1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2016 Broadcom
4 */
5
6 /**
7 * DOC: VC4 DSI0/DSI1 module
8 *
9 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a
10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
11 * controller.
12 *
13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
14 * while the compute module brings both DSI0 and DSI1 out.
15 *
16 * This driver has been tested for DSI1 video-mode display only
17 * currently, with most of the information necessary for DSI0
18 * hopefully present.
19 */
20
21 #include <linux/clk-provider.h>
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/component.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/dmaengine.h>
27 #include <linux/i2c.h>
28 #include <linux/io.h>
29 #include <linux/of_address.h>
30 #include <linux/of_platform.h>
31 #include <linux/pm_runtime.h>
32
33 #include <drm/drm_atomic_helper.h>
34 #include <drm/drm_bridge.h>
35 #include <drm/drm_edid.h>
36 #include <drm/drm_mipi_dsi.h>
37 #include <drm/drm_of.h>
38 #include <drm/drm_panel.h>
39 #include <drm/drm_probe_helper.h>
40 #include <drm/drm_simple_kms_helper.h>
41
42 #include "vc4_drv.h"
43 #include "vc4_regs.h"
44
45 #define DSI_CMD_FIFO_DEPTH 16
46 #define DSI_PIX_FIFO_DEPTH 256
47 #define DSI_PIX_FIFO_WIDTH 4
48
49 #define DSI0_CTRL 0x00
50
51 /* Command packet control. */
52 #define DSI0_TXPKT1C 0x04 /* AKA PKTC */
53 #define DSI1_TXPKT1C 0x04
54 # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24)
55 # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24
56 # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10)
57 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10
58
59 # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8)
60 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8
61 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
62 # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0
63 /* Primary display where cmdfifo provides part of the payload and
64 * pixelvalve the rest.
65 */
66 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1
67 /* Secondary display where cmdfifo provides part of the payload and
68 * pixfifo the rest.
69 */
70 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2
71
72 # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6)
73 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6
74
75 # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4)
76 # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4
77 /* Command only. Uses TXPKT1H and DISPLAY_NO */
78 # define DSI_TXPKT1C_CMD_CTRL_TX 0
79 /* Command with BTA for either ack or read data. */
80 # define DSI_TXPKT1C_CMD_CTRL_RX 1
81 /* Trigger according to TRIG_CMD */
82 # define DSI_TXPKT1C_CMD_CTRL_TRIG 2
83 /* BTA alone for getting error status after a command, or a TE trigger
84 * without a previous command.
85 */
86 # define DSI_TXPKT1C_CMD_CTRL_BTA 3
87
88 # define DSI_TXPKT1C_CMD_MODE_LP BIT(3)
89 # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2)
90 # define DSI_TXPKT1C_CMD_TE_EN BIT(1)
91 # define DSI_TXPKT1C_CMD_EN BIT(0)
92
93 /* Command packet header. */
94 #define DSI0_TXPKT1H 0x08 /* AKA PKTH */
95 #define DSI1_TXPKT1H 0x08
96 # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24)
97 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24
98 # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
99 # define DSI_TXPKT1H_BC_PARAM_SHIFT 8
100 # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0)
101 # define DSI_TXPKT1H_BC_DT_SHIFT 0
102
103 #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */
104 #define DSI1_RXPKT1H 0x14
105 # define DSI_RXPKT1H_CRC_ERR BIT(31)
106 # define DSI_RXPKT1H_DET_ERR BIT(30)
107 # define DSI_RXPKT1H_ECC_ERR BIT(29)
108 # define DSI_RXPKT1H_COR_ERR BIT(28)
109 # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
110 # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24)
111 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
112 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
113 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
114 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
115 # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16)
116 # define DSI_RXPKT1H_SHORT_1_SHIFT 16
117 # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8)
118 # define DSI_RXPKT1H_SHORT_0_SHIFT 8
119 # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0)
120 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0
121
122 #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */
123 #define DSI1_RXPKT2H 0x18
124 # define DSI_RXPKT1H_DET_ERR BIT(30)
125 # define DSI_RXPKT1H_ECC_ERR BIT(29)
126 # define DSI_RXPKT1H_COR_ERR BIT(28)
127 # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
128 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
129 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
130 # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0)
131 # define DSI_RXPKT1H_DT_SHIFT 0
132
133 #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */
134 #define DSI1_TXPKT_CMD_FIFO 0x1c
135
136 #define DSI0_DISP0_CTRL 0x18
137 # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13)
138 # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13
139 # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11)
140 # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11
141 # define DSI_DISP0_LP_STOP_DISABLE 0
142 # define DSI_DISP0_LP_STOP_PERLINE 1
143 # define DSI_DISP0_LP_STOP_PERFRAME 2
144
145 /* Transmit RGB pixels and null packets only during HACTIVE, instead
146 * of going to LP-STOP.
147 */
148 # define DSI_DISP_HACTIVE_NULL BIT(10)
149 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
150 # define DSI_DISP_VBLP_CTRL BIT(9)
151 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
152 # define DSI_DISP_HFP_CTRL BIT(8)
153 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
154 # define DSI_DISP_HBP_CTRL BIT(7)
155 # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5)
156 # define DSI_DISP0_CHANNEL_SHIFT 5
157 /* Enables end events for HSYNC/VSYNC, not just start events. */
158 # define DSI_DISP0_ST_END BIT(4)
159 # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2)
160 # define DSI_DISP0_PFORMAT_SHIFT 2
161 # define DSI_PFORMAT_RGB565 0
162 # define DSI_PFORMAT_RGB666_PACKED 1
163 # define DSI_PFORMAT_RGB666 2
164 # define DSI_PFORMAT_RGB888 3
165 /* Default is VIDEO mode. */
166 # define DSI_DISP0_COMMAND_MODE BIT(1)
167 # define DSI_DISP0_ENABLE BIT(0)
168
169 #define DSI0_DISP1_CTRL 0x1c
170 #define DSI1_DISP1_CTRL 0x2c
171 /* Format of the data written to TXPKT_PIX_FIFO. */
172 # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1)
173 # define DSI_DISP1_PFORMAT_SHIFT 1
174 # define DSI_DISP1_PFORMAT_16BIT 0
175 # define DSI_DISP1_PFORMAT_24BIT 1
176 # define DSI_DISP1_PFORMAT_32BIT_LE 2
177 # define DSI_DISP1_PFORMAT_32BIT_BE 3
178
179 /* DISP1 is always command mode. */
180 # define DSI_DISP1_ENABLE BIT(0)
181
182 #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */
183
184 #define DSI0_INT_STAT 0x24
185 #define DSI0_INT_EN 0x28
186 # define DSI0_INT_FIFO_ERR BIT(25)
187 # define DSI0_INT_CMDC_DONE_MASK VC4_MASK(24, 23)
188 # define DSI0_INT_CMDC_DONE_SHIFT 23
189 # define DSI0_INT_CMDC_DONE_NO_REPEAT 1
190 # define DSI0_INT_CMDC_DONE_REPEAT 3
191 # define DSI0_INT_PHY_DIR_RTF BIT(22)
192 # define DSI0_INT_PHY_D1_ULPS BIT(21)
193 # define DSI0_INT_PHY_D1_STOP BIT(20)
194 # define DSI0_INT_PHY_RXLPDT BIT(19)
195 # define DSI0_INT_PHY_RXTRIG BIT(18)
196 # define DSI0_INT_PHY_D0_ULPS BIT(17)
197 # define DSI0_INT_PHY_D0_LPDT BIT(16)
198 # define DSI0_INT_PHY_D0_FTR BIT(15)
199 # define DSI0_INT_PHY_D0_STOP BIT(14)
200 /* Signaled when the clock lane enters the given state. */
201 # define DSI0_INT_PHY_CLK_ULPS BIT(13)
202 # define DSI0_INT_PHY_CLK_HS BIT(12)
203 # define DSI0_INT_PHY_CLK_FTR BIT(11)
204 /* Signaled on timeouts */
205 # define DSI0_INT_PR_TO BIT(10)
206 # define DSI0_INT_TA_TO BIT(9)
207 # define DSI0_INT_LPRX_TO BIT(8)
208 # define DSI0_INT_HSTX_TO BIT(7)
209 /* Contention on a line when trying to drive the line low */
210 # define DSI0_INT_ERR_CONT_LP1 BIT(6)
211 # define DSI0_INT_ERR_CONT_LP0 BIT(5)
212 /* Control error: incorrect line state sequence on data lane 0. */
213 # define DSI0_INT_ERR_CONTROL BIT(4)
214 # define DSI0_INT_ERR_SYNC_ESC BIT(3)
215 # define DSI0_INT_RX2_PKT BIT(2)
216 # define DSI0_INT_RX1_PKT BIT(1)
217 # define DSI0_INT_CMD_PKT BIT(0)
218
219 #define DSI0_INTERRUPTS_ALWAYS_ENABLED (DSI0_INT_ERR_SYNC_ESC | \
220 DSI0_INT_ERR_CONTROL | \
221 DSI0_INT_ERR_CONT_LP0 | \
222 DSI0_INT_ERR_CONT_LP1 | \
223 DSI0_INT_HSTX_TO | \
224 DSI0_INT_LPRX_TO | \
225 DSI0_INT_TA_TO | \
226 DSI0_INT_PR_TO)
227
228 # define DSI1_INT_PHY_D3_ULPS BIT(30)
229 # define DSI1_INT_PHY_D3_STOP BIT(29)
230 # define DSI1_INT_PHY_D2_ULPS BIT(28)
231 # define DSI1_INT_PHY_D2_STOP BIT(27)
232 # define DSI1_INT_PHY_D1_ULPS BIT(26)
233 # define DSI1_INT_PHY_D1_STOP BIT(25)
234 # define DSI1_INT_PHY_D0_ULPS BIT(24)
235 # define DSI1_INT_PHY_D0_STOP BIT(23)
236 # define DSI1_INT_FIFO_ERR BIT(22)
237 # define DSI1_INT_PHY_DIR_RTF BIT(21)
238 # define DSI1_INT_PHY_RXLPDT BIT(20)
239 # define DSI1_INT_PHY_RXTRIG BIT(19)
240 # define DSI1_INT_PHY_D0_LPDT BIT(18)
241 # define DSI1_INT_PHY_DIR_FTR BIT(17)
242
243 /* Signaled when the clock lane enters the given state. */
244 # define DSI1_INT_PHY_CLOCK_ULPS BIT(16)
245 # define DSI1_INT_PHY_CLOCK_HS BIT(15)
246 # define DSI1_INT_PHY_CLOCK_STOP BIT(14)
247
248 /* Signaled on timeouts */
249 # define DSI1_INT_PR_TO BIT(13)
250 # define DSI1_INT_TA_TO BIT(12)
251 # define DSI1_INT_LPRX_TO BIT(11)
252 # define DSI1_INT_HSTX_TO BIT(10)
253
254 /* Contention on a line when trying to drive the line low */
255 # define DSI1_INT_ERR_CONT_LP1 BIT(9)
256 # define DSI1_INT_ERR_CONT_LP0 BIT(8)
257
258 /* Control error: incorrect line state sequence on data lane 0. */
259 # define DSI1_INT_ERR_CONTROL BIT(7)
260 /* LPDT synchronization error (bits received not a multiple of 8. */
261
262 # define DSI1_INT_ERR_SYNC_ESC BIT(6)
263 /* Signaled after receiving an error packet from the display in
264 * response to a read.
265 */
266 # define DSI1_INT_RXPKT2 BIT(5)
267 /* Signaled after receiving a packet. The header and optional short
268 * response will be in RXPKT1H, and a long response will be in the
269 * RXPKT_FIFO.
270 */
271 # define DSI1_INT_RXPKT1 BIT(4)
272 # define DSI1_INT_TXPKT2_DONE BIT(3)
273 # define DSI1_INT_TXPKT2_END BIT(2)
274 /* Signaled after all repeats of TXPKT1 are transferred. */
275 # define DSI1_INT_TXPKT1_DONE BIT(1)
276 /* Signaled after each TXPKT1 repeat is scheduled. */
277 # define DSI1_INT_TXPKT1_END BIT(0)
278
279 #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \
280 DSI1_INT_ERR_CONTROL | \
281 DSI1_INT_ERR_CONT_LP0 | \
282 DSI1_INT_ERR_CONT_LP1 | \
283 DSI1_INT_HSTX_TO | \
284 DSI1_INT_LPRX_TO | \
285 DSI1_INT_TA_TO | \
286 DSI1_INT_PR_TO)
287
288 #define DSI0_STAT 0x2c
289 #define DSI0_HSTX_TO_CNT 0x30
290 #define DSI0_LPRX_TO_CNT 0x34
291 #define DSI0_TA_TO_CNT 0x38
292 #define DSI0_PR_TO_CNT 0x3c
293 #define DSI0_PHYC 0x40
294 # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20)
295 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20
296 # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18)
297 # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12)
298 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12
299 # define DSI1_PHYC_CLANE_ULPS BIT(17)
300 # define DSI1_PHYC_CLANE_ENABLE BIT(16)
301 # define DSI_PHYC_DLANE3_ULPS BIT(13)
302 # define DSI_PHYC_DLANE3_ENABLE BIT(12)
303 # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10)
304 # define DSI0_PHYC_CLANE_ULPS BIT(9)
305 # define DSI_PHYC_DLANE2_ULPS BIT(9)
306 # define DSI0_PHYC_CLANE_ENABLE BIT(8)
307 # define DSI_PHYC_DLANE2_ENABLE BIT(8)
308 # define DSI_PHYC_DLANE1_ULPS BIT(5)
309 # define DSI_PHYC_DLANE1_ENABLE BIT(4)
310 # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2)
311 # define DSI_PHYC_DLANE0_ULPS BIT(1)
312 # define DSI_PHYC_DLANE0_ENABLE BIT(0)
313
314 #define DSI0_HS_CLT0 0x44
315 #define DSI0_HS_CLT1 0x48
316 #define DSI0_HS_CLT2 0x4c
317 #define DSI0_HS_DLT3 0x50
318 #define DSI0_HS_DLT4 0x54
319 #define DSI0_HS_DLT5 0x58
320 #define DSI0_HS_DLT6 0x5c
321 #define DSI0_HS_DLT7 0x60
322
323 #define DSI0_PHY_AFEC0 0x64
324 # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26)
325 # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25)
326 # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24)
327 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29)
328 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29
329 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26)
330 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26
331 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23)
332 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23
333 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20)
334 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20
335 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17)
336 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17
337 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20)
338 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20
339 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16)
340 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16
341 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12)
342 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12
343 # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16)
344 # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15)
345 # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14)
346 # define DSI1_PHY_AFEC0_RESET BIT(13)
347 # define DSI1_PHY_AFEC0_PD BIT(12)
348 # define DSI0_PHY_AFEC0_RESET BIT(11)
349 # define DSI1_PHY_AFEC0_PD_BG BIT(11)
350 # define DSI0_PHY_AFEC0_PD BIT(10)
351 # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10)
352 # define DSI0_PHY_AFEC0_PD_BG BIT(9)
353 # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9)
354 # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8)
355 # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8)
356 # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4)
357 # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4
358 # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0)
359 # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0
360
361 #define DSI0_PHY_AFEC1 0x68
362 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8)
363 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8
364 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4)
365 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4
366 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0)
367 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0
368
369 #define DSI0_TST_SEL 0x6c
370 #define DSI0_TST_MON 0x70
371 #define DSI0_ID 0x74
372 # define DSI_ID_VALUE 0x00647369
373
374 #define DSI1_CTRL 0x00
375 # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14)
376 # define DSI_CTRL_HS_CLKC_SHIFT 14
377 # define DSI_CTRL_HS_CLKC_BYTE 0
378 # define DSI_CTRL_HS_CLKC_DDR2 1
379 # define DSI_CTRL_HS_CLKC_DDR 2
380
381 # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13)
382 # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12)
383 # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11)
384 # define DSI_CTRL_SOFT_RESET_CFG BIT(10)
385 # define DSI_CTRL_CAL_BYTE BIT(9)
386 # define DSI_CTRL_INV_BYTE BIT(8)
387 # define DSI_CTRL_CLR_LDF BIT(7)
388 # define DSI0_CTRL_CLR_PBCF BIT(6)
389 # define DSI1_CTRL_CLR_RXF BIT(6)
390 # define DSI0_CTRL_CLR_CPBCF BIT(5)
391 # define DSI1_CTRL_CLR_PDF BIT(5)
392 # define DSI0_CTRL_CLR_PDF BIT(4)
393 # define DSI1_CTRL_CLR_CDF BIT(4)
394 # define DSI0_CTRL_CLR_CDF BIT(3)
395 # define DSI0_CTRL_CTRL2 BIT(2)
396 # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2)
397 # define DSI0_CTRL_CTRL1 BIT(1)
398 # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1)
399 # define DSI0_CTRL_CTRL0 BIT(0)
400 # define DSI1_CTRL_EN BIT(0)
401 # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
402 DSI0_CTRL_CLR_PBCF | \
403 DSI0_CTRL_CLR_CPBCF | \
404 DSI0_CTRL_CLR_PDF | \
405 DSI0_CTRL_CLR_CDF)
406 # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
407 DSI1_CTRL_CLR_RXF | \
408 DSI1_CTRL_CLR_PDF | \
409 DSI1_CTRL_CLR_CDF)
410
411 #define DSI1_TXPKT2C 0x0c
412 #define DSI1_TXPKT2H 0x10
413 #define DSI1_TXPKT_PIX_FIFO 0x20
414 #define DSI1_RXPKT_FIFO 0x24
415 #define DSI1_DISP0_CTRL 0x28
416 #define DSI1_INT_STAT 0x30
417 #define DSI1_INT_EN 0x34
418 /* State reporting bits. These mostly behave like INT_STAT, where
419 * writing a 1 clears the bit.
420 */
421 #define DSI1_STAT 0x38
422 # define DSI1_STAT_PHY_D3_ULPS BIT(31)
423 # define DSI1_STAT_PHY_D3_STOP BIT(30)
424 # define DSI1_STAT_PHY_D2_ULPS BIT(29)
425 # define DSI1_STAT_PHY_D2_STOP BIT(28)
426 # define DSI1_STAT_PHY_D1_ULPS BIT(27)
427 # define DSI1_STAT_PHY_D1_STOP BIT(26)
428 # define DSI1_STAT_PHY_D0_ULPS BIT(25)
429 # define DSI1_STAT_PHY_D0_STOP BIT(24)
430 # define DSI1_STAT_FIFO_ERR BIT(23)
431 # define DSI1_STAT_PHY_RXLPDT BIT(22)
432 # define DSI1_STAT_PHY_RXTRIG BIT(21)
433 # define DSI1_STAT_PHY_D0_LPDT BIT(20)
434 /* Set when in forward direction */
435 # define DSI1_STAT_PHY_DIR BIT(19)
436 # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18)
437 # define DSI1_STAT_PHY_CLOCK_HS BIT(17)
438 # define DSI1_STAT_PHY_CLOCK_STOP BIT(16)
439 # define DSI1_STAT_PR_TO BIT(15)
440 # define DSI1_STAT_TA_TO BIT(14)
441 # define DSI1_STAT_LPRX_TO BIT(13)
442 # define DSI1_STAT_HSTX_TO BIT(12)
443 # define DSI1_STAT_ERR_CONT_LP1 BIT(11)
444 # define DSI1_STAT_ERR_CONT_LP0 BIT(10)
445 # define DSI1_STAT_ERR_CONTROL BIT(9)
446 # define DSI1_STAT_ERR_SYNC_ESC BIT(8)
447 # define DSI1_STAT_RXPKT2 BIT(7)
448 # define DSI1_STAT_RXPKT1 BIT(6)
449 # define DSI1_STAT_TXPKT2_BUSY BIT(5)
450 # define DSI1_STAT_TXPKT2_DONE BIT(4)
451 # define DSI1_STAT_TXPKT2_END BIT(3)
452 # define DSI1_STAT_TXPKT1_BUSY BIT(2)
453 # define DSI1_STAT_TXPKT1_DONE BIT(1)
454 # define DSI1_STAT_TXPKT1_END BIT(0)
455
456 #define DSI1_HSTX_TO_CNT 0x3c
457 #define DSI1_LPRX_TO_CNT 0x40
458 #define DSI1_TA_TO_CNT 0x44
459 #define DSI1_PR_TO_CNT 0x48
460 #define DSI1_PHYC 0x4c
461
462 #define DSI1_HS_CLT0 0x50
463 # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18)
464 # define DSI_HS_CLT0_CZERO_SHIFT 18
465 # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9)
466 # define DSI_HS_CLT0_CPRE_SHIFT 9
467 # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0)
468 # define DSI_HS_CLT0_CPREP_SHIFT 0
469
470 #define DSI1_HS_CLT1 0x54
471 # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9)
472 # define DSI_HS_CLT1_CTRAIL_SHIFT 9
473 # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0)
474 # define DSI_HS_CLT1_CPOST_SHIFT 0
475
476 #define DSI1_HS_CLT2 0x58
477 # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0)
478 # define DSI_HS_CLT2_WUP_SHIFT 0
479
480 #define DSI1_HS_DLT3 0x5c
481 # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18)
482 # define DSI_HS_DLT3_EXIT_SHIFT 18
483 # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9)
484 # define DSI_HS_DLT3_ZERO_SHIFT 9
485 # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0)
486 # define DSI_HS_DLT3_PRE_SHIFT 0
487
488 #define DSI1_HS_DLT4 0x60
489 # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18)
490 # define DSI_HS_DLT4_ANLAT_SHIFT 18
491 # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9)
492 # define DSI_HS_DLT4_TRAIL_SHIFT 9
493 # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0)
494 # define DSI_HS_DLT4_LPX_SHIFT 0
495
496 #define DSI1_HS_DLT5 0x64
497 # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0)
498 # define DSI_HS_DLT5_INIT_SHIFT 0
499
500 #define DSI1_HS_DLT6 0x68
501 # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24)
502 # define DSI_HS_DLT6_TA_GET_SHIFT 24
503 # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16)
504 # define DSI_HS_DLT6_TA_SURE_SHIFT 16
505 # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8)
506 # define DSI_HS_DLT6_TA_GO_SHIFT 8
507 # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0)
508 # define DSI_HS_DLT6_LP_LPX_SHIFT 0
509
510 #define DSI1_HS_DLT7 0x6c
511 # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0)
512 # define DSI_HS_DLT7_LP_WUP_SHIFT 0
513
514 #define DSI1_PHY_AFEC0 0x70
515
516 #define DSI1_PHY_AFEC1 0x74
517 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16)
518 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16
519 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12)
520 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12
521 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8)
522 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8
523 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4)
524 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4
525 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0)
526 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0
527
528 #define DSI1_TST_SEL 0x78
529 #define DSI1_TST_MON 0x7c
530 #define DSI1_PHY_TST1 0x80
531 #define DSI1_PHY_TST2 0x84
532 #define DSI1_PHY_FIFO_STAT 0x88
533 /* Actually, all registers in the range that aren't otherwise claimed
534 * will return the ID.
535 */
536 #define DSI1_ID 0x8c
537
538 struct vc4_dsi_variant {
539 /* Whether we're on bcm2835's DSI0 or DSI1. */
540 unsigned int port;
541
542 bool broken_axi_workaround;
543
544 const char *debugfs_name;
545 const struct debugfs_reg32 *regs;
546 size_t nregs;
547
548 };
549
550 /* General DSI hardware state. */
551 struct vc4_dsi {
552 struct platform_device *pdev;
553
554 struct mipi_dsi_host dsi_host;
555 struct drm_encoder *encoder;
556 struct drm_bridge *bridge;
557 struct list_head bridge_chain;
558
559 void __iomem *regs;
560
561 struct dma_chan *reg_dma_chan;
562 dma_addr_t reg_dma_paddr;
563 u32 *reg_dma_mem;
564 dma_addr_t reg_paddr;
565
566 const struct vc4_dsi_variant *variant;
567
568 /* DSI channel for the panel we're connected to. */
569 u32 channel;
570 u32 lanes;
571 u32 format;
572 u32 divider;
573 u32 mode_flags;
574
575 /* Input clock from CPRMAN to the digital PHY, for the DSI
576 * escape clock.
577 */
578 struct clk *escape_clock;
579
580 /* Input clock to the analog PHY, used to generate the DSI bit
581 * clock.
582 */
583 struct clk *pll_phy_clock;
584
585 /* HS Clocks generated within the DSI analog PHY. */
586 struct clk_fixed_factor phy_clocks[3];
587
588 struct clk_hw_onecell_data *clk_onecell;
589
590 /* Pixel clock output to the pixelvalve, generated from the HS
591 * clock.
592 */
593 struct clk *pixel_clock;
594
595 struct completion xfer_completion;
596 int xfer_result;
597
598 struct debugfs_regset32 regset;
599 };
600
601 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
602
603 static inline void
dsi_dma_workaround_write(struct vc4_dsi * dsi,u32 offset,u32 val)604 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
605 {
606 struct dma_chan *chan = dsi->reg_dma_chan;
607 struct dma_async_tx_descriptor *tx;
608 dma_cookie_t cookie;
609 int ret;
610
611 /* DSI0 should be able to write normally. */
612 if (!chan) {
613 writel(val, dsi->regs + offset);
614 return;
615 }
616
617 *dsi->reg_dma_mem = val;
618
619 tx = chan->device->device_prep_dma_memcpy(chan,
620 dsi->reg_paddr + offset,
621 dsi->reg_dma_paddr,
622 4, 0);
623 if (!tx) {
624 DRM_ERROR("Failed to set up DMA register write\n");
625 return;
626 }
627
628 cookie = tx->tx_submit(tx);
629 ret = dma_submit_error(cookie);
630 if (ret) {
631 DRM_ERROR("Failed to submit DMA: %d\n", ret);
632 return;
633 }
634 ret = dma_sync_wait(chan, cookie);
635 if (ret)
636 DRM_ERROR("Failed to wait for DMA: %d\n", ret);
637 }
638
639 #define DSI_READ(offset) readl(dsi->regs + (offset))
640 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
641 #define DSI_PORT_READ(offset) \
642 DSI_READ(dsi->variant->port ? DSI1_##offset : DSI0_##offset)
643 #define DSI_PORT_WRITE(offset, val) \
644 DSI_WRITE(dsi->variant->port ? DSI1_##offset : DSI0_##offset, val)
645 #define DSI_PORT_BIT(bit) (dsi->variant->port ? DSI1_##bit : DSI0_##bit)
646
647 /* VC4 DSI encoder KMS struct */
648 struct vc4_dsi_encoder {
649 struct vc4_encoder base;
650 struct vc4_dsi *dsi;
651 };
652
653 static inline struct vc4_dsi_encoder *
to_vc4_dsi_encoder(struct drm_encoder * encoder)654 to_vc4_dsi_encoder(struct drm_encoder *encoder)
655 {
656 return container_of(encoder, struct vc4_dsi_encoder, base.base);
657 }
658
659 static const struct debugfs_reg32 dsi0_regs[] = {
660 VC4_REG32(DSI0_CTRL),
661 VC4_REG32(DSI0_STAT),
662 VC4_REG32(DSI0_HSTX_TO_CNT),
663 VC4_REG32(DSI0_LPRX_TO_CNT),
664 VC4_REG32(DSI0_TA_TO_CNT),
665 VC4_REG32(DSI0_PR_TO_CNT),
666 VC4_REG32(DSI0_DISP0_CTRL),
667 VC4_REG32(DSI0_DISP1_CTRL),
668 VC4_REG32(DSI0_INT_STAT),
669 VC4_REG32(DSI0_INT_EN),
670 VC4_REG32(DSI0_PHYC),
671 VC4_REG32(DSI0_HS_CLT0),
672 VC4_REG32(DSI0_HS_CLT1),
673 VC4_REG32(DSI0_HS_CLT2),
674 VC4_REG32(DSI0_HS_DLT3),
675 VC4_REG32(DSI0_HS_DLT4),
676 VC4_REG32(DSI0_HS_DLT5),
677 VC4_REG32(DSI0_HS_DLT6),
678 VC4_REG32(DSI0_HS_DLT7),
679 VC4_REG32(DSI0_PHY_AFEC0),
680 VC4_REG32(DSI0_PHY_AFEC1),
681 VC4_REG32(DSI0_ID),
682 };
683
684 static const struct debugfs_reg32 dsi1_regs[] = {
685 VC4_REG32(DSI1_CTRL),
686 VC4_REG32(DSI1_STAT),
687 VC4_REG32(DSI1_HSTX_TO_CNT),
688 VC4_REG32(DSI1_LPRX_TO_CNT),
689 VC4_REG32(DSI1_TA_TO_CNT),
690 VC4_REG32(DSI1_PR_TO_CNT),
691 VC4_REG32(DSI1_DISP0_CTRL),
692 VC4_REG32(DSI1_DISP1_CTRL),
693 VC4_REG32(DSI1_INT_STAT),
694 VC4_REG32(DSI1_INT_EN),
695 VC4_REG32(DSI1_PHYC),
696 VC4_REG32(DSI1_HS_CLT0),
697 VC4_REG32(DSI1_HS_CLT1),
698 VC4_REG32(DSI1_HS_CLT2),
699 VC4_REG32(DSI1_HS_DLT3),
700 VC4_REG32(DSI1_HS_DLT4),
701 VC4_REG32(DSI1_HS_DLT5),
702 VC4_REG32(DSI1_HS_DLT6),
703 VC4_REG32(DSI1_HS_DLT7),
704 VC4_REG32(DSI1_PHY_AFEC0),
705 VC4_REG32(DSI1_PHY_AFEC1),
706 VC4_REG32(DSI1_ID),
707 };
708
vc4_dsi_latch_ulps(struct vc4_dsi * dsi,bool latch)709 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
710 {
711 u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
712
713 if (latch)
714 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
715 else
716 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
717
718 DSI_PORT_WRITE(PHY_AFEC0, afec0);
719 }
720
721 /* Enters or exits Ultra Low Power State. */
vc4_dsi_ulps(struct vc4_dsi * dsi,bool ulps)722 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
723 {
724 bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
725 u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
726 DSI_PHYC_DLANE0_ULPS |
727 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
728 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
729 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
730 u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
731 DSI1_STAT_PHY_D0_ULPS |
732 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
733 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
734 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
735 u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
736 DSI1_STAT_PHY_D0_STOP |
737 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
738 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
739 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
740 int ret;
741 bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
742 DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
743
744 if (ulps == ulps_currently_enabled)
745 return;
746
747 DSI_PORT_WRITE(STAT, stat_ulps);
748 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
749 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
750 if (ret) {
751 dev_warn(&dsi->pdev->dev,
752 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
753 DSI_PORT_READ(STAT));
754 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
755 vc4_dsi_latch_ulps(dsi, false);
756 return;
757 }
758
759 /* The DSI module can't be disabled while the module is
760 * generating ULPS state. So, to be able to disable the
761 * module, we have the AFE latch the ULPS state and continue
762 * on to having the module enter STOP.
763 */
764 vc4_dsi_latch_ulps(dsi, ulps);
765
766 DSI_PORT_WRITE(STAT, stat_stop);
767 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
768 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
769 if (ret) {
770 dev_warn(&dsi->pdev->dev,
771 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
772 DSI_PORT_READ(STAT));
773 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
774 return;
775 }
776 }
777
778 static u32
dsi_hs_timing(u32 ui_ns,u32 ns,u32 ui)779 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
780 {
781 /* The HS timings have to be rounded up to a multiple of 8
782 * because we're using the byte clock.
783 */
784 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
785 }
786
787 /* ESC always runs at 100Mhz. */
788 #define ESC_TIME_NS 10
789
790 static u32
dsi_esc_timing(u32 ns)791 dsi_esc_timing(u32 ns)
792 {
793 return DIV_ROUND_UP(ns, ESC_TIME_NS);
794 }
795
vc4_dsi_encoder_disable(struct drm_encoder * encoder)796 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
797 {
798 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
799 struct vc4_dsi *dsi = vc4_encoder->dsi;
800 struct device *dev = &dsi->pdev->dev;
801 struct drm_bridge *iter;
802
803 list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
804 if (iter->funcs->disable)
805 iter->funcs->disable(iter);
806
807 if (iter == dsi->bridge)
808 break;
809 }
810
811 vc4_dsi_ulps(dsi, true);
812
813 list_for_each_entry_from(iter, &dsi->bridge_chain, chain_node) {
814 if (iter->funcs->post_disable)
815 iter->funcs->post_disable(iter);
816 }
817
818 clk_disable_unprepare(dsi->pll_phy_clock);
819 clk_disable_unprepare(dsi->escape_clock);
820 clk_disable_unprepare(dsi->pixel_clock);
821
822 pm_runtime_put(dev);
823 }
824
825 /* Extends the mode's blank intervals to handle BCM2835's integer-only
826 * DSI PLL divider.
827 *
828 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
829 * driver since most peripherals are hanging off of the PLLD_PER
830 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore
831 * the pixel clock), only has an integer divider off of DSI.
832 *
833 * To get our panel mode to refresh at the expected 60Hz, we need to
834 * extend the horizontal blank time. This means we drive a
835 * higher-than-expected clock rate to the panel, but that's what the
836 * firmware does too.
837 */
vc4_dsi_encoder_mode_fixup(struct drm_encoder * encoder,const struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)838 static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
839 const struct drm_display_mode *mode,
840 struct drm_display_mode *adjusted_mode)
841 {
842 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
843 struct vc4_dsi *dsi = vc4_encoder->dsi;
844 struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
845 unsigned long parent_rate = clk_get_rate(phy_parent);
846 unsigned long pixel_clock_hz = mode->clock * 1000;
847 unsigned long pll_clock = pixel_clock_hz * dsi->divider;
848 int divider;
849
850 /* Find what divider gets us a faster clock than the requested
851 * pixel clock.
852 */
853 for (divider = 1; divider < 255; divider++) {
854 if (parent_rate / (divider + 1) < pll_clock)
855 break;
856 }
857
858 /* Now that we've picked a PLL divider, calculate back to its
859 * pixel clock.
860 */
861 pll_clock = parent_rate / divider;
862 pixel_clock_hz = pll_clock / dsi->divider;
863
864 adjusted_mode->clock = pixel_clock_hz / 1000;
865
866 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
867 adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
868 mode->clock;
869 adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
870 adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
871
872 return true;
873 }
874
vc4_dsi_encoder_enable(struct drm_encoder * encoder)875 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
876 {
877 struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
878 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
879 struct vc4_dsi *dsi = vc4_encoder->dsi;
880 struct device *dev = &dsi->pdev->dev;
881 bool debug_dump_regs = false;
882 struct drm_bridge *iter;
883 unsigned long hs_clock;
884 u32 ui_ns;
885 /* Minimum LP state duration in escape clock cycles. */
886 u32 lpx = dsi_esc_timing(60);
887 unsigned long pixel_clock_hz = mode->clock * 1000;
888 unsigned long dsip_clock;
889 unsigned long phy_clock;
890 int ret;
891
892 ret = pm_runtime_resume_and_get(dev);
893 if (ret) {
894 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->variant->port);
895 return;
896 }
897
898 if (debug_dump_regs) {
899 struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
900 dev_info(&dsi->pdev->dev, "DSI regs before:\n");
901 drm_print_regset32(&p, &dsi->regset);
902 }
903
904 /* Round up the clk_set_rate() request slightly, since
905 * PLLD_DSI1 is an integer divider and its rate selection will
906 * never round up.
907 */
908 phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
909 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
910 if (ret) {
911 dev_err(&dsi->pdev->dev,
912 "Failed to set phy clock to %ld: %d\n", phy_clock, ret);
913 }
914
915 /* Reset the DSI and all its fifos. */
916 DSI_PORT_WRITE(CTRL,
917 DSI_CTRL_SOFT_RESET_CFG |
918 DSI_PORT_BIT(CTRL_RESET_FIFOS));
919
920 DSI_PORT_WRITE(CTRL,
921 DSI_CTRL_HSDT_EOT_DISABLE |
922 DSI_CTRL_RX_LPDT_EOT_DISABLE);
923
924 /* Clear all stat bits so we see what has happened during enable. */
925 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
926
927 /* Set AFE CTR00/CTR1 to release powerdown of analog. */
928 if (dsi->variant->port == 0) {
929 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
930 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
931
932 if (dsi->lanes < 2)
933 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
934
935 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
936 afec0 |= DSI0_PHY_AFEC0_RESET;
937
938 DSI_PORT_WRITE(PHY_AFEC0, afec0);
939
940 /* AFEC reset hold time */
941 mdelay(1);
942
943 DSI_PORT_WRITE(PHY_AFEC1,
944 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) |
945 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) |
946 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE));
947 } else {
948 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
949 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
950 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
951 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
952 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
953 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
954 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
955
956 if (dsi->lanes < 4)
957 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
958 if (dsi->lanes < 3)
959 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
960 if (dsi->lanes < 2)
961 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
962
963 afec0 |= DSI1_PHY_AFEC0_RESET;
964
965 DSI_PORT_WRITE(PHY_AFEC0, afec0);
966
967 DSI_PORT_WRITE(PHY_AFEC1, 0);
968
969 /* AFEC reset hold time */
970 mdelay(1);
971 }
972
973 ret = clk_prepare_enable(dsi->escape_clock);
974 if (ret) {
975 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
976 return;
977 }
978
979 ret = clk_prepare_enable(dsi->pll_phy_clock);
980 if (ret) {
981 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
982 return;
983 }
984
985 hs_clock = clk_get_rate(dsi->pll_phy_clock);
986
987 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
988 * not the pixel clock rate. DSIxP take from the APHY's byte,
989 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
990 * that rate. Separately, a value derived from PIX_CLK_DIV
991 * and HS_CLKC is fed into the PV to divide down to the actual
992 * pixel clock for pushing pixels into DSI.
993 */
994 dsip_clock = phy_clock / 8;
995 ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
996 if (ret) {
997 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
998 dsip_clock, ret);
999 }
1000
1001 ret = clk_prepare_enable(dsi->pixel_clock);
1002 if (ret) {
1003 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
1004 return;
1005 }
1006
1007 /* How many ns one DSI unit interval is. Note that the clock
1008 * is DDR, so there's an extra divide by 2.
1009 */
1010 ui_ns = DIV_ROUND_UP(500000000, hs_clock);
1011
1012 DSI_PORT_WRITE(HS_CLT0,
1013 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
1014 DSI_HS_CLT0_CZERO) |
1015 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
1016 DSI_HS_CLT0_CPRE) |
1017 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
1018 DSI_HS_CLT0_CPREP));
1019
1020 DSI_PORT_WRITE(HS_CLT1,
1021 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
1022 DSI_HS_CLT1_CTRAIL) |
1023 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
1024 DSI_HS_CLT1_CPOST));
1025
1026 DSI_PORT_WRITE(HS_CLT2,
1027 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
1028 DSI_HS_CLT2_WUP));
1029
1030 DSI_PORT_WRITE(HS_DLT3,
1031 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
1032 DSI_HS_DLT3_EXIT) |
1033 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
1034 DSI_HS_DLT3_ZERO) |
1035 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
1036 DSI_HS_DLT3_PRE));
1037
1038 DSI_PORT_WRITE(HS_DLT4,
1039 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
1040 DSI_HS_DLT4_LPX) |
1041 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
1042 dsi_hs_timing(ui_ns, 60, 4)),
1043 DSI_HS_DLT4_TRAIL) |
1044 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
1045
1046 /* T_INIT is how long STOP is driven after power-up to
1047 * indicate to the slave (also coming out of power-up) that
1048 * master init is complete, and should be greater than the
1049 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The
1050 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
1051 * T_INIT,SLAVE, while allowing protocols on top of it to give
1052 * greater minimums. The vc4 firmware uses an extremely
1053 * conservative 5ms, and we maintain that here.
1054 */
1055 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
1056 5 * 1000 * 1000, 0),
1057 DSI_HS_DLT5_INIT));
1058
1059 DSI_PORT_WRITE(HS_DLT6,
1060 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1061 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1062 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1063 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1064
1065 DSI_PORT_WRITE(HS_DLT7,
1066 VC4_SET_FIELD(dsi_esc_timing(1000000),
1067 DSI_HS_DLT7_LP_WUP));
1068
1069 DSI_PORT_WRITE(PHYC,
1070 DSI_PHYC_DLANE0_ENABLE |
1071 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1072 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1073 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1074 DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1075 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1076 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1077 (dsi->variant->port == 0 ?
1078 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1079 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1080
1081 DSI_PORT_WRITE(CTRL,
1082 DSI_PORT_READ(CTRL) |
1083 DSI_CTRL_CAL_BYTE);
1084
1085 /* HS timeout in HS clock cycles: disabled. */
1086 DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1087 /* LP receive timeout in HS clocks. */
1088 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1089 /* Bus turnaround timeout */
1090 DSI_PORT_WRITE(TA_TO_CNT, 100000);
1091 /* Display reset sequence timeout */
1092 DSI_PORT_WRITE(PR_TO_CNT, 100000);
1093
1094 /* Set up DISP1 for transferring long command payloads through
1095 * the pixfifo.
1096 */
1097 DSI_PORT_WRITE(DISP1_CTRL,
1098 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1099 DSI_DISP1_PFORMAT) |
1100 DSI_DISP1_ENABLE);
1101
1102 /* Ungate the block. */
1103 if (dsi->variant->port == 0)
1104 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1105 else
1106 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1107
1108 /* Bring AFE out of reset. */
1109 DSI_PORT_WRITE(PHY_AFEC0,
1110 DSI_PORT_READ(PHY_AFEC0) &
1111 ~DSI_PORT_BIT(PHY_AFEC0_RESET));
1112
1113 vc4_dsi_ulps(dsi, false);
1114
1115 list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
1116 if (iter->funcs->pre_enable)
1117 iter->funcs->pre_enable(iter);
1118 }
1119
1120 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1121 DSI_PORT_WRITE(DISP0_CTRL,
1122 VC4_SET_FIELD(dsi->divider,
1123 DSI_DISP0_PIX_CLK_DIV) |
1124 VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1125 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1126 DSI_DISP0_LP_STOP_CTRL) |
1127 DSI_DISP0_ST_END |
1128 DSI_DISP0_ENABLE);
1129 } else {
1130 DSI_PORT_WRITE(DISP0_CTRL,
1131 DSI_DISP0_COMMAND_MODE |
1132 DSI_DISP0_ENABLE);
1133 }
1134
1135 list_for_each_entry(iter, &dsi->bridge_chain, chain_node) {
1136 if (iter->funcs->enable)
1137 iter->funcs->enable(iter);
1138 }
1139
1140 if (debug_dump_regs) {
1141 struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
1142 dev_info(&dsi->pdev->dev, "DSI regs after:\n");
1143 drm_print_regset32(&p, &dsi->regset);
1144 }
1145 }
1146
vc4_dsi_host_transfer(struct mipi_dsi_host * host,const struct mipi_dsi_msg * msg)1147 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1148 const struct mipi_dsi_msg *msg)
1149 {
1150 struct vc4_dsi *dsi = host_to_dsi(host);
1151 struct mipi_dsi_packet packet;
1152 u32 pkth = 0, pktc = 0;
1153 int i, ret;
1154 bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1155 u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1156
1157 mipi_dsi_create_packet(&packet, msg);
1158
1159 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1160 pkth |= VC4_SET_FIELD(packet.header[1] |
1161 (packet.header[2] << 8),
1162 DSI_TXPKT1H_BC_PARAM);
1163 if (is_long) {
1164 /* Divide data across the various FIFOs we have available.
1165 * The command FIFO takes byte-oriented data, but is of
1166 * limited size. The pixel FIFO (never actually used for
1167 * pixel data in reality) is word oriented, and substantially
1168 * larger. So, we use the pixel FIFO for most of the data,
1169 * sending the residual bytes in the command FIFO at the start.
1170 *
1171 * With this arrangement, the command FIFO will never get full.
1172 */
1173 if (packet.payload_length <= 16) {
1174 cmd_fifo_len = packet.payload_length;
1175 pix_fifo_len = 0;
1176 } else {
1177 cmd_fifo_len = (packet.payload_length %
1178 DSI_PIX_FIFO_WIDTH);
1179 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1180 DSI_PIX_FIFO_WIDTH);
1181 }
1182
1183 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1184
1185 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1186 }
1187
1188 if (msg->rx_len) {
1189 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1190 DSI_TXPKT1C_CMD_CTRL);
1191 } else {
1192 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1193 DSI_TXPKT1C_CMD_CTRL);
1194 }
1195
1196 for (i = 0; i < cmd_fifo_len; i++)
1197 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1198 for (i = 0; i < pix_fifo_len; i++) {
1199 const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1200
1201 DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1202 pix[0] |
1203 pix[1] << 8 |
1204 pix[2] << 16 |
1205 pix[3] << 24);
1206 }
1207
1208 if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1209 pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1210 if (is_long)
1211 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1212
1213 /* Send one copy of the packet. Larger repeats are used for pixel
1214 * data in command mode.
1215 */
1216 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1217
1218 pktc |= DSI_TXPKT1C_CMD_EN;
1219 if (pix_fifo_len) {
1220 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1221 DSI_TXPKT1C_DISPLAY_NO);
1222 } else {
1223 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1224 DSI_TXPKT1C_DISPLAY_NO);
1225 }
1226
1227 /* Enable the appropriate interrupt for the transfer completion. */
1228 dsi->xfer_result = 0;
1229 reinit_completion(&dsi->xfer_completion);
1230 if (dsi->variant->port == 0) {
1231 DSI_PORT_WRITE(INT_STAT,
1232 DSI0_INT_CMDC_DONE_MASK | DSI1_INT_PHY_DIR_RTF);
1233 if (msg->rx_len) {
1234 DSI_PORT_WRITE(INT_EN, (DSI0_INTERRUPTS_ALWAYS_ENABLED |
1235 DSI0_INT_PHY_DIR_RTF));
1236 } else {
1237 DSI_PORT_WRITE(INT_EN,
1238 (DSI0_INTERRUPTS_ALWAYS_ENABLED |
1239 VC4_SET_FIELD(DSI0_INT_CMDC_DONE_NO_REPEAT,
1240 DSI0_INT_CMDC_DONE)));
1241 }
1242 } else {
1243 DSI_PORT_WRITE(INT_STAT,
1244 DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1245 if (msg->rx_len) {
1246 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1247 DSI1_INT_PHY_DIR_RTF));
1248 } else {
1249 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1250 DSI1_INT_TXPKT1_DONE));
1251 }
1252 }
1253
1254 /* Send the packet. */
1255 DSI_PORT_WRITE(TXPKT1H, pkth);
1256 DSI_PORT_WRITE(TXPKT1C, pktc);
1257
1258 if (!wait_for_completion_timeout(&dsi->xfer_completion,
1259 msecs_to_jiffies(1000))) {
1260 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1261 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1262 DSI_PORT_READ(INT_STAT));
1263 ret = -ETIMEDOUT;
1264 } else {
1265 ret = dsi->xfer_result;
1266 }
1267
1268 DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED));
1269
1270 if (ret)
1271 goto reset_fifo_and_return;
1272
1273 if (ret == 0 && msg->rx_len) {
1274 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1275 u8 *msg_rx = msg->rx_buf;
1276
1277 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1278 u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1279 DSI_RXPKT1H_BC_PARAM);
1280
1281 if (rxlen != msg->rx_len) {
1282 DRM_ERROR("DSI returned %db, expecting %db\n",
1283 rxlen, (int)msg->rx_len);
1284 ret = -ENXIO;
1285 goto reset_fifo_and_return;
1286 }
1287
1288 for (i = 0; i < msg->rx_len; i++)
1289 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1290 } else {
1291 /* FINISHME: Handle AWER */
1292
1293 msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1294 DSI_RXPKT1H_SHORT_0);
1295 if (msg->rx_len > 1) {
1296 msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1297 DSI_RXPKT1H_SHORT_1);
1298 }
1299 }
1300 }
1301
1302 return ret;
1303
1304 reset_fifo_and_return:
1305 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1306
1307 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1308 udelay(1);
1309 DSI_PORT_WRITE(CTRL,
1310 DSI_PORT_READ(CTRL) |
1311 DSI_PORT_BIT(CTRL_RESET_FIFOS));
1312
1313 DSI_PORT_WRITE(TXPKT1C, 0);
1314 DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED));
1315 return ret;
1316 }
1317
vc4_dsi_host_attach(struct mipi_dsi_host * host,struct mipi_dsi_device * device)1318 static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1319 struct mipi_dsi_device *device)
1320 {
1321 struct vc4_dsi *dsi = host_to_dsi(host);
1322
1323 dsi->lanes = device->lanes;
1324 dsi->channel = device->channel;
1325 dsi->mode_flags = device->mode_flags;
1326
1327 switch (device->format) {
1328 case MIPI_DSI_FMT_RGB888:
1329 dsi->format = DSI_PFORMAT_RGB888;
1330 dsi->divider = 24 / dsi->lanes;
1331 break;
1332 case MIPI_DSI_FMT_RGB666:
1333 dsi->format = DSI_PFORMAT_RGB666;
1334 dsi->divider = 24 / dsi->lanes;
1335 break;
1336 case MIPI_DSI_FMT_RGB666_PACKED:
1337 dsi->format = DSI_PFORMAT_RGB666_PACKED;
1338 dsi->divider = 18 / dsi->lanes;
1339 break;
1340 case MIPI_DSI_FMT_RGB565:
1341 dsi->format = DSI_PFORMAT_RGB565;
1342 dsi->divider = 16 / dsi->lanes;
1343 break;
1344 default:
1345 dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1346 dsi->format);
1347 return 0;
1348 }
1349
1350 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1351 dev_err(&dsi->pdev->dev,
1352 "Only VIDEO mode panels supported currently.\n");
1353 return 0;
1354 }
1355
1356 return 0;
1357 }
1358
vc4_dsi_host_detach(struct mipi_dsi_host * host,struct mipi_dsi_device * device)1359 static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1360 struct mipi_dsi_device *device)
1361 {
1362 return 0;
1363 }
1364
1365 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1366 .attach = vc4_dsi_host_attach,
1367 .detach = vc4_dsi_host_detach,
1368 .transfer = vc4_dsi_host_transfer,
1369 };
1370
1371 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1372 .disable = vc4_dsi_encoder_disable,
1373 .enable = vc4_dsi_encoder_enable,
1374 .mode_fixup = vc4_dsi_encoder_mode_fixup,
1375 };
1376
1377 static const struct vc4_dsi_variant bcm2835_dsi1_variant = {
1378 .port = 1,
1379 .broken_axi_workaround = true,
1380 .debugfs_name = "dsi1_regs",
1381 .regs = dsi1_regs,
1382 .nregs = ARRAY_SIZE(dsi1_regs),
1383 };
1384
1385 static const struct of_device_id vc4_dsi_dt_match[] = {
1386 { .compatible = "brcm,bcm2835-dsi1", &bcm2835_dsi1_variant },
1387 {}
1388 };
1389
dsi_handle_error(struct vc4_dsi * dsi,irqreturn_t * ret,u32 stat,u32 bit,const char * type)1390 static void dsi_handle_error(struct vc4_dsi *dsi,
1391 irqreturn_t *ret, u32 stat, u32 bit,
1392 const char *type)
1393 {
1394 if (!(stat & bit))
1395 return;
1396
1397 DRM_ERROR("DSI%d: %s error\n", dsi->variant->port, type);
1398 *ret = IRQ_HANDLED;
1399 }
1400
1401 /*
1402 * Initial handler for port 1 where we need the reg_dma workaround.
1403 * The register DMA writes sleep, so we can't do it in the top half.
1404 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1405 * parent interrupt contrller until our interrupt thread is done.
1406 */
vc4_dsi_irq_defer_to_thread_handler(int irq,void * data)1407 static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1408 {
1409 struct vc4_dsi *dsi = data;
1410 u32 stat = DSI_PORT_READ(INT_STAT);
1411
1412 if (!stat)
1413 return IRQ_NONE;
1414
1415 return IRQ_WAKE_THREAD;
1416 }
1417
1418 /*
1419 * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1420 * 1 where we need the reg_dma workaround.
1421 */
vc4_dsi_irq_handler(int irq,void * data)1422 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1423 {
1424 struct vc4_dsi *dsi = data;
1425 u32 stat = DSI_PORT_READ(INT_STAT);
1426 irqreturn_t ret = IRQ_NONE;
1427
1428 DSI_PORT_WRITE(INT_STAT, stat);
1429
1430 dsi_handle_error(dsi, &ret, stat,
1431 DSI_PORT_BIT(INT_ERR_SYNC_ESC), "LPDT sync");
1432 dsi_handle_error(dsi, &ret, stat,
1433 DSI_PORT_BIT(INT_ERR_CONTROL), "data lane 0 sequence");
1434 dsi_handle_error(dsi, &ret, stat,
1435 DSI_PORT_BIT(INT_ERR_CONT_LP0), "LP0 contention");
1436 dsi_handle_error(dsi, &ret, stat,
1437 DSI_PORT_BIT(INT_ERR_CONT_LP1), "LP1 contention");
1438 dsi_handle_error(dsi, &ret, stat,
1439 DSI_PORT_BIT(INT_HSTX_TO), "HSTX timeout");
1440 dsi_handle_error(dsi, &ret, stat,
1441 DSI_PORT_BIT(INT_LPRX_TO), "LPRX timeout");
1442 dsi_handle_error(dsi, &ret, stat,
1443 DSI_PORT_BIT(INT_TA_TO), "turnaround timeout");
1444 dsi_handle_error(dsi, &ret, stat,
1445 DSI_PORT_BIT(INT_PR_TO), "peripheral reset timeout");
1446
1447 if (stat & ((dsi->variant->port ? DSI1_INT_TXPKT1_DONE :
1448 DSI0_INT_CMDC_DONE_MASK) |
1449 DSI_PORT_BIT(INT_PHY_DIR_RTF))) {
1450 complete(&dsi->xfer_completion);
1451 ret = IRQ_HANDLED;
1452 } else if (stat & DSI_PORT_BIT(INT_HSTX_TO)) {
1453 complete(&dsi->xfer_completion);
1454 dsi->xfer_result = -ETIMEDOUT;
1455 ret = IRQ_HANDLED;
1456 }
1457
1458 return ret;
1459 }
1460
1461 /**
1462 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1463 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1464 * @dsi: DSI encoder
1465 */
1466 static int
vc4_dsi_init_phy_clocks(struct vc4_dsi * dsi)1467 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1468 {
1469 struct device *dev = &dsi->pdev->dev;
1470 const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1471 static const struct {
1472 const char *name;
1473 int div;
1474 } phy_clocks[] = {
1475 { "byte", 8 },
1476 { "ddr2", 4 },
1477 { "ddr", 2 },
1478 };
1479 int i;
1480
1481 dsi->clk_onecell = devm_kzalloc(dev,
1482 sizeof(*dsi->clk_onecell) +
1483 ARRAY_SIZE(phy_clocks) *
1484 sizeof(struct clk_hw *),
1485 GFP_KERNEL);
1486 if (!dsi->clk_onecell)
1487 return -ENOMEM;
1488 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1489
1490 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1491 struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1492 struct clk_init_data init;
1493 char clk_name[16];
1494 int ret;
1495
1496 snprintf(clk_name, sizeof(clk_name),
1497 "dsi%u_%s", dsi->variant->port, phy_clocks[i].name);
1498
1499 /* We just use core fixed factor clock ops for the PHY
1500 * clocks. The clocks are actually gated by the
1501 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1502 * setting if we use the DDR/DDR2 clocks. However,
1503 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1504 * setting both our parent DSI PLL's rate and this
1505 * clock's rate, so it knows if DDR/DDR2 are going to
1506 * be used and could enable the gates itself.
1507 */
1508 fix->mult = 1;
1509 fix->div = phy_clocks[i].div;
1510 fix->hw.init = &init;
1511
1512 memset(&init, 0, sizeof(init));
1513 init.parent_names = &parent_name;
1514 init.num_parents = 1;
1515 init.name = clk_name;
1516 init.ops = &clk_fixed_factor_ops;
1517
1518 ret = devm_clk_hw_register(dev, &fix->hw);
1519 if (ret)
1520 return ret;
1521
1522 dsi->clk_onecell->hws[i] = &fix->hw;
1523 }
1524
1525 return of_clk_add_hw_provider(dev->of_node,
1526 of_clk_hw_onecell_get,
1527 dsi->clk_onecell);
1528 }
1529
vc4_dsi_bind(struct device * dev,struct device * master,void * data)1530 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1531 {
1532 struct platform_device *pdev = to_platform_device(dev);
1533 struct drm_device *drm = dev_get_drvdata(master);
1534 struct vc4_dsi *dsi = dev_get_drvdata(dev);
1535 struct vc4_dsi_encoder *vc4_dsi_encoder;
1536 struct drm_panel *panel;
1537 const struct of_device_id *match;
1538 dma_cap_mask_t dma_mask;
1539 int ret;
1540
1541 match = of_match_device(vc4_dsi_dt_match, dev);
1542 if (!match)
1543 return -ENODEV;
1544
1545 dsi->variant = match->data;
1546
1547 vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1548 GFP_KERNEL);
1549 if (!vc4_dsi_encoder)
1550 return -ENOMEM;
1551
1552 INIT_LIST_HEAD(&dsi->bridge_chain);
1553 vc4_dsi_encoder->base.type = dsi->variant->port ?
1554 VC4_ENCODER_TYPE_DSI1 : VC4_ENCODER_TYPE_DSI0;
1555 vc4_dsi_encoder->dsi = dsi;
1556 dsi->encoder = &vc4_dsi_encoder->base.base;
1557
1558 dsi->regs = vc4_ioremap_regs(pdev, 0);
1559 if (IS_ERR(dsi->regs))
1560 return PTR_ERR(dsi->regs);
1561
1562 dsi->regset.base = dsi->regs;
1563 dsi->regset.regs = dsi->variant->regs;
1564 dsi->regset.nregs = dsi->variant->nregs;
1565
1566 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1567 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1568 DSI_PORT_READ(ID), DSI_ID_VALUE);
1569 return -ENODEV;
1570 }
1571
1572 /* DSI1 has a broken AXI slave that doesn't respond to writes
1573 * from the ARM. It does handle writes from the DMA engine,
1574 * so set up a channel for talking to it.
1575 */
1576 if (dsi->variant->broken_axi_workaround) {
1577 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1578 &dsi->reg_dma_paddr,
1579 GFP_KERNEL);
1580 if (!dsi->reg_dma_mem) {
1581 DRM_ERROR("Failed to get DMA memory\n");
1582 return -ENOMEM;
1583 }
1584
1585 dma_cap_zero(dma_mask);
1586 dma_cap_set(DMA_MEMCPY, dma_mask);
1587 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1588 if (IS_ERR(dsi->reg_dma_chan)) {
1589 ret = PTR_ERR(dsi->reg_dma_chan);
1590 if (ret != -EPROBE_DEFER)
1591 DRM_ERROR("Failed to get DMA channel: %d\n",
1592 ret);
1593 return ret;
1594 }
1595
1596 /* Get the physical address of the device's registers. The
1597 * struct resource for the regs gives us the bus address
1598 * instead.
1599 */
1600 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1601 0, NULL, NULL));
1602 }
1603
1604 init_completion(&dsi->xfer_completion);
1605 /* At startup enable error-reporting interrupts and nothing else. */
1606 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1607 /* Clear any existing interrupt state. */
1608 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1609
1610 if (dsi->reg_dma_mem)
1611 ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1612 vc4_dsi_irq_defer_to_thread_handler,
1613 vc4_dsi_irq_handler,
1614 IRQF_ONESHOT,
1615 "vc4 dsi", dsi);
1616 else
1617 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1618 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1619 if (ret) {
1620 if (ret != -EPROBE_DEFER)
1621 dev_err(dev, "Failed to get interrupt: %d\n", ret);
1622 return ret;
1623 }
1624
1625 dsi->escape_clock = devm_clk_get(dev, "escape");
1626 if (IS_ERR(dsi->escape_clock)) {
1627 ret = PTR_ERR(dsi->escape_clock);
1628 if (ret != -EPROBE_DEFER)
1629 dev_err(dev, "Failed to get escape clock: %d\n", ret);
1630 return ret;
1631 }
1632
1633 dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1634 if (IS_ERR(dsi->pll_phy_clock)) {
1635 ret = PTR_ERR(dsi->pll_phy_clock);
1636 if (ret != -EPROBE_DEFER)
1637 dev_err(dev, "Failed to get phy clock: %d\n", ret);
1638 return ret;
1639 }
1640
1641 dsi->pixel_clock = devm_clk_get(dev, "pixel");
1642 if (IS_ERR(dsi->pixel_clock)) {
1643 ret = PTR_ERR(dsi->pixel_clock);
1644 if (ret != -EPROBE_DEFER)
1645 dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1646 return ret;
1647 }
1648
1649 ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0,
1650 &panel, &dsi->bridge);
1651 if (ret) {
1652 /* If the bridge or panel pointed by dev->of_node is not
1653 * enabled, just return 0 here so that we don't prevent the DRM
1654 * dev from being registered. Of course that means the DSI
1655 * encoder won't be exposed, but that's not a problem since
1656 * nothing is connected to it.
1657 */
1658 if (ret == -ENODEV)
1659 return 0;
1660
1661 return ret;
1662 }
1663
1664 if (panel) {
1665 dsi->bridge = devm_drm_panel_bridge_add_typed(dev, panel,
1666 DRM_MODE_CONNECTOR_DSI);
1667 if (IS_ERR(dsi->bridge))
1668 return PTR_ERR(dsi->bridge);
1669 }
1670
1671 /* The esc clock rate is supposed to always be 100Mhz. */
1672 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1673 if (ret) {
1674 dev_err(dev, "Failed to set esc clock: %d\n", ret);
1675 return ret;
1676 }
1677
1678 ret = vc4_dsi_init_phy_clocks(dsi);
1679 if (ret)
1680 return ret;
1681
1682 drm_simple_encoder_init(drm, dsi->encoder, DRM_MODE_ENCODER_DSI);
1683 drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
1684
1685 ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL, 0);
1686 if (ret) {
1687 dev_err(dev, "bridge attach failed: %d\n", ret);
1688 return ret;
1689 }
1690 /* Disable the atomic helper calls into the bridge. We
1691 * manually call the bridge pre_enable / enable / etc. calls
1692 * from our driver, since we need to sequence them within the
1693 * encoder's enable/disable paths.
1694 */
1695 list_splice_init(&dsi->encoder->bridge_chain, &dsi->bridge_chain);
1696
1697 vc4_debugfs_add_regset32(drm, dsi->variant->debugfs_name, &dsi->regset);
1698
1699 pm_runtime_enable(dev);
1700
1701 return 0;
1702 }
1703
vc4_dsi_unbind(struct device * dev,struct device * master,void * data)1704 static void vc4_dsi_unbind(struct device *dev, struct device *master,
1705 void *data)
1706 {
1707 struct vc4_dsi *dsi = dev_get_drvdata(dev);
1708
1709 if (dsi->bridge)
1710 pm_runtime_disable(dev);
1711
1712 /*
1713 * Restore the bridge_chain so the bridge detach procedure can happen
1714 * normally.
1715 */
1716 list_splice_init(&dsi->bridge_chain, &dsi->encoder->bridge_chain);
1717 drm_encoder_cleanup(dsi->encoder);
1718 }
1719
1720 static const struct component_ops vc4_dsi_ops = {
1721 .bind = vc4_dsi_bind,
1722 .unbind = vc4_dsi_unbind,
1723 };
1724
vc4_dsi_dev_probe(struct platform_device * pdev)1725 static int vc4_dsi_dev_probe(struct platform_device *pdev)
1726 {
1727 struct device *dev = &pdev->dev;
1728 struct vc4_dsi *dsi;
1729 int ret;
1730
1731 dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1732 if (!dsi)
1733 return -ENOMEM;
1734 dev_set_drvdata(dev, dsi);
1735
1736 dsi->pdev = pdev;
1737
1738 /* Note, the initialization sequence for DSI and panels is
1739 * tricky. The component bind above won't get past its
1740 * -EPROBE_DEFER until the panel/bridge probes. The
1741 * panel/bridge will return -EPROBE_DEFER until it has a
1742 * mipi_dsi_host to register its device to. So, we register
1743 * the host during pdev probe time, so vc4 as a whole can then
1744 * -EPROBE_DEFER its component bind process until the panel
1745 * successfully attaches.
1746 */
1747 dsi->dsi_host.ops = &vc4_dsi_host_ops;
1748 dsi->dsi_host.dev = dev;
1749 mipi_dsi_host_register(&dsi->dsi_host);
1750
1751 ret = component_add(&pdev->dev, &vc4_dsi_ops);
1752 if (ret) {
1753 mipi_dsi_host_unregister(&dsi->dsi_host);
1754 return ret;
1755 }
1756
1757 return 0;
1758 }
1759
vc4_dsi_dev_remove(struct platform_device * pdev)1760 static int vc4_dsi_dev_remove(struct platform_device *pdev)
1761 {
1762 struct device *dev = &pdev->dev;
1763 struct vc4_dsi *dsi = dev_get_drvdata(dev);
1764
1765 component_del(&pdev->dev, &vc4_dsi_ops);
1766 mipi_dsi_host_unregister(&dsi->dsi_host);
1767
1768 return 0;
1769 }
1770
1771 struct platform_driver vc4_dsi_driver = {
1772 .probe = vc4_dsi_dev_probe,
1773 .remove = vc4_dsi_dev_remove,
1774 .driver = {
1775 .name = "vc4_dsi",
1776 .of_match_table = vc4_dsi_dt_match,
1777 },
1778 };
1779