1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * w83627ehf - Driver for the hardware monitoring functionality of
4 * the Winbond W83627EHF Super-I/O chip
5 * Copyright (C) 2005-2012 Jean Delvare <jdelvare@suse.de>
6 * Copyright (C) 2006 Yuan Mu (Winbond),
7 * Rudolf Marek <r.marek@assembler.cz>
8 * David Hubbard <david.c.hubbard@gmail.com>
9 * Daniel J Blueman <daniel.blueman@gmail.com>
10 * Copyright (C) 2010 Sheng-Yuan Huang (Nuvoton) (PS00)
11 *
12 * Shamelessly ripped from the w83627hf driver
13 * Copyright (C) 2003 Mark Studebaker
14 *
15 * Thanks to Leon Moonen, Steve Cliffe and Grant Coady for their help
16 * in testing and debugging this driver.
17 *
18 * This driver also supports the W83627EHG, which is the lead-free
19 * version of the W83627EHF.
20 *
21 * Supports the following chips:
22 *
23 * Chip #vin #fan #pwm #temp chip IDs man ID
24 * w83627ehf 10 5 4 3 0x8850 0x88 0x5ca3
25 * 0x8860 0xa1
26 * w83627dhg 9 5 4 3 0xa020 0xc1 0x5ca3
27 * w83627dhg-p 9 5 4 3 0xb070 0xc1 0x5ca3
28 * w83627uhg 8 2 2 3 0xa230 0xc1 0x5ca3
29 * w83667hg 9 5 3 3 0xa510 0xc1 0x5ca3
30 * w83667hg-b 9 5 3 4 0xb350 0xc1 0x5ca3
31 */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/jiffies.h>
39 #include <linux/platform_device.h>
40 #include <linux/hwmon.h>
41 #include <linux/hwmon-sysfs.h>
42 #include <linux/hwmon-vid.h>
43 #include <linux/err.h>
44 #include <linux/mutex.h>
45 #include <linux/acpi.h>
46 #include <linux/io.h>
47 #include "lm75.h"
48
49 enum kinds {
50 w83627ehf, w83627dhg, w83627dhg_p, w83627uhg,
51 w83667hg, w83667hg_b,
52 };
53
54 /* used to set data->name = w83627ehf_device_names[data->sio_kind] */
55 static const char * const w83627ehf_device_names[] = {
56 "w83627ehf",
57 "w83627dhg",
58 "w83627dhg",
59 "w83627uhg",
60 "w83667hg",
61 "w83667hg",
62 };
63
64 static unsigned short force_id;
65 module_param(force_id, ushort, 0);
66 MODULE_PARM_DESC(force_id, "Override the detected device ID");
67
68 #define DRVNAME "w83627ehf"
69
70 /*
71 * Super-I/O constants and functions
72 */
73
74 #define W83627EHF_LD_HWM 0x0b
75 #define W83667HG_LD_VID 0x0d
76
77 #define SIO_REG_LDSEL 0x07 /* Logical device select */
78 #define SIO_REG_DEVID 0x20 /* Device ID (2 bytes) */
79 #define SIO_REG_EN_VRM10 0x2C /* GPIO3, GPIO4 selection */
80 #define SIO_REG_ENABLE 0x30 /* Logical device enable */
81 #define SIO_REG_ADDR 0x60 /* Logical device address (2 bytes) */
82 #define SIO_REG_VID_CTRL 0xF0 /* VID control */
83 #define SIO_REG_VID_DATA 0xF1 /* VID data */
84
85 #define SIO_W83627EHF_ID 0x8850
86 #define SIO_W83627EHG_ID 0x8860
87 #define SIO_W83627DHG_ID 0xa020
88 #define SIO_W83627DHG_P_ID 0xb070
89 #define SIO_W83627UHG_ID 0xa230
90 #define SIO_W83667HG_ID 0xa510
91 #define SIO_W83667HG_B_ID 0xb350
92 #define SIO_ID_MASK 0xFFF0
93
94 static inline void
superio_outb(int ioreg,int reg,int val)95 superio_outb(int ioreg, int reg, int val)
96 {
97 outb(reg, ioreg);
98 outb(val, ioreg + 1);
99 }
100
101 static inline int
superio_inb(int ioreg,int reg)102 superio_inb(int ioreg, int reg)
103 {
104 outb(reg, ioreg);
105 return inb(ioreg + 1);
106 }
107
108 static inline void
superio_select(int ioreg,int ld)109 superio_select(int ioreg, int ld)
110 {
111 outb(SIO_REG_LDSEL, ioreg);
112 outb(ld, ioreg + 1);
113 }
114
115 static inline int
superio_enter(int ioreg)116 superio_enter(int ioreg)
117 {
118 if (!request_muxed_region(ioreg, 2, DRVNAME))
119 return -EBUSY;
120
121 outb(0x87, ioreg);
122 outb(0x87, ioreg);
123
124 return 0;
125 }
126
127 static inline void
superio_exit(int ioreg)128 superio_exit(int ioreg)
129 {
130 outb(0xaa, ioreg);
131 outb(0x02, ioreg);
132 outb(0x02, ioreg + 1);
133 release_region(ioreg, 2);
134 }
135
136 /*
137 * ISA constants
138 */
139
140 #define IOREGION_ALIGNMENT (~7)
141 #define IOREGION_OFFSET 5
142 #define IOREGION_LENGTH 2
143 #define ADDR_REG_OFFSET 0
144 #define DATA_REG_OFFSET 1
145
146 #define W83627EHF_REG_BANK 0x4E
147 #define W83627EHF_REG_CONFIG 0x40
148
149 /*
150 * Not currently used:
151 * REG_MAN_ID has the value 0x5ca3 for all supported chips.
152 * REG_CHIP_ID == 0x88/0xa1/0xc1 depending on chip model.
153 * REG_MAN_ID is at port 0x4f
154 * REG_CHIP_ID is at port 0x58
155 */
156
157 static const u16 W83627EHF_REG_FAN[] = { 0x28, 0x29, 0x2a, 0x3f, 0x553 };
158 static const u16 W83627EHF_REG_FAN_MIN[] = { 0x3b, 0x3c, 0x3d, 0x3e, 0x55c };
159
160 /* The W83627EHF registers for nr=7,8,9 are in bank 5 */
161 #define W83627EHF_REG_IN_MAX(nr) ((nr < 7) ? (0x2b + (nr) * 2) : \
162 (0x554 + (((nr) - 7) * 2)))
163 #define W83627EHF_REG_IN_MIN(nr) ((nr < 7) ? (0x2c + (nr) * 2) : \
164 (0x555 + (((nr) - 7) * 2)))
165 #define W83627EHF_REG_IN(nr) ((nr < 7) ? (0x20 + (nr)) : \
166 (0x550 + (nr) - 7))
167
168 static const u16 W83627EHF_REG_TEMP[] = { 0x27, 0x150, 0x250, 0x7e };
169 static const u16 W83627EHF_REG_TEMP_HYST[] = { 0x3a, 0x153, 0x253, 0 };
170 static const u16 W83627EHF_REG_TEMP_OVER[] = { 0x39, 0x155, 0x255, 0 };
171 static const u16 W83627EHF_REG_TEMP_CONFIG[] = { 0, 0x152, 0x252, 0 };
172
173 /* Fan clock dividers are spread over the following five registers */
174 #define W83627EHF_REG_FANDIV1 0x47
175 #define W83627EHF_REG_FANDIV2 0x4B
176 #define W83627EHF_REG_VBAT 0x5D
177 #define W83627EHF_REG_DIODE 0x59
178 #define W83627EHF_REG_SMI_OVT 0x4C
179
180 #define W83627EHF_REG_ALARM1 0x459
181 #define W83627EHF_REG_ALARM2 0x45A
182 #define W83627EHF_REG_ALARM3 0x45B
183
184 #define W83627EHF_REG_CASEOPEN_DET 0x42 /* SMI STATUS #2 */
185 #define W83627EHF_REG_CASEOPEN_CLR 0x46 /* SMI MASK #3 */
186
187 /* SmartFan registers */
188 #define W83627EHF_REG_FAN_STEPUP_TIME 0x0f
189 #define W83627EHF_REG_FAN_STEPDOWN_TIME 0x0e
190
191 /* DC or PWM output fan configuration */
192 static const u8 W83627EHF_REG_PWM_ENABLE[] = {
193 0x04, /* SYS FAN0 output mode and PWM mode */
194 0x04, /* CPU FAN0 output mode and PWM mode */
195 0x12, /* AUX FAN mode */
196 0x62, /* CPU FAN1 mode */
197 };
198
199 static const u8 W83627EHF_PWM_MODE_SHIFT[] = { 0, 1, 0, 6 };
200 static const u8 W83627EHF_PWM_ENABLE_SHIFT[] = { 2, 4, 1, 4 };
201
202 /* FAN Duty Cycle, be used to control */
203 static const u16 W83627EHF_REG_PWM[] = { 0x01, 0x03, 0x11, 0x61 };
204 static const u16 W83627EHF_REG_TARGET[] = { 0x05, 0x06, 0x13, 0x63 };
205 static const u8 W83627EHF_REG_TOLERANCE[] = { 0x07, 0x07, 0x14, 0x62 };
206
207 /* Advanced Fan control, some values are common for all fans */
208 static const u16 W83627EHF_REG_FAN_START_OUTPUT[] = { 0x0a, 0x0b, 0x16, 0x65 };
209 static const u16 W83627EHF_REG_FAN_STOP_OUTPUT[] = { 0x08, 0x09, 0x15, 0x64 };
210 static const u16 W83627EHF_REG_FAN_STOP_TIME[] = { 0x0c, 0x0d, 0x17, 0x66 };
211
212 static const u16 W83627EHF_REG_FAN_MAX_OUTPUT_COMMON[]
213 = { 0xff, 0x67, 0xff, 0x69 };
214 static const u16 W83627EHF_REG_FAN_STEP_OUTPUT_COMMON[]
215 = { 0xff, 0x68, 0xff, 0x6a };
216
217 static const u16 W83627EHF_REG_FAN_MAX_OUTPUT_W83667_B[] = { 0x67, 0x69, 0x6b };
218 static const u16 W83627EHF_REG_FAN_STEP_OUTPUT_W83667_B[]
219 = { 0x68, 0x6a, 0x6c };
220
221 static const u16 W83627EHF_REG_TEMP_OFFSET[] = { 0x454, 0x455, 0x456 };
222
223 static const char *const w83667hg_b_temp_label[] = {
224 "SYSTIN",
225 "CPUTIN",
226 "AUXTIN",
227 "AMDTSI",
228 "PECI Agent 1",
229 "PECI Agent 2",
230 "PECI Agent 3",
231 "PECI Agent 4"
232 };
233
234 #define NUM_REG_TEMP ARRAY_SIZE(W83627EHF_REG_TEMP)
235
is_word_sized(u16 reg)236 static int is_word_sized(u16 reg)
237 {
238 return ((((reg & 0xff00) == 0x100
239 || (reg & 0xff00) == 0x200)
240 && ((reg & 0x00ff) == 0x50
241 || (reg & 0x00ff) == 0x53
242 || (reg & 0x00ff) == 0x55))
243 || (reg & 0xfff0) == 0x630
244 || reg == 0x640 || reg == 0x642
245 || ((reg & 0xfff0) == 0x650
246 && (reg & 0x000f) >= 0x06)
247 || reg == 0x73 || reg == 0x75 || reg == 0x77
248 );
249 }
250
251 /*
252 * Conversions
253 */
254
255 /* 1 is PWM mode, output in ms */
step_time_from_reg(u8 reg,u8 mode)256 static inline unsigned int step_time_from_reg(u8 reg, u8 mode)
257 {
258 return mode ? 100 * reg : 400 * reg;
259 }
260
step_time_to_reg(unsigned int msec,u8 mode)261 static inline u8 step_time_to_reg(unsigned int msec, u8 mode)
262 {
263 return clamp_val((mode ? (msec + 50) / 100 : (msec + 200) / 400),
264 1, 255);
265 }
266
fan_from_reg8(u16 reg,unsigned int divreg)267 static unsigned int fan_from_reg8(u16 reg, unsigned int divreg)
268 {
269 if (reg == 0 || reg == 255)
270 return 0;
271 return 1350000U / (reg << divreg);
272 }
273
274 static inline unsigned int
div_from_reg(u8 reg)275 div_from_reg(u8 reg)
276 {
277 return 1 << reg;
278 }
279
280 /*
281 * Some of the voltage inputs have internal scaling, the tables below
282 * contain 8 (the ADC LSB in mV) * scaling factor * 100
283 */
284 static const u16 scale_in_common[10] = {
285 800, 800, 1600, 1600, 800, 800, 800, 1600, 1600, 800
286 };
287 static const u16 scale_in_w83627uhg[9] = {
288 800, 800, 3328, 3424, 800, 800, 0, 3328, 3400
289 };
290
in_from_reg(u8 reg,u8 nr,const u16 * scale_in)291 static inline long in_from_reg(u8 reg, u8 nr, const u16 *scale_in)
292 {
293 return DIV_ROUND_CLOSEST(reg * scale_in[nr], 100);
294 }
295
in_to_reg(u32 val,u8 nr,const u16 * scale_in)296 static inline u8 in_to_reg(u32 val, u8 nr, const u16 *scale_in)
297 {
298 return clamp_val(DIV_ROUND_CLOSEST(val * 100, scale_in[nr]), 0, 255);
299 }
300
301 /*
302 * Data structures and manipulation thereof
303 */
304
305 struct w83627ehf_data {
306 int addr; /* IO base of hw monitor block */
307 const char *name;
308
309 struct mutex lock;
310
311 u16 reg_temp[NUM_REG_TEMP];
312 u16 reg_temp_over[NUM_REG_TEMP];
313 u16 reg_temp_hyst[NUM_REG_TEMP];
314 u16 reg_temp_config[NUM_REG_TEMP];
315 u8 temp_src[NUM_REG_TEMP];
316 const char * const *temp_label;
317
318 const u16 *REG_FAN_MAX_OUTPUT;
319 const u16 *REG_FAN_STEP_OUTPUT;
320 const u16 *scale_in;
321
322 struct mutex update_lock;
323 char valid; /* !=0 if following fields are valid */
324 unsigned long last_updated; /* In jiffies */
325
326 /* Register values */
327 u8 bank; /* current register bank */
328 u8 in_num; /* number of in inputs we have */
329 u8 in[10]; /* Register value */
330 u8 in_max[10]; /* Register value */
331 u8 in_min[10]; /* Register value */
332 unsigned int rpm[5];
333 u16 fan_min[5];
334 u8 fan_div[5];
335 u8 has_fan; /* some fan inputs can be disabled */
336 u8 has_fan_min; /* some fans don't have min register */
337 u8 temp_type[3];
338 s8 temp_offset[3];
339 s16 temp[9];
340 s16 temp_max[9];
341 s16 temp_max_hyst[9];
342 u32 alarms;
343 u8 caseopen;
344
345 u8 pwm_mode[4]; /* 0->DC variable voltage, 1->PWM variable duty cycle */
346 u8 pwm_enable[4]; /* 1->manual
347 * 2->thermal cruise mode (also called SmartFan I)
348 * 3->fan speed cruise mode
349 * 4->variable thermal cruise (also called
350 * SmartFan III)
351 * 5->enhanced variable thermal cruise (also called
352 * SmartFan IV)
353 */
354 u8 pwm_enable_orig[4]; /* original value of pwm_enable */
355 u8 pwm_num; /* number of pwm */
356 u8 pwm[4];
357 u8 target_temp[4];
358 u8 tolerance[4];
359
360 u8 fan_start_output[4]; /* minimum fan speed when spinning up */
361 u8 fan_stop_output[4]; /* minimum fan speed when spinning down */
362 u8 fan_stop_time[4]; /* time at minimum before disabling fan */
363 u8 fan_max_output[4]; /* maximum fan speed */
364 u8 fan_step_output[4]; /* rate of change output value */
365
366 u8 vid;
367 u8 vrm;
368
369 u16 have_temp;
370 u16 have_temp_offset;
371 u8 in6_skip:1;
372 u8 temp3_val_only:1;
373 u8 have_vid:1;
374
375 #ifdef CONFIG_PM
376 /* Remember extra register values over suspend/resume */
377 u8 vbat;
378 u8 fandiv1;
379 u8 fandiv2;
380 #endif
381 };
382
383 struct w83627ehf_sio_data {
384 int sioreg;
385 enum kinds kind;
386 };
387
388 /*
389 * On older chips, only registers 0x50-0x5f are banked.
390 * On more recent chips, all registers are banked.
391 * Assume that is the case and set the bank number for each access.
392 * Cache the bank number so it only needs to be set if it changes.
393 */
w83627ehf_set_bank(struct w83627ehf_data * data,u16 reg)394 static inline void w83627ehf_set_bank(struct w83627ehf_data *data, u16 reg)
395 {
396 u8 bank = reg >> 8;
397 if (data->bank != bank) {
398 outb_p(W83627EHF_REG_BANK, data->addr + ADDR_REG_OFFSET);
399 outb_p(bank, data->addr + DATA_REG_OFFSET);
400 data->bank = bank;
401 }
402 }
403
w83627ehf_read_value(struct w83627ehf_data * data,u16 reg)404 static u16 w83627ehf_read_value(struct w83627ehf_data *data, u16 reg)
405 {
406 int res, word_sized = is_word_sized(reg);
407
408 mutex_lock(&data->lock);
409
410 w83627ehf_set_bank(data, reg);
411 outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
412 res = inb_p(data->addr + DATA_REG_OFFSET);
413 if (word_sized) {
414 outb_p((reg & 0xff) + 1,
415 data->addr + ADDR_REG_OFFSET);
416 res = (res << 8) + inb_p(data->addr + DATA_REG_OFFSET);
417 }
418
419 mutex_unlock(&data->lock);
420 return res;
421 }
422
w83627ehf_write_value(struct w83627ehf_data * data,u16 reg,u16 value)423 static int w83627ehf_write_value(struct w83627ehf_data *data, u16 reg,
424 u16 value)
425 {
426 int word_sized = is_word_sized(reg);
427
428 mutex_lock(&data->lock);
429
430 w83627ehf_set_bank(data, reg);
431 outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
432 if (word_sized) {
433 outb_p(value >> 8, data->addr + DATA_REG_OFFSET);
434 outb_p((reg & 0xff) + 1,
435 data->addr + ADDR_REG_OFFSET);
436 }
437 outb_p(value & 0xff, data->addr + DATA_REG_OFFSET);
438
439 mutex_unlock(&data->lock);
440 return 0;
441 }
442
443 /* We left-align 8-bit temperature values to make the code simpler */
w83627ehf_read_temp(struct w83627ehf_data * data,u16 reg)444 static u16 w83627ehf_read_temp(struct w83627ehf_data *data, u16 reg)
445 {
446 u16 res;
447
448 res = w83627ehf_read_value(data, reg);
449 if (!is_word_sized(reg))
450 res <<= 8;
451
452 return res;
453 }
454
w83627ehf_write_temp(struct w83627ehf_data * data,u16 reg,u16 value)455 static int w83627ehf_write_temp(struct w83627ehf_data *data, u16 reg,
456 u16 value)
457 {
458 if (!is_word_sized(reg))
459 value >>= 8;
460 return w83627ehf_write_value(data, reg, value);
461 }
462
463 /* This function assumes that the caller holds data->update_lock */
w83627ehf_write_fan_div(struct w83627ehf_data * data,int nr)464 static void w83627ehf_write_fan_div(struct w83627ehf_data *data, int nr)
465 {
466 u8 reg;
467
468 switch (nr) {
469 case 0:
470 reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0xcf)
471 | ((data->fan_div[0] & 0x03) << 4);
472 /* fan5 input control bit is write only, compute the value */
473 reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
474 w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
475 reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xdf)
476 | ((data->fan_div[0] & 0x04) << 3);
477 w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
478 break;
479 case 1:
480 reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0x3f)
481 | ((data->fan_div[1] & 0x03) << 6);
482 /* fan5 input control bit is write only, compute the value */
483 reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
484 w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
485 reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xbf)
486 | ((data->fan_div[1] & 0x04) << 4);
487 w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
488 break;
489 case 2:
490 reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV2) & 0x3f)
491 | ((data->fan_div[2] & 0x03) << 6);
492 w83627ehf_write_value(data, W83627EHF_REG_FANDIV2, reg);
493 reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0x7f)
494 | ((data->fan_div[2] & 0x04) << 5);
495 w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
496 break;
497 case 3:
498 reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0xfc)
499 | (data->fan_div[3] & 0x03);
500 w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
501 reg = (w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT) & 0x7f)
502 | ((data->fan_div[3] & 0x04) << 5);
503 w83627ehf_write_value(data, W83627EHF_REG_SMI_OVT, reg);
504 break;
505 case 4:
506 reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0x73)
507 | ((data->fan_div[4] & 0x03) << 2)
508 | ((data->fan_div[4] & 0x04) << 5);
509 w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
510 break;
511 }
512 }
513
w83627ehf_update_fan_div(struct w83627ehf_data * data)514 static void w83627ehf_update_fan_div(struct w83627ehf_data *data)
515 {
516 int i;
517
518 i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
519 data->fan_div[0] = (i >> 4) & 0x03;
520 data->fan_div[1] = (i >> 6) & 0x03;
521 i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV2);
522 data->fan_div[2] = (i >> 6) & 0x03;
523 i = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
524 data->fan_div[0] |= (i >> 3) & 0x04;
525 data->fan_div[1] |= (i >> 4) & 0x04;
526 data->fan_div[2] |= (i >> 5) & 0x04;
527 if (data->has_fan & ((1 << 3) | (1 << 4))) {
528 i = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
529 data->fan_div[3] = i & 0x03;
530 data->fan_div[4] = ((i >> 2) & 0x03)
531 | ((i >> 5) & 0x04);
532 }
533 if (data->has_fan & (1 << 3)) {
534 i = w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT);
535 data->fan_div[3] |= (i >> 5) & 0x04;
536 }
537 }
538
w83627ehf_update_pwm(struct w83627ehf_data * data)539 static void w83627ehf_update_pwm(struct w83627ehf_data *data)
540 {
541 int i;
542 int pwmcfg = 0, tolerance = 0; /* shut up the compiler */
543
544 for (i = 0; i < data->pwm_num; i++) {
545 if (!(data->has_fan & (1 << i)))
546 continue;
547
548 /* pwmcfg, tolerance mapped for i=0, i=1 to same reg */
549 if (i != 1) {
550 pwmcfg = w83627ehf_read_value(data,
551 W83627EHF_REG_PWM_ENABLE[i]);
552 tolerance = w83627ehf_read_value(data,
553 W83627EHF_REG_TOLERANCE[i]);
554 }
555 data->pwm_mode[i] =
556 ((pwmcfg >> W83627EHF_PWM_MODE_SHIFT[i]) & 1) ? 0 : 1;
557 data->pwm_enable[i] = ((pwmcfg >> W83627EHF_PWM_ENABLE_SHIFT[i])
558 & 3) + 1;
559 data->pwm[i] = w83627ehf_read_value(data, W83627EHF_REG_PWM[i]);
560
561 data->tolerance[i] = (tolerance >> (i == 1 ? 4 : 0)) & 0x0f;
562 }
563 }
564
w83627ehf_update_device(struct device * dev)565 static struct w83627ehf_data *w83627ehf_update_device(struct device *dev)
566 {
567 struct w83627ehf_data *data = dev_get_drvdata(dev);
568 int i;
569
570 mutex_lock(&data->update_lock);
571
572 if (time_after(jiffies, data->last_updated + HZ + HZ/2)
573 || !data->valid) {
574 /* Fan clock dividers */
575 w83627ehf_update_fan_div(data);
576
577 /* Measured voltages and limits */
578 for (i = 0; i < data->in_num; i++) {
579 if ((i == 6) && data->in6_skip)
580 continue;
581
582 data->in[i] = w83627ehf_read_value(data,
583 W83627EHF_REG_IN(i));
584 data->in_min[i] = w83627ehf_read_value(data,
585 W83627EHF_REG_IN_MIN(i));
586 data->in_max[i] = w83627ehf_read_value(data,
587 W83627EHF_REG_IN_MAX(i));
588 }
589
590 /* Measured fan speeds and limits */
591 for (i = 0; i < 5; i++) {
592 u16 reg;
593
594 if (!(data->has_fan & (1 << i)))
595 continue;
596
597 reg = w83627ehf_read_value(data, W83627EHF_REG_FAN[i]);
598 data->rpm[i] = fan_from_reg8(reg, data->fan_div[i]);
599
600 if (data->has_fan_min & (1 << i))
601 data->fan_min[i] = w83627ehf_read_value(data,
602 W83627EHF_REG_FAN_MIN[i]);
603
604 /*
605 * If we failed to measure the fan speed and clock
606 * divider can be increased, let's try that for next
607 * time
608 */
609 if (reg >= 0xff && data->fan_div[i] < 0x07) {
610 dev_dbg(dev,
611 "Increasing fan%d clock divider from %u to %u\n",
612 i + 1, div_from_reg(data->fan_div[i]),
613 div_from_reg(data->fan_div[i] + 1));
614 data->fan_div[i]++;
615 w83627ehf_write_fan_div(data, i);
616 /* Preserve min limit if possible */
617 if ((data->has_fan_min & (1 << i))
618 && data->fan_min[i] >= 2
619 && data->fan_min[i] != 255)
620 w83627ehf_write_value(data,
621 W83627EHF_REG_FAN_MIN[i],
622 (data->fan_min[i] /= 2));
623 }
624 }
625
626 w83627ehf_update_pwm(data);
627
628 for (i = 0; i < data->pwm_num; i++) {
629 if (!(data->has_fan & (1 << i)))
630 continue;
631
632 data->fan_start_output[i] =
633 w83627ehf_read_value(data,
634 W83627EHF_REG_FAN_START_OUTPUT[i]);
635 data->fan_stop_output[i] =
636 w83627ehf_read_value(data,
637 W83627EHF_REG_FAN_STOP_OUTPUT[i]);
638 data->fan_stop_time[i] =
639 w83627ehf_read_value(data,
640 W83627EHF_REG_FAN_STOP_TIME[i]);
641
642 if (data->REG_FAN_MAX_OUTPUT &&
643 data->REG_FAN_MAX_OUTPUT[i] != 0xff)
644 data->fan_max_output[i] =
645 w83627ehf_read_value(data,
646 data->REG_FAN_MAX_OUTPUT[i]);
647
648 if (data->REG_FAN_STEP_OUTPUT &&
649 data->REG_FAN_STEP_OUTPUT[i] != 0xff)
650 data->fan_step_output[i] =
651 w83627ehf_read_value(data,
652 data->REG_FAN_STEP_OUTPUT[i]);
653
654 data->target_temp[i] =
655 w83627ehf_read_value(data,
656 W83627EHF_REG_TARGET[i]) &
657 (data->pwm_mode[i] == 1 ? 0x7f : 0xff);
658 }
659
660 /* Measured temperatures and limits */
661 for (i = 0; i < NUM_REG_TEMP; i++) {
662 if (!(data->have_temp & (1 << i)))
663 continue;
664 data->temp[i] = w83627ehf_read_temp(data,
665 data->reg_temp[i]);
666 if (data->reg_temp_over[i])
667 data->temp_max[i]
668 = w83627ehf_read_temp(data,
669 data->reg_temp_over[i]);
670 if (data->reg_temp_hyst[i])
671 data->temp_max_hyst[i]
672 = w83627ehf_read_temp(data,
673 data->reg_temp_hyst[i]);
674 if (i > 2)
675 continue;
676 if (data->have_temp_offset & (1 << i))
677 data->temp_offset[i]
678 = w83627ehf_read_value(data,
679 W83627EHF_REG_TEMP_OFFSET[i]);
680 }
681
682 data->alarms = w83627ehf_read_value(data,
683 W83627EHF_REG_ALARM1) |
684 (w83627ehf_read_value(data,
685 W83627EHF_REG_ALARM2) << 8) |
686 (w83627ehf_read_value(data,
687 W83627EHF_REG_ALARM3) << 16);
688
689 data->caseopen = w83627ehf_read_value(data,
690 W83627EHF_REG_CASEOPEN_DET);
691
692 data->last_updated = jiffies;
693 data->valid = 1;
694 }
695
696 mutex_unlock(&data->update_lock);
697 return data;
698 }
699
700 #define store_in_reg(REG, reg) \
701 static int \
702 store_in_##reg(struct device *dev, struct w83627ehf_data *data, int channel, \
703 long val) \
704 { \
705 if (val < 0) \
706 return -EINVAL; \
707 mutex_lock(&data->update_lock); \
708 data->in_##reg[channel] = in_to_reg(val, channel, data->scale_in); \
709 w83627ehf_write_value(data, W83627EHF_REG_IN_##REG(channel), \
710 data->in_##reg[channel]); \
711 mutex_unlock(&data->update_lock); \
712 return 0; \
713 }
714
store_in_reg(MIN,min)715 store_in_reg(MIN, min)
716 store_in_reg(MAX, max)
717
718 static int
719 store_fan_min(struct device *dev, struct w83627ehf_data *data, int channel,
720 long val)
721 {
722 unsigned int reg;
723 u8 new_div;
724
725 if (val < 0)
726 return -EINVAL;
727
728 mutex_lock(&data->update_lock);
729 if (!val) {
730 /* No min limit, alarm disabled */
731 data->fan_min[channel] = 255;
732 new_div = data->fan_div[channel]; /* No change */
733 dev_info(dev, "fan%u low limit and alarm disabled\n",
734 channel + 1);
735 } else if ((reg = 1350000U / val) >= 128 * 255) {
736 /*
737 * Speed below this value cannot possibly be represented,
738 * even with the highest divider (128)
739 */
740 data->fan_min[channel] = 254;
741 new_div = 7; /* 128 == (1 << 7) */
742 dev_warn(dev,
743 "fan%u low limit %lu below minimum %u, set to minimum\n",
744 channel + 1, val, fan_from_reg8(254, 7));
745 } else if (!reg) {
746 /*
747 * Speed above this value cannot possibly be represented,
748 * even with the lowest divider (1)
749 */
750 data->fan_min[channel] = 1;
751 new_div = 0; /* 1 == (1 << 0) */
752 dev_warn(dev,
753 "fan%u low limit %lu above maximum %u, set to maximum\n",
754 channel + 1, val, fan_from_reg8(1, 0));
755 } else {
756 /*
757 * Automatically pick the best divider, i.e. the one such
758 * that the min limit will correspond to a register value
759 * in the 96..192 range
760 */
761 new_div = 0;
762 while (reg > 192 && new_div < 7) {
763 reg >>= 1;
764 new_div++;
765 }
766 data->fan_min[channel] = reg;
767 }
768
769 /*
770 * Write both the fan clock divider (if it changed) and the new
771 * fan min (unconditionally)
772 */
773 if (new_div != data->fan_div[channel]) {
774 dev_dbg(dev, "fan%u clock divider changed from %u to %u\n",
775 channel + 1, div_from_reg(data->fan_div[channel]),
776 div_from_reg(new_div));
777 data->fan_div[channel] = new_div;
778 w83627ehf_write_fan_div(data, channel);
779 /* Give the chip time to sample a new speed value */
780 data->last_updated = jiffies;
781 }
782
783 w83627ehf_write_value(data, W83627EHF_REG_FAN_MIN[channel],
784 data->fan_min[channel]);
785 mutex_unlock(&data->update_lock);
786
787 return 0;
788 }
789
790 #define store_temp_reg(addr, reg) \
791 static int \
792 store_##reg(struct device *dev, struct w83627ehf_data *data, int channel, \
793 long val) \
794 { \
795 mutex_lock(&data->update_lock); \
796 data->reg[channel] = LM75_TEMP_TO_REG(val); \
797 w83627ehf_write_temp(data, data->addr[channel], data->reg[channel]); \
798 mutex_unlock(&data->update_lock); \
799 return 0; \
800 }
801 store_temp_reg(reg_temp_over, temp_max);
802 store_temp_reg(reg_temp_hyst, temp_max_hyst);
803
804 static int
store_temp_offset(struct device * dev,struct w83627ehf_data * data,int channel,long val)805 store_temp_offset(struct device *dev, struct w83627ehf_data *data, int channel,
806 long val)
807 {
808 val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), -128, 127);
809
810 mutex_lock(&data->update_lock);
811 data->temp_offset[channel] = val;
812 w83627ehf_write_value(data, W83627EHF_REG_TEMP_OFFSET[channel], val);
813 mutex_unlock(&data->update_lock);
814 return 0;
815 }
816
817 static int
store_pwm_mode(struct device * dev,struct w83627ehf_data * data,int channel,long val)818 store_pwm_mode(struct device *dev, struct w83627ehf_data *data, int channel,
819 long val)
820 {
821 u16 reg;
822
823 if (val < 0 || val > 1)
824 return -EINVAL;
825
826 mutex_lock(&data->update_lock);
827 reg = w83627ehf_read_value(data, W83627EHF_REG_PWM_ENABLE[channel]);
828 data->pwm_mode[channel] = val;
829 reg &= ~(1 << W83627EHF_PWM_MODE_SHIFT[channel]);
830 if (!val)
831 reg |= 1 << W83627EHF_PWM_MODE_SHIFT[channel];
832 w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[channel], reg);
833 mutex_unlock(&data->update_lock);
834 return 0;
835 }
836
837 static int
store_pwm(struct device * dev,struct w83627ehf_data * data,int channel,long val)838 store_pwm(struct device *dev, struct w83627ehf_data *data, int channel,
839 long val)
840 {
841 val = clamp_val(val, 0, 255);
842
843 mutex_lock(&data->update_lock);
844 data->pwm[channel] = val;
845 w83627ehf_write_value(data, W83627EHF_REG_PWM[channel], val);
846 mutex_unlock(&data->update_lock);
847 return 0;
848 }
849
850 static int
store_pwm_enable(struct device * dev,struct w83627ehf_data * data,int channel,long val)851 store_pwm_enable(struct device *dev, struct w83627ehf_data *data, int channel,
852 long val)
853 {
854 u16 reg;
855
856 if (!val || val < 0 ||
857 (val > 4 && val != data->pwm_enable_orig[channel]))
858 return -EINVAL;
859
860 mutex_lock(&data->update_lock);
861 data->pwm_enable[channel] = val;
862 reg = w83627ehf_read_value(data,
863 W83627EHF_REG_PWM_ENABLE[channel]);
864 reg &= ~(0x03 << W83627EHF_PWM_ENABLE_SHIFT[channel]);
865 reg |= (val - 1) << W83627EHF_PWM_ENABLE_SHIFT[channel];
866 w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[channel],
867 reg);
868 mutex_unlock(&data->update_lock);
869 return 0;
870 }
871
872 #define show_tol_temp(reg) \
873 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
874 char *buf) \
875 { \
876 struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \
877 struct sensor_device_attribute *sensor_attr = \
878 to_sensor_dev_attr(attr); \
879 int nr = sensor_attr->index; \
880 return sprintf(buf, "%d\n", data->reg[nr] * 1000); \
881 }
882
883 show_tol_temp(tolerance)
show_tol_temp(target_temp)884 show_tol_temp(target_temp)
885
886 static ssize_t
887 store_target_temp(struct device *dev, struct device_attribute *attr,
888 const char *buf, size_t count)
889 {
890 struct w83627ehf_data *data = dev_get_drvdata(dev);
891 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
892 int nr = sensor_attr->index;
893 long val;
894 int err;
895
896 err = kstrtol(buf, 10, &val);
897 if (err < 0)
898 return err;
899
900 val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), 0, 127);
901
902 mutex_lock(&data->update_lock);
903 data->target_temp[nr] = val;
904 w83627ehf_write_value(data, W83627EHF_REG_TARGET[nr], val);
905 mutex_unlock(&data->update_lock);
906 return count;
907 }
908
909 static ssize_t
store_tolerance(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)910 store_tolerance(struct device *dev, struct device_attribute *attr,
911 const char *buf, size_t count)
912 {
913 struct w83627ehf_data *data = dev_get_drvdata(dev);
914 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
915 int nr = sensor_attr->index;
916 u16 reg;
917 long val;
918 int err;
919
920 err = kstrtol(buf, 10, &val);
921 if (err < 0)
922 return err;
923
924 /* Limit the temp to 0C - 15C */
925 val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), 0, 15);
926
927 mutex_lock(&data->update_lock);
928 reg = w83627ehf_read_value(data, W83627EHF_REG_TOLERANCE[nr]);
929 if (nr == 1)
930 reg = (reg & 0x0f) | (val << 4);
931 else
932 reg = (reg & 0xf0) | val;
933 w83627ehf_write_value(data, W83627EHF_REG_TOLERANCE[nr], reg);
934 data->tolerance[nr] = val;
935 mutex_unlock(&data->update_lock);
936 return count;
937 }
938
939 static SENSOR_DEVICE_ATTR(pwm1_target, 0644, show_target_temp,
940 store_target_temp, 0);
941 static SENSOR_DEVICE_ATTR(pwm2_target, 0644, show_target_temp,
942 store_target_temp, 1);
943 static SENSOR_DEVICE_ATTR(pwm3_target, 0644, show_target_temp,
944 store_target_temp, 2);
945 static SENSOR_DEVICE_ATTR(pwm4_target, 0644, show_target_temp,
946 store_target_temp, 3);
947
948 static SENSOR_DEVICE_ATTR(pwm1_tolerance, 0644, show_tolerance,
949 store_tolerance, 0);
950 static SENSOR_DEVICE_ATTR(pwm2_tolerance, 0644, show_tolerance,
951 store_tolerance, 1);
952 static SENSOR_DEVICE_ATTR(pwm3_tolerance, 0644, show_tolerance,
953 store_tolerance, 2);
954 static SENSOR_DEVICE_ATTR(pwm4_tolerance, 0644, show_tolerance,
955 store_tolerance, 3);
956
957 /* Smart Fan registers */
958
959 #define fan_functions(reg, REG) \
960 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
961 char *buf) \
962 { \
963 struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \
964 struct sensor_device_attribute *sensor_attr = \
965 to_sensor_dev_attr(attr); \
966 int nr = sensor_attr->index; \
967 return sprintf(buf, "%d\n", data->reg[nr]); \
968 } \
969 static ssize_t \
970 store_##reg(struct device *dev, struct device_attribute *attr, \
971 const char *buf, size_t count) \
972 { \
973 struct w83627ehf_data *data = dev_get_drvdata(dev); \
974 struct sensor_device_attribute *sensor_attr = \
975 to_sensor_dev_attr(attr); \
976 int nr = sensor_attr->index; \
977 unsigned long val; \
978 int err; \
979 err = kstrtoul(buf, 10, &val); \
980 if (err < 0) \
981 return err; \
982 val = clamp_val(val, 1, 255); \
983 mutex_lock(&data->update_lock); \
984 data->reg[nr] = val; \
985 w83627ehf_write_value(data, REG[nr], val); \
986 mutex_unlock(&data->update_lock); \
987 return count; \
988 }
989
990 fan_functions(fan_start_output, W83627EHF_REG_FAN_START_OUTPUT)
991 fan_functions(fan_stop_output, W83627EHF_REG_FAN_STOP_OUTPUT)
992 fan_functions(fan_max_output, data->REG_FAN_MAX_OUTPUT)
993 fan_functions(fan_step_output, data->REG_FAN_STEP_OUTPUT)
994
995 #define fan_time_functions(reg, REG) \
996 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
997 char *buf) \
998 { \
999 struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \
1000 struct sensor_device_attribute *sensor_attr = \
1001 to_sensor_dev_attr(attr); \
1002 int nr = sensor_attr->index; \
1003 return sprintf(buf, "%d\n", \
1004 step_time_from_reg(data->reg[nr], \
1005 data->pwm_mode[nr])); \
1006 } \
1007 \
1008 static ssize_t \
1009 store_##reg(struct device *dev, struct device_attribute *attr, \
1010 const char *buf, size_t count) \
1011 { \
1012 struct w83627ehf_data *data = dev_get_drvdata(dev); \
1013 struct sensor_device_attribute *sensor_attr = \
1014 to_sensor_dev_attr(attr); \
1015 int nr = sensor_attr->index; \
1016 unsigned long val; \
1017 int err; \
1018 err = kstrtoul(buf, 10, &val); \
1019 if (err < 0) \
1020 return err; \
1021 val = step_time_to_reg(val, data->pwm_mode[nr]); \
1022 mutex_lock(&data->update_lock); \
1023 data->reg[nr] = val; \
1024 w83627ehf_write_value(data, REG[nr], val); \
1025 mutex_unlock(&data->update_lock); \
1026 return count; \
1027 } \
1028
1029 fan_time_functions(fan_stop_time, W83627EHF_REG_FAN_STOP_TIME)
1030
1031 static SENSOR_DEVICE_ATTR(pwm4_stop_time, 0644, show_fan_stop_time,
1032 store_fan_stop_time, 3);
1033 static SENSOR_DEVICE_ATTR(pwm4_start_output, 0644, show_fan_start_output,
1034 store_fan_start_output, 3);
1035 static SENSOR_DEVICE_ATTR(pwm4_stop_output, 0644, show_fan_stop_output,
1036 store_fan_stop_output, 3);
1037 static SENSOR_DEVICE_ATTR(pwm4_max_output, 0644, show_fan_max_output,
1038 store_fan_max_output, 3);
1039 static SENSOR_DEVICE_ATTR(pwm4_step_output, 0644, show_fan_step_output,
1040 store_fan_step_output, 3);
1041
1042 static SENSOR_DEVICE_ATTR(pwm3_stop_time, 0644, show_fan_stop_time,
1043 store_fan_stop_time, 2);
1044 static SENSOR_DEVICE_ATTR(pwm3_start_output, 0644, show_fan_start_output,
1045 store_fan_start_output, 2);
1046 static SENSOR_DEVICE_ATTR(pwm3_stop_output, 0644, show_fan_stop_output,
1047 store_fan_stop_output, 2);
1048
1049 static SENSOR_DEVICE_ATTR(pwm1_stop_time, 0644, show_fan_stop_time,
1050 store_fan_stop_time, 0);
1051 static SENSOR_DEVICE_ATTR(pwm2_stop_time, 0644, show_fan_stop_time,
1052 store_fan_stop_time, 1);
1053 static SENSOR_DEVICE_ATTR(pwm1_start_output, 0644, show_fan_start_output,
1054 store_fan_start_output, 0);
1055 static SENSOR_DEVICE_ATTR(pwm2_start_output, 0644, show_fan_start_output,
1056 store_fan_start_output, 1);
1057 static SENSOR_DEVICE_ATTR(pwm1_stop_output, 0644, show_fan_stop_output,
1058 store_fan_stop_output, 0);
1059 static SENSOR_DEVICE_ATTR(pwm2_stop_output, 0644, show_fan_stop_output,
1060 store_fan_stop_output, 1);
1061
1062
1063 /*
1064 * pwm1 and pwm3 don't support max and step settings on all chips.
1065 * Need to check support while generating/removing attribute files.
1066 */
1067 static SENSOR_DEVICE_ATTR(pwm1_max_output, 0644, show_fan_max_output,
1068 store_fan_max_output, 0);
1069 static SENSOR_DEVICE_ATTR(pwm1_step_output, 0644, show_fan_step_output,
1070 store_fan_step_output, 0);
1071 static SENSOR_DEVICE_ATTR(pwm2_max_output, 0644, show_fan_max_output,
1072 store_fan_max_output, 1);
1073 static SENSOR_DEVICE_ATTR(pwm2_step_output, 0644, show_fan_step_output,
1074 store_fan_step_output, 1);
1075 static SENSOR_DEVICE_ATTR(pwm3_max_output, 0644, show_fan_max_output,
1076 store_fan_max_output, 2);
1077 static SENSOR_DEVICE_ATTR(pwm3_step_output, 0644, show_fan_step_output,
1078 store_fan_step_output, 2);
1079
1080 static ssize_t
cpu0_vid_show(struct device * dev,struct device_attribute * attr,char * buf)1081 cpu0_vid_show(struct device *dev, struct device_attribute *attr, char *buf)
1082 {
1083 struct w83627ehf_data *data = dev_get_drvdata(dev);
1084 return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
1085 }
1086 DEVICE_ATTR_RO(cpu0_vid);
1087
1088
1089 /* Case open detection */
1090 static int
clear_caseopen(struct device * dev,struct w83627ehf_data * data,int channel,long val)1091 clear_caseopen(struct device *dev, struct w83627ehf_data *data, int channel,
1092 long val)
1093 {
1094 const u16 mask = 0x80;
1095 u16 reg;
1096
1097 if (val != 0 || channel != 0)
1098 return -EINVAL;
1099
1100 mutex_lock(&data->update_lock);
1101 reg = w83627ehf_read_value(data, W83627EHF_REG_CASEOPEN_CLR);
1102 w83627ehf_write_value(data, W83627EHF_REG_CASEOPEN_CLR, reg | mask);
1103 w83627ehf_write_value(data, W83627EHF_REG_CASEOPEN_CLR, reg & ~mask);
1104 data->valid = 0; /* Force cache refresh */
1105 mutex_unlock(&data->update_lock);
1106
1107 return 0;
1108 }
1109
w83627ehf_attrs_visible(struct kobject * kobj,struct attribute * a,int n)1110 static umode_t w83627ehf_attrs_visible(struct kobject *kobj,
1111 struct attribute *a, int n)
1112 {
1113 struct device *dev = container_of(kobj, struct device, kobj);
1114 struct w83627ehf_data *data = dev_get_drvdata(dev);
1115 struct device_attribute *devattr;
1116 struct sensor_device_attribute *sda;
1117
1118 devattr = container_of(a, struct device_attribute, attr);
1119
1120 /* Not sensor */
1121 if (devattr->show == cpu0_vid_show && data->have_vid)
1122 return a->mode;
1123
1124 sda = (struct sensor_device_attribute *)devattr;
1125
1126 if (sda->index < 2 &&
1127 (devattr->show == show_fan_stop_time ||
1128 devattr->show == show_fan_start_output ||
1129 devattr->show == show_fan_stop_output))
1130 return a->mode;
1131
1132 if (sda->index < 3 &&
1133 (devattr->show == show_fan_max_output ||
1134 devattr->show == show_fan_step_output) &&
1135 data->REG_FAN_STEP_OUTPUT &&
1136 data->REG_FAN_STEP_OUTPUT[sda->index] != 0xff)
1137 return a->mode;
1138
1139 /* if fan3 and fan4 are enabled create the files for them */
1140 if (sda->index == 2 &&
1141 (data->has_fan & (1 << 2)) && data->pwm_num >= 3 &&
1142 (devattr->show == show_fan_stop_time ||
1143 devattr->show == show_fan_start_output ||
1144 devattr->show == show_fan_stop_output))
1145 return a->mode;
1146
1147 if (sda->index == 3 &&
1148 (data->has_fan & (1 << 3)) && data->pwm_num >= 4 &&
1149 (devattr->show == show_fan_stop_time ||
1150 devattr->show == show_fan_start_output ||
1151 devattr->show == show_fan_stop_output ||
1152 devattr->show == show_fan_max_output ||
1153 devattr->show == show_fan_step_output))
1154 return a->mode;
1155
1156 if ((devattr->show == show_target_temp ||
1157 devattr->show == show_tolerance) &&
1158 (data->has_fan & (1 << sda->index)) &&
1159 sda->index < data->pwm_num)
1160 return a->mode;
1161
1162 return 0;
1163 }
1164
1165 /* These groups handle non-standard attributes used in this device */
1166 static struct attribute *w83627ehf_attrs[] = {
1167
1168 &sensor_dev_attr_pwm1_stop_time.dev_attr.attr,
1169 &sensor_dev_attr_pwm1_start_output.dev_attr.attr,
1170 &sensor_dev_attr_pwm1_stop_output.dev_attr.attr,
1171 &sensor_dev_attr_pwm1_max_output.dev_attr.attr,
1172 &sensor_dev_attr_pwm1_step_output.dev_attr.attr,
1173 &sensor_dev_attr_pwm1_target.dev_attr.attr,
1174 &sensor_dev_attr_pwm1_tolerance.dev_attr.attr,
1175
1176 &sensor_dev_attr_pwm2_stop_time.dev_attr.attr,
1177 &sensor_dev_attr_pwm2_start_output.dev_attr.attr,
1178 &sensor_dev_attr_pwm2_stop_output.dev_attr.attr,
1179 &sensor_dev_attr_pwm2_max_output.dev_attr.attr,
1180 &sensor_dev_attr_pwm2_step_output.dev_attr.attr,
1181 &sensor_dev_attr_pwm2_target.dev_attr.attr,
1182 &sensor_dev_attr_pwm2_tolerance.dev_attr.attr,
1183
1184 &sensor_dev_attr_pwm3_stop_time.dev_attr.attr,
1185 &sensor_dev_attr_pwm3_start_output.dev_attr.attr,
1186 &sensor_dev_attr_pwm3_stop_output.dev_attr.attr,
1187 &sensor_dev_attr_pwm3_max_output.dev_attr.attr,
1188 &sensor_dev_attr_pwm3_step_output.dev_attr.attr,
1189 &sensor_dev_attr_pwm3_target.dev_attr.attr,
1190 &sensor_dev_attr_pwm3_tolerance.dev_attr.attr,
1191
1192 &sensor_dev_attr_pwm4_stop_time.dev_attr.attr,
1193 &sensor_dev_attr_pwm4_start_output.dev_attr.attr,
1194 &sensor_dev_attr_pwm4_stop_output.dev_attr.attr,
1195 &sensor_dev_attr_pwm4_max_output.dev_attr.attr,
1196 &sensor_dev_attr_pwm4_step_output.dev_attr.attr,
1197 &sensor_dev_attr_pwm4_target.dev_attr.attr,
1198 &sensor_dev_attr_pwm4_tolerance.dev_attr.attr,
1199
1200 &dev_attr_cpu0_vid.attr,
1201 NULL
1202 };
1203
1204 static const struct attribute_group w83627ehf_group = {
1205 .attrs = w83627ehf_attrs,
1206 .is_visible = w83627ehf_attrs_visible,
1207 };
1208
1209 static const struct attribute_group *w83627ehf_groups[] = {
1210 &w83627ehf_group,
1211 NULL
1212 };
1213
1214 /*
1215 * Driver and device management
1216 */
1217
1218 /* Get the monitoring functions started */
w83627ehf_init_device(struct w83627ehf_data * data,enum kinds kind)1219 static inline void w83627ehf_init_device(struct w83627ehf_data *data,
1220 enum kinds kind)
1221 {
1222 int i;
1223 u8 tmp, diode;
1224
1225 /* Start monitoring is needed */
1226 tmp = w83627ehf_read_value(data, W83627EHF_REG_CONFIG);
1227 if (!(tmp & 0x01))
1228 w83627ehf_write_value(data, W83627EHF_REG_CONFIG,
1229 tmp | 0x01);
1230
1231 /* Enable temperature sensors if needed */
1232 for (i = 0; i < NUM_REG_TEMP; i++) {
1233 if (!(data->have_temp & (1 << i)))
1234 continue;
1235 if (!data->reg_temp_config[i])
1236 continue;
1237 tmp = w83627ehf_read_value(data,
1238 data->reg_temp_config[i]);
1239 if (tmp & 0x01)
1240 w83627ehf_write_value(data,
1241 data->reg_temp_config[i],
1242 tmp & 0xfe);
1243 }
1244
1245 /* Enable VBAT monitoring if needed */
1246 tmp = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
1247 if (!(tmp & 0x01))
1248 w83627ehf_write_value(data, W83627EHF_REG_VBAT, tmp | 0x01);
1249
1250 /* Get thermal sensor types */
1251 switch (kind) {
1252 case w83627ehf:
1253 diode = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
1254 break;
1255 case w83627uhg:
1256 diode = 0x00;
1257 break;
1258 default:
1259 diode = 0x70;
1260 }
1261 for (i = 0; i < 3; i++) {
1262 const char *label = NULL;
1263
1264 if (data->temp_label)
1265 label = data->temp_label[data->temp_src[i]];
1266
1267 /* Digital source overrides analog type */
1268 if (label && strncmp(label, "PECI", 4) == 0)
1269 data->temp_type[i] = 6;
1270 else if (label && strncmp(label, "AMD", 3) == 0)
1271 data->temp_type[i] = 5;
1272 else if ((tmp & (0x02 << i)))
1273 data->temp_type[i] = (diode & (0x10 << i)) ? 1 : 3;
1274 else
1275 data->temp_type[i] = 4; /* thermistor */
1276 }
1277 }
1278
1279 static void
w83627ehf_set_temp_reg_ehf(struct w83627ehf_data * data,int n_temp)1280 w83627ehf_set_temp_reg_ehf(struct w83627ehf_data *data, int n_temp)
1281 {
1282 int i;
1283
1284 for (i = 0; i < n_temp; i++) {
1285 data->reg_temp[i] = W83627EHF_REG_TEMP[i];
1286 data->reg_temp_over[i] = W83627EHF_REG_TEMP_OVER[i];
1287 data->reg_temp_hyst[i] = W83627EHF_REG_TEMP_HYST[i];
1288 data->reg_temp_config[i] = W83627EHF_REG_TEMP_CONFIG[i];
1289 }
1290 }
1291
1292 static void
w83627ehf_check_fan_inputs(const struct w83627ehf_sio_data * sio_data,struct w83627ehf_data * data)1293 w83627ehf_check_fan_inputs(const struct w83627ehf_sio_data *sio_data,
1294 struct w83627ehf_data *data)
1295 {
1296 int fan3pin, fan4pin, fan5pin, regval;
1297
1298 /* The W83627UHG is simple, only two fan inputs, no config */
1299 if (sio_data->kind == w83627uhg) {
1300 data->has_fan = 0x03; /* fan1 and fan2 */
1301 data->has_fan_min = 0x03;
1302 return;
1303 }
1304
1305 /* fan4 and fan5 share some pins with the GPIO and serial flash */
1306 if (sio_data->kind == w83667hg || sio_data->kind == w83667hg_b) {
1307 fan3pin = 1;
1308 fan4pin = superio_inb(sio_data->sioreg, 0x27) & 0x40;
1309 fan5pin = superio_inb(sio_data->sioreg, 0x27) & 0x20;
1310 } else {
1311 fan3pin = 1;
1312 fan4pin = !(superio_inb(sio_data->sioreg, 0x29) & 0x06);
1313 fan5pin = !(superio_inb(sio_data->sioreg, 0x24) & 0x02);
1314 }
1315
1316 data->has_fan = data->has_fan_min = 0x03; /* fan1 and fan2 */
1317 data->has_fan |= (fan3pin << 2);
1318 data->has_fan_min |= (fan3pin << 2);
1319
1320 /*
1321 * It looks like fan4 and fan5 pins can be alternatively used
1322 * as fan on/off switches, but fan5 control is write only :/
1323 * We assume that if the serial interface is disabled, designers
1324 * connected fan5 as input unless they are emitting log 1, which
1325 * is not the default.
1326 */
1327 regval = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
1328 if ((regval & (1 << 2)) && fan4pin) {
1329 data->has_fan |= (1 << 3);
1330 data->has_fan_min |= (1 << 3);
1331 }
1332 if (!(regval & (1 << 1)) && fan5pin) {
1333 data->has_fan |= (1 << 4);
1334 data->has_fan_min |= (1 << 4);
1335 }
1336 }
1337
1338 static umode_t
w83627ehf_is_visible(const void * drvdata,enum hwmon_sensor_types type,u32 attr,int channel)1339 w83627ehf_is_visible(const void *drvdata, enum hwmon_sensor_types type,
1340 u32 attr, int channel)
1341 {
1342 const struct w83627ehf_data *data = drvdata;
1343
1344 switch (type) {
1345 case hwmon_temp:
1346 /* channel 0.., name 1.. */
1347 if (!(data->have_temp & (1 << channel)))
1348 return 0;
1349 if (attr == hwmon_temp_input)
1350 return 0444;
1351 if (attr == hwmon_temp_label) {
1352 if (data->temp_label)
1353 return 0444;
1354 return 0;
1355 }
1356 if (channel == 2 && data->temp3_val_only)
1357 return 0;
1358 if (attr == hwmon_temp_max) {
1359 if (data->reg_temp_over[channel])
1360 return 0644;
1361 else
1362 return 0;
1363 }
1364 if (attr == hwmon_temp_max_hyst) {
1365 if (data->reg_temp_hyst[channel])
1366 return 0644;
1367 else
1368 return 0;
1369 }
1370 if (channel > 2)
1371 return 0;
1372 if (attr == hwmon_temp_alarm || attr == hwmon_temp_type)
1373 return 0444;
1374 if (attr == hwmon_temp_offset) {
1375 if (data->have_temp_offset & (1 << channel))
1376 return 0644;
1377 else
1378 return 0;
1379 }
1380 break;
1381
1382 case hwmon_fan:
1383 /* channel 0.., name 1.. */
1384 if (!(data->has_fan & (1 << channel)))
1385 return 0;
1386 if (attr == hwmon_fan_input || attr == hwmon_fan_alarm)
1387 return 0444;
1388 if (attr == hwmon_fan_div) {
1389 return 0444;
1390 }
1391 if (attr == hwmon_fan_min) {
1392 if (data->has_fan_min & (1 << channel))
1393 return 0644;
1394 else
1395 return 0;
1396 }
1397 break;
1398
1399 case hwmon_in:
1400 /* channel 0.., name 0.. */
1401 if (channel >= data->in_num)
1402 return 0;
1403 if (channel == 6 && data->in6_skip)
1404 return 0;
1405 if (attr == hwmon_in_alarm || attr == hwmon_in_input)
1406 return 0444;
1407 if (attr == hwmon_in_min || attr == hwmon_in_max)
1408 return 0644;
1409 break;
1410
1411 case hwmon_pwm:
1412 /* channel 0.., name 1.. */
1413 if (!(data->has_fan & (1 << channel)) ||
1414 channel >= data->pwm_num)
1415 return 0;
1416 if (attr == hwmon_pwm_mode || attr == hwmon_pwm_enable ||
1417 attr == hwmon_pwm_input)
1418 return 0644;
1419 break;
1420
1421 case hwmon_intrusion:
1422 return 0644;
1423
1424 default: /* Shouldn't happen */
1425 return 0;
1426 }
1427
1428 return 0; /* Shouldn't happen */
1429 }
1430
1431 static int
w83627ehf_do_read_temp(struct w83627ehf_data * data,u32 attr,int channel,long * val)1432 w83627ehf_do_read_temp(struct w83627ehf_data *data, u32 attr,
1433 int channel, long *val)
1434 {
1435 switch (attr) {
1436 case hwmon_temp_input:
1437 *val = LM75_TEMP_FROM_REG(data->temp[channel]);
1438 return 0;
1439 case hwmon_temp_max:
1440 *val = LM75_TEMP_FROM_REG(data->temp_max[channel]);
1441 return 0;
1442 case hwmon_temp_max_hyst:
1443 *val = LM75_TEMP_FROM_REG(data->temp_max_hyst[channel]);
1444 return 0;
1445 case hwmon_temp_offset:
1446 *val = data->temp_offset[channel] * 1000;
1447 return 0;
1448 case hwmon_temp_type:
1449 *val = (int)data->temp_type[channel];
1450 return 0;
1451 case hwmon_temp_alarm:
1452 if (channel < 3) {
1453 int bit[] = { 4, 5, 13 };
1454 *val = (data->alarms >> bit[channel]) & 1;
1455 return 0;
1456 }
1457 break;
1458
1459 default:
1460 break;
1461 }
1462
1463 return -EOPNOTSUPP;
1464 }
1465
1466 static int
w83627ehf_do_read_in(struct w83627ehf_data * data,u32 attr,int channel,long * val)1467 w83627ehf_do_read_in(struct w83627ehf_data *data, u32 attr,
1468 int channel, long *val)
1469 {
1470 switch (attr) {
1471 case hwmon_in_input:
1472 *val = in_from_reg(data->in[channel], channel, data->scale_in);
1473 return 0;
1474 case hwmon_in_min:
1475 *val = in_from_reg(data->in_min[channel], channel,
1476 data->scale_in);
1477 return 0;
1478 case hwmon_in_max:
1479 *val = in_from_reg(data->in_max[channel], channel,
1480 data->scale_in);
1481 return 0;
1482 case hwmon_in_alarm:
1483 if (channel < 10) {
1484 int bit[] = { 0, 1, 2, 3, 8, 21, 20, 16, 17, 19 };
1485 *val = (data->alarms >> bit[channel]) & 1;
1486 return 0;
1487 }
1488 break;
1489 default:
1490 break;
1491 }
1492 return -EOPNOTSUPP;
1493 }
1494
1495 static int
w83627ehf_do_read_fan(struct w83627ehf_data * data,u32 attr,int channel,long * val)1496 w83627ehf_do_read_fan(struct w83627ehf_data *data, u32 attr,
1497 int channel, long *val)
1498 {
1499 switch (attr) {
1500 case hwmon_fan_input:
1501 *val = data->rpm[channel];
1502 return 0;
1503 case hwmon_fan_min:
1504 *val = fan_from_reg8(data->fan_min[channel],
1505 data->fan_div[channel]);
1506 return 0;
1507 case hwmon_fan_div:
1508 *val = div_from_reg(data->fan_div[channel]);
1509 return 0;
1510 case hwmon_fan_alarm:
1511 if (channel < 5) {
1512 int bit[] = { 6, 7, 11, 10, 23 };
1513 *val = (data->alarms >> bit[channel]) & 1;
1514 return 0;
1515 }
1516 break;
1517 default:
1518 break;
1519 }
1520 return -EOPNOTSUPP;
1521 }
1522
1523 static int
w83627ehf_do_read_pwm(struct w83627ehf_data * data,u32 attr,int channel,long * val)1524 w83627ehf_do_read_pwm(struct w83627ehf_data *data, u32 attr,
1525 int channel, long *val)
1526 {
1527 switch (attr) {
1528 case hwmon_pwm_input:
1529 *val = data->pwm[channel];
1530 return 0;
1531 case hwmon_pwm_enable:
1532 *val = data->pwm_enable[channel];
1533 return 0;
1534 case hwmon_pwm_mode:
1535 *val = data->pwm_enable[channel];
1536 return 0;
1537 default:
1538 break;
1539 }
1540 return -EOPNOTSUPP;
1541 }
1542
1543 static int
w83627ehf_do_read_intrusion(struct w83627ehf_data * data,u32 attr,int channel,long * val)1544 w83627ehf_do_read_intrusion(struct w83627ehf_data *data, u32 attr,
1545 int channel, long *val)
1546 {
1547 if (attr != hwmon_intrusion_alarm || channel != 0)
1548 return -EOPNOTSUPP; /* shouldn't happen */
1549
1550 *val = !!(data->caseopen & 0x10);
1551 return 0;
1552 }
1553
1554 static int
w83627ehf_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * val)1555 w83627ehf_read(struct device *dev, enum hwmon_sensor_types type,
1556 u32 attr, int channel, long *val)
1557 {
1558 struct w83627ehf_data *data = w83627ehf_update_device(dev->parent);
1559
1560 switch (type) {
1561 case hwmon_fan:
1562 return w83627ehf_do_read_fan(data, attr, channel, val);
1563
1564 case hwmon_in:
1565 return w83627ehf_do_read_in(data, attr, channel, val);
1566
1567 case hwmon_pwm:
1568 return w83627ehf_do_read_pwm(data, attr, channel, val);
1569
1570 case hwmon_temp:
1571 return w83627ehf_do_read_temp(data, attr, channel, val);
1572
1573 case hwmon_intrusion:
1574 return w83627ehf_do_read_intrusion(data, attr, channel, val);
1575
1576 default:
1577 break;
1578 }
1579
1580 return -EOPNOTSUPP;
1581 }
1582
1583 static int
w83627ehf_read_string(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,const char ** str)1584 w83627ehf_read_string(struct device *dev, enum hwmon_sensor_types type,
1585 u32 attr, int channel, const char **str)
1586 {
1587 struct w83627ehf_data *data = dev_get_drvdata(dev);
1588
1589 switch (type) {
1590 case hwmon_temp:
1591 if (attr == hwmon_temp_label) {
1592 *str = data->temp_label[data->temp_src[channel]];
1593 return 0;
1594 }
1595 break;
1596
1597 default:
1598 break;
1599 }
1600 /* Nothing else should be read as a string */
1601 return -EOPNOTSUPP;
1602 }
1603
1604 static int
w83627ehf_write(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long val)1605 w83627ehf_write(struct device *dev, enum hwmon_sensor_types type,
1606 u32 attr, int channel, long val)
1607 {
1608 struct w83627ehf_data *data = dev_get_drvdata(dev);
1609
1610 if (type == hwmon_in && attr == hwmon_in_min)
1611 return store_in_min(dev, data, channel, val);
1612 if (type == hwmon_in && attr == hwmon_in_max)
1613 return store_in_max(dev, data, channel, val);
1614
1615 if (type == hwmon_fan && attr == hwmon_fan_min)
1616 return store_fan_min(dev, data, channel, val);
1617
1618 if (type == hwmon_temp && attr == hwmon_temp_max)
1619 return store_temp_max(dev, data, channel, val);
1620 if (type == hwmon_temp && attr == hwmon_temp_max_hyst)
1621 return store_temp_max_hyst(dev, data, channel, val);
1622 if (type == hwmon_temp && attr == hwmon_temp_offset)
1623 return store_temp_offset(dev, data, channel, val);
1624
1625 if (type == hwmon_pwm && attr == hwmon_pwm_mode)
1626 return store_pwm_mode(dev, data, channel, val);
1627 if (type == hwmon_pwm && attr == hwmon_pwm_enable)
1628 return store_pwm_enable(dev, data, channel, val);
1629 if (type == hwmon_pwm && attr == hwmon_pwm_input)
1630 return store_pwm(dev, data, channel, val);
1631
1632 if (type == hwmon_intrusion && attr == hwmon_intrusion_alarm)
1633 return clear_caseopen(dev, data, channel, val);
1634
1635 return -EOPNOTSUPP;
1636 }
1637
1638 static const struct hwmon_ops w83627ehf_ops = {
1639 .is_visible = w83627ehf_is_visible,
1640 .read = w83627ehf_read,
1641 .read_string = w83627ehf_read_string,
1642 .write = w83627ehf_write,
1643 };
1644
1645 static const struct hwmon_channel_info *w83627ehf_info[] = {
1646 HWMON_CHANNEL_INFO(fan,
1647 HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1648 HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1649 HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1650 HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1651 HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN),
1652 HWMON_CHANNEL_INFO(in,
1653 HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1654 HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1655 HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1656 HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1657 HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1658 HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1659 HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1660 HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1661 HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1662 HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN),
1663 HWMON_CHANNEL_INFO(pwm,
1664 HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE,
1665 HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE,
1666 HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE,
1667 HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE),
1668 HWMON_CHANNEL_INFO(temp,
1669 HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1670 HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1671 HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1672 HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1673 HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1674 HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1675 HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1676 HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1677 HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1678 HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1679 HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1680 HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1681 HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1682 HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1683 HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1684 HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1685 HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1686 HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE),
1687 HWMON_CHANNEL_INFO(intrusion,
1688 HWMON_INTRUSION_ALARM),
1689 NULL
1690 };
1691
1692 static const struct hwmon_chip_info w83627ehf_chip_info = {
1693 .ops = &w83627ehf_ops,
1694 .info = w83627ehf_info,
1695 };
1696
w83627ehf_probe(struct platform_device * pdev)1697 static int w83627ehf_probe(struct platform_device *pdev)
1698 {
1699 struct device *dev = &pdev->dev;
1700 struct w83627ehf_sio_data *sio_data = dev_get_platdata(dev);
1701 struct w83627ehf_data *data;
1702 struct resource *res;
1703 u8 en_vrm10;
1704 int i, err = 0;
1705 struct device *hwmon_dev;
1706
1707 res = platform_get_resource(pdev, IORESOURCE_IO, 0);
1708 if (!request_region(res->start, IOREGION_LENGTH, DRVNAME)) {
1709 err = -EBUSY;
1710 dev_err(dev, "Failed to request region 0x%lx-0x%lx\n",
1711 (unsigned long)res->start,
1712 (unsigned long)res->start + IOREGION_LENGTH - 1);
1713 goto exit;
1714 }
1715
1716 data = devm_kzalloc(&pdev->dev, sizeof(struct w83627ehf_data),
1717 GFP_KERNEL);
1718 if (!data) {
1719 err = -ENOMEM;
1720 goto exit_release;
1721 }
1722
1723 data->addr = res->start;
1724 mutex_init(&data->lock);
1725 mutex_init(&data->update_lock);
1726 data->name = w83627ehf_device_names[sio_data->kind];
1727 data->bank = 0xff; /* Force initial bank selection */
1728 platform_set_drvdata(pdev, data);
1729
1730 /* 627EHG and 627EHF have 10 voltage inputs; 627DHG and 667HG have 9 */
1731 data->in_num = (sio_data->kind == w83627ehf) ? 10 : 9;
1732 /* 667HG has 3 pwms, and 627UHG has only 2 */
1733 switch (sio_data->kind) {
1734 default:
1735 data->pwm_num = 4;
1736 break;
1737 case w83667hg:
1738 case w83667hg_b:
1739 data->pwm_num = 3;
1740 break;
1741 case w83627uhg:
1742 data->pwm_num = 2;
1743 break;
1744 }
1745
1746 /* Default to 3 temperature inputs, code below will adjust as needed */
1747 data->have_temp = 0x07;
1748
1749 /* Deal with temperature register setup first. */
1750 if (sio_data->kind == w83667hg_b) {
1751 u8 reg;
1752
1753 w83627ehf_set_temp_reg_ehf(data, 4);
1754
1755 /*
1756 * Temperature sources are selected with bank 0, registers 0x49
1757 * and 0x4a.
1758 */
1759 reg = w83627ehf_read_value(data, 0x4a);
1760 data->temp_src[0] = reg >> 5;
1761 reg = w83627ehf_read_value(data, 0x49);
1762 data->temp_src[1] = reg & 0x07;
1763 data->temp_src[2] = (reg >> 4) & 0x07;
1764
1765 /*
1766 * W83667HG-B has another temperature register at 0x7e.
1767 * The temperature source is selected with register 0x7d.
1768 * Support it if the source differs from already reported
1769 * sources.
1770 */
1771 reg = w83627ehf_read_value(data, 0x7d);
1772 reg &= 0x07;
1773 if (reg != data->temp_src[0] && reg != data->temp_src[1]
1774 && reg != data->temp_src[2]) {
1775 data->temp_src[3] = reg;
1776 data->have_temp |= 1 << 3;
1777 }
1778
1779 /*
1780 * Chip supports either AUXTIN or VIN3. Try to find out which
1781 * one.
1782 */
1783 reg = w83627ehf_read_value(data, W83627EHF_REG_TEMP_CONFIG[2]);
1784 if (data->temp_src[2] == 2 && (reg & 0x01))
1785 data->have_temp &= ~(1 << 2);
1786
1787 if ((data->temp_src[2] == 2 && (data->have_temp & (1 << 2)))
1788 || (data->temp_src[3] == 2 && (data->have_temp & (1 << 3))))
1789 data->in6_skip = 1;
1790
1791 data->temp_label = w83667hg_b_temp_label;
1792 data->have_temp_offset = data->have_temp & 0x07;
1793 for (i = 0; i < 3; i++) {
1794 if (data->temp_src[i] > 2)
1795 data->have_temp_offset &= ~(1 << i);
1796 }
1797 } else if (sio_data->kind == w83627uhg) {
1798 u8 reg;
1799
1800 w83627ehf_set_temp_reg_ehf(data, 3);
1801
1802 /*
1803 * Temperature sources for temp2 and temp3 are selected with
1804 * bank 0, registers 0x49 and 0x4a.
1805 */
1806 data->temp_src[0] = 0; /* SYSTIN */
1807 reg = w83627ehf_read_value(data, 0x49) & 0x07;
1808 /* Adjust to have the same mapping as other source registers */
1809 if (reg == 0)
1810 data->temp_src[1] = 1;
1811 else if (reg >= 2 && reg <= 5)
1812 data->temp_src[1] = reg + 2;
1813 else /* should never happen */
1814 data->have_temp &= ~(1 << 1);
1815 reg = w83627ehf_read_value(data, 0x4a);
1816 data->temp_src[2] = reg >> 5;
1817
1818 /*
1819 * Skip temp3 if source is invalid or the same as temp1
1820 * or temp2.
1821 */
1822 if (data->temp_src[2] == 2 || data->temp_src[2] == 3 ||
1823 data->temp_src[2] == data->temp_src[0] ||
1824 ((data->have_temp & (1 << 1)) &&
1825 data->temp_src[2] == data->temp_src[1]))
1826 data->have_temp &= ~(1 << 2);
1827 else
1828 data->temp3_val_only = 1; /* No limit regs */
1829
1830 data->in6_skip = 1; /* No VIN3 */
1831
1832 data->temp_label = w83667hg_b_temp_label;
1833 data->have_temp_offset = data->have_temp & 0x03;
1834 for (i = 0; i < 3; i++) {
1835 if (data->temp_src[i] > 1)
1836 data->have_temp_offset &= ~(1 << i);
1837 }
1838 } else {
1839 w83627ehf_set_temp_reg_ehf(data, 3);
1840
1841 /* Temperature sources are fixed */
1842
1843 if (sio_data->kind == w83667hg) {
1844 u8 reg;
1845
1846 /*
1847 * Chip supports either AUXTIN or VIN3. Try to find
1848 * out which one.
1849 */
1850 reg = w83627ehf_read_value(data,
1851 W83627EHF_REG_TEMP_CONFIG[2]);
1852 if (reg & 0x01)
1853 data->have_temp &= ~(1 << 2);
1854 else
1855 data->in6_skip = 1;
1856 }
1857 data->have_temp_offset = data->have_temp & 0x07;
1858 }
1859
1860 if (sio_data->kind == w83667hg_b) {
1861 data->REG_FAN_MAX_OUTPUT =
1862 W83627EHF_REG_FAN_MAX_OUTPUT_W83667_B;
1863 data->REG_FAN_STEP_OUTPUT =
1864 W83627EHF_REG_FAN_STEP_OUTPUT_W83667_B;
1865 } else {
1866 data->REG_FAN_MAX_OUTPUT =
1867 W83627EHF_REG_FAN_MAX_OUTPUT_COMMON;
1868 data->REG_FAN_STEP_OUTPUT =
1869 W83627EHF_REG_FAN_STEP_OUTPUT_COMMON;
1870 }
1871
1872 /* Setup input voltage scaling factors */
1873 if (sio_data->kind == w83627uhg)
1874 data->scale_in = scale_in_w83627uhg;
1875 else
1876 data->scale_in = scale_in_common;
1877
1878 /* Initialize the chip */
1879 w83627ehf_init_device(data, sio_data->kind);
1880
1881 data->vrm = vid_which_vrm();
1882
1883 err = superio_enter(sio_data->sioreg);
1884 if (err)
1885 goto exit_release;
1886
1887 /* Read VID value */
1888 if (sio_data->kind == w83667hg || sio_data->kind == w83667hg_b) {
1889 /*
1890 * W83667HG has different pins for VID input and output, so
1891 * we can get the VID input values directly at logical device D
1892 * 0xe3.
1893 */
1894 superio_select(sio_data->sioreg, W83667HG_LD_VID);
1895 data->vid = superio_inb(sio_data->sioreg, 0xe3);
1896 data->have_vid = true;
1897 } else if (sio_data->kind != w83627uhg) {
1898 superio_select(sio_data->sioreg, W83627EHF_LD_HWM);
1899 if (superio_inb(sio_data->sioreg, SIO_REG_VID_CTRL) & 0x80) {
1900 /*
1901 * Set VID input sensibility if needed. In theory the
1902 * BIOS should have set it, but in practice it's not
1903 * always the case. We only do it for the W83627EHF/EHG
1904 * because the W83627DHG is more complex in this
1905 * respect.
1906 */
1907 if (sio_data->kind == w83627ehf) {
1908 en_vrm10 = superio_inb(sio_data->sioreg,
1909 SIO_REG_EN_VRM10);
1910 if ((en_vrm10 & 0x08) && data->vrm == 90) {
1911 dev_warn(dev,
1912 "Setting VID input voltage to TTL\n");
1913 superio_outb(sio_data->sioreg,
1914 SIO_REG_EN_VRM10,
1915 en_vrm10 & ~0x08);
1916 } else if (!(en_vrm10 & 0x08)
1917 && data->vrm == 100) {
1918 dev_warn(dev,
1919 "Setting VID input voltage to VRM10\n");
1920 superio_outb(sio_data->sioreg,
1921 SIO_REG_EN_VRM10,
1922 en_vrm10 | 0x08);
1923 }
1924 }
1925
1926 data->vid = superio_inb(sio_data->sioreg,
1927 SIO_REG_VID_DATA);
1928 if (sio_data->kind == w83627ehf) /* 6 VID pins only */
1929 data->vid &= 0x3f;
1930 data->have_vid = true;
1931 } else {
1932 dev_info(dev,
1933 "VID pins in output mode, CPU VID not available\n");
1934 }
1935 }
1936
1937 w83627ehf_check_fan_inputs(sio_data, data);
1938
1939 superio_exit(sio_data->sioreg);
1940
1941 /* Read fan clock dividers immediately */
1942 w83627ehf_update_fan_div(data);
1943
1944 /* Read pwm data to save original values */
1945 w83627ehf_update_pwm(data);
1946 for (i = 0; i < data->pwm_num; i++)
1947 data->pwm_enable_orig[i] = data->pwm_enable[i];
1948
1949 hwmon_dev = devm_hwmon_device_register_with_info(&pdev->dev,
1950 data->name,
1951 data,
1952 &w83627ehf_chip_info,
1953 w83627ehf_groups);
1954 if (IS_ERR(hwmon_dev)) {
1955 err = PTR_ERR(hwmon_dev);
1956 goto exit_release;
1957 }
1958
1959 return 0;
1960
1961 exit_release:
1962 release_region(res->start, IOREGION_LENGTH);
1963 exit:
1964 return err;
1965 }
1966
w83627ehf_remove(struct platform_device * pdev)1967 static int w83627ehf_remove(struct platform_device *pdev)
1968 {
1969 struct w83627ehf_data *data = platform_get_drvdata(pdev);
1970
1971 release_region(data->addr, IOREGION_LENGTH);
1972
1973 return 0;
1974 }
1975
1976 #ifdef CONFIG_PM
w83627ehf_suspend(struct device * dev)1977 static int w83627ehf_suspend(struct device *dev)
1978 {
1979 struct w83627ehf_data *data = w83627ehf_update_device(dev);
1980
1981 mutex_lock(&data->update_lock);
1982 data->vbat = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
1983 mutex_unlock(&data->update_lock);
1984
1985 return 0;
1986 }
1987
w83627ehf_resume(struct device * dev)1988 static int w83627ehf_resume(struct device *dev)
1989 {
1990 struct w83627ehf_data *data = dev_get_drvdata(dev);
1991 int i;
1992
1993 mutex_lock(&data->update_lock);
1994 data->bank = 0xff; /* Force initial bank selection */
1995
1996 /* Restore limits */
1997 for (i = 0; i < data->in_num; i++) {
1998 if ((i == 6) && data->in6_skip)
1999 continue;
2000
2001 w83627ehf_write_value(data, W83627EHF_REG_IN_MIN(i),
2002 data->in_min[i]);
2003 w83627ehf_write_value(data, W83627EHF_REG_IN_MAX(i),
2004 data->in_max[i]);
2005 }
2006
2007 for (i = 0; i < 5; i++) {
2008 if (!(data->has_fan_min & (1 << i)))
2009 continue;
2010
2011 w83627ehf_write_value(data, W83627EHF_REG_FAN_MIN[i],
2012 data->fan_min[i]);
2013 }
2014
2015 for (i = 0; i < NUM_REG_TEMP; i++) {
2016 if (!(data->have_temp & (1 << i)))
2017 continue;
2018
2019 if (data->reg_temp_over[i])
2020 w83627ehf_write_temp(data, data->reg_temp_over[i],
2021 data->temp_max[i]);
2022 if (data->reg_temp_hyst[i])
2023 w83627ehf_write_temp(data, data->reg_temp_hyst[i],
2024 data->temp_max_hyst[i]);
2025 if (i > 2)
2026 continue;
2027 if (data->have_temp_offset & (1 << i))
2028 w83627ehf_write_value(data,
2029 W83627EHF_REG_TEMP_OFFSET[i],
2030 data->temp_offset[i]);
2031 }
2032
2033 /* Restore other settings */
2034 w83627ehf_write_value(data, W83627EHF_REG_VBAT, data->vbat);
2035
2036 /* Force re-reading all values */
2037 data->valid = 0;
2038 mutex_unlock(&data->update_lock);
2039
2040 return 0;
2041 }
2042
2043 static const struct dev_pm_ops w83627ehf_dev_pm_ops = {
2044 .suspend = w83627ehf_suspend,
2045 .resume = w83627ehf_resume,
2046 .freeze = w83627ehf_suspend,
2047 .restore = w83627ehf_resume,
2048 };
2049
2050 #define W83627EHF_DEV_PM_OPS (&w83627ehf_dev_pm_ops)
2051 #else
2052 #define W83627EHF_DEV_PM_OPS NULL
2053 #endif /* CONFIG_PM */
2054
2055 static struct platform_driver w83627ehf_driver = {
2056 .driver = {
2057 .name = DRVNAME,
2058 .pm = W83627EHF_DEV_PM_OPS,
2059 },
2060 .probe = w83627ehf_probe,
2061 .remove = w83627ehf_remove,
2062 };
2063
2064 /* w83627ehf_find() looks for a '627 in the Super-I/O config space */
w83627ehf_find(int sioaddr,unsigned short * addr,struct w83627ehf_sio_data * sio_data)2065 static int __init w83627ehf_find(int sioaddr, unsigned short *addr,
2066 struct w83627ehf_sio_data *sio_data)
2067 {
2068 static const char sio_name_W83627EHF[] __initconst = "W83627EHF";
2069 static const char sio_name_W83627EHG[] __initconst = "W83627EHG";
2070 static const char sio_name_W83627DHG[] __initconst = "W83627DHG";
2071 static const char sio_name_W83627DHG_P[] __initconst = "W83627DHG-P";
2072 static const char sio_name_W83627UHG[] __initconst = "W83627UHG";
2073 static const char sio_name_W83667HG[] __initconst = "W83667HG";
2074 static const char sio_name_W83667HG_B[] __initconst = "W83667HG-B";
2075
2076 u16 val;
2077 const char *sio_name;
2078 int err;
2079
2080 err = superio_enter(sioaddr);
2081 if (err)
2082 return err;
2083
2084 if (force_id)
2085 val = force_id;
2086 else
2087 val = (superio_inb(sioaddr, SIO_REG_DEVID) << 8)
2088 | superio_inb(sioaddr, SIO_REG_DEVID + 1);
2089 switch (val & SIO_ID_MASK) {
2090 case SIO_W83627EHF_ID:
2091 sio_data->kind = w83627ehf;
2092 sio_name = sio_name_W83627EHF;
2093 break;
2094 case SIO_W83627EHG_ID:
2095 sio_data->kind = w83627ehf;
2096 sio_name = sio_name_W83627EHG;
2097 break;
2098 case SIO_W83627DHG_ID:
2099 sio_data->kind = w83627dhg;
2100 sio_name = sio_name_W83627DHG;
2101 break;
2102 case SIO_W83627DHG_P_ID:
2103 sio_data->kind = w83627dhg_p;
2104 sio_name = sio_name_W83627DHG_P;
2105 break;
2106 case SIO_W83627UHG_ID:
2107 sio_data->kind = w83627uhg;
2108 sio_name = sio_name_W83627UHG;
2109 break;
2110 case SIO_W83667HG_ID:
2111 sio_data->kind = w83667hg;
2112 sio_name = sio_name_W83667HG;
2113 break;
2114 case SIO_W83667HG_B_ID:
2115 sio_data->kind = w83667hg_b;
2116 sio_name = sio_name_W83667HG_B;
2117 break;
2118 default:
2119 if (val != 0xffff)
2120 pr_debug("unsupported chip ID: 0x%04x\n", val);
2121 superio_exit(sioaddr);
2122 return -ENODEV;
2123 }
2124
2125 /* We have a known chip, find the HWM I/O address */
2126 superio_select(sioaddr, W83627EHF_LD_HWM);
2127 val = (superio_inb(sioaddr, SIO_REG_ADDR) << 8)
2128 | superio_inb(sioaddr, SIO_REG_ADDR + 1);
2129 *addr = val & IOREGION_ALIGNMENT;
2130 if (*addr == 0) {
2131 pr_err("Refusing to enable a Super-I/O device with a base I/O port 0\n");
2132 superio_exit(sioaddr);
2133 return -ENODEV;
2134 }
2135
2136 /* Activate logical device if needed */
2137 val = superio_inb(sioaddr, SIO_REG_ENABLE);
2138 if (!(val & 0x01)) {
2139 pr_warn("Forcibly enabling Super-I/O. Sensor is probably unusable.\n");
2140 superio_outb(sioaddr, SIO_REG_ENABLE, val | 0x01);
2141 }
2142
2143 superio_exit(sioaddr);
2144 pr_info("Found %s chip at %#x\n", sio_name, *addr);
2145 sio_data->sioreg = sioaddr;
2146
2147 return 0;
2148 }
2149
2150 /*
2151 * when Super-I/O functions move to a separate file, the Super-I/O
2152 * bus will manage the lifetime of the device and this module will only keep
2153 * track of the w83627ehf driver. But since we platform_device_alloc(), we
2154 * must keep track of the device
2155 */
2156 static struct platform_device *pdev;
2157
sensors_w83627ehf_init(void)2158 static int __init sensors_w83627ehf_init(void)
2159 {
2160 int err;
2161 unsigned short address;
2162 struct resource res;
2163 struct w83627ehf_sio_data sio_data;
2164
2165 /*
2166 * initialize sio_data->kind and sio_data->sioreg.
2167 *
2168 * when Super-I/O functions move to a separate file, the Super-I/O
2169 * driver will probe 0x2e and 0x4e and auto-detect the presence of a
2170 * w83627ehf hardware monitor, and call probe()
2171 */
2172 if (w83627ehf_find(0x2e, &address, &sio_data) &&
2173 w83627ehf_find(0x4e, &address, &sio_data))
2174 return -ENODEV;
2175
2176 err = platform_driver_register(&w83627ehf_driver);
2177 if (err)
2178 goto exit;
2179
2180 pdev = platform_device_alloc(DRVNAME, address);
2181 if (!pdev) {
2182 err = -ENOMEM;
2183 pr_err("Device allocation failed\n");
2184 goto exit_unregister;
2185 }
2186
2187 err = platform_device_add_data(pdev, &sio_data,
2188 sizeof(struct w83627ehf_sio_data));
2189 if (err) {
2190 pr_err("Platform data allocation failed\n");
2191 goto exit_device_put;
2192 }
2193
2194 memset(&res, 0, sizeof(res));
2195 res.name = DRVNAME;
2196 res.start = address + IOREGION_OFFSET;
2197 res.end = address + IOREGION_OFFSET + IOREGION_LENGTH - 1;
2198 res.flags = IORESOURCE_IO;
2199
2200 err = acpi_check_resource_conflict(&res);
2201 if (err)
2202 goto exit_device_put;
2203
2204 err = platform_device_add_resources(pdev, &res, 1);
2205 if (err) {
2206 pr_err("Device resource addition failed (%d)\n", err);
2207 goto exit_device_put;
2208 }
2209
2210 /* platform_device_add calls probe() */
2211 err = platform_device_add(pdev);
2212 if (err) {
2213 pr_err("Device addition failed (%d)\n", err);
2214 goto exit_device_put;
2215 }
2216
2217 return 0;
2218
2219 exit_device_put:
2220 platform_device_put(pdev);
2221 exit_unregister:
2222 platform_driver_unregister(&w83627ehf_driver);
2223 exit:
2224 return err;
2225 }
2226
sensors_w83627ehf_exit(void)2227 static void __exit sensors_w83627ehf_exit(void)
2228 {
2229 platform_device_unregister(pdev);
2230 platform_driver_unregister(&w83627ehf_driver);
2231 }
2232
2233 MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
2234 MODULE_DESCRIPTION("W83627EHF driver");
2235 MODULE_LICENSE("GPL");
2236
2237 module_init(sensors_w83627ehf_init);
2238 module_exit(sensors_w83627ehf_exit);
2239