• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/device.h>
7 #include <linux/dma-mapping.h>
8 #include <linux/interrupt.h>
9 #include <crypto/internal/hash.h>
10 
11 #include "common.h"
12 #include "core.h"
13 #include "sha.h"
14 
15 /* crypto hw padding constant for first operation */
16 #define SHA_PADDING		64
17 #define SHA_PADDING_MASK	(SHA_PADDING - 1)
18 
19 static LIST_HEAD(ahash_algs);
20 
21 static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
22 	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
23 };
24 
25 static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
26 	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
27 	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
28 };
29 
qce_ahash_done(void * data)30 static void qce_ahash_done(void *data)
31 {
32 	struct crypto_async_request *async_req = data;
33 	struct ahash_request *req = ahash_request_cast(async_req);
34 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
35 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
36 	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
37 	struct qce_device *qce = tmpl->qce;
38 	struct qce_result_dump *result = qce->dma.result_buf;
39 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
40 	int error;
41 	u32 status;
42 
43 	error = qce_dma_terminate_all(&qce->dma);
44 	if (error)
45 		dev_dbg(qce->dev, "ahash dma termination error (%d)\n", error);
46 
47 	dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
48 	dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
49 
50 	memcpy(rctx->digest, result->auth_iv, digestsize);
51 	if (req->result)
52 		memcpy(req->result, result->auth_iv, digestsize);
53 
54 	rctx->byte_count[0] = cpu_to_be32(result->auth_byte_count[0]);
55 	rctx->byte_count[1] = cpu_to_be32(result->auth_byte_count[1]);
56 
57 	error = qce_check_status(qce, &status);
58 	if (error < 0)
59 		dev_dbg(qce->dev, "ahash operation error (%x)\n", status);
60 
61 	req->src = rctx->src_orig;
62 	req->nbytes = rctx->nbytes_orig;
63 	rctx->last_blk = false;
64 	rctx->first_blk = false;
65 
66 	qce->async_req_done(tmpl->qce, error);
67 }
68 
qce_ahash_async_req_handle(struct crypto_async_request * async_req)69 static int qce_ahash_async_req_handle(struct crypto_async_request *async_req)
70 {
71 	struct ahash_request *req = ahash_request_cast(async_req);
72 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
73 	struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
74 	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
75 	struct qce_device *qce = tmpl->qce;
76 	unsigned long flags = rctx->flags;
77 	int ret;
78 
79 	if (IS_SHA_HMAC(flags)) {
80 		rctx->authkey = ctx->authkey;
81 		rctx->authklen = QCE_SHA_HMAC_KEY_SIZE;
82 	} else if (IS_CMAC(flags)) {
83 		rctx->authkey = ctx->authkey;
84 		rctx->authklen = AES_KEYSIZE_128;
85 	}
86 
87 	rctx->src_nents = sg_nents_for_len(req->src, req->nbytes);
88 	if (rctx->src_nents < 0) {
89 		dev_err(qce->dev, "Invalid numbers of src SG.\n");
90 		return rctx->src_nents;
91 	}
92 
93 	ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
94 	if (ret < 0)
95 		return ret;
96 
97 	sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);
98 
99 	ret = dma_map_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
100 	if (ret < 0)
101 		goto error_unmap_src;
102 
103 	ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents,
104 			       &rctx->result_sg, 1, qce_ahash_done, async_req);
105 	if (ret)
106 		goto error_unmap_dst;
107 
108 	qce_dma_issue_pending(&qce->dma);
109 
110 	ret = qce_start(async_req, tmpl->crypto_alg_type, 0, 0);
111 	if (ret)
112 		goto error_terminate;
113 
114 	return 0;
115 
116 error_terminate:
117 	qce_dma_terminate_all(&qce->dma);
118 error_unmap_dst:
119 	dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
120 error_unmap_src:
121 	dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
122 	return ret;
123 }
124 
qce_ahash_init(struct ahash_request * req)125 static int qce_ahash_init(struct ahash_request *req)
126 {
127 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
128 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
129 	const u32 *std_iv = tmpl->std_iv;
130 
131 	memset(rctx, 0, sizeof(*rctx));
132 	rctx->first_blk = true;
133 	rctx->last_blk = false;
134 	rctx->flags = tmpl->alg_flags;
135 	memcpy(rctx->digest, std_iv, sizeof(rctx->digest));
136 
137 	return 0;
138 }
139 
qce_ahash_export(struct ahash_request * req,void * out)140 static int qce_ahash_export(struct ahash_request *req, void *out)
141 {
142 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
143 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
144 	unsigned long flags = rctx->flags;
145 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
146 	unsigned int blocksize =
147 			crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
148 
149 	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
150 		struct sha1_state *out_state = out;
151 
152 		out_state->count = rctx->count;
153 		qce_cpu_to_be32p_array((__be32 *)out_state->state,
154 				       rctx->digest, digestsize);
155 		memcpy(out_state->buffer, rctx->buf, blocksize);
156 	} else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
157 		struct sha256_state *out_state = out;
158 
159 		out_state->count = rctx->count;
160 		qce_cpu_to_be32p_array((__be32 *)out_state->state,
161 				       rctx->digest, digestsize);
162 		memcpy(out_state->buf, rctx->buf, blocksize);
163 	} else {
164 		return -EINVAL;
165 	}
166 
167 	return 0;
168 }
169 
qce_import_common(struct ahash_request * req,u64 in_count,const u32 * state,const u8 * buffer,bool hmac)170 static int qce_import_common(struct ahash_request *req, u64 in_count,
171 			     const u32 *state, const u8 *buffer, bool hmac)
172 {
173 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
174 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
175 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
176 	unsigned int blocksize;
177 	u64 count = in_count;
178 
179 	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
180 	rctx->count = in_count;
181 	memcpy(rctx->buf, buffer, blocksize);
182 
183 	if (in_count <= blocksize) {
184 		rctx->first_blk = 1;
185 	} else {
186 		rctx->first_blk = 0;
187 		/*
188 		 * For HMAC, there is a hardware padding done when first block
189 		 * is set. Therefore the byte_count must be incremened by 64
190 		 * after the first block operation.
191 		 */
192 		if (hmac)
193 			count += SHA_PADDING;
194 	}
195 
196 	rctx->byte_count[0] = (__force __be32)(count & ~SHA_PADDING_MASK);
197 	rctx->byte_count[1] = (__force __be32)(count >> 32);
198 	qce_cpu_to_be32p_array((__be32 *)rctx->digest, (const u8 *)state,
199 			       digestsize);
200 	rctx->buflen = (unsigned int)(in_count & (blocksize - 1));
201 
202 	return 0;
203 }
204 
qce_ahash_import(struct ahash_request * req,const void * in)205 static int qce_ahash_import(struct ahash_request *req, const void *in)
206 {
207 	struct qce_sha_reqctx *rctx;
208 	unsigned long flags;
209 	bool hmac;
210 	int ret;
211 
212 	ret = qce_ahash_init(req);
213 	if (ret)
214 		return ret;
215 
216 	rctx = ahash_request_ctx(req);
217 	flags = rctx->flags;
218 	hmac = IS_SHA_HMAC(flags);
219 
220 	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
221 		const struct sha1_state *state = in;
222 
223 		ret = qce_import_common(req, state->count, state->state,
224 					state->buffer, hmac);
225 	} else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
226 		const struct sha256_state *state = in;
227 
228 		ret = qce_import_common(req, state->count, state->state,
229 					state->buf, hmac);
230 	}
231 
232 	return ret;
233 }
234 
qce_ahash_update(struct ahash_request * req)235 static int qce_ahash_update(struct ahash_request *req)
236 {
237 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
238 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
239 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
240 	struct qce_device *qce = tmpl->qce;
241 	struct scatterlist *sg_last, *sg;
242 	unsigned int total, len;
243 	unsigned int hash_later;
244 	unsigned int nbytes;
245 	unsigned int blocksize;
246 
247 	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
248 	rctx->count += req->nbytes;
249 
250 	/* check for buffer from previous updates and append it */
251 	total = req->nbytes + rctx->buflen;
252 
253 	if (total <= blocksize) {
254 		scatterwalk_map_and_copy(rctx->buf + rctx->buflen, req->src,
255 					 0, req->nbytes, 0);
256 		rctx->buflen += req->nbytes;
257 		return 0;
258 	}
259 
260 	/* save the original req structure fields */
261 	rctx->src_orig = req->src;
262 	rctx->nbytes_orig = req->nbytes;
263 
264 	/*
265 	 * if we have data from previous update copy them on buffer. The old
266 	 * data will be combined with current request bytes.
267 	 */
268 	if (rctx->buflen)
269 		memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
270 
271 	/* calculate how many bytes will be hashed later */
272 	hash_later = total % blocksize;
273 	if (hash_later) {
274 		unsigned int src_offset = req->nbytes - hash_later;
275 		scatterwalk_map_and_copy(rctx->buf, req->src, src_offset,
276 					 hash_later, 0);
277 	}
278 
279 	/* here nbytes is multiple of blocksize */
280 	nbytes = total - hash_later;
281 
282 	len = rctx->buflen;
283 	sg = sg_last = req->src;
284 
285 	while (len < nbytes && sg) {
286 		if (len + sg_dma_len(sg) > nbytes)
287 			break;
288 		len += sg_dma_len(sg);
289 		sg_last = sg;
290 		sg = sg_next(sg);
291 	}
292 
293 	if (!sg_last)
294 		return -EINVAL;
295 
296 	if (rctx->buflen) {
297 		sg_init_table(rctx->sg, 2);
298 		sg_set_buf(rctx->sg, rctx->tmpbuf, rctx->buflen);
299 		sg_chain(rctx->sg, 2, req->src);
300 		req->src = rctx->sg;
301 	}
302 
303 	req->nbytes = nbytes;
304 	rctx->buflen = hash_later;
305 
306 	return qce->async_req_enqueue(tmpl->qce, &req->base);
307 }
308 
qce_ahash_final(struct ahash_request * req)309 static int qce_ahash_final(struct ahash_request *req)
310 {
311 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
312 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
313 	struct qce_device *qce = tmpl->qce;
314 
315 	if (!rctx->buflen) {
316 		if (tmpl->hash_zero)
317 			memcpy(req->result, tmpl->hash_zero,
318 					tmpl->alg.ahash.halg.digestsize);
319 		return 0;
320 	}
321 
322 	rctx->last_blk = true;
323 
324 	rctx->src_orig = req->src;
325 	rctx->nbytes_orig = req->nbytes;
326 
327 	memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
328 	sg_init_one(rctx->sg, rctx->tmpbuf, rctx->buflen);
329 
330 	req->src = rctx->sg;
331 	req->nbytes = rctx->buflen;
332 
333 	return qce->async_req_enqueue(tmpl->qce, &req->base);
334 }
335 
qce_ahash_digest(struct ahash_request * req)336 static int qce_ahash_digest(struct ahash_request *req)
337 {
338 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
339 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
340 	struct qce_device *qce = tmpl->qce;
341 	int ret;
342 
343 	ret = qce_ahash_init(req);
344 	if (ret)
345 		return ret;
346 
347 	rctx->src_orig = req->src;
348 	rctx->nbytes_orig = req->nbytes;
349 	rctx->first_blk = true;
350 	rctx->last_blk = true;
351 
352 	if (!rctx->nbytes_orig) {
353 		if (tmpl->hash_zero)
354 			memcpy(req->result, tmpl->hash_zero,
355 					tmpl->alg.ahash.halg.digestsize);
356 		return 0;
357 	}
358 
359 	return qce->async_req_enqueue(tmpl->qce, &req->base);
360 }
361 
qce_ahash_hmac_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)362 static int qce_ahash_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
363 				 unsigned int keylen)
364 {
365 	unsigned int digestsize = crypto_ahash_digestsize(tfm);
366 	struct qce_sha_ctx *ctx = crypto_tfm_ctx(&tfm->base);
367 	struct crypto_wait wait;
368 	struct ahash_request *req;
369 	struct scatterlist sg;
370 	unsigned int blocksize;
371 	struct crypto_ahash *ahash_tfm;
372 	u8 *buf;
373 	int ret;
374 	const char *alg_name;
375 
376 	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
377 	memset(ctx->authkey, 0, sizeof(ctx->authkey));
378 
379 	if (keylen <= blocksize) {
380 		memcpy(ctx->authkey, key, keylen);
381 		return 0;
382 	}
383 
384 	if (digestsize == SHA1_DIGEST_SIZE)
385 		alg_name = "sha1-qce";
386 	else if (digestsize == SHA256_DIGEST_SIZE)
387 		alg_name = "sha256-qce";
388 	else
389 		return -EINVAL;
390 
391 	ahash_tfm = crypto_alloc_ahash(alg_name, 0, 0);
392 	if (IS_ERR(ahash_tfm))
393 		return PTR_ERR(ahash_tfm);
394 
395 	req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
396 	if (!req) {
397 		ret = -ENOMEM;
398 		goto err_free_ahash;
399 	}
400 
401 	crypto_init_wait(&wait);
402 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
403 				   crypto_req_done, &wait);
404 	crypto_ahash_clear_flags(ahash_tfm, ~0);
405 
406 	buf = kzalloc(keylen + QCE_MAX_ALIGN_SIZE, GFP_KERNEL);
407 	if (!buf) {
408 		ret = -ENOMEM;
409 		goto err_free_req;
410 	}
411 
412 	memcpy(buf, key, keylen);
413 	sg_init_one(&sg, buf, keylen);
414 	ahash_request_set_crypt(req, &sg, ctx->authkey, keylen);
415 
416 	ret = crypto_wait_req(crypto_ahash_digest(req), &wait);
417 
418 	kfree(buf);
419 err_free_req:
420 	ahash_request_free(req);
421 err_free_ahash:
422 	crypto_free_ahash(ahash_tfm);
423 	return ret;
424 }
425 
qce_ahash_cra_init(struct crypto_tfm * tfm)426 static int qce_ahash_cra_init(struct crypto_tfm *tfm)
427 {
428 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
429 	struct qce_sha_ctx *ctx = crypto_tfm_ctx(tfm);
430 
431 	crypto_ahash_set_reqsize(ahash, sizeof(struct qce_sha_reqctx));
432 	memset(ctx, 0, sizeof(*ctx));
433 	return 0;
434 }
435 
436 struct qce_ahash_def {
437 	unsigned long flags;
438 	const char *name;
439 	const char *drv_name;
440 	unsigned int digestsize;
441 	unsigned int blocksize;
442 	unsigned int statesize;
443 	const u32 *std_iv;
444 };
445 
446 static const struct qce_ahash_def ahash_def[] = {
447 	{
448 		.flags		= QCE_HASH_SHA1,
449 		.name		= "sha1",
450 		.drv_name	= "sha1-qce",
451 		.digestsize	= SHA1_DIGEST_SIZE,
452 		.blocksize	= SHA1_BLOCK_SIZE,
453 		.statesize	= sizeof(struct sha1_state),
454 		.std_iv		= std_iv_sha1,
455 	},
456 	{
457 		.flags		= QCE_HASH_SHA256,
458 		.name		= "sha256",
459 		.drv_name	= "sha256-qce",
460 		.digestsize	= SHA256_DIGEST_SIZE,
461 		.blocksize	= SHA256_BLOCK_SIZE,
462 		.statesize	= sizeof(struct sha256_state),
463 		.std_iv		= std_iv_sha256,
464 	},
465 	{
466 		.flags		= QCE_HASH_SHA1_HMAC,
467 		.name		= "hmac(sha1)",
468 		.drv_name	= "hmac-sha1-qce",
469 		.digestsize	= SHA1_DIGEST_SIZE,
470 		.blocksize	= SHA1_BLOCK_SIZE,
471 		.statesize	= sizeof(struct sha1_state),
472 		.std_iv		= std_iv_sha1,
473 	},
474 	{
475 		.flags		= QCE_HASH_SHA256_HMAC,
476 		.name		= "hmac(sha256)",
477 		.drv_name	= "hmac-sha256-qce",
478 		.digestsize	= SHA256_DIGEST_SIZE,
479 		.blocksize	= SHA256_BLOCK_SIZE,
480 		.statesize	= sizeof(struct sha256_state),
481 		.std_iv		= std_iv_sha256,
482 	},
483 };
484 
qce_ahash_register_one(const struct qce_ahash_def * def,struct qce_device * qce)485 static int qce_ahash_register_one(const struct qce_ahash_def *def,
486 				  struct qce_device *qce)
487 {
488 	struct qce_alg_template *tmpl;
489 	struct ahash_alg *alg;
490 	struct crypto_alg *base;
491 	int ret;
492 
493 	tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
494 	if (!tmpl)
495 		return -ENOMEM;
496 
497 	tmpl->std_iv = def->std_iv;
498 
499 	alg = &tmpl->alg.ahash;
500 	alg->init = qce_ahash_init;
501 	alg->update = qce_ahash_update;
502 	alg->final = qce_ahash_final;
503 	alg->digest = qce_ahash_digest;
504 	alg->export = qce_ahash_export;
505 	alg->import = qce_ahash_import;
506 	if (IS_SHA_HMAC(def->flags))
507 		alg->setkey = qce_ahash_hmac_setkey;
508 	alg->halg.digestsize = def->digestsize;
509 	alg->halg.statesize = def->statesize;
510 
511 	if (IS_SHA1(def->flags))
512 		tmpl->hash_zero = sha1_zero_message_hash;
513 	else if (IS_SHA256(def->flags))
514 		tmpl->hash_zero = sha256_zero_message_hash;
515 
516 	base = &alg->halg.base;
517 	base->cra_blocksize = def->blocksize;
518 	base->cra_priority = 300;
519 	base->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
520 	base->cra_ctxsize = sizeof(struct qce_sha_ctx);
521 	base->cra_alignmask = 0;
522 	base->cra_module = THIS_MODULE;
523 	base->cra_init = qce_ahash_cra_init;
524 
525 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
526 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
527 		 def->drv_name);
528 
529 	INIT_LIST_HEAD(&tmpl->entry);
530 	tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AHASH;
531 	tmpl->alg_flags = def->flags;
532 	tmpl->qce = qce;
533 
534 	ret = crypto_register_ahash(alg);
535 	if (ret) {
536 		dev_err(qce->dev, "%s registration failed\n", base->cra_name);
537 		kfree(tmpl);
538 		return ret;
539 	}
540 
541 	list_add_tail(&tmpl->entry, &ahash_algs);
542 	dev_dbg(qce->dev, "%s is registered\n", base->cra_name);
543 	return 0;
544 }
545 
qce_ahash_unregister(struct qce_device * qce)546 static void qce_ahash_unregister(struct qce_device *qce)
547 {
548 	struct qce_alg_template *tmpl, *n;
549 
550 	list_for_each_entry_safe(tmpl, n, &ahash_algs, entry) {
551 		crypto_unregister_ahash(&tmpl->alg.ahash);
552 		list_del(&tmpl->entry);
553 		kfree(tmpl);
554 	}
555 }
556 
qce_ahash_register(struct qce_device * qce)557 static int qce_ahash_register(struct qce_device *qce)
558 {
559 	int ret, i;
560 
561 	for (i = 0; i < ARRAY_SIZE(ahash_def); i++) {
562 		ret = qce_ahash_register_one(&ahash_def[i], qce);
563 		if (ret)
564 			goto err;
565 	}
566 
567 	return 0;
568 err:
569 	qce_ahash_unregister(qce);
570 	return ret;
571 }
572 
573 const struct qce_algo_ops ahash_ops = {
574 	.type = CRYPTO_ALG_TYPE_AHASH,
575 	.register_algs = qce_ahash_register,
576 	.unregister_algs = qce_ahash_unregister,
577 	.async_req_handle = qce_ahash_async_req_handle,
578 };
579