer protect count, stop
763 * here before messing with the provider
764 */
765 if (WARN_ON(clk->exclusive_count <= 0))
766 goto out;
767
768 clk_core_rate_unprotect(clk->core);
769 clk->exclusive_count--;
770 out:
771 clk_prepare_unlock();
772 }
773 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
774
clk_core_rate_protect(struct clk_core * core)775 static void clk_core_rate_protect(struct clk_core *core)
776 {
777 lockdep_assert_held(&prepare_lock);
778
779 if (!core)
780 return;
781
782 if (core->protect_count == 0)
783 clk_core_rate_protect(core->parent);
784
785 core->protect_count++;
786 }
787
clk_core_rate_restore_protect(struct clk_core * core,int count)788 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
789 {
790 lockdep_assert_held(&prepare_lock);
791
792 if (!core)
793 return;
794
795 if (count == 0)
796 return;
797
798 clk_core_rate_protect(core);
799 core->protect_count = count;
800 }
801
802 /**
803 * clk_rate_exclusive_get - get exclusivity over the clk rate control
804 * @clk: the clk over which the exclusity of rate control is requested
805 *
806 * clk_rate_exclusive_get() begins a critical section during which a clock
807 * consumer cannot tolerate any other consumer making any operation on the
808 * clock which could result in a rate change or rate glitch. Exclusive clocks
809 * cannot have their rate changed, either directly or indirectly due to changes
810 * further up the parent chain of clocks. As a result, clocks up parent chain
811 * also get under exclusive control of the calling consumer.
812 *
813 * If exlusivity is claimed more than once on clock, even by the same consumer,
814 * the rate effectively gets locked as exclusivity can't be preempted.
815 *
816 * Calls to clk_rate_exclusive_get() should be balanced with calls to
817 * clk_rate_exclusive_put(). Calls to this function may sleep.
818 * Returns 0 on success, -EERROR otherwise
819 */
clk_rate_exclusive_get(struct clk * clk)820 int clk_rate_exclusive_get(struct clk *clk)
821 {
822 if (!clk)
823 return 0;
824
825 clk_prepare_lock();
826 clk_core_rate_protect(clk->core);
827 clk->exclusive_count++;
828 clk_prepare_unlock();
829
830 return 0;
831 }
832 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
833
clk_core_unprepare(struct clk_core * core)834 static void clk_core_unprepare(struct clk_core *core)
835 {
836 lockdep_assert_held(&prepare_lock);
837
838 if (!core)
839 return;
840
841 if (WARN(core->prepare_count == 0,
842 "%s already unprepared\n", core->name))
843 return;
844
845 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
846 "Unpreparing critical %s\n", core->name))
847 return;
848
849 if (core->flags & CLK_SET_RATE_GATE)
850 clk_core_rate_unprotect(core);
851
852 if (--core->prepare_count > 0)
853 return;
854
855 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
856
857 trace_clk_unprepare(core);
858
859 if (core->ops->unprepare)
860 core->ops->unprepare(core->hw);
861
862 trace_clk_unprepare_complete(core);
863 clk_core_unprepare(core->parent);
864 clk_pm_runtime_put(core);
865 }
866
clk_core_unprepare_lock(struct clk_core * core)867 static void clk_core_unprepare_lock(struct clk_core *core)
868 {
869 clk_prepare_lock();
870 clk_core_unprepare(core);
871 clk_prepare_unlock();
872 }
873
874 /**
875 * clk_unprepare - undo preparation of a clock source
876 * @clk: the clk being unprepared
877 *
878 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
879 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
880 * if the operation may sleep. One example is a clk which is accessed over
881 * I2c. In the complex case a clk gate operation may require a fast and a slow
882 * part. It is this reason that clk_unprepare and clk_disable are not mutually
883 * exclusive. In fact clk_disable must be called before clk_unprepare.
884 */
clk_unprepare(struct clk * clk)885 void clk_unprepare(struct clk *clk)
886 {
887 if (IS_ERR_OR_NULL(clk))
888 return;
889
890 clk_core_unprepare_lock(clk->core);
891 }
892 EXPORT_SYMBOL_GPL(clk_unprepare);
893
clk_core_prepare(struct clk_core * core)894 static int clk_core_prepare(struct clk_core *core)
895 {
896 int ret = 0;
897
898 lockdep_assert_held(&prepare_lock);
899
900 if (!core)
901 return 0;
902
903 if (core->prepare_count == 0) {
904 ret = clk_pm_runtime_get(core);
905 if (ret)
906 return ret;
907
908 ret = clk_core_prepare(core->parent);
909 if (ret)
910 goto runtime_put;
911
912 trace_clk_prepare(core);
913
914 if (core->ops->prepare)
915 ret = core->ops->prepare(core->hw);
916
917 trace_clk_prepare_complete(core);
918
919 if (ret)
920 goto unprepare;
921 }
922
923 core->prepare_count++;
924
925 /*
926 * CLK_SET_RATE_GATE is a special case of clock protection
927 * Instead of a consumer claiming exclusive rate control, it is
928 * actually the provider which prevents any consumer from making any
929 * operation which could result in a rate change or rate glitch while
930 * the clock is prepared.
931 */
932 if (core->flags & CLK_SET_RATE_GATE)
933 clk_core_rate_protect(core);
934
935 return 0;
936 unprepare:
937 clk_core_unprepare(core->parent);
938 runtime_put:
939 clk_pm_runtime_put(core);
940 return ret;
941 }
942
clk_core_prepare_lock(struct clk_core * core)943 static int clk_core_prepare_lock(struct clk_core *core)
944 {
945 int ret;
946
947 clk_prepare_lock();
948 ret = clk_core_prepare(core);
949 clk_prepare_unlock();
950
951 return ret;
952 }
953
954 /**
955 * clk_prepare - prepare a clock source
956 * @clk: the clk being prepared
957 *
958 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
959 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
960 * operation may sleep. One example is a clk which is accessed over I2c. In
961 * the complex case a clk ungate operation may require a fast and a slow part.
962 * It is this reason that clk_prepare and clk_enable are not mutually
963 * exclusive. In fact clk_prepare must be called before clk_enable.
964 * Returns 0 on success, -EERROR otherwise.
965 */
clk_prepare(struct clk * clk)966 int clk_prepare(struct clk *clk)
967 {
968 if (!clk)
969 return 0;
970
971 return clk_core_prepare_lock(clk->core);
972 }
973 EXPORT_SYMBOL_GPL(clk_prepare);
974
clk_core_disable(struct clk_core * core)975 static void clk_core_disable(struct clk_core *core)
976 {
977 lockdep_assert_held(&enable_lock);
978
979 if (!core)
980 return;
981
982 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
983 return;
984
985 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
986 "Disabling critical %s\n", core->name))
987 return;
988
989 if (--core->enable_count > 0)
990 return;
991
992 trace_clk_disable_rcuidle(core);
993
994 if (core->ops->disable)
995 core->ops->disable(core->hw);
996
997 trace_clk_disable_complete_rcuidle(core);
998
999 clk_core_disable(core->parent);
1000 }
1001
clk_core_disable_lock(struct clk_core * core)1002 static void clk_core_disable_lock(struct clk_core *core)
1003 {
1004 unsigned long flags;
1005
1006 flags = clk_enable_lock();
1007 clk_core_disable(core);
1008 clk_enable_unlock(flags);
1009 }
1010
1011 /**
1012 * clk_disable - gate a clock
1013 * @clk: the clk being gated
1014 *
1015 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
1016 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1017 * clk if the operation is fast and will never sleep. One example is a
1018 * SoC-internal clk which is controlled via simple register writes. In the
1019 * complex case a clk gate operation may require a fast and a slow part. It is
1020 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1021 * In fact clk_disable must be called before clk_unprepare.
1022 */
clk_disable(struct clk * clk)1023 void clk_disable(struct clk *clk)
1024 {
1025 if (IS_ERR_OR_NULL(clk))
1026 return;
1027
1028 clk_core_disable_lock(clk->core);
1029 }
1030 EXPORT_SYMBOL_GPL(clk_disable);
1031
clk_core_enable(struct clk_core * core)1032 static int clk_core_enable(struct clk_core *core)
1033 {
1034 int ret = 0;
1035
1036 lockdep_assert_held(&enable_lock);
1037
1038 if (!core)
1039 return 0;
1040
1041 if (WARN(core->prepare_count == 0,
1042 "Enabling unprepared %s\n", core->name))
1043 return -ESHUTDOWN;
1044
1045 if (core->enable_count == 0) {
1046 ret = clk_core_enable(core->parent);
1047
1048 if (ret)
1049 return ret;
1050
1051 trace_clk_enable_rcuidle(core);
1052
1053 if (core->ops->enable)
1054 ret = core->ops->enable(core->hw);
1055
1056 trace_clk_enable_complete_rcuidle(core);
1057
1058 if (ret) {
1059 clk_core_disable(core->parent);
1060 return ret;
1061 }
1062 }
1063
1064 core->enable_count++;
1065 return 0;
1066 }
1067
clk_core_enable_lock(struct clk_core * core)1068 static int clk_core_enable_lock(struct clk_core *core)
1069 {
1070 unsigned long flags;
1071 int ret;
1072
1073 flags = clk_enable_lock();
1074 ret = clk_core_enable(core);
1075 clk_enable_unlock(flags);
1076
1077 return ret;
1078 }
1079
1080 /**
1081 * clk_gate_restore_context - restore context for poweroff
1082 * @hw: the clk_hw pointer of clock whose state is to be restored
1083 *
1084 * The clock gate restore context function enables or disables
1085 * the gate clocks based on the enable_count. This is done in cases
1086 * where the clock context is lost and based on the enable_count
1087 * the clock either needs to be enabled/disabled. This
1088 * helps restore the state of gate clocks.
1089 */
clk_gate_restore_context(struct clk_hw * hw)1090 void clk_gate_restore_context(struct clk_hw *hw)
1091 {
1092 struct clk_core *core = hw->core;
1093
1094 if (core->enable_count)
1095 core->ops->enable(hw);
1096 else
1097 core->ops->disable(hw);
1098 }
1099 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1100
clk_core_save_context(struct clk_core * core)1101 static int clk_core_save_context(struct clk_core *core)
1102 {
1103 struct clk_core *child;
1104 int ret = 0;
1105
1106 hlist_for_each_entry(child, &core->children, child_node) {
1107 ret = clk_core_save_context(child);
1108 if (ret < 0)
1109 return ret;
1110 }
1111
1112 if (core->ops && core->ops->save_context)
1113 ret = core->ops->save_context(core->hw);
1114
1115 return ret;
1116 }
1117
clk_core_restore_context(struct clk_core * core)1118 static void clk_core_restore_context(struct clk_core *core)
1119 {
1120 struct clk_core *child;
1121
1122 if (core->ops && core->ops->restore_context)
1123 core->ops->restore_context(core->hw);
1124
1125 hlist_for_each_entry(child, &core->children, child_node)
1126 clk_core_restore_context(child);
1127 }
1128
1129 /**
1130 * clk_save_context - save clock context for poweroff
1131 *
1132 * Saves the context of the clock register for powerstates in which the
1133 * contents of the registers will be lost. Occurs deep within the suspend
1134 * code. Returns 0 on success.
1135 */
clk_save_context(void)1136 int clk_save_context(void)
1137 {
1138 struct clk_core *clk;
1139 int ret;
1140
1141 hlist_for_each_entry(clk, &clk_root_list, child_node) {
1142 ret = clk_core_save_context(clk);
1143 if (ret < 0)
1144 return ret;
1145 }
1146
1147 hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1148 ret = clk_core_save_context(clk);
1149 if (ret < 0)
1150 return ret;
1151 }
1152
1153 return 0;
1154 }
1155 EXPORT_SYMBOL_GPL(clk_save_context);
1156
1157 /**
1158 * clk_restore_context - restore clock context after poweroff
1159 *
1160 * Restore the saved clock context upon resume.
1161 *
1162 */
clk_restore_context(void)1163 void clk_restore_context(void)
1164 {
1165 struct clk_core *core;
1166
1167 hlist_for_each_entry(core, &clk_root_list, child_node)
1168 clk_core_restore_context(core);
1169
1170 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1171 clk_core_restore_context(core);
1172 }
1173 EXPORT_SYMBOL_GPL(clk_restore_context);
1174
1175 /**
1176 * clk_enable - ungate a clock
1177 * @clk: the clk being ungated
1178 *
1179 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
1180 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1181 * if the operation will never sleep. One example is a SoC-internal clk which
1182 * is controlled via simple register writes. In the complex case a clk ungate
1183 * operation may require a fast and a slow part. It is this reason that
1184 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
1185 * must be called before clk_enable. Returns 0 on success, -EERROR
1186 * otherwise.
1187 */
clk_enable(struct clk * clk)1188 int clk_enable(struct clk *clk)
1189 {
1190 if (!clk)
1191 return 0;
1192
1193 return clk_core_enable_lock(clk->core);
1194 }
1195 EXPORT_SYMBOL_GPL(clk_enable);
1196
clk_core_prepare_enable(struct clk_core * core)1197 static int clk_core_prepare_enable(struct clk_core *core)
1198 {
1199 int ret;
1200
1201 ret = clk_core_prepare_lock(core);
1202 if (ret)
1203 return ret;
1204
1205 ret = clk_core_enable_lock(core);
1206 if (ret)
1207 clk_core_unprepare_lock(core);
1208
1209 return ret;
1210 }
1211
clk_core_disable_unprepare(struct clk_core * core)1212 static void clk_core_disable_unprepare(struct clk_core *core)
1213 {
1214 clk_core_disable_lock(core);
1215 clk_core_unprepare_lock(core);
1216 }
1217
clk_unprepare_unused_subtree(struct clk_core * core)1218 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1219 {
1220 struct clk_core *child;
1221
1222 lockdep_assert_held(&prepare_lock);
1223
1224 hlist_for_each_entry(child, &core->children, child_node)
1225 clk_unprepare_unused_subtree(child);
1226
1227 if (dev_has_sync_state(core->dev) &&
1228 !(core->flags & CLK_DONT_HOLD_STATE))
1229 return;
1230
1231 if (core->prepare_count)
1232 return;
1233
1234 if (core->flags & CLK_IGNORE_UNUSED)
1235 return;
1236
1237 if (clk_pm_runtime_get(core))
1238 return;
1239
1240 if (clk_core_is_prepared(core)) {
1241 trace_clk_unprepare(core);
1242 if (core->ops->unprepare_unused)
1243 core->ops->unprepare_unused(core->hw);
1244 else if (core->ops->unprepare)
1245 core->ops->unprepare(core->hw);
1246 trace_clk_unprepare_complete(core);
1247 }
1248
1249 clk_pm_runtime_put(core);
1250 }
1251
clk_disable_unused_subtree(struct clk_core * core)1252 static void __init clk_disable_unused_subtree(struct clk_core *core)
1253 {
1254 struct clk_core *child;
1255 unsigned long flags;
1256
1257 lockdep_assert_held(&prepare_lock);
1258
1259 hlist_for_each_entry(child, &core->children, child_node)
1260 clk_disable_unused_subtree(child);
1261
1262 if (dev_has_sync_state(core->dev) &&
1263 !(core->flags & CLK_DONT_HOLD_STATE))
1264 return;
1265
1266 if (core->flags & CLK_OPS_PARENT_ENABLE)
1267 clk_core_prepare_enable(core->parent);
1268
1269 if (clk_pm_runtime_get(core))
1270 goto unprepare_out;
1271
1272 flags = clk_enable_lock();
1273
1274 if (core->enable_count)
1275 goto unlock_out;
1276
1277 if (core->flags & CLK_IGNORE_UNUSED)
1278 goto unlock_out;
1279
1280 /*
1281 * some gate clocks have special needs during the disable-unused
1282 * sequence. call .disable_unused if available, otherwise fall
1283 * back to .disable
1284 */
1285 if (clk_core_is_enabled(core)) {
1286 trace_clk_disable(core);
1287 if (core->ops->disable_unused)
1288 core->ops->disable_unused(core->hw);
1289 else if (core->ops->disable)
1290 core->ops->disable(core->hw);
1291 trace_clk_disable_complete(core);
1292 }
1293
1294 unlock_out:
1295 clk_enable_unlock(flags);
1296 clk_pm_runtime_put(core);
1297 unprepare_out:
1298 if (core->flags & CLK_OPS_PARENT_ENABLE)
1299 clk_core_disable_unprepare(core->parent);
1300 }
1301
1302 static bool clk_ignore_unused __initdata;
clk_ignore_unused_setup(char * __unused)1303 static int __init clk_ignore_unused_setup(char *__unused)
1304 {
1305 clk_ignore_unused = true;
1306 return 1;
1307 }
1308 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1309
clk_disable_unused(void)1310 static int __init clk_disable_unused(void)
1311 {
1312 struct clk_core *core;
1313
1314 if (clk_ignore_unused) {
1315 pr_warn("clk: Not disabling unused clocks\n");
1316 return 0;
1317 }
1318
1319 clk_prepare_lock();
1320
1321 hlist_for_each_entry(core, &clk_root_list, child_node)
1322 clk_disable_unused_subtree(core);
1323
1324 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1325 clk_disable_unused_subtree(core);
1326
1327 hlist_for_each_entry(core, &clk_root_list, child_node)
1328 clk_unprepare_unused_subtree(core);
1329
1330 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1331 clk_unprepare_unused_subtree(core);
1332
1333 clk_prepare_unlock();
1334
1335 return 0;
1336 }
1337 late_initcall_sync(clk_disable_unused);
1338
clk_unprepare_disable_dev_subtree(struct clk_core * core,struct device * dev)1339 static void clk_unprepare_disable_dev_subtree(struct clk_core *core,
1340 struct device *dev)
1341 {
1342 struct clk_core *child;
1343
1344 lockdep_assert_held(&prepare_lock);
1345
1346 hlist_for_each_entry(child, &core->children, child_node)
1347 clk_unprepare_disable_dev_subtree(child, dev);
1348
1349 if (core->dev != dev || !core->need_sync)
1350 return;
1351
1352 clk_core_disable_unprepare(core);
1353 }
1354
clk_sync_state(struct device * dev)1355 void clk_sync_state(struct device *dev)
1356 {
1357 struct clk_core *core;
1358
1359 clk_prepare_lock();
1360
1361 hlist_for_each_entry(core, &clk_root_list, child_node)
1362 clk_unprepare_disable_dev_subtree(core, dev);
1363
1364 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1365 clk_unprepare_disable_dev_subtree(core, dev);
1366
1367 clk_prepare_unlock();
1368 }
1369 EXPORT_SYMBOL_GPL(clk_sync_state);
1370
clk_core_determine_round_nolock(struct clk_core * core,struct clk_rate_request * req)1371 static int clk_core_determine_round_nolock(struct clk_core *core,
1372 struct clk_rate_request *req)
1373 {
1374 long rate;
1375
1376 lockdep_assert_held(&prepare_lock);
1377
1378 if (!core)
1379 return 0;
1380
1381 /*
1382 * At this point, core protection will be disabled if
1383 * - if the provider is not protected at all
1384 * - if the calling consumer is the only one which has exclusivity
1385 * over the provider
1386 */
1387 if (clk_core_rate_is_protected(core)) {
1388 req->rate = core->rate;
1389 } else if (core->ops->determine_rate) {
1390 return core->ops->determine_rate(core->hw, req);
1391 } else if (core->ops->round_rate) {
1392 rate = core->ops->round_rate(core->hw, req->rate,
1393 &req->best_parent_rate);
1394 if (rate < 0)
1395 return rate;
1396
1397 req->rate = rate;
1398 } else {
1399 return -EINVAL;
1400 }
1401
1402 return 0;
1403 }
1404
clk_core_init_rate_req(struct clk_core * const core,struct clk_rate_request * req)1405 static void clk_core_init_rate_req(struct clk_core * const core,
1406 struct clk_rate_request *req)
1407 {
1408 struct clk_core *parent;
1409
1410 if (WARN_ON(!core || !req))
1411 return;
1412
1413 parent = core->parent;
1414 if (parent) {
1415 req->best_parent_hw = parent->hw;
1416 req->best_parent_rate = parent->rate;
1417 } else {
1418 req->best_parent_hw = NULL;
1419 req->best_parent_rate = 0;
1420 }
1421 }
1422
clk_core_can_round(struct clk_core * const core)1423 static bool clk_core_can_round(struct clk_core * const core)
1424 {
1425 return core->ops->determine_rate || core->ops->round_rate;
1426 }
1427
clk_core_round_rate_nolock(struct clk_core * core,struct clk_rate_request * req)1428 static int clk_core_round_rate_nolock(struct clk_core *core,
1429 struct clk_rate_request *req)
1430 {
1431 lockdep_assert_held(&prepare_lock);
1432
1433 if (!core) {
1434 req->rate = 0;
1435 return 0;
1436 }
1437
1438 clk_core_init_rate_req(core, req);
1439
1440 if (clk_core_can_round(core))
1441 return clk_core_determine_round_nolock(core, req);
1442 else if (core->flags & CLK_SET_RATE_PARENT)
1443 return clk_core_round_rate_nolock(core->parent, req);
1444
1445 req->rate = core->rate;
1446 return 0;
1447 }
1448
1449 /**
1450 * __clk_determine_rate - get the closest rate actually supported by a clock
1451 * @hw: determine the rate of this clock
1452 * @req: target rate request
1453 *
1454 * Useful for clk_ops such as .set_rate and .determine_rate.
1455 */
__clk_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)1456 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1457 {
1458 if (!hw) {
1459 req->rate = 0;
1460 return 0;
1461 }
1462
1463 return clk_core_round_rate_nolock(hw->core, req);
1464 }
1465 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1466
1467 /**
1468 * clk_hw_round_rate() - round the given rate for a hw clk
1469 * @hw: the hw clk for which we are rounding a rate
1470 * @rate: the rate which is to be rounded
1471 *
1472 * Takes in a rate as input and rounds it to a rate that the clk can actually
1473 * use.
1474 *
1475 * Context: prepare_lock must be held.
1476 * For clk providers to call from within clk_ops such as .round_rate,
1477 * .determine_rate.
1478 *
1479 * Return: returns rounded rate of hw clk if clk supports round_rate operation
1480 * else returns the parent rate.
1481 */
clk_hw_round_rate(struct clk_hw * hw,unsigned long rate)1482 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1483 {
1484 int ret;
1485 struct clk_rate_request req;
1486
1487 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1488 req.rate = rate;
1489
1490 ret = clk_core_round_rate_nolock(hw->core, &req);
1491 if (ret)
1492 return 0;
1493
1494 return req.rate;
1495 }
1496 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1497
1498 /**
1499 * clk_round_rate - round the given rate for a clk
1500 * @clk: the clk for which we are rounding a rate
1501 * @rate: the rate which is to be rounded
1502 *
1503 * Takes in a rate as input and rounds it to a rate that the clk can actually
1504 * use which is then returned. If clk doesn't support round_rate operation
1505 * then the parent rate is returned.
1506 */
clk_round_rate(struct clk * clk,unsigned long rate)1507 long clk_round_rate(struct clk *clk, unsigned long rate)
1508 {
1509 struct clk_rate_request req;
1510 int ret;
1511
1512 if (!clk)
1513 return 0;
1514
1515 clk_prepare_lock();
1516
1517 if (clk->exclusive_count)
1518 clk_core_rate_unprotect(clk->core);
1519
1520 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1521 req.rate = rate;
1522
1523 ret = clk_core_round_rate_nolock(clk->core, &req);
1524
1525 if (clk->exclusive_count)
1526 clk_core_rate_protect(clk->core);
1527
1528 clk_prepare_unlock();
1529
1530 if (ret)
1531 return ret;
1532
1533 return req.rate;
1534 }
1535 EXPORT_SYMBOL_GPL(clk_round_rate);
1536
1537 /**
1538 * __clk_notify - call clk notifier chain
1539 * @core: clk that is changing rate
1540 * @msg: clk notifier type (see include/linux/clk.h)
1541 * @old_rate: old clk rate
1542 * @new_rate: new clk rate
1543 *
1544 * Triggers a notifier call chain on the clk rate-change notification
1545 * for 'clk'. Passes a pointer to the struct clk and the previous
1546 * and current rates to the notifier callback. Intended to be called by
1547 * internal clock code only. Returns NOTIFY_DONE from the last driver
1548 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1549 * a driver returns that.
1550 */
__clk_notify(struct clk_core * core,unsigned long msg,unsigned long old_rate,unsigned long new_rate)1551 static int __clk_notify(struct clk_core *core, unsigned long msg,
1552 unsigned long old_rate, unsigned long new_rate)
1553 {
1554 struct clk_notifier *cn;
1555 struct clk_notifier_data cnd;
1556 int ret = NOTIFY_DONE;
1557
1558 cnd.old_rate = old_rate;
1559 cnd.new_rate = new_rate;
1560
1561 list_for_each_entry(cn, &clk_notifier_list, node) {
1562 if (cn->clk->core == core) {
1563 cnd.clk = cn->clk;
1564 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1565 &cnd);
1566 if (ret & NOTIFY_STOP_MASK)
1567 return ret;
1568 }
1569 }
1570
1571 return ret;
1572 }
1573
1574 /**
1575 * __clk_recalc_accuracies
1576 * @core: first clk in the subtree
1577 *
1578 * Walks the subtree of clks starting with clk and recalculates accuracies as
1579 * it goes. Note that if a clk does not implement the .recalc_accuracy
1580 * callback then it is assumed that the clock will take on the accuracy of its
1581 * parent.
1582 */
__clk_recalc_accuracies(struct clk_core * core)1583 static void __clk_recalc_accuracies(struct clk_core *core)
1584 {
1585 unsigned long parent_accuracy = 0;
1586 struct clk_core *child;
1587
1588 lockdep_assert_held(&prepare_lock);
1589
1590 if (core->parent)
1591 parent_accuracy = core->parent->accuracy;
1592
1593 if (core->ops->recalc_accuracy)
1594 core->accuracy = core->ops->recalc_accuracy(core->hw,
1595 parent_accuracy);
1596 else
1597 core->accuracy = parent_accuracy;
1598
1599 hlist_for_each_entry(child, &core->children, child_node)
1600 __clk_recalc_accuracies(child);
1601 }
1602
clk_core_get_accuracy_recalc(struct clk_core * core)1603 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1604 {
1605 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1606 __clk_recalc_accuracies(core);
1607
1608 return clk_core_get_accuracy_no_lock(core);
1609 }
1610
1611 /**
1612 * clk_get_accuracy - return the accuracy of clk
1613 * @clk: the clk whose accuracy is being returned
1614 *
1615 * Simply returns the cached accuracy of the clk, unless
1616 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1617 * issued.
1618 * If clk is NULL then returns 0.
1619 */
clk_get_accuracy(struct clk * clk)1620 long clk_get_accuracy(struct clk *clk)
1621 {
1622 long accuracy;
1623
1624 if (!clk)
1625 return 0;
1626
1627 clk_prepare_lock();
1628 accuracy = clk_core_get_accuracy_recalc(clk->core);
1629 clk_prepare_unlock();
1630
1631 return accuracy;
1632 }
1633 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1634
clk_recalc(struct clk_core * core,unsigned long parent_rate)1635 static unsigned long clk_recalc(struct clk_core *core,
1636 unsigned long parent_rate)
1637 {
1638 unsigned long rate = parent_rate;
1639
1640 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1641 rate = core->ops->recalc_rate(core->hw, parent_rate);
1642 clk_pm_runtime_put(core);
1643 }
1644 return rate;
1645 }
1646
1647 /**
1648 * __clk_recalc_rates
1649 * @core: first clk in the subtree
1650 * @msg: notification type (see include/linux/clk.h)
1651 *
1652 * Walks the subtree of clks starting with clk and recalculates rates as it
1653 * goes. Note that if a clk does not implement the .recalc_rate callback then
1654 * it is assumed that the clock will take on the rate of its parent.
1655 *
1656 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1657 * if necessary.
1658 */
__clk_recalc_rates(struct clk_core * core,unsigned long msg)1659 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1660 {
1661 unsigned long old_rate;
1662 unsigned long parent_rate = 0;
1663 struct clk_core *child;
1664
1665 lockdep_assert_held(&prepare_lock);
1666
1667 old_rate = core->rate;
1668
1669 if (core->parent)
1670 parent_rate = core->parent->rate;
1671
1672 core->rate = clk_recalc(core, parent_rate);
1673
1674 /*
1675 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1676 * & ABORT_RATE_CHANGE notifiers
1677 */
1678 if (core->notifier_count && msg)
1679 __clk_notify(core, msg, old_rate, core->rate);
1680
1681 hlist_for_each_entry(child, &core->children, child_node)
1682 __clk_recalc_rates(child, msg);
1683 }
1684
clk_core_get_rate_recalc(struct clk_core * core)1685 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1686 {
1687 if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1688 __clk_recalc_rates(core, 0);
1689
1690 return clk_core_get_rate_nolock(core);
1691 }
1692
1693 /**
1694 * clk_get_rate - return the rate of clk
1695 * @clk: the clk whose rate is being returned
1696 *
1697 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1698 * is set, which means a recalc_rate will be issued.
1699 * If clk is NULL then returns 0.
1700 */
clk_get_rate(struct clk * clk)1701 unsigned long clk_get_rate(struct clk *clk)
1702 {
1703 unsigned long rate;
1704
1705 if (!clk)
1706 return 0;
1707
1708 clk_prepare_lock();
1709 rate = clk_core_get_rate_recalc(clk->core);
1710 clk_prepare_unlock();
1711
1712 return rate;
1713 }
1714 EXPORT_SYMBOL_GPL(clk_get_rate);
1715
clk_fetch_parent_index(struct clk_core * core,struct clk_core * parent)1716 static int clk_fetch_parent_index(struct clk_core *core,
1717 struct clk_core *parent)
1718 {
1719 int i;
1720
1721 if (!parent)
1722 return -EINVAL;
1723
1724 for (i = 0; i < core->num_parents; i++) {
1725 /* Found it first try! */
1726 if (core->parents[i].core == parent)
1727 return i;
1728
1729 /* Something else is here, so keep looking */
1730 if (core->parents[i].core)
1731 continue;
1732
1733 /* Maybe core hasn't been cached but the hw is all we know? */
1734 if (core->parents[i].hw) {
1735 if (core->parents[i].hw == parent->hw)
1736 break;
1737
1738 /* Didn't match, but we're expecting a clk_hw */
1739 continue;
1740 }
1741
1742 /* Maybe it hasn't been cached (clk_set_parent() path) */
1743 if (parent == clk_core_get(core, i))
1744 break;
1745
1746 /* Fallback to comparing globally unique names */
1747 if (core->parents[i].name &&
1748 !strcmp(parent->name, core->parents[i].name))
1749 break;
1750 }
1751
1752 if (i == core->num_parents)
1753 return -EINVAL;
1754
1755 core->parents[i].core = parent;
1756 return i;
1757 }
1758
1759 /**
1760 * clk_hw_get_parent_index - return the index of the parent clock
1761 * @hw: clk_hw associated with the clk being consumed
1762 *
1763 * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1764 * clock does not have a current parent.
1765 */
clk_hw_get_parent_index(struct clk_hw * hw)1766 int clk_hw_get_parent_index(struct clk_hw *hw)
1767 {
1768 struct clk_hw *parent = clk_hw_get_parent(hw);
1769
1770 if (WARN_ON(parent == NULL))
1771 return -EINVAL;
1772
1773 return clk_fetch_parent_index(hw->core, parent->core);
1774 }
1775 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1776
clk_core_hold_state(struct clk_core * core)1777 static void clk_core_hold_state(struct clk_core *core)
1778 {
1779 if (core->need_sync || !core->boot_enabled)
1780 return;
1781
1782 if (core->orphan || !dev_has_sync_state(core->dev))
1783 return;
1784
1785 if (core->flags & CLK_DONT_HOLD_STATE)
1786 return;
1787
1788 core->need_sync = !clk_core_prepare_enable(core);
1789 }
1790
__clk_core_update_orphan_hold_state(struct clk_core * core)1791 static void __clk_core_update_orphan_hold_state(struct clk_core *core)
1792 {
1793 struct clk_core *child;
1794
1795 if (core->orphan)
1796 return;
1797
1798 clk_core_hold_state(core);
1799
1800 hlist_for_each_entry(child, &core->children, child_node)
1801 __clk_core_update_orphan_hold_state(child);
1802 }
1803
1804 /*
1805 * Update the orphan status of @core and all its children.
1806 */
clk_core_update_orphan_status(struct clk_core * core,bool is_orphan)1807 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1808 {
1809 struct clk_core *child;
1810
1811 core->orphan = is_orphan;
1812
1813 hlist_for_each_entry(child, &core->children, child_node)
1814 clk_core_update_orphan_status(child, is_orphan);
1815 }
1816
clk_reparent(struct clk_core * core,struct clk_core * new_parent)1817 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1818 {
1819 bool was_orphan = core->orphan;
1820
1821 hlist_del(&core->child_node);
1822
1823 if (new_parent) {
1824 bool becomes_orphan = new_parent->orphan;
1825
1826 /* avoid duplicate POST_RATE_CHANGE notifications */
1827 if (new_parent->new_child == core)
1828 new_parent->new_child = NULL;
1829
1830 hlist_add_head(&core->child_node, &new_parent->children);
1831
1832 if (was_orphan != becomes_orphan)
1833 clk_core_update_orphan_status(core, becomes_orphan);
1834 } else {
1835 hlist_add_head(&core->child_node, &clk_orphan_list);
1836 if (!was_orphan)
1837 clk_core_update_orphan_status(core, true);
1838 }
1839
1840 core->parent = new_parent;
1841 }
1842
__clk_set_parent_before(struct clk_core * core,struct clk_core * parent)1843 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1844 struct clk_core *parent)
1845 {
1846 unsigned long flags;
1847 struct clk_core *old_parent = core->parent;
1848
1849 /*
1850 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1851 *
1852 * 2. Migrate prepare state between parents and prevent race with
1853 * clk_enable().
1854 *
1855 * If the clock is not prepared, then a race with
1856 * clk_enable/disable() is impossible since we already have the
1857 * prepare lock (future calls to clk_enable() need to be preceded by
1858 * a clk_prepare()).
1859 *
1860 * If the clock is prepared, migrate the prepared state to the new
1861 * parent and also protect against a race with clk_enable() by
1862 * forcing the clock and the new parent on. This ensures that all
1863 * future calls to clk_enable() are practically NOPs with respect to
1864 * hardware and software states.
1865 *
1866 * See also: Comment for clk_set_parent() below.
1867 */
1868
1869 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1870 if (core->flags & CLK_OPS_PARENT_ENABLE) {
1871 clk_core_prepare_enable(old_parent);
1872 clk_core_prepare_enable(parent);
1873 }
1874
1875 /* migrate prepare count if > 0 */
1876 if (core->prepare_count) {
1877 clk_core_prepare_enable(parent);
1878 clk_core_enable_lock(core);
1879 }
1880
1881 /* update the clk tree topology */
1882 flags = clk_enable_lock();
1883 clk_reparent(core, parent);
1884 clk_enable_unlock(flags);
1885
1886 return old_parent;
1887 }
1888
__clk_set_parent_after(struct clk_core * core,struct clk_core * parent,struct clk_core * old_parent)1889 static void __clk_set_parent_after(struct clk_core *core,
1890 struct clk_core *parent,
1891 struct clk_core *old_parent)
1892 {
1893 /*
1894 * Finish the migration of prepare state and undo the changes done
1895 * for preventing a race with clk_enable().
1896 */
1897 if (core->prepare_count) {
1898 clk_core_disable_lock(core);
1899 clk_core_disable_unprepare(old_parent);
1900 }
1901
1902 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1903 if (core->flags & CLK_OPS_PARENT_ENABLE) {
1904 clk_core_disable_unprepare(parent);
1905 clk_core_disable_unprepare(old_parent);
1906 }
1907 }
1908
__clk_set_parent(struct clk_core * core,struct clk_core * parent,u8 p_index)1909 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1910 u8 p_index)
1911 {
1912 unsigned long flags;
1913 int ret = 0;
1914 struct clk_core *old_parent;
1915
1916 old_parent = __clk_set_parent_before(core, parent);
1917
1918 trace_clk_set_parent(core, parent);
1919
1920 /* change clock input source */
1921 if (parent && core->ops->set_parent)
1922 ret = core->ops->set_parent(core->hw, p_index);
1923
1924 trace_clk_set_parent_complete(core, parent);
1925
1926 if (ret) {
1927 flags = clk_enable_lock();
1928 clk_reparent(core, old_parent);
1929 clk_enable_unlock(flags);
1930 __clk_set_parent_after(core, old_parent, parent);
1931
1932 return ret;
1933 }
1934
1935 __clk_set_parent_after(core, parent, old_parent);
1936
1937 return 0;
1938 }
1939
1940 /**
1941 * __clk_speculate_rates
1942 * @core: first clk in the subtree
1943 * @parent_rate: the "future" rate of clk's parent
1944 *
1945 * Walks the subtree of clks starting with clk, speculating rates as it
1946 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1947 *
1948 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1949 * pre-rate change notifications and returns early if no clks in the
1950 * subtree have subscribed to the notifications. Note that if a clk does not
1951 * implement the .recalc_rate callback then it is assumed that the clock will
1952 * take on the rate of its parent.
1953 */
__clk_speculate_rates(struct clk_core * core,unsigned long parent_rate)1954 static int __clk_speculate_rates(struct clk_core *core,
1955 unsigned long parent_rate)
1956 {
1957 struct clk_core *child;
1958 unsigned long new_rate;
1959 int ret = NOTIFY_DONE;
1960
1961 lockdep_assert_held(&prepare_lock);
1962
1963 new_rate = clk_recalc(core, parent_rate);
1964
1965 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1966 if (core->notifier_count)
1967 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1968
1969 if (ret & NOTIFY_STOP_MASK) {
1970 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1971 __func__, core->name, ret);
1972 goto out;
1973 }
1974
1975 hlist_for_each_entry(child, &core->children, child_node) {
1976 ret = __clk_speculate_rates(child, new_rate);
1977 if (ret & NOTIFY_STOP_MASK)
1978 break;
1979 }
1980
1981 out:
1982 return ret;
1983 }
1984
clk_calc_subtree(struct clk_core * core,unsigned long new_rate,struct clk_core * new_parent,u8 p_index)1985 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1986 struct clk_core *new_parent, u8 p_index)
1987 {
1988 struct clk_core *child;
1989
1990 core->new_rate = new_rate;
1991 core->new_parent = new_parent;
1992 core->new_parent_index = p_index;
1993 /* include clk in new parent's PRE_RATE_CHANGE notifications */
1994 core->new_child = NULL;
1995 if (new_parent && new_parent != core->parent)
1996 new_parent->new_child = core;
1997
1998 hlist_for_each_entry(child, &core->children, child_node) {
1999 child->new_rate = clk_recalc(child, new_rate);
2000 clk_calc_subtree(child, child->new_rate, NULL, 0);
2001 }
2002 }
2003
2004 /*
2005 * calculate the new rates returning the topmost clock that has to be
2006 * changed.
2007 */
clk_calc_new_rates(struct clk_core * core,unsigned long rate)2008 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
2009 unsigned long rate)
2010 {
2011 struct clk_core *top = core;
2012 struct clk_core *old_parent, *parent;
2013 unsigned long best_parent_rate = 0;
2014 unsigned long new_rate;
2015 unsigned long min_rate;
2016 unsigned long max_rate;
2017 int p_index = 0;
2018 long ret;
2019
2020 /* sanity */
2021 if (IS_ERR_OR_NULL(core))
2022 return NULL;
2023
2024 /* save parent rate, if it exists */
2025 parent = old_parent = core->parent;
2026 if (parent)
2027 best_parent_rate = parent->rate;
2028
2029 clk_core_get_boundaries(core, &min_rate, &max_rate);
2030
2031 /* find the closest rate and parent clk/rate */
2032 if (clk_core_can_round(core)) {
2033 struct clk_rate_request req;
2034
2035 req.rate = rate;
2036 req.min_rate = min_rate;
2037 req.max_rate = max_rate;
2038
2039 clk_core_init_rate_req(core, &req);
2040
2041 ret = clk_core_determine_round_nolock(core, &req);
2042 if (ret < 0)
2043 return NULL;
2044
2045 best_parent_rate = req.best_parent_rate;
2046 new_rate = req.rate;
2047 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
2048
2049 if (new_rate < min_rate || new_rate > max_rate)
2050 return NULL;
2051 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
2052 /* pass-through clock without adjustable parent */
2053 core->new_rate = core->rate;
2054 return NULL;
2055 } else {
2056 /* pass-through clock with adjustable parent */
2057 top = clk_calc_new_rates(parent, rate);
2058 new_rate = parent->new_rate;
2059 goto out;
2060 }
2061
2062 /* some clocks must be gated to change parent */
2063 if (parent != old_parent &&
2064 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2065 pr_debug("%s: %s not gated but wants to reparent\n",
2066 __func__, core->name);
2067 return NULL;
2068 }
2069
2070 /* try finding the new parent index */
2071 if (parent && core->num_parents > 1) {
2072 p_index = clk_fetch_parent_index(core, parent);
2073 if (p_index < 0) {
2074 pr_debug("%s: clk %s can not be parent of clk %s\n",
2075 __func__, parent->name, core->name);
2076 return NULL;
2077 }
2078 }
2079
2080 if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2081 best_parent_rate != parent->rate)
2082 top = clk_calc_new_rates(parent, best_parent_rate);
2083
2084 out:
2085 clk_calc_subtree(core, new_rate, parent, p_index);
2086
2087 return top;
2088 }
2089
2090 /*
2091 * Notify about rate changes in a subtree. Always walk down the whole tree
2092 * so that in case of an error we can walk down the whole tree again and
2093 * abort the change.
2094 */
clk_propagate_rate_change(struct clk_core * core,unsigned long event)2095 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2096 unsigned long event)
2097 {
2098 struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2099 int ret = NOTIFY_DONE;
2100
2101 if (core->rate == core->new_rate)
2102 return NULL;
2103
2104 if (core->notifier_count) {
2105 ret = __clk_notify(core, event, core->rate, core->new_rate);
2106 if (ret & NOTIFY_STOP_MASK)
2107 fail_clk = core;
2108 }
2109
2110 if (core->ops->pre_rate_change) {
2111 ret = core->ops->pre_rate_change(core->hw, core->rate,
2112 core->new_rate);
2113 if (ret)
2114 fail_clk = core;
2115 }
2116
2117 hlist_for_each_entry(child, &core->children, child_node) {
2118 /* Skip children who will be reparented to another clock */
2119 if (child->new_parent && child->new_parent != core)
2120 continue;
2121 tmp_clk = clk_propagate_rate_change(child, event);
2122 if (tmp_clk)
2123 fail_clk = tmp_clk;
2124 }
2125
2126 /* handle the new child who might not be in core->children yet */
2127 if (core->new_child) {
2128 tmp_clk = clk_propagate_rate_change(core->new_child, event);
2129 if (tmp_clk)
2130 fail_clk = tmp_clk;
2131 }
2132
2133 return fail_clk;
2134 }
2135
2136 /*
2137 * walk down a subtree and set the new rates notifying the rate
2138 * change on the way
2139 */
clk_change_rate(struct clk_core * core)2140 static void clk_change_rate(struct clk_core *core)
2141 {
2142 struct clk_core *child;
2143 struct hlist_node *tmp;
2144 unsigned long old_rate;
2145 unsigned long best_parent_rate = 0;
2146 bool skip_set_rate = false;
2147 struct clk_core *old_parent;
2148 struct clk_core *parent = NULL;
2149
2150 old_rate = core->rate;
2151
2152 if (core->new_parent) {
2153 parent = core->new_parent;
2154 best_parent_rate = core->new_parent->rate;
2155 } else if (core->parent) {
2156 parent = core->parent;
2157 best_parent_rate = core->parent->rate;
2158 }
2159
2160 if (clk_pm_runtime_get(core))
2161 return;
2162
2163 if (core->flags & CLK_SET_RATE_UNGATE) {
2164 unsigned long flags;
2165
2166 clk_core_prepare(core);
2167 flags = clk_enable_lock();
2168 clk_core_enable(core);
2169 clk_enable_unlock(flags);
2170 }
2171
2172 if (core->new_parent && core->new_parent != core->parent) {
2173 old_parent = __clk_set_parent_before(core, core->new_parent);
2174 trace_clk_set_parent(core, core->new_parent);
2175
2176 if (core->ops->set_rate_and_parent) {
2177 skip_set_rate = true;
2178 core->ops->set_rate_and_parent(core->hw, core->new_rate,
2179 best_parent_rate,
2180 core->new_parent_index);
2181 } else if (core->ops->set_parent) {
2182 core->ops->set_parent(core->hw, core->new_parent_index);
2183 }
2184
2185 trace_clk_set_parent_complete(core, core->new_parent);
2186 __clk_set_parent_after(core, core->new_parent, old_parent);
2187 }
2188
2189 if (core->flags & CLK_OPS_PARENT_ENABLE)
2190 clk_core_prepare_enable(parent);
2191
2192 trace_clk_set_rate(core, core->new_rate);
2193
2194 if (!skip_set_rate && core->ops->set_rate)
2195 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2196
2197 trace_clk_set_rate_complete(core, core->new_rate);
2198
2199 core->rate = clk_recalc(core, best_parent_rate);
2200
2201 if (core->flags & CLK_SET_RATE_UNGATE) {
2202 unsigned long flags;
2203
2204 flags = clk_enable_lock();
2205 clk_core_disable(core);
2206 clk_enable_unlock(flags);
2207 clk_core_unprepare(core);
2208 }
2209
2210 if (core->flags & CLK_OPS_PARENT_ENABLE)
2211 clk_core_disable_unprepare(parent);
2212
2213 if (core->notifier_count && old_rate != core->rate)
2214 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2215
2216 if (core->flags & CLK_RECALC_NEW_RATES)
2217 (void)clk_calc_new_rates(core, core->new_rate);
2218
2219 if (core->ops->post_rate_change)
2220 core->ops->post_rate_change(core->hw, old_rate, core->rate);
2221
2222 /*
2223 * Use safe iteration, as change_rate can actually swap parents
2224 * for certain clock types.
2225 */
2226 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2227 /* Skip children who will be reparented to another clock */
2228 if (child->new_parent && child->new_parent != core)
2229 continue;
2230 clk_change_rate(child);
2231 }
2232
2233 /* handle the new child who might not be in core->children yet */
2234 if (core->new_child)
2235 clk_change_rate(core->new_child);
2236
2237 clk_pm_runtime_put(core);
2238 }
2239
clk_core_req_round_rate_nolock(struct clk_core * core,unsigned long req_rate)2240 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2241 unsigned long req_rate)
2242 {
2243 int ret, cnt;
2244 struct clk_rate_request req;
2245
2246 lockdep_assert_held(&prepare_lock);
2247
2248 if (!core)
2249 return 0;
2250
2251 /* simulate what the rate would be if it could be freely set */
2252 cnt = clk_core_rate_nuke_protect(core);
2253 if (cnt < 0)
2254 return cnt;
2255
2256 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
2257 req.rate = req_rate;
2258
2259 ret = clk_core_round_rate_nolock(core, &req);
2260
2261 /* restore the protection */
2262 clk_core_rate_restore_protect(core, cnt);
2263
2264 return ret ? 0 : req.rate;
2265 }
2266
clk_core_set_rate_nolock(struct clk_core * core,unsigned long req_rate)2267 static int clk_core_set_rate_nolock(struct clk_core *core,
2268 unsigned long req_rate)
2269 {
2270 struct clk_core *top, *fail_clk;
2271 unsigned long rate;
2272 int ret = 0;
2273
2274 if (!core)
2275 return 0;
2276
2277 rate = clk_core_req_round_rate_nolock(core, req_rate);
2278
2279 /* bail early if nothing to do */
2280 if (rate == clk_core_get_rate_nolock(core))
2281 return 0;
2282
2283 /* fail on a direct rate set of a protected provider */
2284 if (clk_core_rate_is_protected(core))
2285 return -EBUSY;
2286
2287 /* calculate new rates and get the topmost changed clock */
2288 top = clk_calc_new_rates(core, req_rate);
2289 if (!top)
2290 return -EINVAL;
2291
2292 ret = clk_pm_runtime_get(core);
2293 if (ret)
2294 return ret;
2295
2296 /* notify that we are about to change rates */
2297 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2298 if (fail_clk) {
2299 pr_debug("%s: failed to set %s rate\n", __func__,
2300 fail_clk->name);
2301 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2302 ret = -EBUSY;
2303 goto err;
2304 }
2305
2306 /* change the rates */
2307 clk_change_rate(top);
2308
2309 core->req_rate = req_rate;
2310 err:
2311 clk_pm_runtime_put(core);
2312
2313 return ret;
2314 }
2315
2316 /**
2317 * clk_set_rate - specify a new rate for clk
2318 * @clk: the clk whose rate is being changed
2319 * @rate: the new rate for clk
2320 *
2321 * In the simplest case clk_set_rate will only adjust the rate of clk.
2322 *
2323 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2324 * propagate up to clk's parent; whether or not this happens depends on the
2325 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
2326 * after calling .round_rate then upstream parent propagation is ignored. If
2327 * *parent_rate comes back with a new rate for clk's parent then we propagate
2328 * up to clk's parent and set its rate. Upward propagation will continue
2329 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2330 * .round_rate stops requesting changes to clk's parent_rate.
2331 *
2332 * Rate changes are accomplished via tree traversal that also recalculates the
2333 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2334 *
2335 * Returns 0 on success, -EERROR otherwise.
2336 */
clk_set_rate(struct clk * clk,unsigned long rate)2337 int clk_set_rate(struct clk *clk, unsigned long rate)
2338 {
2339 int ret;
2340
2341 if (!clk)
2342 return 0;
2343
2344 /* prevent racing with updates to the clock topology */
2345 clk_prepare_lock();
2346
2347 if (clk->exclusive_count)
2348 clk_core_rate_unprotect(clk->core);
2349
2350 ret = clk_core_set_rate_nolock(clk->core, rate);
2351
2352 if (clk->exclusive_count)
2353 clk_core_rate_protect(clk->core);
2354
2355 clk_prepare_unlock();
2356
2357 return ret;
2358 }
2359 EXPORT_SYMBOL_GPL(clk_set_rate);
2360
2361 /**
2362 * clk_set_rate_exclusive - specify a new rate and get exclusive control
2363 * @clk: the clk whose rate is being changed
2364 * @rate: the new rate for clk
2365 *
2366 * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2367 * within a critical section
2368 *
2369 * This can be used initially to ensure that at least 1 consumer is
2370 * satisfied when several consumers are competing for exclusivity over the
2371 * same clock provider.
2372 *
2373 * The exclusivity is not applied if setting the rate failed.
2374 *
2375 * Calls to clk_rate_exclusive_get() should be balanced with calls to
2376 * clk_rate_exclusive_put().
2377 *
2378 * Returns 0 on success, -EERROR otherwise.
2379 */
clk_set_rate_exclusive(struct clk * clk,unsigned long rate)2380 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2381 {
2382 int ret;
2383
2384 if (!clk)
2385 return 0;
2386
2387 /* prevent racing with updates to the clock topology */
2388 clk_prepare_lock();
2389
2390 /*
2391 * The temporary protection removal is not here, on purpose
2392 * This function is meant to be used instead of clk_rate_protect,
2393 * so before the consumer code path protect the clock provider
2394 */
2395
2396 ret = clk_core_set_rate_nolock(clk->core, rate);
2397 if (!ret) {
2398 clk_core_rate_protect(clk->core);
2399 clk->exclusive_count++;
2400 }
2401
2402 clk_prepare_unlock();
2403
2404 return ret;
2405 }
2406 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2407
2408 /**
2409 * clk_set_rate_range - set a rate range for a clock source
2410 * @clk: clock source
2411 * @min: desired minimum clock rate in Hz, inclusive
2412 * @max: desired maximum clock rate in Hz, inclusive
2413 *
2414 * Returns success (0) or negative errno.
2415 */
clk_set_rate_range(struct clk * clk,unsigned long min,unsigned long max)2416 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2417 {
2418 int ret = 0;
2419 unsigned long old_min, old_max, rate;
2420
2421 if (!clk)
2422 return 0;
2423
2424 if (min > max) {
2425 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2426 __func__, clk->core->name, clk->dev_id, clk->con_id,
2427 min, max);
2428 return -EINVAL;
2429 }
2430
2431 clk_prepare_lock();
2432
2433 if (clk->exclusive_count)
2434 clk_core_rate_unprotect(clk->core);
2435
2436 /* Save the current values in case we need to rollback the change */
2437 old_min = clk->min_rate;
2438 old_max = clk->max_rate;
2439 clk->min_rate = min;
2440 clk->max_rate = max;
2441
2442 if (!clk_core_check_boundaries(clk->core, min, max)) {
2443 ret = -EINVAL;
2444 goto out;
2445 }
2446
2447 rate = clk_core_get_rate_nolock(clk->core);
2448 if (rate < min || rate > max) {
2449 /*
2450 * FIXME:
2451 * We are in bit of trouble here, current rate is outside the
2452 * the requested range. We are going try to request appropriate
2453 * range boundary but there is a catch. It may fail for the
2454 * usual reason (clock broken, clock protected, etc) but also
2455 * because:
2456 * - round_rate() was not favorable and fell on the wrong
2457 * side of the boundary
2458 * - the determine_rate() callback does not really check for
2459 * this corner case when determining the rate
2460 */
2461
2462 if (rate < min)
2463 rate = min;
2464 else
2465 rate = max;
2466
2467 ret = clk_core_set_rate_nolock(clk->core, rate);
2468 if (ret) {
2469 /* rollback the changes */
2470 clk->min_rate = old_min;
2471 clk->max_rate = old_max;
2472 }
2473 }
2474
2475 out:
2476 if (clk->exclusive_count)
2477 clk_core_rate_protect(clk->core);
2478
2479 clk_prepare_unlock();
2480
2481 return ret;
2482 }
2483 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2484
2485 /**
2486 * clk_set_min_rate - set a minimum clock rate for a clock source
2487 * @clk: clock source
2488 * @rate: desired minimum clock rate in Hz, inclusive
2489 *
2490 * Returns success (0) or negative errno.
2491 */
clk_set_min_rate(struct clk * clk,unsigned long rate)2492 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2493 {
2494 if (!clk)
2495 return 0;
2496
2497 return clk_set_rate_range(clk, rate, clk->max_rate);
2498 }
2499 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2500
2501 /**
2502 * clk_set_max_rate - set a maximum clock rate for a clock source
2503 * @clk: clock source
2504 * @rate: desired maximum clock rate in Hz, inclusive
2505 *
2506 * Returns success (0) or negative errno.
2507 */
clk_set_max_rate(struct clk * clk,unsigned long rate)2508 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2509 {
2510 if (!clk)
2511 return 0;
2512
2513 return clk_set_rate_range(clk, clk->min_rate, rate);
2514 }
2515 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2516
2517 /**
2518 * clk_get_parent - return the parent of a clk
2519 * @clk: the clk whose parent gets returned
2520 *
2521 * Simply returns clk->parent. Returns NULL if clk is NULL.
2522 */
clk_get_parent(struct clk * clk)2523 struct clk *clk_get_parent(struct clk *clk)
2524 {
2525 struct clk *parent;
2526
2527 if (!clk)
2528 return NULL;
2529
2530 clk_prepare_lock();
2531 /* TODO: Create a per-user clk and change callers to call clk_put */
2532 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2533 clk_prepare_unlock();
2534
2535 return parent;
2536 }
2537 EXPORT_SYMBOL_GPL(clk_get_parent);
2538
__clk_init_parent(struct clk_core * core)2539 static struct clk_core *__clk_init_parent(struct clk_core *core)
2540 {
2541 u8 index = 0;
2542
2543 if (core->num_parents > 1 && core->ops->get_parent)
2544 index = core->ops->get_parent(core->hw);
2545
2546 return clk_core_get_parent_by_index(core, index);
2547 }
2548
clk_core_reparent(struct clk_core * core,struct clk_core * new_parent)2549 static void clk_core_reparent(struct clk_core *core,
2550 struct clk_core *new_parent)
2551 {
2552 clk_reparent(core, new_parent);
2553 __clk_recalc_accuracies(core);
2554 __clk_recalc_rates(core, POST_RATE_CHANGE);
2555 }
2556
clk_hw_reparent(struct clk_hw * hw,struct clk_hw * new_parent)2557 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2558 {
2559 if (!hw)
2560 return;
2561
2562 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2563 }
2564
2565 /**
2566 * clk_has_parent - check if a clock is a possible parent for another
2567 * @clk: clock source
2568 * @parent: parent clock source
2569 *
2570 * This function can be used in drivers that need to check that a clock can be
2571 * the parent of another without actually changing the parent.
2572 *
2573 * Returns true if @parent is a possible parent for @clk, false otherwise.
2574 */
clk_has_parent(struct clk * clk,struct clk * parent)2575 bool clk_has_parent(struct clk *clk, struct clk *parent)
2576 {
2577 struct clk_core *core, *parent_core;
2578 int i;
2579
2580 /* NULL clocks should be nops, so return success if either is NULL. */
2581 if (!clk || !parent)
2582 return true;
2583
2584 core = clk->core;
2585 parent_core = parent->core;
2586
2587 /* Optimize for the case where the parent is already the parent. */
2588 if (core->parent == parent_core)
2589 return true;
2590
2591 for (i = 0; i < core->num_parents; i++)
2592 if (!strcmp(core->parents[i].name, parent_core->name))
2593 return true;
2594
2595 return false;
2596 }
2597 EXPORT_SYMBOL_GPL(clk_has_parent);
2598
clk_core_set_parent_nolock(struct clk_core * core,struct clk_core * parent)2599 static int clk_core_set_parent_nolock(struct clk_core *core,
2600 struct clk_core *parent)
2601 {
2602 int ret = 0;
2603 int p_index = 0;
2604 unsigned long p_rate = 0;
2605
2606 lockdep_assert_held(&prepare_lock);
2607
2608 if (!core)
2609 return 0;
2610
2611 if (core->parent == parent)
2612 return 0;
2613
2614 /* verify ops for multi-parent clks */
2615 if (core->num_parents > 1 && !core->ops->set_parent)
2616 return -EPERM;
2617
2618 /* check that we are allowed to re-parent if the clock is in use */
2619 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2620 return -EBUSY;
2621
2622 if (clk_core_rate_is_protected(core))
2623 return -EBUSY;
2624
2625 /* try finding the new parent index */
2626 if (parent) {
2627 p_index = clk_fetch_parent_index(core, parent);
2628 if (p_index < 0) {
2629 pr_debug("%s: clk %s can not be parent of clk %s\n",
2630 __func__, parent->name, core->name);
2631 return p_index;
2632 }
2633 p_rate = parent->rate;
2634 }
2635
2636 ret = clk_pm_runtime_get(core);
2637 if (ret)
2638 return ret;
2639
2640 /* propagate PRE_RATE_CHANGE notifications */
2641 ret = __clk_speculate_rates(core, p_rate);
2642
2643 /* abort if a driver objects */
2644 if (ret & NOTIFY_STOP_MASK)
2645 goto runtime_put;
2646
2647 /* do the re-parent */
2648 ret = __clk_set_parent(core, parent, p_index);
2649
2650 /* propagate rate an accuracy recalculation accordingly */
2651 if (ret) {
2652 __clk_recalc_rates(core, ABORT_RATE_CHANGE);
2653 } else {
2654 __clk_recalc_rates(core, POST_RATE_CHANGE);
2655 __clk_recalc_accuracies(core);
2656 }
2657
2658 runtime_put:
2659 clk_pm_runtime_put(core);
2660
2661 return ret;
2662 }
2663
clk_hw_set_parent(struct clk_hw * hw,struct clk_hw * parent)2664 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2665 {
2666 return clk_core_set_parent_nolock(hw->core, parent->core);
2667 }
2668 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2669
2670 /**
2671 * clk_set_parent - switch the parent of a mux clk
2672 * @clk: the mux clk whose input we are switching
2673 * @parent: the new input to clk
2674 *
2675 * Re-parent clk to use parent as its new input source. If clk is in
2676 * prepared state, the clk will get enabled for the duration of this call. If
2677 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2678 * that, the reparenting is glitchy in hardware, etc), use the
2679 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2680 *
2681 * After successfully changing clk's parent clk_set_parent will update the
2682 * clk topology, sysfs topology and propagate rate recalculation via
2683 * __clk_recalc_rates.
2684 *
2685 * Returns 0 on success, -EERROR otherwise.
2686 */
clk_set_parent(struct clk * clk,struct clk * parent)2687 int clk_set_parent(struct clk *clk, struct clk *parent)
2688 {
2689 int ret;
2690
2691 if (!clk)
2692 return 0;
2693
2694 clk_prepare_lock();
2695
2696 if (clk->exclusive_count)
2697 clk_core_rate_unprotect(clk->core);
2698
2699 ret = clk_core_set_parent_nolock(clk->core,
2700 parent ? parent->core : NULL);
2701
2702 if (clk->exclusive_count)
2703 clk_core_rate_protect(clk->core);
2704
2705 clk_prepare_unlock();
2706
2707 return ret;
2708 }
2709 EXPORT_SYMBOL_GPL(clk_set_parent);
2710
clk_core_set_phase_nolock(struct clk_core * core,int degrees)2711 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2712 {
2713 int ret = -EINVAL;
2714
2715 lockdep_assert_held(&prepare_lock);
2716
2717 if (!core)
2718 return 0;
2719
2720 if (clk_core_rate_is_protected(core))
2721 return -EBUSY;
2722
2723 trace_clk_set_phase(core, degrees);
2724
2725 if (core->ops->set_phase) {
2726 ret = core->ops->set_phase(core->hw, degrees);
2727 if (!ret)
2728 core->phase = degrees;
2729 }
2730
2731 trace_clk_set_phase_complete(core, degrees);
2732
2733 return ret;
2734 }
2735
2736 /**
2737 * clk_set_phase - adjust the phase shift of a clock signal
2738 * @clk: clock signal source
2739 * @degrees: number of degrees the signal is shifted
2740 *
2741 * Shifts the phase of a clock signal by the specified
2742 * degrees. Returns 0 on success, -EERROR otherwise.
2743 *
2744 * This function makes no distinction about the input or reference
2745 * signal that we adjust the clock signal phase against. For example
2746 * phase locked-loop clock signal generators we may shift phase with
2747 * respect to feedback clock signal input, but for other cases the
2748 * clock phase may be shifted with respect to some other, unspecified
2749 * signal.
2750 *
2751 * Additionally the concept of phase shift does not propagate through
2752 * the clock tree hierarchy, which sets it apart from clock rates and
2753 * clock accuracy. A parent clock phase attribute does not have an
2754 * impact on the phase attribute of a child clock.
2755 */
clk_set_phase(struct clk * clk,int degrees)2756 int clk_set_phase(struct clk *clk, int degrees)
2757 {
2758 int ret;
2759
2760 if (!clk)
2761 return 0;
2762
2763 /* sanity check degrees */
2764 degrees %= 360;
2765 if (degrees < 0)
2766 degrees += 360;
2767
2768 clk_prepare_lock();
2769
2770 if (clk->exclusive_count)
2771 clk_core_rate_unprotect(clk->core);
2772
2773 ret = clk_core_set_phase_nolock(clk->core, degrees);
2774
2775 if (clk->exclusive_count)
2776 clk_core_rate_protect(clk->core);
2777
2778 clk_prepare_unlock();
2779
2780 return ret;
2781 }
2782 EXPORT_SYMBOL_GPL(clk_set_phase);
2783
clk_core_get_phase(struct clk_core * core)2784 static int clk_core_get_phase(struct clk_core *core)
2785 {
2786 int ret;
2787
2788 lockdep_assert_held(&prepare_lock);
2789 if (!core->ops->get_phase)
2790 return 0;
2791
2792 /* Always try to update cached phase if possible */
2793 ret = core->ops->get_phase(core->hw);
2794 if (ret >= 0)
2795 core->phase = ret;
2796
2797 return ret;
2798 }
2799
2800 /**
2801 * clk_get_phase - return the phase shift of a clock signal
2802 * @clk: clock signal source
2803 *
2804 * Returns the phase shift of a clock node in degrees, otherwise returns
2805 * -EERROR.
2806 */
clk_get_phase(struct clk * clk)2807 int clk_get_phase(struct clk *clk)
2808 {
2809 int ret;
2810
2811 if (!clk)
2812 return 0;
2813
2814 clk_prepare_lock();
2815 ret = clk_core_get_phase(clk->core);
2816 clk_prepare_unlock();
2817
2818 return ret;
2819 }
2820 EXPORT_SYMBOL_GPL(clk_get_phase);
2821
clk_core_reset_duty_cycle_nolock(struct clk_core * core)2822 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2823 {
2824 /* Assume a default value of 50% */
2825 core->duty.num = 1;
2826 core->duty.den = 2;
2827 }
2828
2829 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2830
clk_core_update_duty_cycle_nolock(struct clk_core * core)2831 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2832 {
2833 struct clk_duty *duty = &core->duty;
2834 int ret = 0;
2835
2836 if (!core->ops->get_duty_cycle)
2837 return clk_core_update_duty_cycle_parent_nolock(core);
2838
2839 ret = core->ops->get_duty_cycle(core->hw, duty);
2840 if (ret)
2841 goto reset;
2842
2843 /* Don't trust the clock provider too much */
2844 if (duty->den == 0 || duty->num > duty->den) {
2845 ret = -EINVAL;
2846 goto reset;
2847 }
2848
2849 return 0;
2850
2851 reset:
2852 clk_core_reset_duty_cycle_nolock(core);
2853 return ret;
2854 }
2855
clk_core_update_duty_cycle_parent_nolock(struct clk_core * core)2856 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2857 {
2858 int ret = 0;
2859
2860 if (core->parent &&
2861 core->flags & CLK_DUTY_CYCLE_PARENT) {
2862 ret = clk_core_update_duty_cycle_nolock(core->parent);
2863 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2864 } else {
2865 clk_core_reset_duty_cycle_nolock(core);
2866 }
2867
2868 return ret;
2869 }
2870
2871 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2872 struct clk_duty *duty);
2873
clk_core_set_duty_cycle_nolock(struct clk_core * core,struct clk_duty * duty)2874 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2875 struct clk_duty *duty)
2876 {
2877 int ret;
2878
2879 lockdep_assert_held(&prepare_lock);
2880
2881 if (clk_core_rate_is_protected(core))
2882 return -EBUSY;
2883
2884 trace_clk_set_duty_cycle(core, duty);
2885
2886 if (!core->ops->set_duty_cycle)
2887 return clk_core_set_duty_cycle_parent_nolock(core, duty);
2888
2889 ret = core->ops->set_duty_cycle(core->hw, duty);
2890 if (!ret)
2891 memcpy(&core->duty, duty, sizeof(*duty));
2892
2893 trace_clk_set_duty_cycle_complete(core, duty);
2894
2895 return ret;
2896 }
2897
clk_core_set_duty_cycle_parent_nolock(struct clk_core * core,struct clk_duty * duty)2898 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2899 struct clk_duty *duty)
2900 {
2901 int ret = 0;
2902
2903 if (core->parent &&
2904 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2905 ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2906 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2907 }
2908
2909 return ret;
2910 }
2911
2912 /**
2913 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2914 * @clk: clock signal source
2915 * @num: numerator of the duty cycle ratio to be applied
2916 * @den: denominator of the duty cycle ratio to be applied
2917 *
2918 * Apply the duty cycle ratio if the ratio is valid and the clock can
2919 * perform this operation
2920 *
2921 * Returns (0) on success, a negative errno otherwise.
2922 */
clk_set_duty_cycle(struct clk * clk,unsigned int num,unsigned int den)2923 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2924 {
2925 int ret;
2926 struct clk_duty duty;
2927
2928 if (!clk)
2929 return 0;
2930
2931 /* sanity check the ratio */
2932 if (den == 0 || num > den)
2933 return -EINVAL;
2934
2935 duty.num = num;
2936 duty.den = den;
2937
2938 clk_prepare_lock();
2939
2940 if (clk->exclusive_count)
2941 clk_core_rate_unprotect(clk->core);
2942
2943 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
2944
2945 if (clk->exclusive_count)
2946 clk_core_rate_protect(clk->core);
2947
2948 clk_prepare_unlock();
2949
2950 return ret;
2951 }
2952 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2953
clk_core_get_scaled_duty_cycle(struct clk_core * core,unsigned int scale)2954 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2955 unsigned int scale)
2956 {
2957 struct clk_duty *duty = &core->duty;
2958 int ret;
2959
2960 clk_prepare_lock();
2961
2962 ret = clk_core_update_duty_cycle_nolock(core);
2963 if (!ret)
2964 ret = mult_frac(scale, duty->num, duty->den);
2965
2966 clk_prepare_unlock();
2967
2968 return ret;
2969 }
2970
2971 /**
2972 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2973 * @clk: clock signal source
2974 * @scale: scaling factor to be applied to represent the ratio as an integer
2975 *
2976 * Returns the duty cycle ratio of a clock node multiplied by the provided
2977 * scaling factor, or negative errno on error.
2978 */
clk_get_scaled_duty_cycle(struct clk * clk,unsigned int scale)2979 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2980 {
2981 if (!clk)
2982 return 0;
2983
2984 return clk_core_get_scaled_duty_cycle(clk->core, scale);
2985 }
2986 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
2987
2988 /**
2989 * clk_is_match - check if two clk's point to the same hardware clock
2990 * @p: clk compared against q
2991 * @q: clk compared against p
2992 *
2993 * Returns true if the two struct clk pointers both point to the same hardware
2994 * clock node. Put differently, returns true if struct clk *p and struct clk *q
2995 * share the same struct clk_core object.
2996 *
2997 * Returns false otherwise. Note that two NULL clks are treated as matching.
2998 */
clk_is_match(const struct clk * p,const struct clk * q)2999 bool clk_is_match(const struct clk *p, const struct clk *q)
3000 {
3001 /* trivial case: identical struct clk's or both NULL */
3002 if (p == q)
3003 return true;
3004
3005 /* true if clk->core pointers match. Avoid dereferencing garbage */
3006 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
3007 if (p->core == q->core)
3008 return true;
3009
3010 return false;
3011 }
3012 EXPORT_SYMBOL_GPL(clk_is_match);
3013
3014 /*** debugfs support ***/
3015
3016 #ifdef CONFIG_DEBUG_FS
3017 #include <linux/debugfs.h>
3018
3019 static struct dentry *rootdir;
3020 static int inited = 0;
3021 static DEFINE_MUTEX(clk_debug_lock);
3022 static HLIST_HEAD(clk_debug_list);
3023
3024 static struct hlist_head *orphan_list[] = {
3025 &clk_orphan_list,
3026 NULL,
3027 };
3028
clk_summary_show_one(struct seq_file * s,struct clk_core * c,int level)3029 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
3030 int level)
3031 {
3032 int phase;
3033
3034 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
3035 level * 3 + 1, "",
3036 30 - level * 3, c->name,
3037 c->enable_count, c->prepare_count, c->protect_count,
3038 clk_core_get_rate_recalc(c),
3039 clk_core_get_accuracy_recalc(c));
3040
3041 phase = clk_core_get_phase(c);
3042 if (phase >= 0)
3043 seq_printf(s, "%5d", phase);
3044 else
3045 seq_puts(s, "-----");
3046
3047 seq_printf(s, " %6d\n", clk_core_get_scaled_duty_cycle(c, 100000));
3048 }
3049
clk_summary_show_subtree(struct seq_file * s,struct clk_core * c,int level)3050 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3051 int level)
3052 {
3053 struct clk_core *child;
3054
3055 clk_summary_show_one(s, c, level);
3056
3057 hlist_for_each_entry(child, &c->children, child_node)
3058 clk_summary_show_subtree(s, child, level + 1);
3059 }
3060
clk_summary_show(struct seq_file * s,void * data)3061 static int clk_summary_show(struct seq_file *s, void *data)
3062 {
3063 struct clk_core *c;
3064 struct hlist_head **lists = (struct hlist_head **)s->private;
3065
3066 seq_puts(s, " enable prepare protect duty\n");
3067 seq_puts(s, " clock count count count rate accuracy phase cycle\n");
3068 seq_puts(s, "---------------------------------------------------------------------------------------------\n");
3069
3070 clk_prepare_lock();
3071
3072 for (; *lists; lists++)
3073 hlist_for_each_entry(c, *lists, child_node)
3074 clk_summary_show_subtree(s, c, 0);
3075
3076 clk_prepare_unlock();
3077
3078 return 0;
3079 }
3080 DEFINE_SHOW_ATTRIBUTE(clk_summary);
3081
clk_dump_one(struct seq_file * s,struct clk_core * c,int level)3082 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3083 {
3084 int phase;
3085 unsigned long min_rate, max_rate;
3086
3087 clk_core_get_boundaries(c, &min_rate, &max_rate);
3088
3089 /* This should be JSON format, i.e. elements separated with a comma */
3090 seq_printf(s, "\"%s\": { ", c->name);
3091 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3092 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3093 seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3094 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3095 seq_printf(s, "\"min_rate\": %lu,", min_rate);
3096 seq_printf(s, "\"max_rate\": %lu,", max_rate);
3097 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3098 phase = clk_core_get_phase(c);
3099 if (phase >= 0)
3100 seq_printf(s, "\"phase\": %d,", phase);
3101 seq_printf(s, "\"duty_cycle\": %u",
3102 clk_core_get_scaled_duty_cycle(c, 100000));
3103 }
3104
clk_dump_subtree(struct seq_file * s,struct clk_core * c,int level)3105 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3106 {
3107 struct clk_core *child;
3108
3109 clk_dump_one(s, c, level);
3110
3111 hlist_for_each_entry(child, &c->children, child_node) {
3112 seq_putc(s, ',');
3113 clk_dump_subtree(s, child, level + 1);
3114 }
3115
3116 seq_putc(s, '}');
3117 }
3118
clk_dump_show(struct seq_file * s,void * data)3119 static int clk_dump_show(struct seq_file *s, void *data)
3120 {
3121 struct clk_core *c;
3122 bool first_node = true;
3123 struct hlist_head **lists = (struct hlist_head **)s->private;
3124
3125 seq_putc(s, '{');
3126 clk_prepare_lock();
3127
3128 for (; *lists; lists++) {
3129 hlist_for_each_entry(c, *lists, child_node) {
3130 if (!first_node)
3131 seq_putc(s, ',');
3132 first_node = false;
3133 clk_dump_subtree(s, c, 0);
3134 }
3135 }
3136
3137 clk_prepare_unlock();
3138
3139 seq_puts(s, "}\n");
3140 return 0;
3141 }
3142 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3143
3144 #define CLOCK_ALLOW_WRITE_DEBUGFS
3145 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3146 /*
3147 * This can be dangerous, therefore don't provide any real compile time
3148 * configuration option for this feature.
3149 * People who want to use this will need to modify the source code directly.
3150 */
clk_rate_set(void * data,u64 val)3151 static int clk_rate_set(void *data, u64 val)
3152 {
3153 struct clk_core *core = data;
3154 int ret;
3155
3156 clk_prepare_lock();
3157 ret = clk_core_set_rate_nolock(core, val);
3158 clk_prepare_unlock();
3159
3160 return ret;
3161 }
3162
3163 #define clk_rate_mode 0644
3164
clk_prepare_enable_set(void * data,u64 val)3165 static int clk_prepare_enable_set(void *data, u64 val)
3166 {
3167 struct clk_core *core = data;
3168 int ret = 0;
3169
3170 if (val)
3171 ret = clk_prepare_enable(core->hw->clk);
3172 else
3173 clk_disable_unprepare(core->hw->clk);
3174
3175 return ret;
3176 }
3177
clk_prepare_enable_get(void * data,u64 * val)3178 static int clk_prepare_enable_get(void *data, u64 *val)
3179 {
3180 struct clk_core *core = data;
3181
3182 *val = core->enable_count && core->prepare_count;
3183 return 0;
3184 }
3185
3186 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3187 clk_prepare_enable_set, "%llu\n");
3188
3189 #else
3190 #define clk_rate_set NULL
3191 #define clk_rate_mode 0444
3192 #endif
3193
clk_rate_get(void * data,u64 * val)3194 static int clk_rate_get(void *data, u64 *val)
3195 {
3196 struct clk_core *core = data;
3197
3198 *val = core->rate;
3199 return 0;
3200 }
3201
3202 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3203
3204 static const struct {
3205 unsigned long flag;
3206 const char *name;
3207 } clk_flags[] = {
3208 #define ENTRY(f) { f, #f }
3209 ENTRY(CLK_SET_RATE_GATE),
3210 ENTRY(CLK_SET_PARENT_GATE),
3211 ENTRY(CLK_SET_RATE_PARENT),
3212 ENTRY(CLK_IGNORE_UNUSED),
3213 ENTRY(CLK_GET_RATE_NOCACHE),
3214 ENTRY(CLK_SET_RATE_NO_REPARENT),
3215 ENTRY(CLK_GET_ACCURACY_NOCACHE),
3216 ENTRY(CLK_RECALC_NEW_RATES),
3217 ENTRY(CLK_SET_RATE_UNGATE),
3218 ENTRY(CLK_IS_CRITICAL),
3219 ENTRY(CLK_OPS_PARENT_ENABLE),
3220 ENTRY(CLK_DUTY_CYCLE_PARENT),
3221 #undef ENTRY
3222 };
3223
clk_flags_show(struct seq_file * s,void * data)3224 static int clk_flags_show(struct seq_file *s, void *data)
3225 {
3226 struct clk_core *core = s->private;
3227 unsigned long flags = core->flags;
3228 unsigned int i;
3229
3230 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3231 if (flags & clk_flags[i].flag) {
3232 seq_printf(s, "%s\n", clk_flags[i].name);
3233 flags &= ~clk_flags[i].flag;
3234 }
3235 }
3236 if (flags) {
3237 /* Unknown flags */
3238 seq_printf(s, "0x%lx\n", flags);
3239 }
3240
3241 return 0;
3242 }
3243 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3244
possible_parent_show(struct seq_file * s,struct clk_core * core,unsigned int i,char terminator)3245 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3246 unsigned int i, char terminator)
3247 {
3248 struct clk_core *parent;
3249 const char *name = NULL;
3250
3251 /*
3252 * Go through the following options to fetch a parent's name.
3253 *
3254 * 1. Fetch the registered parent clock and use its name
3255 * 2. Use the global (fallback) name if specified
3256 * 3. Use the local fw_name if provided
3257 * 4. Fetch parent clock's clock-output-name if DT index was set
3258 *
3259 * This may still fail in some cases, such as when the parent is
3260 * specified directly via a struct clk_hw pointer, but it isn't
3261 * registered (yet).
3262 */
3263 parent = clk_core_get_parent_by_index(core, i);
3264 if (parent) {
3265 seq_puts(s, parent->name);
3266 } else if (core->parents[i].name) {
3267 seq_puts(s, core->parents[i].name);
3268 } else if (core->parents[i].fw_name) {
3269 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3270 } else {
3271 if (core->parents[i].index >= 0)
3272 name = of_clk_get_parent_name(core->of_node, core->parents[i].index);
3273 if (!name)
3274 name = "(missing)";
3275
3276 seq_puts(s, name);
3277 }
3278
3279 seq_putc(s, terminator);
3280 }
3281
possible_parents_show(struct seq_file * s,void * data)3282 static int possible_parents_show(struct seq_file *s, void *data)
3283 {
3284 struct clk_core *core = s->private;
3285 int i;
3286
3287 for (i = 0; i < core->num_parents - 1; i++)
3288 possible_parent_show(s, core, i, ' ');
3289
3290 possible_parent_show(s, core, i, '\n');
3291
3292 return 0;
3293 }
3294 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3295
current_parent_show(struct seq_file * s,void * data)3296 static int current_parent_show(struct seq_file *s, void *data)
3297 {
3298 struct clk_core *core = s->private;
3299
3300 if (core->parent)
3301 seq_printf(s, "%s\n", core->parent->name);
3302
3303 return 0;
3304 }
3305 DEFINE_SHOW_ATTRIBUTE(current_parent);
3306
clk_duty_cycle_show(struct seq_file * s,void * data)3307 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3308 {
3309 struct clk_core *core = s->private;
3310 struct clk_duty *duty = &core->duty;
3311
3312 seq_printf(s, "%u/%u\n", duty->num, duty->den);
3313
3314 return 0;
3315 }
3316 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3317
clk_min_rate_show(struct seq_file * s,void * data)3318 static int clk_min_rate_show(struct seq_file *s, void *data)
3319 {
3320 struct clk_core *core = s->private;
3321 unsigned long min_rate, max_rate;
3322
3323 clk_prepare_lock();
3324 clk_core_get_boundaries(core, &min_rate, &max_rate);
3325 clk_prepare_unlock();
3326 seq_printf(s, "%lu\n", min_rate);
3327
3328 return 0;
3329 }
3330 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3331
clk_max_rate_show(struct seq_file * s,void * data)3332 static int clk_max_rate_show(struct seq_file *s, void *data)
3333 {
3334 struct clk_core *core = s->private;
3335 unsigned long min_rate, max_rate;
3336
3337 clk_prepare_lock();
3338 clk_core_get_boundaries(core, &min_rate, &max_rate);
3339 clk_prepare_unlock();
3340 seq_printf(s, "%lu\n", max_rate);
3341
3342 return 0;
3343 }
3344 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3345
clk_debug_create_one(struct clk_core * core,struct dentry * pdentry)3346 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3347 {
3348 struct dentry *root;
3349
3350 if (!core || !pdentry)
3351 return;
3352
3353 root = debugfs_create_dir(core->name, pdentry);
3354 core->dentry = root;
3355
3356 debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3357 &clk_rate_fops);
3358 debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3359 debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3360 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3361 debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3362 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3363 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3364 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3365 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3366 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3367 debugfs_create_file("clk_duty_cycle", 0444, root, core,
3368 &clk_duty_cycle_fops);
3369 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3370 debugfs_create_file("clk_prepare_enable", 0644, root, core,
3371 &clk_prepare_enable_fops);
3372 #endif
3373
3374 if (core->num_parents > 0)
3375 debugfs_create_file("clk_parent", 0444, root, core,
3376 ¤t_parent_fops);
3377
3378 if (core->num_parents > 1)
3379 debugfs_create_file("clk_possible_parents", 0444, root, core,
3380 &possible_parents_fops);
3381
3382 if (core->ops->debug_init)
3383 core->ops->debug_init(core->hw, core->dentry);
3384 }
3385
3386 /**
3387 * clk_debug_register - add a clk node to the debugfs clk directory
3388 * @core: the clk being added to the debugfs clk directory
3389 *
3390 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3391 * initialized. Otherwise it bails out early since the debugfs clk directory
3392 * will be created lazily by clk_debug_init as part of a late_initcall.
3393 */
clk_debug_register(struct clk_core * core)3394 static void clk_debug_register(struct clk_core *core)
3395 {
3396 mutex_lock(&clk_debug_lock);
3397 hlist_add_head(&core->debug_node, &clk_debug_list);
3398 if (inited)
3399 clk_debug_create_one(core, rootdir);
3400 mutex_unlock(&clk_debug_lock);
3401 }
3402
3403 /**
3404 * clk_debug_unregister - remove a clk node from the debugfs clk directory
3405 * @core: the clk being removed from the debugfs clk directory
3406 *
3407 * Dynamically removes a clk and all its child nodes from the
3408 * debugfs clk directory if clk->dentry points to debugfs created by
3409 * clk_debug_register in __clk_core_init.
3410 */
clk_debug_unregister(struct clk_core * core)3411 static void clk_debug_unregister(struct clk_core *core)
3412 {
3413 mutex_lock(&clk_debug_lock);
3414 hlist_del_init(&core->debug_node);
3415 debugfs_remove_recursive(core->dentry);
3416 core->dentry = NULL;
3417 mutex_unlock(&clk_debug_lock);
3418 }
3419
3420 /**
3421 * clk_debug_init - lazily populate the debugfs clk directory
3422 *
3423 * clks are often initialized very early during boot before memory can be
3424 * dynamically allocated and well before debugfs is setup. This function
3425 * populates the debugfs clk directory once at boot-time when we know that
3426 * debugfs is setup. It should only be called once at boot-time, all other clks
3427 * added dynamically will be done so with clk_debug_register.
3428 */
clk_debug_init(void)3429 static int __init clk_debug_init(void)
3430 {
3431 struct clk_core *core;
3432
3433 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3434 pr_warn("\n");
3435 pr_warn("********************************************************************\n");
3436 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n");
3437 pr_warn("** **\n");
3438 pr_warn("** WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3439 pr_warn("** **\n");
3440 pr_warn("** This means that this kernel is built to expose clk operations **\n");
3441 pr_warn("** such as parent or rate setting, enabling, disabling, etc. **\n");
3442 pr_warn("** to userspace, which may compromise security on your system. **\n");
3443 pr_warn("** **\n");
3444 pr_warn("** If you see this message and you are not debugging the **\n");
3445 pr_warn("** kernel, report this immediately to your vendor! **\n");
3446 pr_warn("** **\n");
3447 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n");
3448 pr_warn("********************************************************************\n");
3449 #endif
3450
3451 rootdir = debugfs_create_dir("clk", NULL);
3452
3453 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3454 &clk_summary_fops);
3455 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3456 &clk_dump_fops);
3457 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3458 &clk_summary_fops);
3459 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3460 &clk_dump_fops);
3461
3462 mutex_lock(&clk_debug_lock);
3463 hlist_for_each_entry(core, &clk_debug_list, debug_node)
3464 clk_debug_create_one(core, rootdir);
3465
3466 inited = 1;
3467 mutex_unlock(&clk_debug_lock);
3468
3469 return 0;
3470 }
3471 late_initcall(clk_debug_init);
3472 #else
clk_debug_register(struct clk_core * core)3473 static inline void clk_debug_register(struct clk_core *core) { }
clk_debug_unregister(struct clk_core * core)3474 static inline void clk_debug_unregister(struct clk_core *core)
3475 {
3476 }
3477 #endif
3478
clk_core_reparent_orphans_nolock(void)3479 static void clk_core_reparent_orphans_nolock(void)
3480 {
3481 struct clk_core *orphan;
3482 struct hlist_node *tmp2;
3483
3484 /*
3485 * walk the list of orphan clocks and reparent any that newly finds a
3486 * parent.
3487 */
3488 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3489 struct clk_core *parent = __clk_init_parent(orphan);
3490
3491 /*
3492 * We need to use __clk_set_parent_before() and _after() to
3493 * to properly migrate any prepare/enable count of the orphan
3494 * clock. This is important for CLK_IS_CRITICAL clocks, which
3495 * are enabled during init but might not have a parent yet.
3496 */
3497 if (parent) {
3498 /* update the clk tree topology */
3499 __clk_set_parent_before(orphan, parent);
3500 __clk_set_parent_after(orphan, parent, NULL);
3501 __clk_recalc_accuracies(orphan);
3502 __clk_recalc_rates(orphan, 0);
3503 __clk_core_update_orphan_hold_state(orphan);
3504
3505 /*
3506 * __clk_init_parent() will set the initial req_rate to
3507 * 0 if the clock doesn't have clk_ops::recalc_rate and
3508 * is an orphan when it's registered.
3509 *
3510 * 'req_rate' is used by clk_set_rate_range() and
3511 * clk_put() to trigger a clk_set_rate() call whenever
3512 * the boundaries are modified. Let's make sure
3513 * 'req_rate' is set to something non-zero so that
3514 * clk_set_rate_range() doesn't drop the frequency.
3515 */
3516 orphan->req_rate = orphan->rate;
3517 }
3518 }
3519 }
3520
3521 /**
3522 * __clk_core_init - initialize the data structures in a struct clk_core
3523 * @core: clk_core being initialized
3524 *
3525 * Initializes the lists in struct clk_core, queries the hardware for the
3526 * parent and rate and sets them both.
3527 */
__clk_core_init(struct clk_core * core)3528 static int __clk_core_init(struct clk_core *core)
3529 {
3530 int ret;
3531 struct clk_core *parent;
3532 unsigned long rate;
3533 int phase;
3534
3535 if (!core)
3536 return -EINVAL;
3537
3538 clk_prepare_lock();
3539
3540 /*
3541 * Set hw->core after grabbing the prepare_lock to synchronize with
3542 * callers of clk_core_fill_parent_index() where we treat hw->core
3543 * being NULL as the clk not being registered yet. This is crucial so
3544 * that clks aren't parented until their parent is fully registered.
3545 */
3546 core->hw->core = core;
3547
3548 ret = clk_pm_runtime_get(core);
3549 if (ret)
3550 goto unlock;
3551
3552 /* check to see if a clock with this name is already registered */
3553 if (clk_core_lookup(core->name)) {
3554 pr_debug("%s: clk %s already initialized\n",
3555 __func__, core->name);
3556 ret = -EEXIST;
3557 goto out;
3558 }
3559
3560 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */
3561 if (core->ops->set_rate &&
3562 !((core->ops->round_rate || core->ops->determine_rate) &&
3563 core->ops->recalc_rate)) {
3564 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3565 __func__, core->name);
3566 ret = -EINVAL;
3567 goto out;
3568 }
3569
3570 if (core->ops->set_parent && !core->ops->get_parent) {
3571 pr_err("%s: %s must implement .get_parent & .set_parent\n",
3572 __func__, core->name);
3573 ret = -EINVAL;
3574 goto out;
3575 }
3576
3577 if (core->num_parents > 1 && !core->ops->get_parent) {
3578 pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3579 __func__, core->name);
3580 ret = -EINVAL;
3581 goto out;
3582 }
3583
3584 if (core->ops->set_rate_and_parent &&
3585 !(core->ops->set_parent && core->ops->set_rate)) {
3586 pr_err("%s: %s must implement .set_parent & .set_rate\n",
3587 __func__, core->name);
3588 ret = -EINVAL;
3589 goto out;
3590 }
3591
3592 /*
3593 * optional platform-specific magic
3594 *
3595 * The .init callback is not used by any of the basic clock types, but
3596 * exists for weird hardware that must perform initialization magic for
3597 * CCF to get an accurate view of clock for any other callbacks. It may
3598 * also be used needs to perform dynamic allocations. Such allocation
3599 * must be freed in the terminate() callback.
3600 * This callback shall not be used to initialize the parameters state,
3601 * such as rate, parent, etc ...
3602 *
3603 * If it exist, this callback should called before any other callback of
3604 * the clock
3605 */
3606 if (core->ops->init) {
3607 ret = core->ops->init(core->hw);
3608 if (ret)
3609 goto out;
3610 }
3611
3612 parent = core->parent = __clk_init_parent(core);
3613
3614 /*
3615 * Populate core->parent if parent has already been clk_core_init'd. If
3616 * parent has not yet been clk_core_init'd then place clk in the orphan
3617 * list. If clk doesn't have any parents then place it in the root
3618 * clk list.
3619 *
3620 * Every time a new clk is clk_init'd then we walk the list of orphan
3621 * clocks and re-parent any that are children of the clock currently
3622 * being clk_init'd.
3623 */
3624 if (parent) {
3625 hlist_add_head(&core->child_node, &parent->children);
3626 core->orphan = parent->orphan;
3627 } else if (!core->num_parents) {
3628 hlist_add_head(&core->child_node, &clk_root_list);
3629 core->orphan = false;
3630 } else {
3631 hlist_add_head(&core->child_node, &clk_orphan_list);
3632 core->orphan = true;
3633 }
3634
3635 /*
3636 * Set clk's accuracy. The preferred method is to use
3637 * .recalc_accuracy. For simple clocks and lazy developers the default
3638 * fallback is to use the parent's accuracy. If a clock doesn't have a
3639 * parent (or is orphaned) then accuracy is set to zero (perfect
3640 * clock).
3641 */
3642 if (core->ops->recalc_accuracy)
3643 core->accuracy = core->ops->recalc_accuracy(core->hw,
3644 clk_core_get_accuracy_no_lock(parent));
3645 else if (parent)
3646 core->accuracy = parent->accuracy;
3647 else
3648 core->accuracy = 0;
3649
3650 /*
3651 * Set clk's phase by clk_core_get_phase() caching the phase.
3652 * Since a phase is by definition relative to its parent, just
3653 * query the current clock phase, or just assume it's in phase.
3654 */
3655 phase = clk_core_get_phase(core);
3656 if (phase < 0) {
3657 ret = phase;
3658 pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3659 core->name);
3660 goto out;
3661 }
3662
3663 /*
3664 * Set clk's duty cycle.
3665 */
3666 clk_core_update_duty_cycle_nolock(core);
3667
3668 /*
3669 * Set clk's rate. The preferred method is to use .recalc_rate. For
3670 * simple clocks and lazy developers the default fallback is to use the
3671 * parent's rate. If a clock doesn't have a parent (or is orphaned)
3672 * then rate is set to zero.
3673 */
3674 if (core->ops->recalc_rate)
3675 rate = core->ops->recalc_rate(core->hw,
3676 clk_core_get_rate_nolock(parent));
3677 else if (parent)
3678 rate = parent->rate;
3679 else
3680 rate = 0;
3681 core->rate = core->req_rate = rate;
3682
3683 core->boot_enabled = clk_core_is_enabled(core);
3684
3685 /*
3686 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3687 * don't get accidentally disabled when walking the orphan tree and
3688 * reparenting clocks
3689 */
3690 if (core->flags & CLK_IS_CRITICAL) {
3691 unsigned long flags;
3692
3693 ret = clk_core_prepare(core);
3694 if (ret) {
3695 pr_warn("%s: critical clk '%s' failed to prepare\n",
3696 __func__, core->name);
3697 goto out;
3698 }
3699
3700 flags = clk_enable_lock();
3701 ret = clk_core_enable(core);
3702 clk_enable_unlock(flags);
3703 if (ret) {
3704 pr_warn("%s: critical clk '%s' failed to enable\n",
3705 __func__, core->name);
3706 clk_core_unprepare(core);
3707 goto out;
3708 }
3709 }
3710
3711 clk_core_hold_state(core);
3712 clk_core_reparent_orphans_nolock();
3713
3714
3715 kref_init(&core->ref);
3716 out:
3717 clk_pm_runtime_put(core);
3718 unlock:
3719 if (ret) {
3720 hlist_del_init(&core->child_node);
3721 core->hw->core = NULL;
3722 }
3723
3724 clk_prepare_unlock();
3725
3726 if (!ret)
3727 clk_debug_register(core);
3728
3729 return ret;
3730 }
3731
3732 /**
3733 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3734 * @core: clk to add consumer to
3735 * @clk: consumer to link to a clk
3736 */
clk_core_link_consumer(struct clk_core * core,struct clk * clk)3737 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3738 {
3739 clk_prepare_lock();
3740 hlist_add_head(&clk->clks_node, &core->clks);
3741 clk_prepare_unlock();
3742 }
3743
3744 /**
3745 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3746 * @clk: consumer to unlink
3747 */
clk_core_unlink_consumer(struct clk * clk)3748 static void clk_core_unlink_consumer(struct clk *clk)
3749 {
3750 lockdep_assert_held(&prepare_lock);
3751 hlist_del(&clk->clks_node);
3752 }
3753
3754 /**
3755 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3756 * @core: clk to allocate a consumer for
3757 * @dev_id: string describing device name
3758 * @con_id: connection ID string on device
3759 *
3760 * Returns: clk consumer left unlinked from the consumer list
3761 */
alloc_clk(struct clk_core * core,const char * dev_id,const char * con_id)3762 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3763 const char *con_id)
3764 {
3765 struct clk *clk;
3766
3767 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3768 if (!clk)
3769 return ERR_PTR(-ENOMEM);
3770
3771 clk->core = core;
3772 clk->dev_id = dev_id;
3773 clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3774 clk->max_rate = ULONG_MAX;
3775
3776 return clk;
3777 }
3778
3779 /**
3780 * free_clk - Free a clk consumer
3781 * @clk: clk consumer to free
3782 *
3783 * Note, this assumes the clk has been unlinked from the clk_core consumer
3784 * list.
3785 */
free_clk(struct clk * clk)3786 static void free_clk(struct clk *clk)
3787 {
3788 kfree_const(clk->con_id);
3789 kfree(clk);
3790 }
3791
3792 /**
3793 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3794 * a clk_hw
3795 * @dev: clk consumer device
3796 * @hw: clk_hw associated with the clk being consumed
3797 * @dev_id: string describing device name
3798 * @con_id: connection ID string on device
3799 *
3800 * This is the main function used to create a clk pointer for use by clk
3801 * consumers. It connects a consumer to the clk_core and clk_hw structures
3802 * used by the framework and clk provider respectively.
3803 */
clk_hw_create_clk(struct device * dev,struct clk_hw * hw,const char * dev_id,const char * con_id)3804 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3805 const char *dev_id, const char *con_id)
3806 {
3807 struct clk *clk;
3808 struct clk_core *core;
3809
3810 /* This is to allow this function to be chained to others */
3811 if (IS_ERR_OR_NULL(hw))
3812 return ERR_CAST(hw);
3813
3814 core = hw->core;
3815 clk = alloc_clk(core, dev_id, con_id);
3816 if (IS_ERR(clk))
3817 return clk;
3818 clk->dev = dev;
3819
3820 if (!try_module_get(core->owner)) {
3821 free_clk(clk);
3822 return ERR_PTR(-ENOENT);
3823 }
3824
3825 kref_get(&core->ref);
3826 clk_core_link_consumer(core, clk);
3827
3828 return clk;
3829 }
3830
3831 /**
3832 * clk_hw_get_clk - get clk consumer given an clk_hw
3833 * @hw: clk_hw associated with the clk being consumed
3834 * @con_id: connection ID string on device
3835 *
3836 * Returns: new clk consumer
3837 * This is the function to be used by providers which need
3838 * to get a consumer clk and act on the clock element
3839 * Calls to this function must be balanced with calls clk_put()
3840 */
clk_hw_get_clk(struct clk_hw * hw,const char * con_id)3841 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
3842 {
3843 struct device *dev = hw->core->dev;
3844 const char *name = dev ? dev_name(dev) : NULL;
3845
3846 return clk_hw_create_clk(dev, hw, name, con_id);
3847 }
3848 EXPORT_SYMBOL(clk_hw_get_clk);
3849
clk_cpy_name(const char ** dst_p,const char * src,bool must_exist)3850 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3851 {
3852 const char *dst;
3853
3854 if (!src) {
3855 if (must_exist)
3856 return -EINVAL;
3857 return 0;
3858 }
3859
3860 *dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3861 if (!dst)
3862 return -ENOMEM;
3863
3864 return 0;
3865 }
3866
clk_core_populate_parent_map(struct clk_core * core,const struct clk_init_data * init)3867 static int clk_core_populate_parent_map(struct clk_core *core,
3868 const struct clk_init_data *init)
3869 {
3870 u8 num_parents = init->num_parents;
3871 const char * const *parent_names = init->parent_names;
3872 const struct clk_hw **parent_hws = init->parent_hws;
3873 const struct clk_parent_data *parent_data = init->parent_data;
3874 int i, ret = 0;
3875 struct clk_parent_map *parents, *parent;
3876
3877 if (!num_parents)
3878 return 0;
3879
3880 /*
3881 * Avoid unnecessary string look-ups of clk_core's possible parents by
3882 * having a cache of names/clk_hw pointers to clk_core pointers.
3883 */
3884 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
3885 core->parents = parents;
3886 if (!parents)
3887 return -ENOMEM;
3888
3889 /* Copy everything over because it might be __initdata */
3890 for (i = 0, parent = parents; i < num_parents; i++, parent++) {
3891 parent->index = -1;
3892 if (parent_names) {
3893 /* throw a WARN if any entries are NULL */
3894 WARN(!parent_names[i],
3895 "%s: invalid NULL in %s's .parent_names\n",
3896 __func__, core->name);
3897 ret = clk_cpy_name(&parent->name, parent_names[i],
3898 true);
3899 } else if (parent_data) {
3900 parent->hw = parent_data[i].hw;
3901 parent->index = parent_data[i].index;
3902 ret = clk_cpy_name(&parent->fw_name,
3903 parent_data[i].fw_name, false);
3904 if (!ret)
3905 ret = clk_cpy_name(&parent->name,
3906 parent_data[i].name,
3907 false);
3908 } else if (parent_hws) {
3909 parent->hw = parent_hws[i];
3910 } else {
3911 ret = -EINVAL;
3912 WARN(1, "Must specify parents if num_parents > 0\n");
3913 }
3914
3915 if (ret) {
3916 do {
3917 kfree_const(parents[i].name);
3918 kfree_const(parents[i].fw_name);
3919 } while (--i >= 0);
3920 kfree(parents);
3921
3922 return ret;
3923 }
3924 }
3925
3926 return 0;
3927 }
3928
clk_core_free_parent_map(struct clk_core * core)3929 static void clk_core_free_parent_map(struct clk_core *core)
3930 {
3931 int i = core->num_parents;
3932
3933 if (!core->num_parents)
3934 return;
3935
3936 while (--i >= 0) {
3937 kfree_const(core->parents[i].name);
3938 kfree_const(core->parents[i].fw_name);
3939 }
3940
3941 kfree(core->parents);
3942 }
3943
3944 static struct clk *
__clk_register(struct device * dev,struct device_node * np,struct clk_hw * hw)3945 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
3946 {
3947 int ret;
3948 struct clk_core *core;
3949 const struct clk_init_data *init = hw->init;
3950
3951 /*
3952 * The init data is not supposed to be used outside of registration path.
3953 * Set it to NULL so that provider drivers can't use it either and so that
3954 * we catch use of hw->init early on in the core.
3955 */
3956 hw->init = NULL;
3957
3958 core = kzalloc(sizeof(*core), GFP_KERNEL);
3959 if (!core) {
3960 ret = -ENOMEM;
3961 goto fail_out;
3962 }
3963
3964 core->name = kstrdup_const(init->name, GFP_KERNEL);
3965 if (!core->name) {
3966 ret = -ENOMEM;
3967 goto fail_name;
3968 }
3969
3970 if (WARN_ON(!init->ops)) {
3971 ret = -EINVAL;
3972 goto fail_ops;
3973 }
3974 core->ops = init->ops;
3975
3976 if (dev && pm_runtime_enabled(dev))
3977 core->rpm_enabled = true;
3978 core->dev = dev;
3979 core->of_node = np;
3980 if (dev && dev->driver)
3981 core->owner = dev->driver->owner;
3982 core->hw = hw;
3983 core->flags = init->flags;
3984 core->num_parents = init->num_parents;
3985 core->min_rate = 0;
3986 core->max_rate = ULONG_MAX;
3987
3988 ret = clk_core_populate_parent_map(core, init);
3989 if (ret)
3990 goto fail_parents;
3991
3992 INIT_HLIST_HEAD(&core->clks);
3993
3994 /*
3995 * Don't call clk_hw_create_clk() here because that would pin the
3996 * provider module to itself and prevent it from ever being removed.
3997 */
3998 hw->clk = alloc_clk(core, NULL, NULL);
3999 if (IS_ERR(hw->clk)) {
4000 ret = PTR_ERR(hw->clk);
4001 goto fail_create_clk;
4002 }
4003
4004 clk_core_link_consumer(core, hw->clk);
4005
4006 ret = __clk_core_init(core);
4007 if (!ret)
4008 return hw->clk;
4009
4010 clk_prepare_lock();
4011 clk_core_unlink_consumer(hw->clk);
4012 clk_prepare_unlock();
4013
4014 free_clk(hw->clk);
4015 hw->clk = NULL;
4016
4017 fail_create_clk:
4018 clk_core_free_parent_map(core);
4019 fail_parents:
4020 fail_ops:
4021 kfree_const(core->name);
4022 fail_name:
4023 kfree(core);
4024 fail_out:
4025 return ERR_PTR(ret);
4026 }
4027
4028 /**
4029 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4030 * @dev: Device to get device node of
4031 *
4032 * Return: device node pointer of @dev, or the device node pointer of
4033 * @dev->parent if dev doesn't have a device node, or NULL if neither
4034 * @dev or @dev->parent have a device node.
4035 */
dev_or_parent_of_node(struct device * dev)4036 static struct device_node *dev_or_parent_of_node(struct device *dev)
4037 {
4038 struct device_node *np;
4039
4040 if (!dev)
4041 return NULL;
4042
4043 np = dev_of_node(dev);
4044 if (!np)
4045 np = dev_of_node(dev->parent);
4046
4047 return np;
4048 }
4049
4050 /**
4051 * clk_register - allocate a new clock, register it and return an opaque cookie
4052 * @dev: device that is registering this clock
4053 * @hw: link to hardware-specific clock data
4054 *
4055 * clk_register is the *deprecated* interface for populating the clock tree with
4056 * new clock nodes. Use clk_hw_register() instead.
4057 *
4058 * Returns: a pointer to the newly allocated struct clk which
4059 * cannot be dereferenced by driver code but may be used in conjunction with the
4060 * rest of the clock API. In the event of an error clk_register will return an
4061 * error code; drivers must test for an error code after calling clk_register.
4062 */
clk_register(struct device * dev,struct clk_hw * hw)4063 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4064 {
4065 return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4066 }
4067 EXPORT_SYMBOL_GPL(clk_register);
4068
4069 /**
4070 * clk_hw_register - register a clk_hw and return an error code
4071 * @dev: device that is registering this clock
4072 * @hw: link to hardware-specific clock data
4073 *
4074 * clk_hw_register is the primary interface for populating the clock tree with
4075 * new clock nodes. It returns an integer equal to zero indicating success or
4076 * less than zero indicating failure. Drivers must test for an error code after
4077 * calling clk_hw_register().
4078 */
clk_hw_register(struct device * dev,struct clk_hw * hw)4079 int clk_hw_register(struct device *dev, struct clk_hw *hw)
4080 {
4081 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4082 hw));
4083 }
4084 EXPORT_SYMBOL_GPL(clk_hw_register);
4085
4086 /*
4087 * of_clk_hw_register - register a clk_hw and return an error code
4088 * @node: device_node of device that is registering this clock
4089 * @hw: link to hardware-specific clock data
4090 *
4091 * of_clk_hw_register() is the primary interface for populating the clock tree
4092 * with new clock nodes when a struct device is not available, but a struct
4093 * device_node is. It returns an integer equal to zero indicating success or
4094 * less than zero indicating failure. Drivers must test for an error code after
4095 * calling of_clk_hw_register().
4096 */
of_clk_hw_register(struct device_node * node,struct clk_hw * hw)4097 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4098 {
4099 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4100 }
4101 EXPORT_SYMBOL_GPL(of_clk_hw_register);
4102
4103 /* Free memory allocated for a clock. */
__clk_release(struct kref * ref)4104 static void __clk_release(struct kref *ref)
4105 {
4106 struct clk_core *core = container_of(ref, struct clk_core, ref);
4107
4108 lockdep_assert_held(&prepare_lock);
4109
4110 clk_core_free_parent_map(core);
4111 kfree_const(core->name);
4112 kfree(core);
4113 }
4114
4115 /*
4116 * Empty clk_ops for unregistered clocks. These are used temporarily
4117 * after clk_unregister() was called on a clock and until last clock
4118 * consumer calls clk_put() and the struct clk object is freed.
4119 */
clk_nodrv_prepare_enable(struct clk_hw * hw)4120 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4121 {
4122 return -ENXIO;
4123 }
4124
clk_nodrv_disable_unprepare(struct clk_hw * hw)4125 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4126 {
4127 WARN_ON_ONCE(1);
4128 }
4129
clk_nodrv_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)4130 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4131 unsigned long parent_rate)
4132 {
4133 return -ENXIO;
4134 }
4135
clk_nodrv_set_parent(struct clk_hw * hw,u8 index)4136 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4137 {
4138 return -ENXIO;
4139 }
4140
4141 static const struct clk_ops clk_nodrv_ops = {
4142 .enable = clk_nodrv_prepare_enable,
4143 .disable = clk_nodrv_disable_unprepare,
4144 .prepare = clk_nodrv_prepare_enable,
4145 .unprepare = clk_nodrv_disable_unprepare,
4146 .set_rate = clk_nodrv_set_rate,
4147 .set_parent = clk_nodrv_set_parent,
4148 };
4149
clk_core_evict_parent_cache_subtree(struct clk_core * root,struct clk_core * target)4150 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4151 struct clk_core *target)
4152 {
4153 int i;
4154 struct clk_core *child;
4155
4156 for (i = 0; i < root->num_parents; i++)
4157 if (root->parents[i].core == target)
4158 root->parents[i].core = NULL;
4159
4160 hlist_for_each_entry(child, &root->children, child_node)
4161 clk_core_evict_parent_cache_subtree(child, target);
4162 }
4163
4164 /* Remove this clk from all parent caches */
clk_core_evict_parent_cache(struct clk_core * core)4165 static void clk_core_evict_parent_cache(struct clk_core *core)
4166 {
4167 struct hlist_head **lists;
4168 struct clk_core *root;
4169
4170 lockdep_assert_held(&prepare_lock);
4171
4172 for (lists = all_lists; *lists; lists++)
4173 hlist_for_each_entry(root, *lists, child_node)
4174 clk_core_evict_parent_cache_subtree(root, core);
4175
4176 }
4177
4178 /**
4179 * clk_unregister - unregister a currently registered clock
4180 * @clk: clock to unregister
4181 */
clk_unregister(struct clk * clk)4182 void clk_unregister(struct clk *clk)
4183 {
4184 unsigned long flags;
4185 const struct clk_ops *ops;
4186
4187 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4188 return;
4189
4190 clk_debug_unregister(clk->core);
4191
4192 clk_prepare_lock();
4193
4194 ops = clk->core->ops;
4195 if (ops == &clk_nodrv_ops) {
4196 pr_err("%s: unregistered clock: %s\n", __func__,
4197 clk->core->name);
4198 goto unlock;
4199 }
4200 /*
4201 * Assign empty clock ops for consumers that might still hold
4202 * a reference to this clock.
4203 */
4204 flags = clk_enable_lock();
4205 clk->core->ops = &clk_nodrv_ops;
4206 clk_enable_unlock(flags);
4207
4208 if (ops->terminate)
4209 ops->terminate(clk->core->hw);
4210
4211 if (!hlist_empty(&clk->core->children)) {
4212 struct clk_core *child;
4213 struct hlist_node *t;
4214
4215 /* Reparent all children to the orphan list. */
4216 hlist_for_each_entry_safe(child, t, &clk->core->children,
4217 child_node)
4218 clk_core_set_parent_nolock(child, NULL);
4219 }
4220
4221 clk_core_evict_parent_cache(clk->core);
4222
4223 hlist_del_init(&clk->core->child_node);
4224
4225 if (clk->core->prepare_count)
4226 pr_warn("%s: unregistering prepared clock: %s\n",
4227 __func__, clk->core->name);
4228
4229 if (clk->core->protect_count)
4230 pr_warn("%s: unregistering protected clock: %s\n",
4231 __func__, clk->core->name);
4232
4233 kref_put(&clk->core->ref, __clk_release);
4234 free_clk(clk);
4235 unlock:
4236 clk_prepare_unlock();
4237 }
4238 EXPORT_SYMBOL_GPL(clk_unregister);
4239
4240 /**
4241 * clk_hw_unregister - unregister a currently registered clk_hw
4242 * @hw: hardware-specific clock data to unregister
4243 */
clk_hw_unregister(struct clk_hw * hw)4244 void clk_hw_unregister(struct clk_hw *hw)
4245 {
4246 clk_unregister(hw->clk);
4247 }
4248 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4249
devm_clk_unregister_cb(struct device * dev,void * res)4250 static void devm_clk_unregister_cb(struct device *dev, void *res)
4251 {
4252 clk_unregister(*(struct clk **)res);
4253 }
4254
devm_clk_hw_unregister_cb(struct device * dev,void * res)4255 static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4256 {
4257 clk_hw_unregister(*(struct clk_hw **)res);
4258 }
4259
4260 /**
4261 * devm_clk_register - resource managed clk_register()
4262 * @dev: device that is registering this clock
4263 * @hw: link to hardware-specific clock data
4264 *
4265 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4266 *
4267 * Clocks returned from this function are automatically clk_unregister()ed on
4268 * driver detach. See clk_register() for more information.
4269 */
devm_clk_register(struct device * dev,struct clk_hw * hw)4270 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4271 {
4272 struct clk *clk;
4273 struct clk **clkp;
4274
4275 clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4276 if (!clkp)
4277 return ERR_PTR(-ENOMEM);
4278
4279 clk = clk_register(dev, hw);
4280 if (!IS_ERR(clk)) {
4281 *clkp = clk;
4282 devres_add(dev, clkp);
4283 } else {
4284 devres_free(clkp);
4285 }
4286
4287 return clk;
4288 }
4289 EXPORT_SYMBOL_GPL(devm_clk_register);
4290
4291 /**
4292 * devm_clk_hw_register - resource managed clk_hw_register()
4293 * @dev: device that is registering this clock
4294 * @hw: link to hardware-specific clock data
4295 *
4296 * Managed clk_hw_register(). Clocks registered by this function are
4297 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4298 * for more information.
4299 */
devm_clk_hw_register(struct device * dev,struct clk_hw * hw)4300 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4301 {
4302 struct clk_hw **hwp;
4303 int ret;
4304
4305 hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4306 if (!hwp)
4307 return -ENOMEM;
4308
4309 ret = clk_hw_register(dev, hw);
4310 if (!ret) {
4311 *hwp = hw;
4312 devres_add(dev, hwp);
4313 } else {
4314 devres_free(hwp);
4315 }
4316
4317 return ret;
4318 }
4319 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4320
devm_clk_match(struct device * dev,void * res,void * data)4321 static int devm_clk_match(struct device *dev, void *res, void *data)
4322 {
4323 struct clk *c = res;
4324 if (WARN_ON(!c))
4325 return 0;
4326 return c == data;
4327 }
4328
devm_clk_hw_match(struct device * dev,void * res,void * data)4329 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
4330 {
4331 struct clk_hw *hw = res;
4332
4333 if (WARN_ON(!hw))
4334 return 0;
4335 return hw == data;
4336 }
4337
4338 /**
4339 * devm_clk_unregister - resource managed clk_unregister()
4340 * @dev: device that is unregistering the clock data
4341 * @clk: clock to unregister
4342 *
4343 * Deallocate a clock allocated with devm_clk_register(). Normally
4344 * this function will not need to be called and the resource management
4345 * code will ensure that the resource is freed.
4346 */
devm_clk_unregister(struct device * dev,struct clk * clk)4347 void devm_clk_unregister(struct device *dev, struct clk *clk)
4348 {
4349 WARN_ON(devres_release(dev, devm_clk_unregister_cb, devm_clk_match, clk));
4350 }
4351 EXPORT_SYMBOL_GPL(devm_clk_unregister);
4352
4353 /**
4354 * devm_clk_hw_unregister - resource managed clk_hw_unregister()
4355 * @dev: device that is unregistering the hardware-specific clock data
4356 * @hw: link to hardware-specific clock data
4357 *
4358 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
4359 * this function will not need to be called and the resource management
4360 * code will ensure that the resource is freed.
4361 */
devm_clk_hw_unregister(struct device * dev,struct clk_hw * hw)4362 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
4363 {
4364 WARN_ON(devres_release(dev, devm_clk_hw_unregister_cb, devm_clk_hw_match,
4365 hw));
4366 }
4367 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
4368
devm_clk_release(struct device * dev,void * res)4369 static void devm_clk_release(struct device *dev, void *res)
4370 {
4371 clk_put(*(struct clk **)res);
4372 }
4373
4374 /**
4375 * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4376 * @dev: device that is registering this clock
4377 * @hw: clk_hw associated with the clk being consumed
4378 * @con_id: connection ID string on device
4379 *
4380 * Managed clk_hw_get_clk(). Clocks got with this function are
4381 * automatically clk_put() on driver detach. See clk_put()
4382 * for more information.
4383 */
devm_clk_hw_get_clk(struct device * dev,struct clk_hw * hw,const char * con_id)4384 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4385 const char *con_id)
4386 {
4387 struct clk *clk;
4388 struct clk **clkp;
4389
4390 /* This should not happen because it would mean we have drivers
4391 * passing around clk_hw pointers instead of having the caller use
4392 * proper clk_get() style APIs
4393 */
4394 WARN_ON_ONCE(dev != hw->core->dev);
4395
4396 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4397 if (!clkp)
4398 return ERR_PTR(-ENOMEM);
4399
4400 clk = clk_hw_get_clk(hw, con_id);
4401 if (!IS_ERR(clk)) {
4402 *clkp = clk;
4403 devres_add(dev, clkp);
4404 } else {
4405 devres_free(clkp);
4406 }
4407
4408 return clk;
4409 }
4410 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4411
4412 /*
4413 * clkdev helpers
4414 */
4415
__clk_put(struct clk * clk)4416 void __clk_put(struct clk *clk)
4417 {
4418 struct module *owner;
4419
4420 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4421 return;
4422
4423 clk_prepare_lock();
4424
4425 /*
4426 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4427 * given user should be balanced with calls to clk_rate_exclusive_put()
4428 * and by that same consumer
4429 */
4430 if (WARN_ON(clk->exclusive_count)) {
4431 /* We voiced our concern, let's sanitize the situation */
4432 clk->core->protect_count -= (clk->exclusive_count - 1);
4433 clk_core_rate_unprotect(clk->core);
4434 clk->exclusive_count = 0;
4435 }
4436
4437 hlist_del(&clk->clks_node);
4438 if (clk->min_rate > clk->core->req_rate ||
4439 clk->max_rate < clk->core->req_rate)
4440 clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
4441
4442 owner = clk->core->owner;
4443 kref_put(&clk->core->ref, __clk_release);
4444
4445 clk_prepare_unlock();
4446
4447 module_put(owner);
4448
4449 free_clk(clk);
4450 }
4451
4452 /*** clk rate change notifiers ***/
4453
4454 /**
4455 * clk_notifier_register - add a clk rate change notifier
4456 * @clk: struct clk * to watch
4457 * @nb: struct notifier_block * with callback info
4458 *
4459 * Request notification when clk's rate changes. This uses an SRCU
4460 * notifier because we want it to block and notifier unregistrations are
4461 * uncommon. The callbacks associated with the notifier must not
4462 * re-enter into the clk framework by calling any top-level clk APIs;
4463 * this will cause a nested prepare_lock mutex.
4464 *
4465 * In all notification cases (pre, post and abort rate change) the original
4466 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4467 * and the new frequency is passed via struct clk_notifier_data.new_rate.
4468 *
4469 * clk_notifier_register() must be called from non-atomic context.
4470 * Returns -EINVAL if called with null arguments, -ENOMEM upon
4471 * allocation failure; otherwise, passes along the return value of
4472 * srcu_notifier_chain_register().
4473 */
clk_notifier_register(struct clk * clk,struct notifier_block * nb)4474 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4475 {
4476 struct clk_notifier *cn;
4477 int ret = -ENOMEM;
4478
4479 if (!clk || !nb)
4480 return -EINVAL;
4481
4482 clk_prepare_lock();
4483
4484 /* search the list of notifiers for this clk */
4485 list_for_each_entry(cn, &clk_notifier_list, node)
4486 if (cn->clk == clk)
4487 goto found;
4488
4489 /* if clk wasn't in the notifier list, allocate new clk_notifier */
4490 cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4491 if (!cn)
4492 goto out;
4493
4494 cn->clk = clk;
4495 srcu_init_notifier_head(&cn->notifier_head);
4496
4497 list_add(&cn->node, &clk_notifier_list);
4498
4499 found:
4500 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4501
4502 clk->core->notifier_count++;
4503
4504 out:
4505 clk_prepare_unlock();
4506
4507 return ret;
4508 }
4509 EXPORT_SYMBOL_GPL(clk_notifier_register);
4510
4511 /**
4512 * clk_notifier_unregister - remove a clk rate change notifier
4513 * @clk: struct clk *
4514 * @nb: struct notifier_block * with callback info
4515 *
4516 * Request no further notification for changes to 'clk' and frees memory
4517 * allocated in clk_notifier_register.
4518 *
4519 * Returns -EINVAL if called with null arguments; otherwise, passes
4520 * along the return value of srcu_notifier_chain_unregister().
4521 */
clk_notifier_unregister(struct clk * clk,struct notifier_block * nb)4522 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4523 {
4524 struct clk_notifier *cn;
4525 int ret = -ENOENT;
4526
4527 if (!clk || !nb)
4528 return -EINVAL;
4529
4530 clk_prepare_lock();
4531
4532 list_for_each_entry(cn, &clk_notifier_list, node) {
4533 if (cn->clk == clk) {
4534 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4535
4536 clk->core->notifier_count--;
4537
4538 /* XXX the notifier code should handle this better */
4539 if (!cn->notifier_head.head) {
4540 srcu_cleanup_notifier_head(&cn->notifier_head);
4541 list_del(&cn->node);
4542 kfree(cn);
4543 }
4544 break;
4545 }
4546 }
4547
4548 clk_prepare_unlock();
4549
4550 return ret;
4551 }
4552 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4553
4554 struct clk_notifier_devres {
4555 struct clk *clk;
4556 struct notifier_block *nb;
4557 };
4558
devm_clk_notifier_release(struct device * dev,void * res)4559 static void devm_clk_notifier_release(struct device *dev, void *res)
4560 {
4561 struct clk_notifier_devres *devres = res;
4562
4563 clk_notifier_unregister(devres->clk, devres->nb);
4564 }
4565
devm_clk_notifier_register(struct device * dev,struct clk * clk,struct notifier_block * nb)4566 int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4567 struct notifier_block *nb)
4568 {
4569 struct clk_notifier_devres *devres;
4570 int ret;
4571
4572 devres = devres_alloc(devm_clk_notifier_release,
4573 sizeof(*devres), GFP_KERNEL);
4574
4575 if (!devres)
4576 return -ENOMEM;
4577
4578 ret = clk_notifier_register(clk, nb);
4579 if (!ret) {
4580 devres->clk = clk;
4581 devres->nb = nb;
4582 devres_add(dev, devres);
4583 } else {
4584 devres_free(devres);
4585 }
4586
4587 return ret;
4588 }
4589 EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4590
4591 #ifdef CONFIG_OF
clk_core_reparent_orphans(void)4592 static void clk_core_reparent_orphans(void)
4593 {
4594 clk_prepare_lock();
4595 clk_core_reparent_orphans_nolock();
4596 clk_prepare_unlock();
4597 }
4598
4599 /**
4600 * struct of_clk_provider - Clock provider registration structure
4601 * @link: Entry in global list of clock providers
4602 * @node: Pointer to device tree node of clock provider
4603 * @get: Get clock callback. Returns NULL or a struct clk for the
4604 * given clock specifier
4605 * @get_hw: Get clk_hw callback. Returns NULL, ERR_PTR or a
4606 * struct clk_hw for the given clock specifier
4607 * @data: context pointer to be passed into @get callback
4608 */
4609 struct of_clk_provider {
4610 struct list_head link;
4611
4612 struct device_node *node;
4613 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4614 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4615 void *data;
4616 };
4617
4618 extern struct of_device_id __clk_of_table;
4619 static const struct of_device_id __clk_of_table_sentinel
4620 __used __section("__clk_of_table_end");
4621
4622 static LIST_HEAD(of_clk_providers);
4623 static DEFINE_MUTEX(of_clk_mutex);
4624
of_clk_src_simple_get(struct of_phandle_args * clkspec,void * data)4625 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4626 void *data)
4627 {
4628 return data;
4629 }
4630 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4631
of_clk_hw_simple_get(struct of_phandle_args * clkspec,void * data)4632 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4633 {
4634 return data;
4635 }
4636 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4637
of_clk_src_onecell_get(struct of_phandle_args * clkspec,void * data)4638 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4639 {
4640 struct clk_onecell_data *clk_data = data;
4641 unsigned int idx = clkspec->args[0];
4642
4643 if (idx >= clk_data->clk_num) {
4644 pr_err("%s: invalid clock index %u\n", __func__, idx);
4645 return ERR_PTR(-EINVAL);
4646 }
4647
4648 return clk_data->clks[idx];
4649 }
4650 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4651
4652 struct clk_hw *
of_clk_hw_onecell_get(struct of_phandle_args * clkspec,void * data)4653 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4654 {
4655 struct clk_hw_onecell_data *hw_data = data;
4656 unsigned int idx = clkspec->args[0];
4657
4658 if (idx >= hw_data->num) {
4659 pr_err("%s: invalid index %u\n", __func__, idx);
4660 return ERR_PTR(-EINVAL);
4661 }
4662
4663 return hw_data->hws[idx];
4664 }
4665 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4666
4667 /**
4668 * of_clk_add_provider() - Register a clock provider for a node
4669 * @np: Device node pointer associated with clock provider
4670 * @clk_src_get: callback for decoding clock
4671 * @data: context pointer for @clk_src_get callback.
4672 *
4673 * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4674 */
of_clk_add_provider(struct device_node * np,struct clk * (* clk_src_get)(struct of_phandle_args * clkspec,void * data),void * data)4675 int of_clk_add_provider(struct device_node *np,
4676 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4677 void *data),
4678 void *data)
4679 {
4680 struct of_clk_provider *cp;
4681 int ret;
4682
4683 if (!np)
4684 return 0;
4685
4686 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4687 if (!cp)
4688 return -ENOMEM;
4689
4690 cp->node = of_node_get(np);
4691 cp->data = data;
4692 cp->get = clk_src_get;
4693
4694 mutex_lock(&of_clk_mutex);
4695 list_add(&cp->link, &of_clk_providers);
4696 mutex_unlock(&of_clk_mutex);
4697 pr_debug("Added clock from %pOF\n", np);
4698
4699 clk_core_reparent_orphans();
4700
4701 ret = of_clk_set_defaults(np, true);
4702 if (ret < 0)
4703 of_clk_del_provider(np);
4704
4705 fwnode_dev_initialized(&np->fwnode, true);
4706
4707 return ret;
4708 }
4709 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4710
4711 /**
4712 * of_clk_add_hw_provider() - Register a clock provider for a node
4713 * @np: Device node pointer associated with clock provider
4714 * @get: callback for decoding clk_hw
4715 * @data: context pointer for @get callback.
4716 */
of_clk_add_hw_provider(struct device_node * np,struct clk_hw * (* get)(struct of_phandle_args * clkspec,void * data),void * data)4717 int of_clk_add_hw_provider(struct device_node *np,
4718 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4719 void *data),
4720 void *data)
4721 {
4722 struct of_clk_provider *cp;
4723 int ret;
4724
4725 if (!np)
4726 return 0;
4727
4728 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4729 if (!cp)
4730 return -ENOMEM;
4731
4732 cp->node = of_node_get(np);
4733 cp->data = data;
4734 cp->get_hw = get;
4735
4736 mutex_lock(&of_clk_mutex);
4737 list_add(&cp->link, &of_clk_providers);
4738 mutex_unlock(&of_clk_mutex);
4739 pr_debug("Added clk_hw provider from %pOF\n", np);
4740
4741 clk_core_reparent_orphans();
4742
4743 ret = of_clk_set_defaults(np, true);
4744 if (ret < 0)
4745 of_clk_del_provider(np);
4746
4747 return ret;
4748 }
4749 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4750
devm_of_clk_release_provider(struct device * dev,void * res)4751 static void devm_of_clk_release_provider(struct device *dev, void *res)
4752 {
4753 of_clk_del_provider(*(struct device_node **)res);
4754 }
4755
4756 /*
4757 * We allow a child device to use its parent device as the clock provider node
4758 * for cases like MFD sub-devices where the child device driver wants to use
4759 * devm_*() APIs but not list the device in DT as a sub-node.
4760 */
get_clk_provider_node(struct device * dev)4761 static struct device_node *get_clk_provider_node(struct device *dev)
4762 {
4763 struct device_node *np, *parent_np;
4764
4765 np = dev->of_node;
4766 parent_np = dev->parent ? dev->parent->of_node : NULL;
4767
4768 if (!of_find_property(np, "#clock-cells", NULL))
4769 if (of_find_property(parent_np, "#clock-cells", NULL))
4770 np = parent_np;
4771
4772 return np;
4773 }
4774
4775 /**
4776 * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4777 * @dev: Device acting as the clock provider (used for DT node and lifetime)
4778 * @get: callback for decoding clk_hw
4779 * @data: context pointer for @get callback
4780 *
4781 * Registers clock provider for given device's node. If the device has no DT
4782 * node or if the device node lacks of clock provider information (#clock-cells)
4783 * then the parent device's node is scanned for this information. If parent node
4784 * has the #clock-cells then it is used in registration. Provider is
4785 * automatically released at device exit.
4786 *
4787 * Return: 0 on success or an errno on failure.
4788 */
devm_of_clk_add_hw_provider(struct device * dev,struct clk_hw * (* get)(struct of_phandle_args * clkspec,void * data),void * data)4789 int devm_of_clk_add_hw_provider(struct device *dev,
4790 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4791 void *data),
4792 void *data)
4793 {
4794 struct device_node **ptr, *np;
4795 int ret;
4796
4797 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4798 GFP_KERNEL);
4799 if (!ptr)
4800 return -ENOMEM;
4801
4802 np = get_clk_provider_node(dev);
4803 ret = of_clk_add_hw_provider(np, get, data);
4804 if (!ret) {
4805 *ptr = np;
4806 devres_add(dev, ptr);
4807 } else {
4808 devres_free(ptr);
4809 }
4810
4811 return ret;
4812 }
4813 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4814
4815 /**
4816 * of_clk_del_provider() - Remove a previously registered clock provider
4817 * @np: Device node pointer associated with clock provider
4818 */
of_clk_del_provider(struct device_node * np)4819 void of_clk_del_provider(struct device_node *np)
4820 {
4821 struct of_clk_provider *cp;
4822
4823 if (!np)
4824 return;
4825
4826 mutex_lock(&of_clk_mutex);
4827 list_for_each_entry(cp, &of_clk_providers, link) {
4828 if (cp->node == np) {
4829 list_del(&cp->link);
4830 fwnode_dev_initialized(&np->fwnode, false);
4831 of_node_put(cp->node);
4832 kfree(cp);
4833 break;
4834 }
4835 }
4836 mutex_unlock(&of_clk_mutex);
4837 }
4838 EXPORT_SYMBOL_GPL(of_clk_del_provider);
4839
devm_clk_provider_match(struct device * dev,void * res,void * data)4840 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
4841 {
4842 struct device_node **np = res;
4843
4844 if (WARN_ON(!np || !*np))
4845 return 0;
4846
4847 return *np == data;
4848 }
4849
4850 /**
4851 * devm_of_clk_del_provider() - Remove clock provider registered using devm
4852 * @dev: Device to whose lifetime the clock provider was bound
4853 */
devm_of_clk_del_provider(struct device * dev)4854 void devm_of_clk_del_provider(struct device *dev)
4855 {
4856 int ret;
4857 struct device_node *np = get_clk_provider_node(dev);
4858
4859 ret = devres_release(dev, devm_of_clk_release_provider,
4860 devm_clk_provider_match, np);
4861
4862 WARN_ON(ret);
4863 }
4864 EXPORT_SYMBOL(devm_of_clk_del_provider);
4865
4866 /**
4867 * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4868 * @np: device node to parse clock specifier from
4869 * @index: index of phandle to parse clock out of. If index < 0, @name is used
4870 * @name: clock name to find and parse. If name is NULL, the index is used
4871 * @out_args: Result of parsing the clock specifier
4872 *
4873 * Parses a device node's "clocks" and "clock-names" properties to find the
4874 * phandle and cells for the index or name that is desired. The resulting clock
4875 * specifier is placed into @out_args, or an errno is returned when there's a
4876 * parsing error. The @index argument is ignored if @name is non-NULL.
4877 *
4878 * Example:
4879 *
4880 * phandle1: clock-controller@1 {
4881 * #clock-cells = <2>;
4882 * }
4883 *
4884 * phandle2: clock-controller@2 {
4885 * #clock-cells = <1>;
4886 * }
4887 *
4888 * clock-consumer@3 {
4889 * clocks = <&phandle1 1 2 &phandle2 3>;
4890 * clock-names = "name1", "name2";
4891 * }
4892 *
4893 * To get a device_node for `clock-controller@2' node you may call this
4894 * function a few different ways:
4895 *
4896 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4897 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4898 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4899 *
4900 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4901 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4902 * the "clock-names" property of @np.
4903 */
of_parse_clkspec(const struct device_node * np,int index,const char * name,struct of_phandle_args * out_args)4904 static int of_parse_clkspec(const struct device_node *np, int index,
4905 const char *name, struct of_phandle_args *out_args)
4906 {
4907 int ret = -ENOENT;
4908
4909 /* Walk up the tree of devices looking for a clock property that matches */
4910 while (np) {
4911 /*
4912 * For named clocks, first look up the name in the
4913 * "clock-names" property. If it cannot be found, then index
4914 * will be an error code and of_parse_phandle_with_args() will
4915 * return -EINVAL.
4916 */
4917 if (name)
4918 index = of_property_match_string(np, "clock-names", name);
4919 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4920 index, out_args);
4921 if (!ret)
4922 break;
4923 if (name && index >= 0)
4924 break;
4925
4926 /*
4927 * No matching clock found on this node. If the parent node
4928 * has a "clock-ranges" property, then we can try one of its
4929 * clocks.
4930 */
4931 np = np->parent;
4932 if (np && !of_get_property(np, "clock-ranges", NULL))
4933 break;
4934 index = 0;
4935 }
4936
4937 return ret;
4938 }
4939
4940 static struct clk_hw *
__of_clk_get_hw_from_provider(struct of_clk_provider * provider,struct of_phandle_args * clkspec)4941 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4942 struct of_phandle_args *clkspec)
4943 {
4944 struct clk *clk;
4945
4946 if (provider->get_hw)
4947 return provider->get_hw(clkspec, provider->data);
4948
4949 clk = provider->get(clkspec, provider->data);
4950 if (IS_ERR(clk))
4951 return ERR_CAST(clk);
4952 return __clk_get_hw(clk);
4953 }
4954
4955 static struct clk_hw *
of_clk_get_hw_from_clkspec(struct of_phandle_args * clkspec)4956 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
4957 {
4958 struct of_clk_provider *provider;
4959 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
4960
4961 if (!clkspec)
4962 return ERR_PTR(-EINVAL);
4963
4964 mutex_lock(&of_clk_mutex);
4965 list_for_each_entry(provider, &of_clk_providers, link) {
4966 if (provider->node == clkspec->np) {
4967 hw = __of_clk_get_hw_from_provider(provider, clkspec);
4968 if (!IS_ERR(hw))
4969 break;
4970 }
4971 }
4972 mutex_unlock(&of_clk_mutex);
4973
4974 return hw;
4975 }
4976
4977 /**
4978 * of_clk_get_from_provider() - Lookup a clock from a clock provider
4979 * @clkspec: pointer to a clock specifier data structure
4980 *
4981 * This function looks up a struct clk from the registered list of clock
4982 * providers, an input is a clock specifier data structure as returned
4983 * from the of_parse_phandle_with_args() function call.
4984 */
of_clk_get_from_provider(struct of_phandle_args * clkspec)4985 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
4986 {
4987 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
4988
4989 return clk_hw_create_clk(NULL, hw, NULL, __func__);
4990 }
4991 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
4992
of_clk_get_hw(struct device_node * np,int index,const char * con_id)4993 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
4994 const char *con_id)
4995 {
4996 int ret;
4997 struct clk_hw *hw;
4998 struct of_phandle_args clkspec;
4999
5000 ret = of_parse_clkspec(np, index, con_id, &clkspec);
5001 if (ret)
5002 return ERR_PTR(ret);
5003
5004 hw = of_clk_get_hw_from_clkspec(&clkspec);
5005 of_node_put(clkspec.np);
5006
5007 return hw;
5008 }
5009
__of_clk_get(struct device_node * np,int index,const char * dev_id,const char * con_id)5010 static struct clk *__of_clk_get(struct device_node *np,
5011 int index, const char *dev_id,
5012 const char *con_id)
5013 {
5014 struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
5015
5016 return clk_hw_create_clk(NULL, hw, dev_id, con_id);
5017 }
5018
of_clk_get(struct device_node * np,int index)5019 struct clk *of_clk_get(struct device_node *np, int index)
5020 {
5021 return __of_clk_get(np, index, np->full_name, NULL);
5022 }
5023 EXPORT_SYMBOL(of_clk_get);
5024
5025 /**
5026 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
5027 * @np: pointer to clock consumer node
5028 * @name: name of consumer's clock input, or NULL for the first clock reference
5029 *
5030 * This function parses the clocks and clock-names properties,
5031 * and uses them to look up the struct clk from the registered list of clock
5032 * providers.
5033 */
of_clk_get_by_name(struct device_node * np,const char * name)5034 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
5035 {
5036 if (!np)
5037 return ERR_PTR(-ENOENT);
5038
5039 return __of_clk_get(np, 0, np->full_name, name);
5040 }
5041 EXPORT_SYMBOL(of_clk_get_by_name);
5042
5043 /**
5044 * of_clk_get_parent_count() - Count the number of clocks a device node has
5045 * @np: device node to count
5046 *
5047 * Returns: The number of clocks that are possible parents of this node
5048 */
of_clk_get_parent_count(const struct device_node * np)5049 unsigned int of_clk_get_parent_count(const struct device_node *np)
5050 {
5051 int count;
5052
5053 count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
5054 if (count < 0)
5055 return 0;
5056
5057 return count;
5058 }
5059 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
5060
of_clk_get_parent_name(const struct device_node * np,int index)5061 const char *of_clk_get_parent_name(const struct device_node *np, int index)
5062 {
5063 struct of_phandle_args clkspec;
5064 struct property *prop;
5065 const char *clk_name;
5066 const __be32 *vp;
5067 u32 pv;
5068 int rc;
5069 int count;
5070 struct clk *clk;
5071
5072 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
5073 &clkspec);
5074 if (rc)
5075 return NULL;
5076
5077 index = clkspec.args_count ? clkspec.args[0] : 0;
5078 count = 0;
5079
5080 /* if there is an indices property, use it to transfer the index
5081 * specified into an array offset for the clock-output-names property.
5082 */
5083 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
5084 if (index == pv) {
5085 index = count;
5086 break;
5087 }
5088 count++;
5089 }
5090 /* We went off the end of 'clock-indices' without finding it */
5091 if (prop && !vp)
5092 return NULL;
5093
5094 if (of_property_read_string_index(clkspec.np, "clock-output-names",
5095 index,
5096 &clk_name) < 0) {
5097 /*
5098 * Best effort to get the name if the clock has been
5099 * registered with the framework. If the clock isn't
5100 * registered, we return the node name as the name of
5101 * the clock as long as #clock-cells = 0.
5102 */
5103 clk = of_clk_get_from_provider(&clkspec);
5104 if (IS_ERR(clk)) {
5105 if (clkspec.args_count == 0)
5106 clk_name = clkspec.np->name;
5107 else
5108 clk_name = NULL;
5109 } else {
5110 clk_name = __clk_get_name(clk);
5111 clk_put(clk);
5112 }
5113 }
5114
5115
5116 of_node_put(clkspec.np);
5117 return clk_name;
5118 }
5119 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5120
5121 /**
5122 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5123 * number of parents
5124 * @np: Device node pointer associated with clock provider
5125 * @parents: pointer to char array that hold the parents' names
5126 * @size: size of the @parents array
5127 *
5128 * Return: number of parents for the clock node.
5129 */
of_clk_parent_fill(struct device_node * np,const char ** parents,unsigned int size)5130 int of_clk_parent_fill(struct device_node *np, const char **parents,
5131 unsigned int size)
5132 {
5133 unsigned int i = 0;
5134
5135 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5136 i++;
5137
5138 return i;
5139 }
5140 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5141
5142 struct clock_provider {
5143 void (*clk_init_cb)(struct device_node *);
5144 struct device_node *np;
5145 struct list_head node;
5146 };
5147
5148 /*
5149 * This function looks for a parent clock. If there is one, then it
5150 * checks that the provider for this parent clock was initialized, in
5151 * this case the parent clock will be ready.
5152 */
parent_ready(struct device_node * np)5153 static int parent_ready(struct device_node *np)
5154 {
5155 int i = 0;
5156
5157 while (true) {
5158 struct clk *clk = of_clk_get(np, i);
5159
5160 /* this parent is ready we can check the next one */
5161 if (!IS_ERR(clk)) {
5162 clk_put(clk);
5163 i++;
5164 continue;
5165 }
5166
5167 /* at least one parent is not ready, we exit now */
5168 if (PTR_ERR(clk) == -EPROBE_DEFER)
5169 return 0;
5170
5171 /*
5172 * Here we make assumption that the device tree is
5173 * written correctly. So an error means that there is
5174 * no more parent. As we didn't exit yet, then the
5175 * previous parent are ready. If there is no clock
5176 * parent, no need to wait for them, then we can
5177 * consider their absence as being ready
5178 */
5179 return 1;
5180 }
5181 }
5182
5183 /**
5184 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5185 * @np: Device node pointer associated with clock provider
5186 * @index: clock index
5187 * @flags: pointer to top-level framework flags
5188 *
5189 * Detects if the clock-critical property exists and, if so, sets the
5190 * corresponding CLK_IS_CRITICAL flag.
5191 *
5192 * Do not use this function. It exists only for legacy Device Tree
5193 * bindings, such as the one-clock-per-node style that are outdated.
5194 * Those bindings typically put all clock data into .dts and the Linux
5195 * driver has no clock data, thus making it impossible to set this flag
5196 * correctly from the driver. Only those drivers may call
5197 * of_clk_detect_critical from their setup functions.
5198 *
5199 * Return: error code or zero on success
5200 */
of_clk_detect_critical(struct device_node * np,int index,unsigned long * flags)5201 int of_clk_detect_critical(struct device_node *np, int index,
5202 unsigned long *flags)
5203 {
5204 struct property *prop;
5205 const __be32 *cur;
5206 uint32_t idx;
5207
5208 if (!np || !flags)
5209 return -EINVAL;
5210
5211 of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5212 if (index == idx)
5213 *flags |= CLK_IS_CRITICAL;
5214
5215 return 0;
5216 }
5217
5218 /**
5219 * of_clk_init() - Scan and init clock providers from the DT
5220 * @matches: array of compatible values and init functions for providers.
5221 *
5222 * This function scans the device tree for matching clock providers
5223 * and calls their initialization functions. It also does it by trying
5224 * to follow the dependencies.
5225 */
of_clk_init(const struct of_device_id * matches)5226 void __init of_clk_init(const struct of_device_id *matches)
5227 {
5228 const struct of_device_id *match;
5229 struct device_node *np;
5230 struct clock_provider *clk_provider, *next;
5231 bool is_init_done;
5232 bool force = false;
5233 LIST_HEAD(clk_provider_list);
5234
5235 if (!matches)
5236 matches = &__clk_of_table;
5237
5238 /* First prepare the list of the clocks providers */
5239 for_each_matching_node_and_match(np, matches, &match) {
5240 struct clock_provider *parent;
5241
5242 if (!of_device_is_available(np))
5243 continue;
5244
5245 parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5246 if (!parent) {
5247 list_for_each_entry_safe(clk_provider, next,
5248 &clk_provider_list, node) {
5249 list_del(&clk_provider->node);
5250 of_node_put(clk_provider->np);
5251 kfree(clk_provider);
5252 }
5253 of_node_put(np);
5254 return;
5255 }
5256
5257 parent->clk_init_cb = match->data;
5258 parent->np = of_node_get(np);
5259 list_add_tail(&parent->node, &clk_provider_list);
5260 }
5261
5262 while (!list_empty(&clk_provider_list)) {
5263 is_init_done = false;
5264 list_for_each_entry_safe(clk_provider, next,
5265 &clk_provider_list, node) {
5266 if (force || parent_ready(clk_provider->np)) {
5267
5268 /* Don't populate platform devices */
5269 of_node_set_flag(clk_provider->np,
5270 OF_POPULATED);
5271
5272 clk_provider->clk_init_cb(clk_provider->np);
5273 of_clk_set_defaults(clk_provider->np, true);
5274
5275 list_del(&clk_provider->node);
5276 of_node_put(clk_provider->np);
5277 kfree(clk_provider);
5278 is_init_done = true;
5279 }
5280 }
5281
5282 /*
5283 * We didn't manage to initialize any of the
5284 * remaining providers during the last loop, so now we
5285 * initialize all the remaining ones unconditionally
5286 * in case the clock parent was not mandatory
5287 */
5288 if (!is_init_done)
5289 force = true;
5290 }
5291 }
5292 #endif
5293