1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /**
3 * AMCC SoC PPC4xx Crypto Driver
4 *
5 * Copyright (c) 2008 Applied Micro Circuits Corporation.
6 * All rights reserved. James Hsiao <jhsiao@amcc.com>
7 *
8 * This file implements AMCC crypto offload Linux device driver for use with
9 * Linux CryptoAPI.
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/interrupt.h>
14 #include <linux/spinlock_types.h>
15 #include <linux/random.h>
16 #include <linux/scatterlist.h>
17 #include <linux/crypto.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/platform_device.h>
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/of_address.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_platform.h>
25 #include <linux/slab.h>
26 #include <asm/dcr.h>
27 #include <asm/dcr-regs.h>
28 #include <asm/cacheflush.h>
29 #include <crypto/aead.h>
30 #include <crypto/aes.h>
31 #include <crypto/ctr.h>
32 #include <crypto/gcm.h>
33 #include <crypto/sha.h>
34 #include <crypto/rng.h>
35 #include <crypto/scatterwalk.h>
36 #include <crypto/skcipher.h>
37 #include <crypto/internal/aead.h>
38 #include <crypto/internal/rng.h>
39 #include <crypto/internal/skcipher.h>
40 #include "crypto4xx_reg_def.h"
41 #include "crypto4xx_core.h"
42 #include "crypto4xx_sa.h"
43 #include "crypto4xx_trng.h"
44
45 #define PPC4XX_SEC_VERSION_STR "0.5"
46
47 /**
48 * PPC4xx Crypto Engine Initialization Routine
49 */
crypto4xx_hw_init(struct crypto4xx_device * dev)50 static void crypto4xx_hw_init(struct crypto4xx_device *dev)
51 {
52 union ce_ring_size ring_size;
53 union ce_ring_control ring_ctrl;
54 union ce_part_ring_size part_ring_size;
55 union ce_io_threshold io_threshold;
56 u32 rand_num;
57 union ce_pe_dma_cfg pe_dma_cfg;
58 u32 device_ctrl;
59
60 writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
61 /* setup pe dma, include reset sg, pdr and pe, then release reset */
62 pe_dma_cfg.w = 0;
63 pe_dma_cfg.bf.bo_sgpd_en = 1;
64 pe_dma_cfg.bf.bo_data_en = 0;
65 pe_dma_cfg.bf.bo_sa_en = 1;
66 pe_dma_cfg.bf.bo_pd_en = 1;
67 pe_dma_cfg.bf.dynamic_sa_en = 1;
68 pe_dma_cfg.bf.reset_sg = 1;
69 pe_dma_cfg.bf.reset_pdr = 1;
70 pe_dma_cfg.bf.reset_pe = 1;
71 writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
72 /* un reset pe,sg and pdr */
73 pe_dma_cfg.bf.pe_mode = 0;
74 pe_dma_cfg.bf.reset_sg = 0;
75 pe_dma_cfg.bf.reset_pdr = 0;
76 pe_dma_cfg.bf.reset_pe = 0;
77 pe_dma_cfg.bf.bo_td_en = 0;
78 writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
79 writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
80 writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
81 writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
82 get_random_bytes(&rand_num, sizeof(rand_num));
83 writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
84 get_random_bytes(&rand_num, sizeof(rand_num));
85 writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
86 ring_size.w = 0;
87 ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
88 ring_size.bf.ring_size = PPC4XX_NUM_PD;
89 writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
90 ring_ctrl.w = 0;
91 writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
92 device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
93 device_ctrl |= PPC4XX_DC_3DES_EN;
94 writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
95 writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
96 writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
97 part_ring_size.w = 0;
98 part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
99 part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
100 writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
101 writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
102 io_threshold.w = 0;
103 io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
104 io_threshold.bf.input_threshold = PPC4XX_INPUT_THRESHOLD;
105 writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
106 writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
107 writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
108 writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
109 writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
110 writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
111 writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
112 writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
113 /* un reset pe,sg and pdr */
114 pe_dma_cfg.bf.pe_mode = 1;
115 pe_dma_cfg.bf.reset_sg = 0;
116 pe_dma_cfg.bf.reset_pdr = 0;
117 pe_dma_cfg.bf.reset_pe = 0;
118 pe_dma_cfg.bf.bo_td_en = 0;
119 writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
120 /*clear all pending interrupt*/
121 writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
122 writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
123 writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
124 writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
125 if (dev->is_revb) {
126 writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10,
127 dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT);
128 writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT,
129 dev->ce_base + CRYPTO4XX_INT_EN);
130 } else {
131 writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
132 }
133 }
134
crypto4xx_alloc_sa(struct crypto4xx_ctx * ctx,u32 size)135 int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
136 {
137 ctx->sa_in = kcalloc(size, 4, GFP_ATOMIC);
138 if (ctx->sa_in == NULL)
139 return -ENOMEM;
140
141 ctx->sa_out = kcalloc(size, 4, GFP_ATOMIC);
142 if (ctx->sa_out == NULL) {
143 kfree(ctx->sa_in);
144 ctx->sa_in = NULL;
145 return -ENOMEM;
146 }
147
148 ctx->sa_len = size;
149
150 return 0;
151 }
152
crypto4xx_free_sa(struct crypto4xx_ctx * ctx)153 void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
154 {
155 kfree(ctx->sa_in);
156 ctx->sa_in = NULL;
157 kfree(ctx->sa_out);
158 ctx->sa_out = NULL;
159 ctx->sa_len = 0;
160 }
161
162 /**
163 * alloc memory for the gather ring
164 * no need to alloc buf for the ring
165 * gdr_tail, gdr_head and gdr_count are initialized by this function
166 */
crypto4xx_build_pdr(struct crypto4xx_device * dev)167 static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
168 {
169 int i;
170 dev->pdr = dma_alloc_coherent(dev->core_dev->device,
171 sizeof(struct ce_pd) * PPC4XX_NUM_PD,
172 &dev->pdr_pa, GFP_KERNEL);
173 if (!dev->pdr)
174 return -ENOMEM;
175
176 dev->pdr_uinfo = kcalloc(PPC4XX_NUM_PD, sizeof(struct pd_uinfo),
177 GFP_KERNEL);
178 if (!dev->pdr_uinfo) {
179 dma_free_coherent(dev->core_dev->device,
180 sizeof(struct ce_pd) * PPC4XX_NUM_PD,
181 dev->pdr,
182 dev->pdr_pa);
183 return -ENOMEM;
184 }
185 dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
186 sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
187 &dev->shadow_sa_pool_pa,
188 GFP_KERNEL);
189 if (!dev->shadow_sa_pool)
190 return -ENOMEM;
191
192 dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
193 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
194 &dev->shadow_sr_pool_pa, GFP_KERNEL);
195 if (!dev->shadow_sr_pool)
196 return -ENOMEM;
197 for (i = 0; i < PPC4XX_NUM_PD; i++) {
198 struct ce_pd *pd = &dev->pdr[i];
199 struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[i];
200
201 pd->sa = dev->shadow_sa_pool_pa +
202 sizeof(union shadow_sa_buf) * i;
203
204 /* alloc 256 bytes which is enough for any kind of dynamic sa */
205 pd_uinfo->sa_va = &dev->shadow_sa_pool[i].sa;
206
207 /* alloc state record */
208 pd_uinfo->sr_va = &dev->shadow_sr_pool[i];
209 pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
210 sizeof(struct sa_state_record) * i;
211 }
212
213 return 0;
214 }
215
crypto4xx_destroy_pdr(struct crypto4xx_device * dev)216 static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
217 {
218 if (dev->pdr)
219 dma_free_coherent(dev->core_dev->device,
220 sizeof(struct ce_pd) * PPC4XX_NUM_PD,
221 dev->pdr, dev->pdr_pa);
222
223 if (dev->shadow_sa_pool)
224 dma_free_coherent(dev->core_dev->device,
225 sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
226 dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
227
228 if (dev->shadow_sr_pool)
229 dma_free_coherent(dev->core_dev->device,
230 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
231 dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
232
233 kfree(dev->pdr_uinfo);
234 }
235
crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device * dev)236 static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
237 {
238 u32 retval;
239 u32 tmp;
240
241 retval = dev->pdr_head;
242 tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
243
244 if (tmp == dev->pdr_tail)
245 return ERING_WAS_FULL;
246
247 dev->pdr_head = tmp;
248
249 return retval;
250 }
251
crypto4xx_put_pd_to_pdr(struct crypto4xx_device * dev,u32 idx)252 static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
253 {
254 struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
255 u32 tail;
256 unsigned long flags;
257
258 spin_lock_irqsave(&dev->core_dev->lock, flags);
259 pd_uinfo->state = PD_ENTRY_FREE;
260
261 if (dev->pdr_tail != PPC4XX_LAST_PD)
262 dev->pdr_tail++;
263 else
264 dev->pdr_tail = 0;
265 tail = dev->pdr_tail;
266 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
267
268 return tail;
269 }
270
271 /**
272 * alloc memory for the gather ring
273 * no need to alloc buf for the ring
274 * gdr_tail, gdr_head and gdr_count are initialized by this function
275 */
crypto4xx_build_gdr(struct crypto4xx_device * dev)276 static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
277 {
278 dev->gdr = dma_alloc_coherent(dev->core_dev->device,
279 sizeof(struct ce_gd) * PPC4XX_NUM_GD,
280 &dev->gdr_pa, GFP_KERNEL);
281 if (!dev->gdr)
282 return -ENOMEM;
283
284 return 0;
285 }
286
crypto4xx_destroy_gdr(struct crypto4xx_device * dev)287 static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
288 {
289 if (dev->gdr)
290 dma_free_coherent(dev->core_dev->device,
291 sizeof(struct ce_gd) * PPC4XX_NUM_GD,
292 dev->gdr, dev->gdr_pa);
293 }
294
295 /*
296 * when this function is called.
297 * preemption or interrupt must be disabled
298 */
crypto4xx_get_n_gd(struct crypto4xx_device * dev,int n)299 static u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
300 {
301 u32 retval;
302 u32 tmp;
303
304 if (n >= PPC4XX_NUM_GD)
305 return ERING_WAS_FULL;
306
307 retval = dev->gdr_head;
308 tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
309 if (dev->gdr_head > dev->gdr_tail) {
310 if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
311 return ERING_WAS_FULL;
312 } else if (dev->gdr_head < dev->gdr_tail) {
313 if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
314 return ERING_WAS_FULL;
315 }
316 dev->gdr_head = tmp;
317
318 return retval;
319 }
320
crypto4xx_put_gd_to_gdr(struct crypto4xx_device * dev)321 static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
322 {
323 unsigned long flags;
324
325 spin_lock_irqsave(&dev->core_dev->lock, flags);
326 if (dev->gdr_tail == dev->gdr_head) {
327 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
328 return 0;
329 }
330
331 if (dev->gdr_tail != PPC4XX_LAST_GD)
332 dev->gdr_tail++;
333 else
334 dev->gdr_tail = 0;
335
336 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
337
338 return 0;
339 }
340
crypto4xx_get_gdp(struct crypto4xx_device * dev,dma_addr_t * gd_dma,u32 idx)341 static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
342 dma_addr_t *gd_dma, u32 idx)
343 {
344 *gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
345
346 return &dev->gdr[idx];
347 }
348
349 /**
350 * alloc memory for the scatter ring
351 * need to alloc buf for the ring
352 * sdr_tail, sdr_head and sdr_count are initialized by this function
353 */
crypto4xx_build_sdr(struct crypto4xx_device * dev)354 static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
355 {
356 int i;
357
358 dev->scatter_buffer_va =
359 dma_alloc_coherent(dev->core_dev->device,
360 PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
361 &dev->scatter_buffer_pa, GFP_KERNEL);
362 if (!dev->scatter_buffer_va)
363 return -ENOMEM;
364
365 /* alloc memory for scatter descriptor ring */
366 dev->sdr = dma_alloc_coherent(dev->core_dev->device,
367 sizeof(struct ce_sd) * PPC4XX_NUM_SD,
368 &dev->sdr_pa, GFP_KERNEL);
369 if (!dev->sdr)
370 return -ENOMEM;
371
372 for (i = 0; i < PPC4XX_NUM_SD; i++) {
373 dev->sdr[i].ptr = dev->scatter_buffer_pa +
374 PPC4XX_SD_BUFFER_SIZE * i;
375 }
376
377 return 0;
378 }
379
crypto4xx_destroy_sdr(struct crypto4xx_device * dev)380 static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
381 {
382 if (dev->sdr)
383 dma_free_coherent(dev->core_dev->device,
384 sizeof(struct ce_sd) * PPC4XX_NUM_SD,
385 dev->sdr, dev->sdr_pa);
386
387 if (dev->scatter_buffer_va)
388 dma_free_coherent(dev->core_dev->device,
389 PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
390 dev->scatter_buffer_va,
391 dev->scatter_buffer_pa);
392 }
393
394 /*
395 * when this function is called.
396 * preemption or interrupt must be disabled
397 */
crypto4xx_get_n_sd(struct crypto4xx_device * dev,int n)398 static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
399 {
400 u32 retval;
401 u32 tmp;
402
403 if (n >= PPC4XX_NUM_SD)
404 return ERING_WAS_FULL;
405
406 retval = dev->sdr_head;
407 tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
408 if (dev->sdr_head > dev->gdr_tail) {
409 if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
410 return ERING_WAS_FULL;
411 } else if (dev->sdr_head < dev->sdr_tail) {
412 if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
413 return ERING_WAS_FULL;
414 } /* the head = tail, or empty case is already take cared */
415 dev->sdr_head = tmp;
416
417 return retval;
418 }
419
crypto4xx_put_sd_to_sdr(struct crypto4xx_device * dev)420 static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
421 {
422 unsigned long flags;
423
424 spin_lock_irqsave(&dev->core_dev->lock, flags);
425 if (dev->sdr_tail == dev->sdr_head) {
426 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
427 return 0;
428 }
429 if (dev->sdr_tail != PPC4XX_LAST_SD)
430 dev->sdr_tail++;
431 else
432 dev->sdr_tail = 0;
433 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
434
435 return 0;
436 }
437
crypto4xx_get_sdp(struct crypto4xx_device * dev,dma_addr_t * sd_dma,u32 idx)438 static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
439 dma_addr_t *sd_dma, u32 idx)
440 {
441 *sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
442
443 return &dev->sdr[idx];
444 }
445
crypto4xx_copy_pkt_to_dst(struct crypto4xx_device * dev,struct ce_pd * pd,struct pd_uinfo * pd_uinfo,u32 nbytes,struct scatterlist * dst)446 static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
447 struct ce_pd *pd,
448 struct pd_uinfo *pd_uinfo,
449 u32 nbytes,
450 struct scatterlist *dst)
451 {
452 unsigned int first_sd = pd_uinfo->first_sd;
453 unsigned int last_sd;
454 unsigned int overflow = 0;
455 unsigned int to_copy;
456 unsigned int dst_start = 0;
457
458 /*
459 * Because the scatter buffers are all neatly organized in one
460 * big continuous ringbuffer; scatterwalk_map_and_copy() can
461 * be instructed to copy a range of buffers in one go.
462 */
463
464 last_sd = (first_sd + pd_uinfo->num_sd);
465 if (last_sd > PPC4XX_LAST_SD) {
466 last_sd = PPC4XX_LAST_SD;
467 overflow = last_sd % PPC4XX_NUM_SD;
468 }
469
470 while (nbytes) {
471 void *buf = dev->scatter_buffer_va +
472 first_sd * PPC4XX_SD_BUFFER_SIZE;
473
474 to_copy = min(nbytes, PPC4XX_SD_BUFFER_SIZE *
475 (1 + last_sd - first_sd));
476 scatterwalk_map_and_copy(buf, dst, dst_start, to_copy, 1);
477 nbytes -= to_copy;
478
479 if (overflow) {
480 first_sd = 0;
481 last_sd = overflow;
482 dst_start += to_copy;
483 overflow = 0;
484 }
485 }
486 }
487
crypto4xx_copy_digest_to_dst(void * dst,struct pd_uinfo * pd_uinfo,struct crypto4xx_ctx * ctx)488 static void crypto4xx_copy_digest_to_dst(void *dst,
489 struct pd_uinfo *pd_uinfo,
490 struct crypto4xx_ctx *ctx)
491 {
492 struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
493
494 if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
495 memcpy(dst, pd_uinfo->sr_va->save_digest,
496 SA_HASH_ALG_SHA1_DIGEST_SIZE);
497 }
498 }
499
crypto4xx_ret_sg_desc(struct crypto4xx_device * dev,struct pd_uinfo * pd_uinfo)500 static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
501 struct pd_uinfo *pd_uinfo)
502 {
503 int i;
504 if (pd_uinfo->num_gd) {
505 for (i = 0; i < pd_uinfo->num_gd; i++)
506 crypto4xx_put_gd_to_gdr(dev);
507 pd_uinfo->first_gd = 0xffffffff;
508 pd_uinfo->num_gd = 0;
509 }
510 if (pd_uinfo->num_sd) {
511 for (i = 0; i < pd_uinfo->num_sd; i++)
512 crypto4xx_put_sd_to_sdr(dev);
513
514 pd_uinfo->first_sd = 0xffffffff;
515 pd_uinfo->num_sd = 0;
516 }
517 }
518
crypto4xx_cipher_done(struct crypto4xx_device * dev,struct pd_uinfo * pd_uinfo,struct ce_pd * pd)519 static void crypto4xx_cipher_done(struct crypto4xx_device *dev,
520 struct pd_uinfo *pd_uinfo,
521 struct ce_pd *pd)
522 {
523 struct skcipher_request *req;
524 struct scatterlist *dst;
525
526 req = skcipher_request_cast(pd_uinfo->async_req);
527
528 if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
529 crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
530 req->cryptlen, req->dst);
531 } else {
532 dst = pd_uinfo->dest_va;
533 dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
534 DMA_FROM_DEVICE);
535 }
536
537 if (pd_uinfo->sa_va->sa_command_0.bf.save_iv == SA_SAVE_IV) {
538 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
539
540 crypto4xx_memcpy_from_le32((u32 *)req->iv,
541 pd_uinfo->sr_va->save_iv,
542 crypto_skcipher_ivsize(skcipher));
543 }
544
545 crypto4xx_ret_sg_desc(dev, pd_uinfo);
546
547 if (pd_uinfo->state & PD_ENTRY_BUSY)
548 skcipher_request_complete(req, -EINPROGRESS);
549 skcipher_request_complete(req, 0);
550 }
551
crypto4xx_ahash_done(struct crypto4xx_device * dev,struct pd_uinfo * pd_uinfo)552 static void crypto4xx_ahash_done(struct crypto4xx_device *dev,
553 struct pd_uinfo *pd_uinfo)
554 {
555 struct crypto4xx_ctx *ctx;
556 struct ahash_request *ahash_req;
557
558 ahash_req = ahash_request_cast(pd_uinfo->async_req);
559 ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(ahash_req));
560
561 crypto4xx_copy_digest_to_dst(ahash_req->result, pd_uinfo, ctx);
562 crypto4xx_ret_sg_desc(dev, pd_uinfo);
563
564 if (pd_uinfo->state & PD_ENTRY_BUSY)
565 ahash_request_complete(ahash_req, -EINPROGRESS);
566 ahash_request_complete(ahash_req, 0);
567 }
568
crypto4xx_aead_done(struct crypto4xx_device * dev,struct pd_uinfo * pd_uinfo,struct ce_pd * pd)569 static void crypto4xx_aead_done(struct crypto4xx_device *dev,
570 struct pd_uinfo *pd_uinfo,
571 struct ce_pd *pd)
572 {
573 struct aead_request *aead_req = container_of(pd_uinfo->async_req,
574 struct aead_request, base);
575 struct scatterlist *dst = pd_uinfo->dest_va;
576 size_t cp_len = crypto_aead_authsize(
577 crypto_aead_reqtfm(aead_req));
578 u32 icv[AES_BLOCK_SIZE];
579 int err = 0;
580
581 if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
582 crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
583 pd->pd_ctl_len.bf.pkt_len,
584 dst);
585 } else {
586 dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
587 DMA_FROM_DEVICE);
588 }
589
590 if (pd_uinfo->sa_va->sa_command_0.bf.dir == DIR_OUTBOUND) {
591 /* append icv at the end */
592 crypto4xx_memcpy_from_le32(icv, pd_uinfo->sr_va->save_digest,
593 sizeof(icv));
594
595 scatterwalk_map_and_copy(icv, dst, aead_req->cryptlen,
596 cp_len, 1);
597 } else {
598 /* check icv at the end */
599 scatterwalk_map_and_copy(icv, aead_req->src,
600 aead_req->assoclen + aead_req->cryptlen -
601 cp_len, cp_len, 0);
602
603 crypto4xx_memcpy_from_le32(icv, icv, sizeof(icv));
604
605 if (crypto_memneq(icv, pd_uinfo->sr_va->save_digest, cp_len))
606 err = -EBADMSG;
607 }
608
609 crypto4xx_ret_sg_desc(dev, pd_uinfo);
610
611 if (pd->pd_ctl.bf.status & 0xff) {
612 if (!__ratelimit(&dev->aead_ratelimit)) {
613 if (pd->pd_ctl.bf.status & 2)
614 pr_err("pad fail error\n");
615 if (pd->pd_ctl.bf.status & 4)
616 pr_err("seqnum fail\n");
617 if (pd->pd_ctl.bf.status & 8)
618 pr_err("error _notify\n");
619 pr_err("aead return err status = 0x%02x\n",
620 pd->pd_ctl.bf.status & 0xff);
621 pr_err("pd pad_ctl = 0x%08x\n",
622 pd->pd_ctl.bf.pd_pad_ctl);
623 }
624 err = -EINVAL;
625 }
626
627 if (pd_uinfo->state & PD_ENTRY_BUSY)
628 aead_request_complete(aead_req, -EINPROGRESS);
629
630 aead_request_complete(aead_req, err);
631 }
632
crypto4xx_pd_done(struct crypto4xx_device * dev,u32 idx)633 static void crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
634 {
635 struct ce_pd *pd = &dev->pdr[idx];
636 struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
637
638 switch (crypto_tfm_alg_type(pd_uinfo->async_req->tfm)) {
639 case CRYPTO_ALG_TYPE_SKCIPHER:
640 crypto4xx_cipher_done(dev, pd_uinfo, pd);
641 break;
642 case CRYPTO_ALG_TYPE_AEAD:
643 crypto4xx_aead_done(dev, pd_uinfo, pd);
644 break;
645 case CRYPTO_ALG_TYPE_AHASH:
646 crypto4xx_ahash_done(dev, pd_uinfo);
647 break;
648 }
649 }
650
crypto4xx_stop_all(struct crypto4xx_core_device * core_dev)651 static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
652 {
653 crypto4xx_destroy_pdr(core_dev->dev);
654 crypto4xx_destroy_gdr(core_dev->dev);
655 crypto4xx_destroy_sdr(core_dev->dev);
656 iounmap(core_dev->dev->ce_base);
657 kfree(core_dev->dev);
658 kfree(core_dev);
659 }
660
get_next_gd(u32 current)661 static u32 get_next_gd(u32 current)
662 {
663 if (current != PPC4XX_LAST_GD)
664 return current + 1;
665 else
666 return 0;
667 }
668
get_next_sd(u32 current)669 static u32 get_next_sd(u32 current)
670 {
671 if (current != PPC4XX_LAST_SD)
672 return current + 1;
673 else
674 return 0;
675 }
676
crypto4xx_build_pd(struct crypto_async_request * req,struct crypto4xx_ctx * ctx,struct scatterlist * src,struct scatterlist * dst,const unsigned int datalen,const __le32 * iv,const u32 iv_len,const struct dynamic_sa_ctl * req_sa,const unsigned int sa_len,const unsigned int assoclen,struct scatterlist * _dst)677 int crypto4xx_build_pd(struct crypto_async_request *req,
678 struct crypto4xx_ctx *ctx,
679 struct scatterlist *src,
680 struct scatterlist *dst,
681 const unsigned int datalen,
682 const __le32 *iv, const u32 iv_len,
683 const struct dynamic_sa_ctl *req_sa,
684 const unsigned int sa_len,
685 const unsigned int assoclen,
686 struct scatterlist *_dst)
687 {
688 struct crypto4xx_device *dev = ctx->dev;
689 struct dynamic_sa_ctl *sa;
690 struct ce_gd *gd;
691 struct ce_pd *pd;
692 u32 num_gd, num_sd;
693 u32 fst_gd = 0xffffffff;
694 u32 fst_sd = 0xffffffff;
695 u32 pd_entry;
696 unsigned long flags;
697 struct pd_uinfo *pd_uinfo;
698 unsigned int nbytes = datalen;
699 size_t offset_to_sr_ptr;
700 u32 gd_idx = 0;
701 int tmp;
702 bool is_busy, force_sd;
703
704 /*
705 * There's a very subtile/disguised "bug" in the hardware that
706 * gets indirectly mentioned in 18.1.3.5 Encryption/Decryption
707 * of the hardware spec:
708 * *drum roll* the AES/(T)DES OFB and CFB modes are listed as
709 * operation modes for >>> "Block ciphers" <<<.
710 *
711 * To workaround this issue and stop the hardware from causing
712 * "overran dst buffer" on crypttexts that are not a multiple
713 * of 16 (AES_BLOCK_SIZE), we force the driver to use the
714 * scatter buffers.
715 */
716 force_sd = (req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_CFB
717 || req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_OFB)
718 && (datalen % AES_BLOCK_SIZE);
719
720 /* figure how many gd are needed */
721 tmp = sg_nents_for_len(src, assoclen + datalen);
722 if (tmp < 0) {
723 dev_err(dev->core_dev->device, "Invalid number of src SG.\n");
724 return tmp;
725 }
726 if (tmp == 1)
727 tmp = 0;
728 num_gd = tmp;
729
730 if (assoclen) {
731 nbytes += assoclen;
732 dst = scatterwalk_ffwd(_dst, dst, assoclen);
733 }
734
735 /* figure how many sd are needed */
736 if (sg_is_last(dst) && force_sd == false) {
737 num_sd = 0;
738 } else {
739 if (datalen > PPC4XX_SD_BUFFER_SIZE) {
740 num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
741 if (datalen % PPC4XX_SD_BUFFER_SIZE)
742 num_sd++;
743 } else {
744 num_sd = 1;
745 }
746 }
747
748 /*
749 * The follow section of code needs to be protected
750 * The gather ring and scatter ring needs to be consecutive
751 * In case of run out of any kind of descriptor, the descriptor
752 * already got must be return the original place.
753 */
754 spin_lock_irqsave(&dev->core_dev->lock, flags);
755 /*
756 * Let the caller know to slow down, once more than 13/16ths = 81%
757 * of the available data contexts are being used simultaneously.
758 *
759 * With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for
760 * 31 more contexts. Before new requests have to be rejected.
761 */
762 if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) {
763 is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
764 ((PPC4XX_NUM_PD * 13) / 16);
765 } else {
766 /*
767 * To fix contention issues between ipsec (no blacklog) and
768 * dm-crypto (backlog) reserve 32 entries for "no backlog"
769 * data contexts.
770 */
771 is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
772 ((PPC4XX_NUM_PD * 15) / 16);
773
774 if (is_busy) {
775 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
776 return -EBUSY;
777 }
778 }
779
780 if (num_gd) {
781 fst_gd = crypto4xx_get_n_gd(dev, num_gd);
782 if (fst_gd == ERING_WAS_FULL) {
783 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
784 return -EAGAIN;
785 }
786 }
787 if (num_sd) {
788 fst_sd = crypto4xx_get_n_sd(dev, num_sd);
789 if (fst_sd == ERING_WAS_FULL) {
790 if (num_gd)
791 dev->gdr_head = fst_gd;
792 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
793 return -EAGAIN;
794 }
795 }
796 pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
797 if (pd_entry == ERING_WAS_FULL) {
798 if (num_gd)
799 dev->gdr_head = fst_gd;
800 if (num_sd)
801 dev->sdr_head = fst_sd;
802 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
803 return -EAGAIN;
804 }
805 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
806
807 pd = &dev->pdr[pd_entry];
808 pd->sa_len = sa_len;
809
810 pd_uinfo = &dev->pdr_uinfo[pd_entry];
811 pd_uinfo->num_gd = num_gd;
812 pd_uinfo->num_sd = num_sd;
813 pd_uinfo->dest_va = dst;
814 pd_uinfo->async_req = req;
815
816 if (iv_len)
817 memcpy(pd_uinfo->sr_va->save_iv, iv, iv_len);
818
819 sa = pd_uinfo->sa_va;
820 memcpy(sa, req_sa, sa_len * 4);
821
822 sa->sa_command_1.bf.hash_crypto_offset = (assoclen >> 2);
823 offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(sa);
824 *(u32 *)((unsigned long)sa + offset_to_sr_ptr) = pd_uinfo->sr_pa;
825
826 if (num_gd) {
827 dma_addr_t gd_dma;
828 struct scatterlist *sg;
829
830 /* get first gd we are going to use */
831 gd_idx = fst_gd;
832 pd_uinfo->first_gd = fst_gd;
833 gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
834 pd->src = gd_dma;
835 /* enable gather */
836 sa->sa_command_0.bf.gather = 1;
837 /* walk the sg, and setup gather array */
838
839 sg = src;
840 while (nbytes) {
841 size_t len;
842
843 len = min(sg->length, nbytes);
844 gd->ptr = dma_map_page(dev->core_dev->device,
845 sg_page(sg), sg->offset, len, DMA_TO_DEVICE);
846 gd->ctl_len.len = len;
847 gd->ctl_len.done = 0;
848 gd->ctl_len.ready = 1;
849 if (len >= nbytes)
850 break;
851
852 nbytes -= sg->length;
853 gd_idx = get_next_gd(gd_idx);
854 gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
855 sg = sg_next(sg);
856 }
857 } else {
858 pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
859 src->offset, min(nbytes, src->length),
860 DMA_TO_DEVICE);
861 /*
862 * Disable gather in sa command
863 */
864 sa->sa_command_0.bf.gather = 0;
865 /*
866 * Indicate gather array is not used
867 */
868 pd_uinfo->first_gd = 0xffffffff;
869 }
870 if (!num_sd) {
871 /*
872 * we know application give us dst a whole piece of memory
873 * no need to use scatter ring.
874 */
875 pd_uinfo->first_sd = 0xffffffff;
876 sa->sa_command_0.bf.scatter = 0;
877 pd->dest = (u32)dma_map_page(dev->core_dev->device,
878 sg_page(dst), dst->offset,
879 min(datalen, dst->length),
880 DMA_TO_DEVICE);
881 } else {
882 dma_addr_t sd_dma;
883 struct ce_sd *sd = NULL;
884
885 u32 sd_idx = fst_sd;
886 nbytes = datalen;
887 sa->sa_command_0.bf.scatter = 1;
888 pd_uinfo->first_sd = fst_sd;
889 sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
890 pd->dest = sd_dma;
891 /* setup scatter descriptor */
892 sd->ctl.done = 0;
893 sd->ctl.rdy = 1;
894 /* sd->ptr should be setup by sd_init routine*/
895 if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
896 nbytes -= PPC4XX_SD_BUFFER_SIZE;
897 else
898 nbytes = 0;
899 while (nbytes) {
900 sd_idx = get_next_sd(sd_idx);
901 sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
902 /* setup scatter descriptor */
903 sd->ctl.done = 0;
904 sd->ctl.rdy = 1;
905 if (nbytes >= PPC4XX_SD_BUFFER_SIZE) {
906 nbytes -= PPC4XX_SD_BUFFER_SIZE;
907 } else {
908 /*
909 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
910 * which is more than nbytes, so done.
911 */
912 nbytes = 0;
913 }
914 }
915 }
916
917 pd->pd_ctl.w = PD_CTL_HOST_READY |
918 ((crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AHASH) ||
919 (crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AEAD) ?
920 PD_CTL_HASH_FINAL : 0);
921 pd->pd_ctl_len.w = 0x00400000 | (assoclen + datalen);
922 pd_uinfo->state = PD_ENTRY_INUSE | (is_busy ? PD_ENTRY_BUSY : 0);
923
924 wmb();
925 /* write any value to push engine to read a pd */
926 writel(0, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
927 writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
928 return is_busy ? -EBUSY : -EINPROGRESS;
929 }
930
931 /**
932 * Algorithm Registration Functions
933 */
crypto4xx_ctx_init(struct crypto4xx_alg * amcc_alg,struct crypto4xx_ctx * ctx)934 static void crypto4xx_ctx_init(struct crypto4xx_alg *amcc_alg,
935 struct crypto4xx_ctx *ctx)
936 {
937 ctx->dev = amcc_alg->dev;
938 ctx->sa_in = NULL;
939 ctx->sa_out = NULL;
940 ctx->sa_len = 0;
941 }
942
crypto4xx_sk_init(struct crypto_skcipher * sk)943 static int crypto4xx_sk_init(struct crypto_skcipher *sk)
944 {
945 struct skcipher_alg *alg = crypto_skcipher_alg(sk);
946 struct crypto4xx_alg *amcc_alg;
947 struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(sk);
948
949 if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
950 ctx->sw_cipher.cipher =
951 crypto_alloc_sync_skcipher(alg->base.cra_name, 0,
952 CRYPTO_ALG_NEED_FALLBACK);
953 if (IS_ERR(ctx->sw_cipher.cipher))
954 return PTR_ERR(ctx->sw_cipher.cipher);
955 }
956
957 amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.cipher);
958 crypto4xx_ctx_init(amcc_alg, ctx);
959 return 0;
960 }
961
crypto4xx_common_exit(struct crypto4xx_ctx * ctx)962 static void crypto4xx_common_exit(struct crypto4xx_ctx *ctx)
963 {
964 crypto4xx_free_sa(ctx);
965 }
966
crypto4xx_sk_exit(struct crypto_skcipher * sk)967 static void crypto4xx_sk_exit(struct crypto_skcipher *sk)
968 {
969 struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(sk);
970
971 crypto4xx_common_exit(ctx);
972 if (ctx->sw_cipher.cipher)
973 crypto_free_sync_skcipher(ctx->sw_cipher.cipher);
974 }
975
crypto4xx_aead_init(struct crypto_aead * tfm)976 static int crypto4xx_aead_init(struct crypto_aead *tfm)
977 {
978 struct aead_alg *alg = crypto_aead_alg(tfm);
979 struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
980 struct crypto4xx_alg *amcc_alg;
981
982 ctx->sw_cipher.aead = crypto_alloc_aead(alg->base.cra_name, 0,
983 CRYPTO_ALG_NEED_FALLBACK |
984 CRYPTO_ALG_ASYNC);
985 if (IS_ERR(ctx->sw_cipher.aead))
986 return PTR_ERR(ctx->sw_cipher.aead);
987
988 amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.aead);
989 crypto4xx_ctx_init(amcc_alg, ctx);
990 crypto_aead_set_reqsize(tfm, max(sizeof(struct aead_request) + 32 +
991 crypto_aead_reqsize(ctx->sw_cipher.aead),
992 sizeof(struct crypto4xx_aead_reqctx)));
993 return 0;
994 }
995
crypto4xx_aead_exit(struct crypto_aead * tfm)996 static void crypto4xx_aead_exit(struct crypto_aead *tfm)
997 {
998 struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
999
1000 crypto4xx_common_exit(ctx);
1001 crypto_free_aead(ctx->sw_cipher.aead);
1002 }
1003
crypto4xx_register_alg(struct crypto4xx_device * sec_dev,struct crypto4xx_alg_common * crypto_alg,int array_size)1004 static int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1005 struct crypto4xx_alg_common *crypto_alg,
1006 int array_size)
1007 {
1008 struct crypto4xx_alg *alg;
1009 int i;
1010 int rc = 0;
1011
1012 for (i = 0; i < array_size; i++) {
1013 alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1014 if (!alg)
1015 return -ENOMEM;
1016
1017 alg->alg = crypto_alg[i];
1018 alg->dev = sec_dev;
1019
1020 switch (alg->alg.type) {
1021 case CRYPTO_ALG_TYPE_AEAD:
1022 rc = crypto_register_aead(&alg->alg.u.aead);
1023 break;
1024
1025 case CRYPTO_ALG_TYPE_AHASH:
1026 rc = crypto_register_ahash(&alg->alg.u.hash);
1027 break;
1028
1029 case CRYPTO_ALG_TYPE_RNG:
1030 rc = crypto_register_rng(&alg->alg.u.rng);
1031 break;
1032
1033 default:
1034 rc = crypto_register_skcipher(&alg->alg.u.cipher);
1035 break;
1036 }
1037
1038 if (rc)
1039 kfree(alg);
1040 else
1041 list_add_tail(&alg->entry, &sec_dev->alg_list);
1042 }
1043
1044 return 0;
1045 }
1046
crypto4xx_unregister_alg(struct crypto4xx_device * sec_dev)1047 static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1048 {
1049 struct crypto4xx_alg *alg, *tmp;
1050
1051 list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1052 list_del(&alg->entry);
1053 switch (alg->alg.type) {
1054 case CRYPTO_ALG_TYPE_AHASH:
1055 crypto_unregister_ahash(&alg->alg.u.hash);
1056 break;
1057
1058 case CRYPTO_ALG_TYPE_AEAD:
1059 crypto_unregister_aead(&alg->alg.u.aead);
1060 break;
1061
1062 case CRYPTO_ALG_TYPE_RNG:
1063 crypto_unregister_rng(&alg->alg.u.rng);
1064 break;
1065
1066 default:
1067 crypto_unregister_skcipher(&alg->alg.u.cipher);
1068 }
1069 kfree(alg);
1070 }
1071 }
1072
crypto4xx_bh_tasklet_cb(unsigned long data)1073 static void crypto4xx_bh_tasklet_cb(unsigned long data)
1074 {
1075 struct device *dev = (struct device *)data;
1076 struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1077 struct pd_uinfo *pd_uinfo;
1078 struct ce_pd *pd;
1079 u32 tail = core_dev->dev->pdr_tail;
1080 u32 head = core_dev->dev->pdr_head;
1081
1082 do {
1083 pd_uinfo = &core_dev->dev->pdr_uinfo[tail];
1084 pd = &core_dev->dev->pdr[tail];
1085 if ((pd_uinfo->state & PD_ENTRY_INUSE) &&
1086 ((READ_ONCE(pd->pd_ctl.w) &
1087 (PD_CTL_PE_DONE | PD_CTL_HOST_READY)) ==
1088 PD_CTL_PE_DONE)) {
1089 crypto4xx_pd_done(core_dev->dev, tail);
1090 tail = crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1091 } else {
1092 /* if tail not done, break */
1093 break;
1094 }
1095 } while (head != tail);
1096 }
1097
1098 /**
1099 * Top Half of isr.
1100 */
crypto4xx_interrupt_handler(int irq,void * data,u32 clr_val)1101 static inline irqreturn_t crypto4xx_interrupt_handler(int irq, void *data,
1102 u32 clr_val)
1103 {
1104 struct device *dev = (struct device *)data;
1105 struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1106
1107 writel(clr_val, core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1108 tasklet_schedule(&core_dev->tasklet);
1109
1110 return IRQ_HANDLED;
1111 }
1112
crypto4xx_ce_interrupt_handler(int irq,void * data)1113 static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1114 {
1115 return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR);
1116 }
1117
crypto4xx_ce_interrupt_handler_revb(int irq,void * data)1118 static irqreturn_t crypto4xx_ce_interrupt_handler_revb(int irq, void *data)
1119 {
1120 return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR |
1121 PPC4XX_TMO_ERR_INT);
1122 }
1123
ppc4xx_prng_data_read(struct crypto4xx_device * dev,u8 * data,unsigned int max)1124 static int ppc4xx_prng_data_read(struct crypto4xx_device *dev,
1125 u8 *data, unsigned int max)
1126 {
1127 unsigned int i, curr = 0;
1128 u32 val[2];
1129
1130 do {
1131 /* trigger PRN generation */
1132 writel(PPC4XX_PRNG_CTRL_AUTO_EN,
1133 dev->ce_base + CRYPTO4XX_PRNG_CTRL);
1134
1135 for (i = 0; i < 1024; i++) {
1136 /* usually 19 iterations are enough */
1137 if ((readl(dev->ce_base + CRYPTO4XX_PRNG_STAT) &
1138 CRYPTO4XX_PRNG_STAT_BUSY))
1139 continue;
1140
1141 val[0] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_0);
1142 val[1] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_1);
1143 break;
1144 }
1145 if (i == 1024)
1146 return -ETIMEDOUT;
1147
1148 if ((max - curr) >= 8) {
1149 memcpy(data, &val, 8);
1150 data += 8;
1151 curr += 8;
1152 } else {
1153 /* copy only remaining bytes */
1154 memcpy(data, &val, max - curr);
1155 break;
1156 }
1157 } while (curr < max);
1158
1159 return curr;
1160 }
1161
crypto4xx_prng_generate(struct crypto_rng * tfm,const u8 * src,unsigned int slen,u8 * dstn,unsigned int dlen)1162 static int crypto4xx_prng_generate(struct crypto_rng *tfm,
1163 const u8 *src, unsigned int slen,
1164 u8 *dstn, unsigned int dlen)
1165 {
1166 struct rng_alg *alg = crypto_rng_alg(tfm);
1167 struct crypto4xx_alg *amcc_alg;
1168 struct crypto4xx_device *dev;
1169 int ret;
1170
1171 amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.rng);
1172 dev = amcc_alg->dev;
1173
1174 mutex_lock(&dev->core_dev->rng_lock);
1175 ret = ppc4xx_prng_data_read(dev, dstn, dlen);
1176 mutex_unlock(&dev->core_dev->rng_lock);
1177 return ret;
1178 }
1179
1180
crypto4xx_prng_seed(struct crypto_rng * tfm,const u8 * seed,unsigned int slen)1181 static int crypto4xx_prng_seed(struct crypto_rng *tfm, const u8 *seed,
1182 unsigned int slen)
1183 {
1184 return 0;
1185 }
1186
1187 /**
1188 * Supported Crypto Algorithms
1189 */
1190 static struct crypto4xx_alg_common crypto4xx_alg[] = {
1191 /* Crypto AES modes */
1192 { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1193 .base = {
1194 .cra_name = "cbc(aes)",
1195 .cra_driver_name = "cbc-aes-ppc4xx",
1196 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1197 .cra_flags = CRYPTO_ALG_ASYNC |
1198 CRYPTO_ALG_KERN_DRIVER_ONLY,
1199 .cra_blocksize = AES_BLOCK_SIZE,
1200 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1201 .cra_module = THIS_MODULE,
1202 },
1203 .min_keysize = AES_MIN_KEY_SIZE,
1204 .max_keysize = AES_MAX_KEY_SIZE,
1205 .ivsize = AES_IV_SIZE,
1206 .setkey = crypto4xx_setkey_aes_cbc,
1207 .encrypt = crypto4xx_encrypt_iv_block,
1208 .decrypt = crypto4xx_decrypt_iv_block,
1209 .init = crypto4xx_sk_init,
1210 .exit = crypto4xx_sk_exit,
1211 } },
1212 { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1213 .base = {
1214 .cra_name = "cfb(aes)",
1215 .cra_driver_name = "cfb-aes-ppc4xx",
1216 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1217 .cra_flags = CRYPTO_ALG_ASYNC |
1218 CRYPTO_ALG_KERN_DRIVER_ONLY,
1219 .cra_blocksize = 1,
1220 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1221 .cra_module = THIS_MODULE,
1222 },
1223 .min_keysize = AES_MIN_KEY_SIZE,
1224 .max_keysize = AES_MAX_KEY_SIZE,
1225 .ivsize = AES_IV_SIZE,
1226 .setkey = crypto4xx_setkey_aes_cfb,
1227 .encrypt = crypto4xx_encrypt_iv_stream,
1228 .decrypt = crypto4xx_decrypt_iv_stream,
1229 .init = crypto4xx_sk_init,
1230 .exit = crypto4xx_sk_exit,
1231 } },
1232 { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1233 .base = {
1234 .cra_name = "ctr(aes)",
1235 .cra_driver_name = "ctr-aes-ppc4xx",
1236 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1237 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
1238 CRYPTO_ALG_ASYNC |
1239 CRYPTO_ALG_KERN_DRIVER_ONLY,
1240 .cra_blocksize = 1,
1241 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1242 .cra_module = THIS_MODULE,
1243 },
1244 .min_keysize = AES_MIN_KEY_SIZE,
1245 .max_keysize = AES_MAX_KEY_SIZE,
1246 .ivsize = AES_IV_SIZE,
1247 .setkey = crypto4xx_setkey_aes_ctr,
1248 .encrypt = crypto4xx_encrypt_ctr,
1249 .decrypt = crypto4xx_decrypt_ctr,
1250 .init = crypto4xx_sk_init,
1251 .exit = crypto4xx_sk_exit,
1252 } },
1253 { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1254 .base = {
1255 .cra_name = "rfc3686(ctr(aes))",
1256 .cra_driver_name = "rfc3686-ctr-aes-ppc4xx",
1257 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1258 .cra_flags = CRYPTO_ALG_ASYNC |
1259 CRYPTO_ALG_KERN_DRIVER_ONLY,
1260 .cra_blocksize = 1,
1261 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1262 .cra_module = THIS_MODULE,
1263 },
1264 .min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1265 .max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1266 .ivsize = CTR_RFC3686_IV_SIZE,
1267 .setkey = crypto4xx_setkey_rfc3686,
1268 .encrypt = crypto4xx_rfc3686_encrypt,
1269 .decrypt = crypto4xx_rfc3686_decrypt,
1270 .init = crypto4xx_sk_init,
1271 .exit = crypto4xx_sk_exit,
1272 } },
1273 { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1274 .base = {
1275 .cra_name = "ecb(aes)",
1276 .cra_driver_name = "ecb-aes-ppc4xx",
1277 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1278 .cra_flags = CRYPTO_ALG_ASYNC |
1279 CRYPTO_ALG_KERN_DRIVER_ONLY,
1280 .cra_blocksize = AES_BLOCK_SIZE,
1281 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1282 .cra_module = THIS_MODULE,
1283 },
1284 .min_keysize = AES_MIN_KEY_SIZE,
1285 .max_keysize = AES_MAX_KEY_SIZE,
1286 .setkey = crypto4xx_setkey_aes_ecb,
1287 .encrypt = crypto4xx_encrypt_noiv_block,
1288 .decrypt = crypto4xx_decrypt_noiv_block,
1289 .init = crypto4xx_sk_init,
1290 .exit = crypto4xx_sk_exit,
1291 } },
1292 { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1293 .base = {
1294 .cra_name = "ofb(aes)",
1295 .cra_driver_name = "ofb-aes-ppc4xx",
1296 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1297 .cra_flags = CRYPTO_ALG_ASYNC |
1298 CRYPTO_ALG_KERN_DRIVER_ONLY,
1299 .cra_blocksize = 1,
1300 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1301 .cra_module = THIS_MODULE,
1302 },
1303 .min_keysize = AES_MIN_KEY_SIZE,
1304 .max_keysize = AES_MAX_KEY_SIZE,
1305 .ivsize = AES_IV_SIZE,
1306 .setkey = crypto4xx_setkey_aes_ofb,
1307 .encrypt = crypto4xx_encrypt_iv_stream,
1308 .decrypt = crypto4xx_decrypt_iv_stream,
1309 .init = crypto4xx_sk_init,
1310 .exit = crypto4xx_sk_exit,
1311 } },
1312
1313 /* AEAD */
1314 { .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1315 .setkey = crypto4xx_setkey_aes_ccm,
1316 .setauthsize = crypto4xx_setauthsize_aead,
1317 .encrypt = crypto4xx_encrypt_aes_ccm,
1318 .decrypt = crypto4xx_decrypt_aes_ccm,
1319 .init = crypto4xx_aead_init,
1320 .exit = crypto4xx_aead_exit,
1321 .ivsize = AES_BLOCK_SIZE,
1322 .maxauthsize = 16,
1323 .base = {
1324 .cra_name = "ccm(aes)",
1325 .cra_driver_name = "ccm-aes-ppc4xx",
1326 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1327 .cra_flags = CRYPTO_ALG_ASYNC |
1328 CRYPTO_ALG_NEED_FALLBACK |
1329 CRYPTO_ALG_KERN_DRIVER_ONLY,
1330 .cra_blocksize = 1,
1331 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1332 .cra_module = THIS_MODULE,
1333 },
1334 } },
1335 { .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1336 .setkey = crypto4xx_setkey_aes_gcm,
1337 .setauthsize = crypto4xx_setauthsize_aead,
1338 .encrypt = crypto4xx_encrypt_aes_gcm,
1339 .decrypt = crypto4xx_decrypt_aes_gcm,
1340 .init = crypto4xx_aead_init,
1341 .exit = crypto4xx_aead_exit,
1342 .ivsize = GCM_AES_IV_SIZE,
1343 .maxauthsize = 16,
1344 .base = {
1345 .cra_name = "gcm(aes)",
1346 .cra_driver_name = "gcm-aes-ppc4xx",
1347 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1348 .cra_flags = CRYPTO_ALG_ASYNC |
1349 CRYPTO_ALG_NEED_FALLBACK |
1350 CRYPTO_ALG_KERN_DRIVER_ONLY,
1351 .cra_blocksize = 1,
1352 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1353 .cra_module = THIS_MODULE,
1354 },
1355 } },
1356 { .type = CRYPTO_ALG_TYPE_RNG, .u.rng = {
1357 .base = {
1358 .cra_name = "stdrng",
1359 .cra_driver_name = "crypto4xx_rng",
1360 .cra_priority = 300,
1361 .cra_ctxsize = 0,
1362 .cra_module = THIS_MODULE,
1363 },
1364 .generate = crypto4xx_prng_generate,
1365 .seed = crypto4xx_prng_seed,
1366 .seedsize = 0,
1367 } },
1368 };
1369
1370 /**
1371 * Module Initialization Routine
1372 */
crypto4xx_probe(struct platform_device * ofdev)1373 static int crypto4xx_probe(struct platform_device *ofdev)
1374 {
1375 int rc;
1376 struct resource res;
1377 struct device *dev = &ofdev->dev;
1378 struct crypto4xx_core_device *core_dev;
1379 u32 pvr;
1380 bool is_revb = true;
1381
1382 rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
1383 if (rc)
1384 return -ENODEV;
1385
1386 if (of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto")) {
1387 mtdcri(SDR0, PPC460EX_SDR0_SRST,
1388 mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1389 mtdcri(SDR0, PPC460EX_SDR0_SRST,
1390 mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1391 } else if (of_find_compatible_node(NULL, NULL,
1392 "amcc,ppc405ex-crypto")) {
1393 mtdcri(SDR0, PPC405EX_SDR0_SRST,
1394 mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1395 mtdcri(SDR0, PPC405EX_SDR0_SRST,
1396 mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1397 is_revb = false;
1398 } else if (of_find_compatible_node(NULL, NULL,
1399 "amcc,ppc460sx-crypto")) {
1400 mtdcri(SDR0, PPC460SX_SDR0_SRST,
1401 mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1402 mtdcri(SDR0, PPC460SX_SDR0_SRST,
1403 mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1404 } else {
1405 printk(KERN_ERR "Crypto Function Not supported!\n");
1406 return -EINVAL;
1407 }
1408
1409 core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1410 if (!core_dev)
1411 return -ENOMEM;
1412
1413 dev_set_drvdata(dev, core_dev);
1414 core_dev->ofdev = ofdev;
1415 core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
1416 rc = -ENOMEM;
1417 if (!core_dev->dev)
1418 goto err_alloc_dev;
1419
1420 /*
1421 * Older version of 460EX/GT have a hardware bug.
1422 * Hence they do not support H/W based security intr coalescing
1423 */
1424 pvr = mfspr(SPRN_PVR);
1425 if (is_revb && ((pvr >> 4) == 0x130218A)) {
1426 u32 min = PVR_MIN(pvr);
1427
1428 if (min < 4) {
1429 dev_info(dev, "RevA detected - disable interrupt coalescing\n");
1430 is_revb = false;
1431 }
1432 }
1433
1434 core_dev->dev->core_dev = core_dev;
1435 core_dev->dev->is_revb = is_revb;
1436 core_dev->device = dev;
1437 mutex_init(&core_dev->rng_lock);
1438 spin_lock_init(&core_dev->lock);
1439 INIT_LIST_HEAD(&core_dev->dev->alg_list);
1440 ratelimit_default_init(&core_dev->dev->aead_ratelimit);
1441 rc = crypto4xx_build_sdr(core_dev->dev);
1442 if (rc)
1443 goto err_build_sdr;
1444 rc = crypto4xx_build_pdr(core_dev->dev);
1445 if (rc)
1446 goto err_build_sdr;
1447
1448 rc = crypto4xx_build_gdr(core_dev->dev);
1449 if (rc)
1450 goto err_build_sdr;
1451
1452 /* Init tasklet for bottom half processing */
1453 tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1454 (unsigned long) dev);
1455
1456 core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
1457 if (!core_dev->dev->ce_base) {
1458 dev_err(dev, "failed to of_iomap\n");
1459 rc = -ENOMEM;
1460 goto err_iomap;
1461 }
1462
1463 /* Register for Crypto isr, Crypto Engine IRQ */
1464 core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1465 rc = request_irq(core_dev->irq, is_revb ?
1466 crypto4xx_ce_interrupt_handler_revb :
1467 crypto4xx_ce_interrupt_handler, 0,
1468 KBUILD_MODNAME, dev);
1469 if (rc)
1470 goto err_request_irq;
1471
1472 /* need to setup pdr, rdr, gdr and sdr before this */
1473 crypto4xx_hw_init(core_dev->dev);
1474
1475 /* Register security algorithms with Linux CryptoAPI */
1476 rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1477 ARRAY_SIZE(crypto4xx_alg));
1478 if (rc)
1479 goto err_start_dev;
1480
1481 ppc4xx_trng_probe(core_dev);
1482 return 0;
1483
1484 err_start_dev:
1485 free_irq(core_dev->irq, dev);
1486 err_request_irq:
1487 irq_dispose_mapping(core_dev->irq);
1488 iounmap(core_dev->dev->ce_base);
1489 err_iomap:
1490 tasklet_kill(&core_dev->tasklet);
1491 err_build_sdr:
1492 crypto4xx_destroy_sdr(core_dev->dev);
1493 crypto4xx_destroy_gdr(core_dev->dev);
1494 crypto4xx_destroy_pdr(core_dev->dev);
1495 kfree(core_dev->dev);
1496 err_alloc_dev:
1497 kfree(core_dev);
1498
1499 return rc;
1500 }
1501
crypto4xx_remove(struct platform_device * ofdev)1502 static int crypto4xx_remove(struct platform_device *ofdev)
1503 {
1504 struct device *dev = &ofdev->dev;
1505 struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1506
1507 ppc4xx_trng_remove(core_dev);
1508
1509 free_irq(core_dev->irq, dev);
1510 irq_dispose_mapping(core_dev->irq);
1511
1512 tasklet_kill(&core_dev->tasklet);
1513 /* Un-register with Linux CryptoAPI */
1514 crypto4xx_unregister_alg(core_dev->dev);
1515 mutex_destroy(&core_dev->rng_lock);
1516 /* Free all allocated memory */
1517 crypto4xx_stop_all(core_dev);
1518
1519 return 0;
1520 }
1521
1522 static const struct of_device_id crypto4xx_match[] = {
1523 { .compatible = "amcc,ppc4xx-crypto",},
1524 { },
1525 };
1526 MODULE_DEVICE_TABLE(of, crypto4xx_match);
1527
1528 static struct platform_driver crypto4xx_driver = {
1529 .driver = {
1530 .name = KBUILD_MODNAME,
1531 .of_match_table = crypto4xx_match,
1532 },
1533 .probe = crypto4xx_probe,
1534 .remove = crypto4xx_remove,
1535 };
1536
1537 module_platform_driver(crypto4xx_driver);
1538
1539 MODULE_LICENSE("GPL");
1540 MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1541 MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");
1542