• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  w83627ehf - Driver for the hardware monitoring functionality of
4  *		the Winbond W83627EHF Super-I/O chip
5  *  Copyright (C) 2005-2012  Jean Delvare <jdelvare@suse.de>
6  *  Copyright (C) 2006  Yuan Mu (Winbond),
7  *			Rudolf Marek <r.marek@assembler.cz>
8  *			David Hubbard <david.c.hubbard@gmail.com>
9  *			Daniel J Blueman <daniel.blueman@gmail.com>
10  *  Copyright (C) 2010  Sheng-Yuan Huang (Nuvoton) (PS00)
11  *
12  *  Shamelessly ripped from the w83627hf driver
13  *  Copyright (C) 2003  Mark Studebaker
14  *
15  *  Thanks to Leon Moonen, Steve Cliffe and Grant Coady for their help
16  *  in testing and debugging this driver.
17  *
18  *  This driver also supports the W83627EHG, which is the lead-free
19  *  version of the W83627EHF.
20  *
21  *  Supports the following chips:
22  *
23  *  Chip        #vin    #fan    #pwm    #temp  chip IDs       man ID
24  *  w83627ehf   10      5       4       3      0x8850 0x88    0x5ca3
25  *					       0x8860 0xa1
26  *  w83627dhg    9      5       4       3      0xa020 0xc1    0x5ca3
27  *  w83627dhg-p  9      5       4       3      0xb070 0xc1    0x5ca3
28  *  w83627uhg    8      2       2       3      0xa230 0xc1    0x5ca3
29  *  w83667hg     9      5       3       3      0xa510 0xc1    0x5ca3
30  *  w83667hg-b   9      5       3       4      0xb350 0xc1    0x5ca3
31  */
32 
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/jiffies.h>
39 #include <linux/platform_device.h>
40 #include <linux/hwmon.h>
41 #include <linux/hwmon-sysfs.h>
42 #include <linux/hwmon-vid.h>
43 #include <linux/err.h>
44 #include <linux/mutex.h>
45 #include <linux/acpi.h>
46 #include <linux/io.h>
47 #include "lm75.h"
48 
49 enum kinds {
50 	w83627ehf, w83627dhg, w83627dhg_p, w83627uhg,
51 	w83667hg, w83667hg_b,
52 };
53 
54 /* used to set data->name = w83627ehf_device_names[data->sio_kind] */
55 static const char * const w83627ehf_device_names[] = {
56 	"w83627ehf",
57 	"w83627dhg",
58 	"w83627dhg",
59 	"w83627uhg",
60 	"w83667hg",
61 	"w83667hg",
62 };
63 
64 static unsigned short force_id;
65 module_param(force_id, ushort, 0);
66 MODULE_PARM_DESC(force_id, "Override the detected device ID");
67 
68 #define DRVNAME "w83627ehf"
69 
70 /*
71  * Super-I/O constants and functions
72  */
73 
74 #define W83627EHF_LD_HWM	0x0b
75 #define W83667HG_LD_VID		0x0d
76 
77 #define SIO_REG_LDSEL		0x07	/* Logical device select */
78 #define SIO_REG_DEVID		0x20	/* Device ID (2 bytes) */
79 #define SIO_REG_EN_VRM10	0x2C	/* GPIO3, GPIO4 selection */
80 #define SIO_REG_ENABLE		0x30	/* Logical device enable */
81 #define SIO_REG_ADDR		0x60	/* Logical device address (2 bytes) */
82 #define SIO_REG_VID_CTRL	0xF0	/* VID control */
83 #define SIO_REG_VID_DATA	0xF1	/* VID data */
84 
85 #define SIO_W83627EHF_ID	0x8850
86 #define SIO_W83627EHG_ID	0x8860
87 #define SIO_W83627DHG_ID	0xa020
88 #define SIO_W83627DHG_P_ID	0xb070
89 #define SIO_W83627UHG_ID	0xa230
90 #define SIO_W83667HG_ID		0xa510
91 #define SIO_W83667HG_B_ID	0xb350
92 #define SIO_ID_MASK		0xFFF0
93 
94 static inline void
superio_outb(int ioreg,int reg,int val)95 superio_outb(int ioreg, int reg, int val)
96 {
97 	outb(reg, ioreg);
98 	outb(val, ioreg + 1);
99 }
100 
101 static inline int
superio_inb(int ioreg,int reg)102 superio_inb(int ioreg, int reg)
103 {
104 	outb(reg, ioreg);
105 	return inb(ioreg + 1);
106 }
107 
108 static inline void
superio_select(int ioreg,int ld)109 superio_select(int ioreg, int ld)
110 {
111 	outb(SIO_REG_LDSEL, ioreg);
112 	outb(ld, ioreg + 1);
113 }
114 
115 static inline int
superio_enter(int ioreg)116 superio_enter(int ioreg)
117 {
118 	if (!request_muxed_region(ioreg, 2, DRVNAME))
119 		return -EBUSY;
120 
121 	outb(0x87, ioreg);
122 	outb(0x87, ioreg);
123 
124 	return 0;
125 }
126 
127 static inline void
superio_exit(int ioreg)128 superio_exit(int ioreg)
129 {
130 	outb(0xaa, ioreg);
131 	outb(0x02, ioreg);
132 	outb(0x02, ioreg + 1);
133 	release_region(ioreg, 2);
134 }
135 
136 /*
137  * ISA constants
138  */
139 
140 #define IOREGION_ALIGNMENT	(~7)
141 #define IOREGION_OFFSET		5
142 #define IOREGION_LENGTH		2
143 #define ADDR_REG_OFFSET		0
144 #define DATA_REG_OFFSET		1
145 
146 #define W83627EHF_REG_BANK		0x4E
147 #define W83627EHF_REG_CONFIG		0x40
148 
149 /*
150  * Not currently used:
151  * REG_MAN_ID has the value 0x5ca3 for all supported chips.
152  * REG_CHIP_ID == 0x88/0xa1/0xc1 depending on chip model.
153  * REG_MAN_ID is at port 0x4f
154  * REG_CHIP_ID is at port 0x58
155  */
156 
157 static const u16 W83627EHF_REG_FAN[] = { 0x28, 0x29, 0x2a, 0x3f, 0x553 };
158 static const u16 W83627EHF_REG_FAN_MIN[] = { 0x3b, 0x3c, 0x3d, 0x3e, 0x55c };
159 
160 /* The W83627EHF registers for nr=7,8,9 are in bank 5 */
161 #define W83627EHF_REG_IN_MAX(nr)	((nr < 7) ? (0x2b + (nr) * 2) : \
162 					 (0x554 + (((nr) - 7) * 2)))
163 #define W83627EHF_REG_IN_MIN(nr)	((nr < 7) ? (0x2c + (nr) * 2) : \
164 					 (0x555 + (((nr) - 7) * 2)))
165 #define W83627EHF_REG_IN(nr)		((nr < 7) ? (0x20 + (nr)) : \
166 					 (0x550 + (nr) - 7))
167 
168 static const u16 W83627EHF_REG_TEMP[] = { 0x27, 0x150, 0x250, 0x7e };
169 static const u16 W83627EHF_REG_TEMP_HYST[] = { 0x3a, 0x153, 0x253, 0 };
170 static const u16 W83627EHF_REG_TEMP_OVER[] = { 0x39, 0x155, 0x255, 0 };
171 static const u16 W83627EHF_REG_TEMP_CONFIG[] = { 0, 0x152, 0x252, 0 };
172 
173 /* Fan clock dividers are spread over the following five registers */
174 #define W83627EHF_REG_FANDIV1		0x47
175 #define W83627EHF_REG_FANDIV2		0x4B
176 #define W83627EHF_REG_VBAT		0x5D
177 #define W83627EHF_REG_DIODE		0x59
178 #define W83627EHF_REG_SMI_OVT		0x4C
179 
180 #define W83627EHF_REG_ALARM1		0x459
181 #define W83627EHF_REG_ALARM2		0x45A
182 #define W83627EHF_REG_ALARM3		0x45B
183 
184 #define W83627EHF_REG_CASEOPEN_DET	0x42 /* SMI STATUS #2 */
185 #define W83627EHF_REG_CASEOPEN_CLR	0x46 /* SMI MASK #3 */
186 
187 /* SmartFan registers */
188 #define W83627EHF_REG_FAN_STEPUP_TIME 0x0f
189 #define W83627EHF_REG_FAN_STEPDOWN_TIME 0x0e
190 
191 /* DC or PWM output fan configuration */
192 static const u8 W83627EHF_REG_PWM_ENABLE[] = {
193 	0x04,			/* SYS FAN0 output mode and PWM mode */
194 	0x04,			/* CPU FAN0 output mode and PWM mode */
195 	0x12,			/* AUX FAN mode */
196 	0x62,			/* CPU FAN1 mode */
197 };
198 
199 static const u8 W83627EHF_PWM_MODE_SHIFT[] = { 0, 1, 0, 6 };
200 static const u8 W83627EHF_PWM_ENABLE_SHIFT[] = { 2, 4, 1, 4 };
201 
202 /* FAN Duty Cycle, be used to control */
203 static const u16 W83627EHF_REG_PWM[] = { 0x01, 0x03, 0x11, 0x61 };
204 static const u16 W83627EHF_REG_TARGET[] = { 0x05, 0x06, 0x13, 0x63 };
205 static const u8 W83627EHF_REG_TOLERANCE[] = { 0x07, 0x07, 0x14, 0x62 };
206 
207 /* Advanced Fan control, some values are common for all fans */
208 static const u16 W83627EHF_REG_FAN_START_OUTPUT[] = { 0x0a, 0x0b, 0x16, 0x65 };
209 static const u16 W83627EHF_REG_FAN_STOP_OUTPUT[] = { 0x08, 0x09, 0x15, 0x64 };
210 static const u16 W83627EHF_REG_FAN_STOP_TIME[] = { 0x0c, 0x0d, 0x17, 0x66 };
211 
212 static const u16 W83627EHF_REG_FAN_MAX_OUTPUT_COMMON[]
213 						= { 0xff, 0x67, 0xff, 0x69 };
214 static const u16 W83627EHF_REG_FAN_STEP_OUTPUT_COMMON[]
215 						= { 0xff, 0x68, 0xff, 0x6a };
216 
217 static const u16 W83627EHF_REG_FAN_MAX_OUTPUT_W83667_B[] = { 0x67, 0x69, 0x6b };
218 static const u16 W83627EHF_REG_FAN_STEP_OUTPUT_W83667_B[]
219 						= { 0x68, 0x6a, 0x6c };
220 
221 static const u16 W83627EHF_REG_TEMP_OFFSET[] = { 0x454, 0x455, 0x456 };
222 
223 static const char *const w83667hg_b_temp_label[] = {
224 	"SYSTIN",
225 	"CPUTIN",
226 	"AUXTIN",
227 	"AMDTSI",
228 	"PECI Agent 1",
229 	"PECI Agent 2",
230 	"PECI Agent 3",
231 	"PECI Agent 4"
232 };
233 
234 #define NUM_REG_TEMP	ARRAY_SIZE(W83627EHF_REG_TEMP)
235 
is_word_sized(u16 reg)236 static int is_word_sized(u16 reg)
237 {
238 	return ((((reg & 0xff00) == 0x100
239 	      || (reg & 0xff00) == 0x200)
240 	     && ((reg & 0x00ff) == 0x50
241 	      || (reg & 0x00ff) == 0x53
242 	      || (reg & 0x00ff) == 0x55))
243 	     || (reg & 0xfff0) == 0x630
244 	     || reg == 0x640 || reg == 0x642
245 	     || ((reg & 0xfff0) == 0x650
246 		 && (reg & 0x000f) >= 0x06)
247 	     || reg == 0x73 || reg == 0x75 || reg == 0x77
248 		);
249 }
250 
251 /*
252  * Conversions
253  */
254 
255 /* 1 is PWM mode, output in ms */
step_time_from_reg(u8 reg,u8 mode)256 static inline unsigned int step_time_from_reg(u8 reg, u8 mode)
257 {
258 	return mode ? 100 * reg : 400 * reg;
259 }
260 
step_time_to_reg(unsigned int msec,u8 mode)261 static inline u8 step_time_to_reg(unsigned int msec, u8 mode)
262 {
263 	return clamp_val((mode ? (msec + 50) / 100 : (msec + 200) / 400),
264 			 1, 255);
265 }
266 
fan_from_reg8(u16 reg,unsigned int divreg)267 static unsigned int fan_from_reg8(u16 reg, unsigned int divreg)
268 {
269 	if (reg == 0 || reg == 255)
270 		return 0;
271 	return 1350000U / (reg << divreg);
272 }
273 
274 static inline unsigned int
div_from_reg(u8 reg)275 div_from_reg(u8 reg)
276 {
277 	return 1 << reg;
278 }
279 
280 /*
281  * Some of the voltage inputs have internal scaling, the tables below
282  * contain 8 (the ADC LSB in mV) * scaling factor * 100
283  */
284 static const u16 scale_in_common[10] = {
285 	800, 800, 1600, 1600, 800, 800, 800, 1600, 1600, 800
286 };
287 static const u16 scale_in_w83627uhg[9] = {
288 	800, 800, 3328, 3424, 800, 800, 0, 3328, 3400
289 };
290 
in_from_reg(u8 reg,u8 nr,const u16 * scale_in)291 static inline long in_from_reg(u8 reg, u8 nr, const u16 *scale_in)
292 {
293 	return DIV_ROUND_CLOSEST(reg * scale_in[nr], 100);
294 }
295 
in_to_reg(u32 val,u8 nr,const u16 * scale_in)296 static inline u8 in_to_reg(u32 val, u8 nr, const u16 *scale_in)
297 {
298 	return clamp_val(DIV_ROUND_CLOSEST(val * 100, scale_in[nr]), 0, 255);
299 }
300 
301 /*
302  * Data structures and manipulation thereof
303  */
304 
305 struct w83627ehf_data {
306 	int addr;	/* IO base of hw monitor block */
307 	const char *name;
308 
309 	struct mutex lock;
310 
311 	u16 reg_temp[NUM_REG_TEMP];
312 	u16 reg_temp_over[NUM_REG_TEMP];
313 	u16 reg_temp_hyst[NUM_REG_TEMP];
314 	u16 reg_temp_config[NUM_REG_TEMP];
315 	u8 temp_src[NUM_REG_TEMP];
316 	const char * const *temp_label;
317 
318 	const u16 *REG_FAN_MAX_OUTPUT;
319 	const u16 *REG_FAN_STEP_OUTPUT;
320 	const u16 *scale_in;
321 
322 	struct mutex update_lock;
323 	char valid;		/* !=0 if following fields are valid */
324 	unsigned long last_updated;	/* In jiffies */
325 
326 	/* Register values */
327 	u8 bank;		/* current register bank */
328 	u8 in_num;		/* number of in inputs we have */
329 	u8 in[10];		/* Register value */
330 	u8 in_max[10];		/* Register value */
331 	u8 in_min[10];		/* Register value */
332 	unsigned int rpm[5];
333 	u16 fan_min[5];
334 	u8 fan_div[5];
335 	u8 has_fan;		/* some fan inputs can be disabled */
336 	u8 has_fan_min;		/* some fans don't have min register */
337 	u8 temp_type[3];
338 	s8 temp_offset[3];
339 	s16 temp[9];
340 	s16 temp_max[9];
341 	s16 temp_max_hyst[9];
342 	u32 alarms;
343 	u8 caseopen;
344 
345 	u8 pwm_mode[4]; /* 0->DC variable voltage, 1->PWM variable duty cycle */
346 	u8 pwm_enable[4]; /* 1->manual
347 			   * 2->thermal cruise mode (also called SmartFan I)
348 			   * 3->fan speed cruise mode
349 			   * 4->variable thermal cruise (also called
350 			   * SmartFan III)
351 			   * 5->enhanced variable thermal cruise (also called
352 			   * SmartFan IV)
353 			   */
354 	u8 pwm_enable_orig[4];	/* original value of pwm_enable */
355 	u8 pwm_num;		/* number of pwm */
356 	u8 pwm[4];
357 	u8 target_temp[4];
358 	u8 tolerance[4];
359 
360 	u8 fan_start_output[4]; /* minimum fan speed when spinning up */
361 	u8 fan_stop_output[4]; /* minimum fan speed when spinning down */
362 	u8 fan_stop_time[4]; /* time at minimum before disabling fan */
363 	u8 fan_max_output[4]; /* maximum fan speed */
364 	u8 fan_step_output[4]; /* rate of change output value */
365 
366 	u8 vid;
367 	u8 vrm;
368 
369 	u16 have_temp;
370 	u16 have_temp_offset;
371 	u8 in6_skip:1;
372 	u8 temp3_val_only:1;
373 	u8 have_vid:1;
374 
375 #ifdef CONFIG_PM
376 	/* Remember extra register values over suspend/resume */
377 	u8 vbat;
378 	u8 fandiv1;
379 	u8 fandiv2;
380 #endif
381 };
382 
383 struct w83627ehf_sio_data {
384 	int sioreg;
385 	enum kinds kind;
386 };
387 
388 /*
389  * On older chips, only registers 0x50-0x5f are banked.
390  * On more recent chips, all registers are banked.
391  * Assume that is the case and set the bank number for each access.
392  * Cache the bank number so it only needs to be set if it changes.
393  */
w83627ehf_set_bank(struct w83627ehf_data * data,u16 reg)394 static inline void w83627ehf_set_bank(struct w83627ehf_data *data, u16 reg)
395 {
396 	u8 bank = reg >> 8;
397 	if (data->bank != bank) {
398 		outb_p(W83627EHF_REG_BANK, data->addr + ADDR_REG_OFFSET);
399 		outb_p(bank, data->addr + DATA_REG_OFFSET);
400 		data->bank = bank;
401 	}
402 }
403 
w83627ehf_read_value(struct w83627ehf_data * data,u16 reg)404 static u16 w83627ehf_read_value(struct w83627ehf_data *data, u16 reg)
405 {
406 	int res, word_sized = is_word_sized(reg);
407 
408 	mutex_lock(&data->lock);
409 
410 	w83627ehf_set_bank(data, reg);
411 	outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
412 	res = inb_p(data->addr + DATA_REG_OFFSET);
413 	if (word_sized) {
414 		outb_p((reg & 0xff) + 1,
415 		       data->addr + ADDR_REG_OFFSET);
416 		res = (res << 8) + inb_p(data->addr + DATA_REG_OFFSET);
417 	}
418 
419 	mutex_unlock(&data->lock);
420 	return res;
421 }
422 
w83627ehf_write_value(struct w83627ehf_data * data,u16 reg,u16 value)423 static int w83627ehf_write_value(struct w83627ehf_data *data, u16 reg,
424 				 u16 value)
425 {
426 	int word_sized = is_word_sized(reg);
427 
428 	mutex_lock(&data->lock);
429 
430 	w83627ehf_set_bank(data, reg);
431 	outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
432 	if (word_sized) {
433 		outb_p(value >> 8, data->addr + DATA_REG_OFFSET);
434 		outb_p((reg & 0xff) + 1,
435 		       data->addr + ADDR_REG_OFFSET);
436 	}
437 	outb_p(value & 0xff, data->addr + DATA_REG_OFFSET);
438 
439 	mutex_unlock(&data->lock);
440 	return 0;
441 }
442 
443 /* We left-align 8-bit temperature values to make the code simpler */
w83627ehf_read_temp(struct w83627ehf_data * data,u16 reg)444 static u16 w83627ehf_read_temp(struct w83627ehf_data *data, u16 reg)
445 {
446 	u16 res;
447 
448 	res = w83627ehf_read_value(data, reg);
449 	if (!is_word_sized(reg))
450 		res <<= 8;
451 
452 	return res;
453 }
454 
w83627ehf_write_temp(struct w83627ehf_data * data,u16 reg,u16 value)455 static int w83627ehf_write_temp(struct w83627ehf_data *data, u16 reg,
456 				       u16 value)
457 {
458 	if (!is_word_sized(reg))
459 		value >>= 8;
460 	return w83627ehf_write_value(data, reg, value);
461 }
462 
463 /* This function assumes that the caller holds data->update_lock */
w83627ehf_write_fan_div(struct w83627ehf_data * data,int nr)464 static void w83627ehf_write_fan_div(struct w83627ehf_data *data, int nr)
465 {
466 	u8 reg;
467 
468 	switch (nr) {
469 	case 0:
470 		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0xcf)
471 		    | ((data->fan_div[0] & 0x03) << 4);
472 		/* fan5 input control bit is write only, compute the value */
473 		reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
474 		w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
475 		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xdf)
476 		    | ((data->fan_div[0] & 0x04) << 3);
477 		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
478 		break;
479 	case 1:
480 		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0x3f)
481 		    | ((data->fan_div[1] & 0x03) << 6);
482 		/* fan5 input control bit is write only, compute the value */
483 		reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
484 		w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
485 		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xbf)
486 		    | ((data->fan_div[1] & 0x04) << 4);
487 		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
488 		break;
489 	case 2:
490 		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV2) & 0x3f)
491 		    | ((data->fan_div[2] & 0x03) << 6);
492 		w83627ehf_write_value(data, W83627EHF_REG_FANDIV2, reg);
493 		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0x7f)
494 		    | ((data->fan_div[2] & 0x04) << 5);
495 		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
496 		break;
497 	case 3:
498 		reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0xfc)
499 		    | (data->fan_div[3] & 0x03);
500 		w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
501 		reg = (w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT) & 0x7f)
502 		    | ((data->fan_div[3] & 0x04) << 5);
503 		w83627ehf_write_value(data, W83627EHF_REG_SMI_OVT, reg);
504 		break;
505 	case 4:
506 		reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0x73)
507 		    | ((data->fan_div[4] & 0x03) << 2)
508 		    | ((data->fan_div[4] & 0x04) << 5);
509 		w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
510 		break;
511 	}
512 }
513 
w83627ehf_update_fan_div(struct w83627ehf_data * data)514 static void w83627ehf_update_fan_div(struct w83627ehf_data *data)
515 {
516 	int i;
517 
518 	i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
519 	data->fan_div[0] = (i >> 4) & 0x03;
520 	data->fan_div[1] = (i >> 6) & 0x03;
521 	i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV2);
522 	data->fan_div[2] = (i >> 6) & 0x03;
523 	i = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
524 	data->fan_div[0] |= (i >> 3) & 0x04;
525 	data->fan_div[1] |= (i >> 4) & 0x04;
526 	data->fan_div[2] |= (i >> 5) & 0x04;
527 	if (data->has_fan & ((1 << 3) | (1 << 4))) {
528 		i = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
529 		data->fan_div[3] = i & 0x03;
530 		data->fan_div[4] = ((i >> 2) & 0x03)
531 				 | ((i >> 5) & 0x04);
532 	}
533 	if (data->has_fan & (1 << 3)) {
534 		i = w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT);
535 		data->fan_div[3] |= (i >> 5) & 0x04;
536 	}
537 }
538 
w83627ehf_update_pwm(struct w83627ehf_data * data)539 static void w83627ehf_update_pwm(struct w83627ehf_data *data)
540 {
541 	int i;
542 	int pwmcfg = 0, tolerance = 0; /* shut up the compiler */
543 
544 	for (i = 0; i < data->pwm_num; i++) {
545 		if (!(data->has_fan & (1 << i)))
546 			continue;
547 
548 		/* pwmcfg, tolerance mapped for i=0, i=1 to same reg */
549 		if (i != 1) {
550 			pwmcfg = w83627ehf_read_value(data,
551 					W83627EHF_REG_PWM_ENABLE[i]);
552 			tolerance = w83627ehf_read_value(data,
553 					W83627EHF_REG_TOLERANCE[i]);
554 		}
555 		data->pwm_mode[i] =
556 			((pwmcfg >> W83627EHF_PWM_MODE_SHIFT[i]) & 1) ? 0 : 1;
557 		data->pwm_enable[i] = ((pwmcfg >> W83627EHF_PWM_ENABLE_SHIFT[i])
558 				       & 3) + 1;
559 		data->pwm[i] = w83627ehf_read_value(data, W83627EHF_REG_PWM[i]);
560 
561 		data->tolerance[i] = (tolerance >> (i == 1 ? 4 : 0)) & 0x0f;
562 	}
563 }
564 
w83627ehf_update_device(struct device * dev)565 static struct w83627ehf_data *w83627ehf_update_device(struct device *dev)
566 {
567 	struct w83627ehf_data *data = dev_get_drvdata(dev);
568 	int i;
569 
570 	mutex_lock(&data->update_lock);
571 
572 	if (time_after(jiffies, data->last_updated + HZ + HZ/2)
573 	 || !data->valid) {
574 		/* Fan clock dividers */
575 		w83627ehf_update_fan_div(data);
576 
577 		/* Measured voltages and limits */
578 		for (i = 0; i < data->in_num; i++) {
579 			if ((i == 6) && data->in6_skip)
580 				continue;
581 
582 			data->in[i] = w83627ehf_read_value(data,
583 				      W83627EHF_REG_IN(i));
584 			data->in_min[i] = w83627ehf_read_value(data,
585 					  W83627EHF_REG_IN_MIN(i));
586 			data->in_max[i] = w83627ehf_read_value(data,
587 					  W83627EHF_REG_IN_MAX(i));
588 		}
589 
590 		/* Measured fan speeds and limits */
591 		for (i = 0; i < 5; i++) {
592 			u16 reg;
593 
594 			if (!(data->has_fan & (1 << i)))
595 				continue;
596 
597 			reg = w83627ehf_read_value(data, W83627EHF_REG_FAN[i]);
598 			data->rpm[i] = fan_from_reg8(reg, data->fan_div[i]);
599 
600 			if (data->has_fan_min & (1 << i))
601 				data->fan_min[i] = w83627ehf_read_value(data,
602 					   W83627EHF_REG_FAN_MIN[i]);
603 
604 			/*
605 			 * If we failed to measure the fan speed and clock
606 			 * divider can be increased, let's try that for next
607 			 * time
608 			 */
609 			if (reg >= 0xff && data->fan_div[i] < 0x07) {
610 				dev_dbg(dev,
611 					"Increasing fan%d clock divider from %u to %u\n",
612 					i + 1, div_from_reg(data->fan_div[i]),
613 					div_from_reg(data->fan_div[i] + 1));
614 				data->fan_div[i]++;
615 				w83627ehf_write_fan_div(data, i);
616 				/* Preserve min limit if possible */
617 				if ((data->has_fan_min & (1 << i))
618 				 && data->fan_min[i] >= 2
619 				 && data->fan_min[i] != 255)
620 					w83627ehf_write_value(data,
621 						W83627EHF_REG_FAN_MIN[i],
622 						(data->fan_min[i] /= 2));
623 			}
624 		}
625 
626 		w83627ehf_update_pwm(data);
627 
628 		for (i = 0; i < data->pwm_num; i++) {
629 			if (!(data->has_fan & (1 << i)))
630 				continue;
631 
632 			data->fan_start_output[i] =
633 			  w83627ehf_read_value(data,
634 					     W83627EHF_REG_FAN_START_OUTPUT[i]);
635 			data->fan_stop_output[i] =
636 			  w83627ehf_read_value(data,
637 					     W83627EHF_REG_FAN_STOP_OUTPUT[i]);
638 			data->fan_stop_time[i] =
639 			  w83627ehf_read_value(data,
640 					       W83627EHF_REG_FAN_STOP_TIME[i]);
641 
642 			if (data->REG_FAN_MAX_OUTPUT &&
643 			    data->REG_FAN_MAX_OUTPUT[i] != 0xff)
644 				data->fan_max_output[i] =
645 				  w83627ehf_read_value(data,
646 						data->REG_FAN_MAX_OUTPUT[i]);
647 
648 			if (data->REG_FAN_STEP_OUTPUT &&
649 			    data->REG_FAN_STEP_OUTPUT[i] != 0xff)
650 				data->fan_step_output[i] =
651 				  w83627ehf_read_value(data,
652 						data->REG_FAN_STEP_OUTPUT[i]);
653 
654 			data->target_temp[i] =
655 				w83627ehf_read_value(data,
656 					W83627EHF_REG_TARGET[i]) &
657 					(data->pwm_mode[i] == 1 ? 0x7f : 0xff);
658 		}
659 
660 		/* Measured temperatures and limits */
661 		for (i = 0; i < NUM_REG_TEMP; i++) {
662 			if (!(data->have_temp & (1 << i)))
663 				continue;
664 			data->temp[i] = w83627ehf_read_temp(data,
665 						data->reg_temp[i]);
666 			if (data->reg_temp_over[i])
667 				data->temp_max[i]
668 				  = w83627ehf_read_temp(data,
669 						data->reg_temp_over[i]);
670 			if (data->reg_temp_hyst[i])
671 				data->temp_max_hyst[i]
672 				  = w83627ehf_read_temp(data,
673 						data->reg_temp_hyst[i]);
674 			if (i > 2)
675 				continue;
676 			if (data->have_temp_offset & (1 << i))
677 				data->temp_offset[i]
678 				  = w83627ehf_read_value(data,
679 						W83627EHF_REG_TEMP_OFFSET[i]);
680 		}
681 
682 		data->alarms = w83627ehf_read_value(data,
683 					W83627EHF_REG_ALARM1) |
684 			       (w83627ehf_read_value(data,
685 					W83627EHF_REG_ALARM2) << 8) |
686 			       (w83627ehf_read_value(data,
687 					W83627EHF_REG_ALARM3) << 16);
688 
689 		data->caseopen = w83627ehf_read_value(data,
690 						W83627EHF_REG_CASEOPEN_DET);
691 
692 		data->last_updated = jiffies;
693 		data->valid = 1;
694 	}
695 
696 	mutex_unlock(&data->update_lock);
697 	return data;
698 }
699 
700 #define store_in_reg(REG, reg) \
701 static int \
702 store_in_##reg(struct device *dev, struct w83627ehf_data *data, int channel, \
703 	       long val) \
704 { \
705 	if (val < 0) \
706 		return -EINVAL; \
707 	mutex_lock(&data->update_lock); \
708 	data->in_##reg[channel] = in_to_reg(val, channel, data->scale_in); \
709 	w83627ehf_write_value(data, W83627EHF_REG_IN_##REG(channel), \
710 			      data->in_##reg[channel]); \
711 	mutex_unlock(&data->update_lock); \
712 	return 0; \
713 }
714 
store_in_reg(MIN,min)715 store_in_reg(MIN, min)
716 store_in_reg(MAX, max)
717 
718 static int
719 store_fan_min(struct device *dev, struct w83627ehf_data *data, int channel,
720 	      long val)
721 {
722 	unsigned int reg;
723 	u8 new_div;
724 
725 	if (val < 0)
726 		return -EINVAL;
727 
728 	mutex_lock(&data->update_lock);
729 	if (!val) {
730 		/* No min limit, alarm disabled */
731 		data->fan_min[channel] = 255;
732 		new_div = data->fan_div[channel]; /* No change */
733 		dev_info(dev, "fan%u low limit and alarm disabled\n",
734 			 channel + 1);
735 	} else if ((reg = 1350000U / val) >= 128 * 255) {
736 		/*
737 		 * Speed below this value cannot possibly be represented,
738 		 * even with the highest divider (128)
739 		 */
740 		data->fan_min[channel] = 254;
741 		new_div = 7; /* 128 == (1 << 7) */
742 		dev_warn(dev,
743 			 "fan%u low limit %lu below minimum %u, set to minimum\n",
744 			 channel + 1, val, fan_from_reg8(254, 7));
745 	} else if (!reg) {
746 		/*
747 		 * Speed above this value cannot possibly be represented,
748 		 * even with the lowest divider (1)
749 		 */
750 		data->fan_min[channel] = 1;
751 		new_div = 0; /* 1 == (1 << 0) */
752 		dev_warn(dev,
753 			 "fan%u low limit %lu above maximum %u, set to maximum\n",
754 			 channel + 1, val, fan_from_reg8(1, 0));
755 	} else {
756 		/*
757 		 * Automatically pick the best divider, i.e. the one such
758 		 * that the min limit will correspond to a register value
759 		 * in the 96..192 range
760 		 */
761 		new_div = 0;
762 		while (reg > 192 && new_div < 7) {
763 			reg >>= 1;
764 			new_div++;
765 		}
766 		data->fan_min[channel] = reg;
767 	}
768 
769 	/*
770 	 * Write both the fan clock divider (if it changed) and the new
771 	 * fan min (unconditionally)
772 	 */
773 	if (new_div != data->fan_div[channel]) {
774 		dev_dbg(dev, "fan%u clock divider changed from %u to %u\n",
775 			channel + 1, div_from_reg(data->fan_div[channel]),
776 			div_from_reg(new_div));
777 		data->fan_div[channel] = new_div;
778 		w83627ehf_write_fan_div(data, channel);
779 		/* Give the chip time to sample a new speed value */
780 		data->last_updated = jiffies;
781 	}
782 
783 	w83627ehf_write_value(data, W83627EHF_REG_FAN_MIN[channel],
784 			      data->fan_min[channel]);
785 	mutex_unlock(&data->update_lock);
786 
787 	return 0;
788 }
789 
790 #define store_temp_reg(addr, reg) \
791 static int \
792 store_##reg(struct device *dev, struct w83627ehf_data *data, int channel, \
793 	    long val) \
794 { \
795 	mutex_lock(&data->update_lock); \
796 	data->reg[channel] = LM75_TEMP_TO_REG(val); \
797 	w83627ehf_write_temp(data, data->addr[channel], data->reg[channel]); \
798 	mutex_unlock(&data->update_lock); \
799 	return 0; \
800 }
801 store_temp_reg(reg_temp_over, temp_max);
802 store_temp_reg(reg_temp_hyst, temp_max_hyst);
803 
804 static int
store_temp_offset(struct device * dev,struct w83627ehf_data * data,int channel,long val)805 store_temp_offset(struct device *dev, struct w83627ehf_data *data, int channel,
806 		  long val)
807 {
808 	val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), -128, 127);
809 
810 	mutex_lock(&data->update_lock);
811 	data->temp_offset[channel] = val;
812 	w83627ehf_write_value(data, W83627EHF_REG_TEMP_OFFSET[channel], val);
813 	mutex_unlock(&data->update_lock);
814 	return 0;
815 }
816 
817 static int
store_pwm_mode(struct device * dev,struct w83627ehf_data * data,int channel,long val)818 store_pwm_mode(struct device *dev, struct w83627ehf_data *data, int channel,
819 	       long val)
820 {
821 	u16 reg;
822 
823 	if (val < 0 || val > 1)
824 		return -EINVAL;
825 
826 	mutex_lock(&data->update_lock);
827 	reg = w83627ehf_read_value(data, W83627EHF_REG_PWM_ENABLE[channel]);
828 	data->pwm_mode[channel] = val;
829 	reg &= ~(1 << W83627EHF_PWM_MODE_SHIFT[channel]);
830 	if (!val)
831 		reg |= 1 << W83627EHF_PWM_MODE_SHIFT[channel];
832 	w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[channel], reg);
833 	mutex_unlock(&data->update_lock);
834 	return 0;
835 }
836 
837 static int
store_pwm(struct device * dev,struct w83627ehf_data * data,int channel,long val)838 store_pwm(struct device *dev, struct w83627ehf_data *data, int channel,
839 	  long val)
840 {
841 	val = clamp_val(val, 0, 255);
842 
843 	mutex_lock(&data->update_lock);
844 	data->pwm[channel] = val;
845 	w83627ehf_write_value(data, W83627EHF_REG_PWM[channel], val);
846 	mutex_unlock(&data->update_lock);
847 	return 0;
848 }
849 
850 static int
store_pwm_enable(struct device * dev,struct w83627ehf_data * data,int channel,long val)851 store_pwm_enable(struct device *dev, struct w83627ehf_data *data, int channel,
852 		 long val)
853 {
854 	u16 reg;
855 
856 	if (!val || val < 0 ||
857 	    (val > 4 && val != data->pwm_enable_orig[channel]))
858 		return -EINVAL;
859 
860 	mutex_lock(&data->update_lock);
861 	data->pwm_enable[channel] = val;
862 	reg = w83627ehf_read_value(data,
863 				   W83627EHF_REG_PWM_ENABLE[channel]);
864 	reg &= ~(0x03 << W83627EHF_PWM_ENABLE_SHIFT[channel]);
865 	reg |= (val - 1) << W83627EHF_PWM_ENABLE_SHIFT[channel];
866 	w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[channel],
867 			      reg);
868 	mutex_unlock(&data->update_lock);
869 	return 0;
870 }
871 
872 #define show_tol_temp(reg) \
873 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
874 				char *buf) \
875 { \
876 	struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \
877 	struct sensor_device_attribute *sensor_attr = \
878 		to_sensor_dev_attr(attr); \
879 	int nr = sensor_attr->index; \
880 	return sprintf(buf, "%d\n", data->reg[nr] * 1000); \
881 }
882 
883 show_tol_temp(tolerance)
show_tol_temp(target_temp)884 show_tol_temp(target_temp)
885 
886 static ssize_t
887 store_target_temp(struct device *dev, struct device_attribute *attr,
888 			const char *buf, size_t count)
889 {
890 	struct w83627ehf_data *data = dev_get_drvdata(dev);
891 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
892 	int nr = sensor_attr->index;
893 	long val;
894 	int err;
895 
896 	err = kstrtol(buf, 10, &val);
897 	if (err < 0)
898 		return err;
899 
900 	val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), 0, 127);
901 
902 	mutex_lock(&data->update_lock);
903 	data->target_temp[nr] = val;
904 	w83627ehf_write_value(data, W83627EHF_REG_TARGET[nr], val);
905 	mutex_unlock(&data->update_lock);
906 	return count;
907 }
908 
909 static ssize_t
store_tolerance(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)910 store_tolerance(struct device *dev, struct device_attribute *attr,
911 			const char *buf, size_t count)
912 {
913 	struct w83627ehf_data *data = dev_get_drvdata(dev);
914 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
915 	int nr = sensor_attr->index;
916 	u16 reg;
917 	long val;
918 	int err;
919 
920 	err = kstrtol(buf, 10, &val);
921 	if (err < 0)
922 		return err;
923 
924 	/* Limit the temp to 0C - 15C */
925 	val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), 0, 15);
926 
927 	mutex_lock(&data->update_lock);
928 	reg = w83627ehf_read_value(data, W83627EHF_REG_TOLERANCE[nr]);
929 	if (nr == 1)
930 		reg = (reg & 0x0f) | (val << 4);
931 	else
932 		reg = (reg & 0xf0) | val;
933 	w83627ehf_write_value(data, W83627EHF_REG_TOLERANCE[nr], reg);
934 	data->tolerance[nr] = val;
935 	mutex_unlock(&data->update_lock);
936 	return count;
937 }
938 
939 static SENSOR_DEVICE_ATTR(pwm1_target, 0644, show_target_temp,
940 	    store_target_temp, 0);
941 static SENSOR_DEVICE_ATTR(pwm2_target, 0644, show_target_temp,
942 	    store_target_temp, 1);
943 static SENSOR_DEVICE_ATTR(pwm3_target, 0644, show_target_temp,
944 	    store_target_temp, 2);
945 static SENSOR_DEVICE_ATTR(pwm4_target, 0644, show_target_temp,
946 	    store_target_temp, 3);
947 
948 static SENSOR_DEVICE_ATTR(pwm1_tolerance, 0644, show_tolerance,
949 	    store_tolerance, 0);
950 static SENSOR_DEVICE_ATTR(pwm2_tolerance, 0644, show_tolerance,
951 	    store_tolerance, 1);
952 static SENSOR_DEVICE_ATTR(pwm3_tolerance, 0644, show_tolerance,
953 	    store_tolerance, 2);
954 static SENSOR_DEVICE_ATTR(pwm4_tolerance, 0644, show_tolerance,
955 	    store_tolerance, 3);
956 
957 /* Smart Fan registers */
958 
959 #define fan_functions(reg, REG) \
960 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
961 		       char *buf) \
962 { \
963 	struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \
964 	struct sensor_device_attribute *sensor_attr = \
965 		to_sensor_dev_attr(attr); \
966 	int nr = sensor_attr->index; \
967 	return sprintf(buf, "%d\n", data->reg[nr]); \
968 } \
969 static ssize_t \
970 store_##reg(struct device *dev, struct device_attribute *attr, \
971 			    const char *buf, size_t count) \
972 { \
973 	struct w83627ehf_data *data = dev_get_drvdata(dev); \
974 	struct sensor_device_attribute *sensor_attr = \
975 		to_sensor_dev_attr(attr); \
976 	int nr = sensor_attr->index; \
977 	unsigned long val; \
978 	int err; \
979 	err = kstrtoul(buf, 10, &val); \
980 	if (err < 0) \
981 		return err; \
982 	val = clamp_val(val, 1, 255); \
983 	mutex_lock(&data->update_lock); \
984 	data->reg[nr] = val; \
985 	w83627ehf_write_value(data, REG[nr], val); \
986 	mutex_unlock(&data->update_lock); \
987 	return count; \
988 }
989 
990 fan_functions(fan_start_output, W83627EHF_REG_FAN_START_OUTPUT)
991 fan_functions(fan_stop_output, W83627EHF_REG_FAN_STOP_OUTPUT)
992 fan_functions(fan_max_output, data->REG_FAN_MAX_OUTPUT)
993 fan_functions(fan_step_output, data->REG_FAN_STEP_OUTPUT)
994 
995 #define fan_time_functions(reg, REG) \
996 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
997 				char *buf) \
998 { \
999 	struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \
1000 	struct sensor_device_attribute *sensor_attr = \
1001 		to_sensor_dev_attr(attr); \
1002 	int nr = sensor_attr->index; \
1003 	return sprintf(buf, "%d\n", \
1004 			step_time_from_reg(data->reg[nr], \
1005 					   data->pwm_mode[nr])); \
1006 } \
1007 \
1008 static ssize_t \
1009 store_##reg(struct device *dev, struct device_attribute *attr, \
1010 			const char *buf, size_t count) \
1011 { \
1012 	struct w83627ehf_data *data = dev_get_drvdata(dev); \
1013 	struct sensor_device_attribute *sensor_attr = \
1014 		to_sensor_dev_attr(attr); \
1015 	int nr = sensor_attr->index; \
1016 	unsigned long val; \
1017 	int err; \
1018 	err = kstrtoul(buf, 10, &val); \
1019 	if (err < 0) \
1020 		return err; \
1021 	val = step_time_to_reg(val, data->pwm_mode[nr]); \
1022 	mutex_lock(&data->update_lock); \
1023 	data->reg[nr] = val; \
1024 	w83627ehf_write_value(data, REG[nr], val); \
1025 	mutex_unlock(&data->update_lock); \
1026 	return count; \
1027 } \
1028 
1029 fan_time_functions(fan_stop_time, W83627EHF_REG_FAN_STOP_TIME)
1030 
1031 static SENSOR_DEVICE_ATTR(pwm4_stop_time, 0644, show_fan_stop_time,
1032 	    store_fan_stop_time, 3);
1033 static SENSOR_DEVICE_ATTR(pwm4_start_output, 0644, show_fan_start_output,
1034 	    store_fan_start_output, 3);
1035 static SENSOR_DEVICE_ATTR(pwm4_stop_output, 0644, show_fan_stop_output,
1036 	    store_fan_stop_output, 3);
1037 static SENSOR_DEVICE_ATTR(pwm4_max_output, 0644, show_fan_max_output,
1038 	    store_fan_max_output, 3);
1039 static SENSOR_DEVICE_ATTR(pwm4_step_output, 0644, show_fan_step_output,
1040 	    store_fan_step_output, 3);
1041 
1042 static SENSOR_DEVICE_ATTR(pwm3_stop_time, 0644, show_fan_stop_time,
1043 	    store_fan_stop_time, 2);
1044 static SENSOR_DEVICE_ATTR(pwm3_start_output, 0644, show_fan_start_output,
1045 	    store_fan_start_output, 2);
1046 static SENSOR_DEVICE_ATTR(pwm3_stop_output, 0644, show_fan_stop_output,
1047 		    store_fan_stop_output, 2);
1048 
1049 static SENSOR_DEVICE_ATTR(pwm1_stop_time, 0644, show_fan_stop_time,
1050 	    store_fan_stop_time, 0);
1051 static SENSOR_DEVICE_ATTR(pwm2_stop_time, 0644, show_fan_stop_time,
1052 	    store_fan_stop_time, 1);
1053 static SENSOR_DEVICE_ATTR(pwm1_start_output, 0644, show_fan_start_output,
1054 	    store_fan_start_output, 0);
1055 static SENSOR_DEVICE_ATTR(pwm2_start_output, 0644, show_fan_start_output,
1056 	    store_fan_start_output, 1);
1057 static SENSOR_DEVICE_ATTR(pwm1_stop_output, 0644, show_fan_stop_output,
1058 	    store_fan_stop_output, 0);
1059 static SENSOR_DEVICE_ATTR(pwm2_stop_output, 0644, show_fan_stop_output,
1060 	    store_fan_stop_output, 1);
1061 
1062 
1063 /*
1064  * pwm1 and pwm3 don't support max and step settings on all chips.
1065  * Need to check support while generating/removing attribute files.
1066  */
1067 static SENSOR_DEVICE_ATTR(pwm1_max_output, 0644, show_fan_max_output,
1068 	    store_fan_max_output, 0);
1069 static SENSOR_DEVICE_ATTR(pwm1_step_output, 0644, show_fan_step_output,
1070 	    store_fan_step_output, 0);
1071 static SENSOR_DEVICE_ATTR(pwm2_max_output, 0644, show_fan_max_output,
1072 	    store_fan_max_output, 1);
1073 static SENSOR_DEVICE_ATTR(pwm2_step_output, 0644, show_fan_step_output,
1074 	    store_fan_step_output, 1);
1075 static SENSOR_DEVICE_ATTR(pwm3_max_output, 0644, show_fan_max_output,
1076 	    store_fan_max_output, 2);
1077 static SENSOR_DEVICE_ATTR(pwm3_step_output, 0644, show_fan_step_output,
1078 	    store_fan_step_output, 2);
1079 
1080 static ssize_t
cpu0_vid_show(struct device * dev,struct device_attribute * attr,char * buf)1081 cpu0_vid_show(struct device *dev, struct device_attribute *attr, char *buf)
1082 {
1083 	struct w83627ehf_data *data = dev_get_drvdata(dev);
1084 	return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
1085 }
1086 DEVICE_ATTR_RO(cpu0_vid);
1087 
1088 
1089 /* Case open detection */
1090 static int
clear_caseopen(struct device * dev,struct w83627ehf_data * data,int channel,long val)1091 clear_caseopen(struct device *dev, struct w83627ehf_data *data, int channel,
1092 	       long val)
1093 {
1094 	const u16 mask = 0x80;
1095 	u16 reg;
1096 
1097 	if (val != 0 || channel != 0)
1098 		return -EINVAL;
1099 
1100 	mutex_lock(&data->update_lock);
1101 	reg = w83627ehf_read_value(data, W83627EHF_REG_CASEOPEN_CLR);
1102 	w83627ehf_write_value(data, W83627EHF_REG_CASEOPEN_CLR, reg | mask);
1103 	w83627ehf_write_value(data, W83627EHF_REG_CASEOPEN_CLR, reg & ~mask);
1104 	data->valid = 0;	/* Force cache refresh */
1105 	mutex_unlock(&data->update_lock);
1106 
1107 	return 0;
1108 }
1109 
w83627ehf_attrs_visible(struct kobject * kobj,struct attribute * a,int n)1110 static umode_t w83627ehf_attrs_visible(struct kobject *kobj,
1111 				       struct attribute *a, int n)
1112 {
1113 	struct device *dev = container_of(kobj, struct device, kobj);
1114 	struct w83627ehf_data *data = dev_get_drvdata(dev);
1115 	struct device_attribute *devattr;
1116 	struct sensor_device_attribute *sda;
1117 
1118 	devattr = container_of(a, struct device_attribute, attr);
1119 
1120 	/* Not sensor */
1121 	if (devattr->show == cpu0_vid_show && data->have_vid)
1122 		return a->mode;
1123 
1124 	sda = (struct sensor_device_attribute *)devattr;
1125 
1126 	if (sda->index < 2 &&
1127 		(devattr->show == show_fan_stop_time ||
1128 		 devattr->show == show_fan_start_output ||
1129 		 devattr->show == show_fan_stop_output))
1130 		return a->mode;
1131 
1132 	if (sda->index < 3 &&
1133 		(devattr->show == show_fan_max_output ||
1134 		 devattr->show == show_fan_step_output) &&
1135 		data->REG_FAN_STEP_OUTPUT &&
1136 		data->REG_FAN_STEP_OUTPUT[sda->index] != 0xff)
1137 		return a->mode;
1138 
1139 	/* if fan3 and fan4 are enabled create the files for them */
1140 	if (sda->index == 2 &&
1141 		(data->has_fan & (1 << 2)) && data->pwm_num >= 3 &&
1142 		(devattr->show == show_fan_stop_time ||
1143 		 devattr->show == show_fan_start_output ||
1144 		 devattr->show == show_fan_stop_output))
1145 		return a->mode;
1146 
1147 	if (sda->index == 3 &&
1148 		(data->has_fan & (1 << 3)) && data->pwm_num >= 4 &&
1149 		(devattr->show == show_fan_stop_time ||
1150 		 devattr->show == show_fan_start_output ||
1151 		 devattr->show == show_fan_stop_output ||
1152 		 devattr->show == show_fan_max_output ||
1153 		 devattr->show == show_fan_step_output))
1154 		return a->mode;
1155 
1156 	if ((devattr->show == show_target_temp ||
1157 	    devattr->show == show_tolerance) &&
1158 	    (data->has_fan & (1 << sda->index)) &&
1159 	    sda->index < data->pwm_num)
1160 		return a->mode;
1161 
1162 	return 0;
1163 }
1164 
1165 /* These groups handle non-standard attributes used in this device */
1166 static struct attribute *w83627ehf_attrs[] = {
1167 
1168 	&sensor_dev_attr_pwm1_stop_time.dev_attr.attr,
1169 	&sensor_dev_attr_pwm1_start_output.dev_attr.attr,
1170 	&sensor_dev_attr_pwm1_stop_output.dev_attr.attr,
1171 	&sensor_dev_attr_pwm1_max_output.dev_attr.attr,
1172 	&sensor_dev_attr_pwm1_step_output.dev_attr.attr,
1173 	&sensor_dev_attr_pwm1_target.dev_attr.attr,
1174 	&sensor_dev_attr_pwm1_tolerance.dev_attr.attr,
1175 
1176 	&sensor_dev_attr_pwm2_stop_time.dev_attr.attr,
1177 	&sensor_dev_attr_pwm2_start_output.dev_attr.attr,
1178 	&sensor_dev_attr_pwm2_stop_output.dev_attr.attr,
1179 	&sensor_dev_attr_pwm2_max_output.dev_attr.attr,
1180 	&sensor_dev_attr_pwm2_step_output.dev_attr.attr,
1181 	&sensor_dev_attr_pwm2_target.dev_attr.attr,
1182 	&sensor_dev_attr_pwm2_tolerance.dev_attr.attr,
1183 
1184 	&sensor_dev_attr_pwm3_stop_time.dev_attr.attr,
1185 	&sensor_dev_attr_pwm3_start_output.dev_attr.attr,
1186 	&sensor_dev_attr_pwm3_stop_output.dev_attr.attr,
1187 	&sensor_dev_attr_pwm3_max_output.dev_attr.attr,
1188 	&sensor_dev_attr_pwm3_step_output.dev_attr.attr,
1189 	&sensor_dev_attr_pwm3_target.dev_attr.attr,
1190 	&sensor_dev_attr_pwm3_tolerance.dev_attr.attr,
1191 
1192 	&sensor_dev_attr_pwm4_stop_time.dev_attr.attr,
1193 	&sensor_dev_attr_pwm4_start_output.dev_attr.attr,
1194 	&sensor_dev_attr_pwm4_stop_output.dev_attr.attr,
1195 	&sensor_dev_attr_pwm4_max_output.dev_attr.attr,
1196 	&sensor_dev_attr_pwm4_step_output.dev_attr.attr,
1197 	&sensor_dev_attr_pwm4_target.dev_attr.attr,
1198 	&sensor_dev_attr_pwm4_tolerance.dev_attr.attr,
1199 
1200 	&dev_attr_cpu0_vid.attr,
1201 	NULL
1202 };
1203 
1204 static const struct attribute_group w83627ehf_group = {
1205 	.attrs = w83627ehf_attrs,
1206 	.is_visible = w83627ehf_attrs_visible,
1207 };
1208 
1209 static const struct attribute_group *w83627ehf_groups[] = {
1210 	&w83627ehf_group,
1211 	NULL
1212 };
1213 
1214 /*
1215  * Driver and device management
1216  */
1217 
1218 /* Get the monitoring functions started */
w83627ehf_init_device(struct w83627ehf_data * data,enum kinds kind)1219 static inline void w83627ehf_init_device(struct w83627ehf_data *data,
1220 						   enum kinds kind)
1221 {
1222 	int i;
1223 	u8 tmp, diode;
1224 
1225 	/* Start monitoring is needed */
1226 	tmp = w83627ehf_read_value(data, W83627EHF_REG_CONFIG);
1227 	if (!(tmp & 0x01))
1228 		w83627ehf_write_value(data, W83627EHF_REG_CONFIG,
1229 				      tmp | 0x01);
1230 
1231 	/* Enable temperature sensors if needed */
1232 	for (i = 0; i < NUM_REG_TEMP; i++) {
1233 		if (!(data->have_temp & (1 << i)))
1234 			continue;
1235 		if (!data->reg_temp_config[i])
1236 			continue;
1237 		tmp = w83627ehf_read_value(data,
1238 					   data->reg_temp_config[i]);
1239 		if (tmp & 0x01)
1240 			w83627ehf_write_value(data,
1241 					      data->reg_temp_config[i],
1242 					      tmp & 0xfe);
1243 	}
1244 
1245 	/* Enable VBAT monitoring if needed */
1246 	tmp = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
1247 	if (!(tmp & 0x01))
1248 		w83627ehf_write_value(data, W83627EHF_REG_VBAT, tmp | 0x01);
1249 
1250 	/* Get thermal sensor types */
1251 	switch (kind) {
1252 	case w83627ehf:
1253 		diode = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
1254 		break;
1255 	case w83627uhg:
1256 		diode = 0x00;
1257 		break;
1258 	default:
1259 		diode = 0x70;
1260 	}
1261 	for (i = 0; i < 3; i++) {
1262 		const char *label = NULL;
1263 
1264 		if (data->temp_label)
1265 			label = data->temp_label[data->temp_src[i]];
1266 
1267 		/* Digital source overrides analog type */
1268 		if (label && strncmp(label, "PECI", 4) == 0)
1269 			data->temp_type[i] = 6;
1270 		else if (label && strncmp(label, "AMD", 3) == 0)
1271 			data->temp_type[i] = 5;
1272 		else if ((tmp & (0x02 << i)))
1273 			data->temp_type[i] = (diode & (0x10 << i)) ? 1 : 3;
1274 		else
1275 			data->temp_type[i] = 4; /* thermistor */
1276 	}
1277 }
1278 
1279 static void
w83627ehf_set_temp_reg_ehf(struct w83627ehf_data * data,int n_temp)1280 w83627ehf_set_temp_reg_ehf(struct w83627ehf_data *data, int n_temp)
1281 {
1282 	int i;
1283 
1284 	for (i = 0; i < n_temp; i++) {
1285 		data->reg_temp[i] = W83627EHF_REG_TEMP[i];
1286 		data->reg_temp_over[i] = W83627EHF_REG_TEMP_OVER[i];
1287 		data->reg_temp_hyst[i] = W83627EHF_REG_TEMP_HYST[i];
1288 		data->reg_temp_config[i] = W83627EHF_REG_TEMP_CONFIG[i];
1289 	}
1290 }
1291 
1292 static void
w83627ehf_check_fan_inputs(const struct w83627ehf_sio_data * sio_data,struct w83627ehf_data * data)1293 w83627ehf_check_fan_inputs(const struct w83627ehf_sio_data *sio_data,
1294 			   struct w83627ehf_data *data)
1295 {
1296 	int fan3pin, fan4pin, fan5pin, regval;
1297 
1298 	/* The W83627UHG is simple, only two fan inputs, no config */
1299 	if (sio_data->kind == w83627uhg) {
1300 		data->has_fan = 0x03; /* fan1 and fan2 */
1301 		data->has_fan_min = 0x03;
1302 		return;
1303 	}
1304 
1305 	/* fan4 and fan5 share some pins with the GPIO and serial flash */
1306 	if (sio_data->kind == w83667hg || sio_data->kind == w83667hg_b) {
1307 		fan3pin = 1;
1308 		fan4pin = superio_inb(sio_data->sioreg, 0x27) & 0x40;
1309 		fan5pin = superio_inb(sio_data->sioreg, 0x27) & 0x20;
1310 	} else {
1311 		fan3pin = 1;
1312 		fan4pin = !(superio_inb(sio_data->sioreg, 0x29) & 0x06);
1313 		fan5pin = !(superio_inb(sio_data->sioreg, 0x24) & 0x02);
1314 	}
1315 
1316 	data->has_fan = data->has_fan_min = 0x03; /* fan1 and fan2 */
1317 	data->has_fan |= (fan3pin << 2);
1318 	data->has_fan_min |= (fan3pin << 2);
1319 
1320 	/*
1321 	 * It looks like fan4 and fan5 pins can be alternatively used
1322 	 * as fan on/off switches, but fan5 control is write only :/
1323 	 * We assume that if the serial interface is disabled, designers
1324 	 * connected fan5 as input unless they are emitting log 1, which
1325 	 * is not the default.
1326 	 */
1327 	regval = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
1328 	if ((regval & (1 << 2)) && fan4pin) {
1329 		data->has_fan |= (1 << 3);
1330 		data->has_fan_min |= (1 << 3);
1331 	}
1332 	if (!(regval & (1 << 1)) && fan5pin) {
1333 		data->has_fan |= (1 << 4);
1334 		data->has_fan_min |= (1 << 4);
1335 	}
1336 }
1337 
1338 static umode_t
w83627ehf_is_visible(const void * drvdata,enum hwmon_sensor_types type,u32 attr,int channel)1339 w83627ehf_is_visible(const void *drvdata, enum hwmon_sensor_types type,
1340 		     u32 attr, int channel)
1341 {
1342 	const struct w83627ehf_data *data = drvdata;
1343 
1344 	switch (type) {
1345 	case hwmon_temp:
1346 		/* channel 0.., name 1.. */
1347 		if (!(data->have_temp & (1 << channel)))
1348 			return 0;
1349 		if (attr == hwmon_temp_input)
1350 			return 0444;
1351 		if (attr == hwmon_temp_label) {
1352 			if (data->temp_label)
1353 				return 0444;
1354 			return 0;
1355 		}
1356 		if (channel == 2 && data->temp3_val_only)
1357 			return 0;
1358 		if (attr == hwmon_temp_max) {
1359 			if (data->reg_temp_over[channel])
1360 				return 0644;
1361 			else
1362 				return 0;
1363 		}
1364 		if (attr == hwmon_temp_max_hyst) {
1365 			if (data->reg_temp_hyst[channel])
1366 				return 0644;
1367 			else
1368 				return 0;
1369 		}
1370 		if (channel > 2)
1371 			return 0;
1372 		if (attr == hwmon_temp_alarm || attr == hwmon_temp_type)
1373 			return 0444;
1374 		if (attr == hwmon_temp_offset) {
1375 			if (data->have_temp_offset & (1 << channel))
1376 				return 0644;
1377 			else
1378 				return 0;
1379 		}
1380 		break;
1381 
1382 	case hwmon_fan:
1383 		/* channel 0.., name 1.. */
1384 		if (!(data->has_fan & (1 << channel)))
1385 			return 0;
1386 		if (attr == hwmon_fan_input || attr == hwmon_fan_alarm)
1387 			return 0444;
1388 		if (attr == hwmon_fan_div) {
1389 			return 0444;
1390 		}
1391 		if (attr == hwmon_fan_min) {
1392 			if (data->has_fan_min & (1 << channel))
1393 				return 0644;
1394 			else
1395 				return 0;
1396 		}
1397 		break;
1398 
1399 	case hwmon_in:
1400 		/* channel 0.., name 0.. */
1401 		if (channel >= data->in_num)
1402 			return 0;
1403 		if (channel == 6 && data->in6_skip)
1404 			return 0;
1405 		if (attr == hwmon_in_alarm || attr == hwmon_in_input)
1406 			return 0444;
1407 		if (attr == hwmon_in_min || attr == hwmon_in_max)
1408 			return 0644;
1409 		break;
1410 
1411 	case hwmon_pwm:
1412 		/* channel 0.., name 1.. */
1413 		if (!(data->has_fan & (1 << channel)) ||
1414 		    channel >= data->pwm_num)
1415 			return 0;
1416 		if (attr == hwmon_pwm_mode || attr == hwmon_pwm_enable ||
1417 		    attr == hwmon_pwm_input)
1418 			return 0644;
1419 		break;
1420 
1421 	case hwmon_intrusion:
1422 		return 0644;
1423 
1424 	default: /* Shouldn't happen */
1425 		return 0;
1426 	}
1427 
1428 	return 0; /* Shouldn't happen */
1429 }
1430 
1431 static int
w83627ehf_do_read_temp(struct w83627ehf_data * data,u32 attr,int channel,long * val)1432 w83627ehf_do_read_temp(struct w83627ehf_data *data, u32 attr,
1433 		       int channel, long *val)
1434 {
1435 	switch (attr) {
1436 	case hwmon_temp_input:
1437 		*val = LM75_TEMP_FROM_REG(data->temp[channel]);
1438 		return 0;
1439 	case hwmon_temp_max:
1440 		*val = LM75_TEMP_FROM_REG(data->temp_max[channel]);
1441 		return 0;
1442 	case hwmon_temp_max_hyst:
1443 		*val = LM75_TEMP_FROM_REG(data->temp_max_hyst[channel]);
1444 		return 0;
1445 	case hwmon_temp_offset:
1446 		*val = data->temp_offset[channel] * 1000;
1447 		return 0;
1448 	case hwmon_temp_type:
1449 		*val = (int)data->temp_type[channel];
1450 		return 0;
1451 	case hwmon_temp_alarm:
1452 		if (channel < 3) {
1453 			int bit[] = { 4, 5, 13 };
1454 			*val = (data->alarms >> bit[channel]) & 1;
1455 			return 0;
1456 		}
1457 		break;
1458 
1459 	default:
1460 		break;
1461 	}
1462 
1463 	return -EOPNOTSUPP;
1464 }
1465 
1466 static int
w83627ehf_do_read_in(struct w83627ehf_data * data,u32 attr,int channel,long * val)1467 w83627ehf_do_read_in(struct w83627ehf_data *data, u32 attr,
1468 		     int channel, long *val)
1469 {
1470 	switch (attr) {
1471 	case hwmon_in_input:
1472 		*val = in_from_reg(data->in[channel], channel, data->scale_in);
1473 		return 0;
1474 	case hwmon_in_min:
1475 		*val = in_from_reg(data->in_min[channel], channel,
1476 				   data->scale_in);
1477 		return 0;
1478 	case hwmon_in_max:
1479 		*val = in_from_reg(data->in_max[channel], channel,
1480 				   data->scale_in);
1481 		return 0;
1482 	case hwmon_in_alarm:
1483 		if (channel < 10) {
1484 			int bit[] = { 0, 1, 2, 3, 8, 21, 20, 16, 17, 19 };
1485 			*val = (data->alarms >> bit[channel]) & 1;
1486 			return 0;
1487 		}
1488 		break;
1489 	default:
1490 		break;
1491 	}
1492 	return -EOPNOTSUPP;
1493 }
1494 
1495 static int
w83627ehf_do_read_fan(struct w83627ehf_data * data,u32 attr,int channel,long * val)1496 w83627ehf_do_read_fan(struct w83627ehf_data *data, u32 attr,
1497 		      int channel, long *val)
1498 {
1499 	switch (attr) {
1500 	case hwmon_fan_input:
1501 		*val = data->rpm[channel];
1502 		return 0;
1503 	case hwmon_fan_min:
1504 		*val = fan_from_reg8(data->fan_min[channel],
1505 				     data->fan_div[channel]);
1506 		return 0;
1507 	case hwmon_fan_div:
1508 		*val = div_from_reg(data->fan_div[channel]);
1509 		return 0;
1510 	case hwmon_fan_alarm:
1511 		if (channel < 5) {
1512 			int bit[] = { 6, 7, 11, 10, 23 };
1513 			*val = (data->alarms >> bit[channel]) & 1;
1514 			return 0;
1515 		}
1516 		break;
1517 	default:
1518 		break;
1519 	}
1520 	return -EOPNOTSUPP;
1521 }
1522 
1523 static int
w83627ehf_do_read_pwm(struct w83627ehf_data * data,u32 attr,int channel,long * val)1524 w83627ehf_do_read_pwm(struct w83627ehf_data *data, u32 attr,
1525 		      int channel, long *val)
1526 {
1527 	switch (attr) {
1528 	case hwmon_pwm_input:
1529 		*val = data->pwm[channel];
1530 		return 0;
1531 	case hwmon_pwm_enable:
1532 		*val = data->pwm_enable[channel];
1533 		return 0;
1534 	case hwmon_pwm_mode:
1535 		*val = data->pwm_enable[channel];
1536 		return 0;
1537 	default:
1538 		break;
1539 	}
1540 	return -EOPNOTSUPP;
1541 }
1542 
1543 static int
w83627ehf_do_read_intrusion(struct w83627ehf_data * data,u32 attr,int channel,long * val)1544 w83627ehf_do_read_intrusion(struct w83627ehf_data *data, u32 attr,
1545 			    int channel, long *val)
1546 {
1547 	if (attr != hwmon_intrusion_alarm || channel != 0)
1548 		return -EOPNOTSUPP; /* shouldn't happen */
1549 
1550 	*val = !!(data->caseopen & 0x10);
1551 	return 0;
1552 }
1553 
1554 static int
w83627ehf_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * val)1555 w83627ehf_read(struct device *dev, enum hwmon_sensor_types type,
1556 			u32 attr, int channel, long *val)
1557 {
1558 	struct w83627ehf_data *data = w83627ehf_update_device(dev->parent);
1559 
1560 	switch (type) {
1561 	case hwmon_fan:
1562 		return w83627ehf_do_read_fan(data, attr, channel, val);
1563 
1564 	case hwmon_in:
1565 		return w83627ehf_do_read_in(data, attr, channel, val);
1566 
1567 	case hwmon_pwm:
1568 		return w83627ehf_do_read_pwm(data, attr, channel, val);
1569 
1570 	case hwmon_temp:
1571 		return w83627ehf_do_read_temp(data, attr, channel, val);
1572 
1573 	case hwmon_intrusion:
1574 		return w83627ehf_do_read_intrusion(data, attr, channel, val);
1575 
1576 	default:
1577 		break;
1578 	}
1579 
1580 	return -EOPNOTSUPP;
1581 }
1582 
1583 static int
w83627ehf_read_string(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,const char ** str)1584 w83627ehf_read_string(struct device *dev, enum hwmon_sensor_types type,
1585 		      u32 attr, int channel, const char **str)
1586 {
1587 	struct w83627ehf_data *data = dev_get_drvdata(dev);
1588 
1589 	switch (type) {
1590 	case hwmon_temp:
1591 		if (attr == hwmon_temp_label) {
1592 			*str = data->temp_label[data->temp_src[channel]];
1593 			return 0;
1594 		}
1595 		break;
1596 
1597 	default:
1598 		break;
1599 	}
1600 	/* Nothing else should be read as a string */
1601 	return -EOPNOTSUPP;
1602 }
1603 
1604 static int
w83627ehf_write(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long val)1605 w83627ehf_write(struct device *dev, enum hwmon_sensor_types type,
1606 			u32 attr, int channel, long val)
1607 {
1608 	struct w83627ehf_data *data = dev_get_drvdata(dev);
1609 
1610 	if (type == hwmon_in && attr == hwmon_in_min)
1611 		return store_in_min(dev, data, channel, val);
1612 	if (type == hwmon_in && attr == hwmon_in_max)
1613 		return store_in_max(dev, data, channel, val);
1614 
1615 	if (type == hwmon_fan && attr == hwmon_fan_min)
1616 		return store_fan_min(dev, data, channel, val);
1617 
1618 	if (type == hwmon_temp && attr == hwmon_temp_max)
1619 		return store_temp_max(dev, data, channel, val);
1620 	if (type == hwmon_temp && attr == hwmon_temp_max_hyst)
1621 		return store_temp_max_hyst(dev, data, channel, val);
1622 	if (type == hwmon_temp && attr == hwmon_temp_offset)
1623 		return store_temp_offset(dev, data, channel, val);
1624 
1625 	if (type == hwmon_pwm && attr == hwmon_pwm_mode)
1626 		return store_pwm_mode(dev, data, channel, val);
1627 	if (type == hwmon_pwm && attr == hwmon_pwm_enable)
1628 		return store_pwm_enable(dev, data, channel, val);
1629 	if (type == hwmon_pwm && attr == hwmon_pwm_input)
1630 		return store_pwm(dev, data, channel, val);
1631 
1632 	if (type == hwmon_intrusion && attr == hwmon_intrusion_alarm)
1633 		return clear_caseopen(dev, data, channel, val);
1634 
1635 	return -EOPNOTSUPP;
1636 }
1637 
1638 static const struct hwmon_ops w83627ehf_ops = {
1639 	.is_visible = w83627ehf_is_visible,
1640 	.read = w83627ehf_read,
1641 	.read_string = w83627ehf_read_string,
1642 	.write = w83627ehf_write,
1643 };
1644 
1645 static const struct hwmon_channel_info *w83627ehf_info[] = {
1646 	HWMON_CHANNEL_INFO(fan,
1647 		HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1648 		HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1649 		HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1650 		HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1651 		HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN),
1652 	HWMON_CHANNEL_INFO(in,
1653 		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1654 		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1655 		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1656 		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1657 		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1658 		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1659 		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1660 		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1661 		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1662 		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN),
1663 	HWMON_CHANNEL_INFO(pwm,
1664 		HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE,
1665 		HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE,
1666 		HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE,
1667 		HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE),
1668 	HWMON_CHANNEL_INFO(temp,
1669 		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1670 			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1671 		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1672 			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1673 		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1674 			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1675 		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1676 			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1677 		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1678 			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1679 		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1680 			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1681 		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1682 			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1683 		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1684 			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1685 		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1686 			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE),
1687 	HWMON_CHANNEL_INFO(intrusion,
1688 		HWMON_INTRUSION_ALARM),
1689 	NULL
1690 };
1691 
1692 static const struct hwmon_chip_info w83627ehf_chip_info = {
1693 	.ops = &w83627ehf_ops,
1694 	.info = w83627ehf_info,
1695 };
1696 
w83627ehf_probe(struct platform_device * pdev)1697 static int w83627ehf_probe(struct platform_device *pdev)
1698 {
1699 	struct device *dev = &pdev->dev;
1700 	struct w83627ehf_sio_data *sio_data = dev_get_platdata(dev);
1701 	struct w83627ehf_data *data;
1702 	struct resource *res;
1703 	u8 en_vrm10;
1704 	int i, err = 0;
1705 	struct device *hwmon_dev;
1706 
1707 	res = platform_get_resource(pdev, IORESOURCE_IO, 0);
1708 	if (!request_region(res->start, IOREGION_LENGTH, DRVNAME)) {
1709 		err = -EBUSY;
1710 		dev_err(dev, "Failed to request region 0x%lx-0x%lx\n",
1711 			(unsigned long)res->start,
1712 			(unsigned long)res->start + IOREGION_LENGTH - 1);
1713 		goto exit;
1714 	}
1715 
1716 	data = devm_kzalloc(&pdev->dev, sizeof(struct w83627ehf_data),
1717 			    GFP_KERNEL);
1718 	if (!data) {
1719 		err = -ENOMEM;
1720 		goto exit_release;
1721 	}
1722 
1723 	data->addr = res->start;
1724 	mutex_init(&data->lock);
1725 	mutex_init(&data->update_lock);
1726 	data->name = w83627ehf_device_names[sio_data->kind];
1727 	data->bank = 0xff;		/* Force initial bank selection */
1728 	platform_set_drvdata(pdev, data);
1729 
1730 	/* 627EHG and 627EHF have 10 voltage inputs; 627DHG and 667HG have 9 */
1731 	data->in_num = (sio_data->kind == w83627ehf) ? 10 : 9;
1732 	/* 667HG has 3 pwms, and 627UHG has only 2 */
1733 	switch (sio_data->kind) {
1734 	default:
1735 		data->pwm_num = 4;
1736 		break;
1737 	case w83667hg:
1738 	case w83667hg_b:
1739 		data->pwm_num = 3;
1740 		break;
1741 	case w83627uhg:
1742 		data->pwm_num = 2;
1743 		break;
1744 	}
1745 
1746 	/* Default to 3 temperature inputs, code below will adjust as needed */
1747 	data->have_temp = 0x07;
1748 
1749 	/* Deal with temperature register setup first. */
1750 	if (sio_data->kind == w83667hg_b) {
1751 		u8 reg;
1752 
1753 		w83627ehf_set_temp_reg_ehf(data, 4);
1754 
1755 		/*
1756 		 * Temperature sources are selected with bank 0, registers 0x49
1757 		 * and 0x4a.
1758 		 */
1759 		reg = w83627ehf_read_value(data, 0x4a);
1760 		data->temp_src[0] = reg >> 5;
1761 		reg = w83627ehf_read_value(data, 0x49);
1762 		data->temp_src[1] = reg & 0x07;
1763 		data->temp_src[2] = (reg >> 4) & 0x07;
1764 
1765 		/*
1766 		 * W83667HG-B has another temperature register at 0x7e.
1767 		 * The temperature source is selected with register 0x7d.
1768 		 * Support it if the source differs from already reported
1769 		 * sources.
1770 		 */
1771 		reg = w83627ehf_read_value(data, 0x7d);
1772 		reg &= 0x07;
1773 		if (reg != data->temp_src[0] && reg != data->temp_src[1]
1774 		    && reg != data->temp_src[2]) {
1775 			data->temp_src[3] = reg;
1776 			data->have_temp |= 1 << 3;
1777 		}
1778 
1779 		/*
1780 		 * Chip supports either AUXTIN or VIN3. Try to find out which
1781 		 * one.
1782 		 */
1783 		reg = w83627ehf_read_value(data, W83627EHF_REG_TEMP_CONFIG[2]);
1784 		if (data->temp_src[2] == 2 && (reg & 0x01))
1785 			data->have_temp &= ~(1 << 2);
1786 
1787 		if ((data->temp_src[2] == 2 && (data->have_temp & (1 << 2)))
1788 		    || (data->temp_src[3] == 2 && (data->have_temp & (1 << 3))))
1789 			data->in6_skip = 1;
1790 
1791 		data->temp_label = w83667hg_b_temp_label;
1792 		data->have_temp_offset = data->have_temp & 0x07;
1793 		for (i = 0; i < 3; i++) {
1794 			if (data->temp_src[i] > 2)
1795 				data->have_temp_offset &= ~(1 << i);
1796 		}
1797 	} else if (sio_data->kind == w83627uhg) {
1798 		u8 reg;
1799 
1800 		w83627ehf_set_temp_reg_ehf(data, 3);
1801 
1802 		/*
1803 		 * Temperature sources for temp2 and temp3 are selected with
1804 		 * bank 0, registers 0x49 and 0x4a.
1805 		 */
1806 		data->temp_src[0] = 0;	/* SYSTIN */
1807 		reg = w83627ehf_read_value(data, 0x49) & 0x07;
1808 		/* Adjust to have the same mapping as other source registers */
1809 		if (reg == 0)
1810 			data->temp_src[1] = 1;
1811 		else if (reg >= 2 && reg <= 5)
1812 			data->temp_src[1] = reg + 2;
1813 		else	/* should never happen */
1814 			data->have_temp &= ~(1 << 1);
1815 		reg = w83627ehf_read_value(data, 0x4a);
1816 		data->temp_src[2] = reg >> 5;
1817 
1818 		/*
1819 		 * Skip temp3 if source is invalid or the same as temp1
1820 		 * or temp2.
1821 		 */
1822 		if (data->temp_src[2] == 2 || data->temp_src[2] == 3 ||
1823 		    data->temp_src[2] == data->temp_src[0] ||
1824 		    ((data->have_temp & (1 << 1)) &&
1825 		     data->temp_src[2] == data->temp_src[1]))
1826 			data->have_temp &= ~(1 << 2);
1827 		else
1828 			data->temp3_val_only = 1;	/* No limit regs */
1829 
1830 		data->in6_skip = 1;			/* No VIN3 */
1831 
1832 		data->temp_label = w83667hg_b_temp_label;
1833 		data->have_temp_offset = data->have_temp & 0x03;
1834 		for (i = 0; i < 3; i++) {
1835 			if (data->temp_src[i] > 1)
1836 				data->have_temp_offset &= ~(1 << i);
1837 		}
1838 	} else {
1839 		w83627ehf_set_temp_reg_ehf(data, 3);
1840 
1841 		/* Temperature sources are fixed */
1842 
1843 		if (sio_data->kind == w83667hg) {
1844 			u8 reg;
1845 
1846 			/*
1847 			 * Chip supports either AUXTIN or VIN3. Try to find
1848 			 * out which one.
1849 			 */
1850 			reg = w83627ehf_read_value(data,
1851 						W83627EHF_REG_TEMP_CONFIG[2]);
1852 			if (reg & 0x01)
1853 				data->have_temp &= ~(1 << 2);
1854 			else
1855 				data->in6_skip = 1;
1856 		}
1857 		data->have_temp_offset = data->have_temp & 0x07;
1858 	}
1859 
1860 	if (sio_data->kind == w83667hg_b) {
1861 		data->REG_FAN_MAX_OUTPUT =
1862 		  W83627EHF_REG_FAN_MAX_OUTPUT_W83667_B;
1863 		data->REG_FAN_STEP_OUTPUT =
1864 		  W83627EHF_REG_FAN_STEP_OUTPUT_W83667_B;
1865 	} else {
1866 		data->REG_FAN_MAX_OUTPUT =
1867 		  W83627EHF_REG_FAN_MAX_OUTPUT_COMMON;
1868 		data->REG_FAN_STEP_OUTPUT =
1869 		  W83627EHF_REG_FAN_STEP_OUTPUT_COMMON;
1870 	}
1871 
1872 	/* Setup input voltage scaling factors */
1873 	if (sio_data->kind == w83627uhg)
1874 		data->scale_in = scale_in_w83627uhg;
1875 	else
1876 		data->scale_in = scale_in_common;
1877 
1878 	/* Initialize the chip */
1879 	w83627ehf_init_device(data, sio_data->kind);
1880 
1881 	data->vrm = vid_which_vrm();
1882 
1883 	err = superio_enter(sio_data->sioreg);
1884 	if (err)
1885 		goto exit_release;
1886 
1887 	/* Read VID value */
1888 	if (sio_data->kind == w83667hg || sio_data->kind == w83667hg_b) {
1889 		/*
1890 		 * W83667HG has different pins for VID input and output, so
1891 		 * we can get the VID input values directly at logical device D
1892 		 * 0xe3.
1893 		 */
1894 		superio_select(sio_data->sioreg, W83667HG_LD_VID);
1895 		data->vid = superio_inb(sio_data->sioreg, 0xe3);
1896 		data->have_vid = true;
1897 	} else if (sio_data->kind != w83627uhg) {
1898 		superio_select(sio_data->sioreg, W83627EHF_LD_HWM);
1899 		if (superio_inb(sio_data->sioreg, SIO_REG_VID_CTRL) & 0x80) {
1900 			/*
1901 			 * Set VID input sensibility if needed. In theory the
1902 			 * BIOS should have set it, but in practice it's not
1903 			 * always the case. We only do it for the W83627EHF/EHG
1904 			 * because the W83627DHG is more complex in this
1905 			 * respect.
1906 			 */
1907 			if (sio_data->kind == w83627ehf) {
1908 				en_vrm10 = superio_inb(sio_data->sioreg,
1909 						       SIO_REG_EN_VRM10);
1910 				if ((en_vrm10 & 0x08) && data->vrm == 90) {
1911 					dev_warn(dev,
1912 						 "Setting VID input voltage to TTL\n");
1913 					superio_outb(sio_data->sioreg,
1914 						     SIO_REG_EN_VRM10,
1915 						     en_vrm10 & ~0x08);
1916 				} else if (!(en_vrm10 & 0x08)
1917 					   && data->vrm == 100) {
1918 					dev_warn(dev,
1919 						 "Setting VID input voltage to VRM10\n");
1920 					superio_outb(sio_data->sioreg,
1921 						     SIO_REG_EN_VRM10,
1922 						     en_vrm10 | 0x08);
1923 				}
1924 			}
1925 
1926 			data->vid = superio_inb(sio_data->sioreg,
1927 						SIO_REG_VID_DATA);
1928 			if (sio_data->kind == w83627ehf) /* 6 VID pins only */
1929 				data->vid &= 0x3f;
1930 			data->have_vid = true;
1931 		} else {
1932 			dev_info(dev,
1933 				 "VID pins in output mode, CPU VID not available\n");
1934 		}
1935 	}
1936 
1937 	w83627ehf_check_fan_inputs(sio_data, data);
1938 
1939 	superio_exit(sio_data->sioreg);
1940 
1941 	/* Read fan clock dividers immediately */
1942 	w83627ehf_update_fan_div(data);
1943 
1944 	/* Read pwm data to save original values */
1945 	w83627ehf_update_pwm(data);
1946 	for (i = 0; i < data->pwm_num; i++)
1947 		data->pwm_enable_orig[i] = data->pwm_enable[i];
1948 
1949 	hwmon_dev = devm_hwmon_device_register_with_info(&pdev->dev,
1950 							 data->name,
1951 							 data,
1952 							 &w83627ehf_chip_info,
1953 							 w83627ehf_groups);
1954 	if (IS_ERR(hwmon_dev)) {
1955 		err = PTR_ERR(hwmon_dev);
1956 		goto exit_release;
1957 	}
1958 
1959 	return 0;
1960 
1961 exit_release:
1962 	release_region(res->start, IOREGION_LENGTH);
1963 exit:
1964 	return err;
1965 }
1966 
w83627ehf_remove(struct platform_device * pdev)1967 static int w83627ehf_remove(struct platform_device *pdev)
1968 {
1969 	struct w83627ehf_data *data = platform_get_drvdata(pdev);
1970 
1971 	release_region(data->addr, IOREGION_LENGTH);
1972 
1973 	return 0;
1974 }
1975 
1976 #ifdef CONFIG_PM
w83627ehf_suspend(struct device * dev)1977 static int w83627ehf_suspend(struct device *dev)
1978 {
1979 	struct w83627ehf_data *data = w83627ehf_update_device(dev);
1980 
1981 	mutex_lock(&data->update_lock);
1982 	data->vbat = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
1983 	mutex_unlock(&data->update_lock);
1984 
1985 	return 0;
1986 }
1987 
w83627ehf_resume(struct device * dev)1988 static int w83627ehf_resume(struct device *dev)
1989 {
1990 	struct w83627ehf_data *data = dev_get_drvdata(dev);
1991 	int i;
1992 
1993 	mutex_lock(&data->update_lock);
1994 	data->bank = 0xff;		/* Force initial bank selection */
1995 
1996 	/* Restore limits */
1997 	for (i = 0; i < data->in_num; i++) {
1998 		if ((i == 6) && data->in6_skip)
1999 			continue;
2000 
2001 		w83627ehf_write_value(data, W83627EHF_REG_IN_MIN(i),
2002 				      data->in_min[i]);
2003 		w83627ehf_write_value(data, W83627EHF_REG_IN_MAX(i),
2004 				      data->in_max[i]);
2005 	}
2006 
2007 	for (i = 0; i < 5; i++) {
2008 		if (!(data->has_fan_min & (1 << i)))
2009 			continue;
2010 
2011 		w83627ehf_write_value(data, W83627EHF_REG_FAN_MIN[i],
2012 				      data->fan_min[i]);
2013 	}
2014 
2015 	for (i = 0; i < NUM_REG_TEMP; i++) {
2016 		if (!(data->have_temp & (1 << i)))
2017 			continue;
2018 
2019 		if (data->reg_temp_over[i])
2020 			w83627ehf_write_temp(data, data->reg_temp_over[i],
2021 					     data->temp_max[i]);
2022 		if (data->reg_temp_hyst[i])
2023 			w83627ehf_write_temp(data, data->reg_temp_hyst[i],
2024 					     data->temp_max_hyst[i]);
2025 		if (i > 2)
2026 			continue;
2027 		if (data->have_temp_offset & (1 << i))
2028 			w83627ehf_write_value(data,
2029 					      W83627EHF_REG_TEMP_OFFSET[i],
2030 					      data->temp_offset[i]);
2031 	}
2032 
2033 	/* Restore other settings */
2034 	w83627ehf_write_value(data, W83627EHF_REG_VBAT, data->vbat);
2035 
2036 	/* Force re-reading all values */
2037 	data->valid = 0;
2038 	mutex_unlock(&data->update_lock);
2039 
2040 	return 0;
2041 }
2042 
2043 static const struct dev_pm_ops w83627ehf_dev_pm_ops = {
2044 	.suspend = w83627ehf_suspend,
2045 	.resume = w83627ehf_resume,
2046 	.freeze = w83627ehf_suspend,
2047 	.restore = w83627ehf_resume,
2048 };
2049 
2050 #define W83627EHF_DEV_PM_OPS	(&w83627ehf_dev_pm_ops)
2051 #else
2052 #define W83627EHF_DEV_PM_OPS	NULL
2053 #endif /* CONFIG_PM */
2054 
2055 static struct platform_driver w83627ehf_driver = {
2056 	.driver = {
2057 		.name	= DRVNAME,
2058 		.pm	= W83627EHF_DEV_PM_OPS,
2059 	},
2060 	.probe		= w83627ehf_probe,
2061 	.remove		= w83627ehf_remove,
2062 };
2063 
2064 /* w83627ehf_find() looks for a '627 in the Super-I/O config space */
w83627ehf_find(int sioaddr,unsigned short * addr,struct w83627ehf_sio_data * sio_data)2065 static int __init w83627ehf_find(int sioaddr, unsigned short *addr,
2066 				 struct w83627ehf_sio_data *sio_data)
2067 {
2068 	static const char sio_name_W83627EHF[] __initconst = "W83627EHF";
2069 	static const char sio_name_W83627EHG[] __initconst = "W83627EHG";
2070 	static const char sio_name_W83627DHG[] __initconst = "W83627DHG";
2071 	static const char sio_name_W83627DHG_P[] __initconst = "W83627DHG-P";
2072 	static const char sio_name_W83627UHG[] __initconst = "W83627UHG";
2073 	static const char sio_name_W83667HG[] __initconst = "W83667HG";
2074 	static const char sio_name_W83667HG_B[] __initconst = "W83667HG-B";
2075 
2076 	u16 val;
2077 	const char *sio_name;
2078 	int err;
2079 
2080 	err = superio_enter(sioaddr);
2081 	if (err)
2082 		return err;
2083 
2084 	if (force_id)
2085 		val = force_id;
2086 	else
2087 		val = (superio_inb(sioaddr, SIO_REG_DEVID) << 8)
2088 		    | superio_inb(sioaddr, SIO_REG_DEVID + 1);
2089 	switch (val & SIO_ID_MASK) {
2090 	case SIO_W83627EHF_ID:
2091 		sio_data->kind = w83627ehf;
2092 		sio_name = sio_name_W83627EHF;
2093 		break;
2094 	case SIO_W83627EHG_ID:
2095 		sio_data->kind = w83627ehf;
2096 		sio_name = sio_name_W83627EHG;
2097 		break;
2098 	case SIO_W83627DHG_ID:
2099 		sio_data->kind = w83627dhg;
2100 		sio_name = sio_name_W83627DHG;
2101 		break;
2102 	case SIO_W83627DHG_P_ID:
2103 		sio_data->kind = w83627dhg_p;
2104 		sio_name = sio_name_W83627DHG_P;
2105 		break;
2106 	case SIO_W83627UHG_ID:
2107 		sio_data->kind = w83627uhg;
2108 		sio_name = sio_name_W83627UHG;
2109 		break;
2110 	case SIO_W83667HG_ID:
2111 		sio_data->kind = w83667hg;
2112 		sio_name = sio_name_W83667HG;
2113 		break;
2114 	case SIO_W83667HG_B_ID:
2115 		sio_data->kind = w83667hg_b;
2116 		sio_name = sio_name_W83667HG_B;
2117 		break;
2118 	default:
2119 		if (val != 0xffff)
2120 			pr_debug("unsupported chip ID: 0x%04x\n", val);
2121 		superio_exit(sioaddr);
2122 		return -ENODEV;
2123 	}
2124 
2125 	/* We have a known chip, find the HWM I/O address */
2126 	superio_select(sioaddr, W83627EHF_LD_HWM);
2127 	val = (superio_inb(sioaddr, SIO_REG_ADDR) << 8)
2128 	    | superio_inb(sioaddr, SIO_REG_ADDR + 1);
2129 	*addr = val & IOREGION_ALIGNMENT;
2130 	if (*addr == 0) {
2131 		pr_err("Refusing to enable a Super-I/O device with a base I/O port 0\n");
2132 		superio_exit(sioaddr);
2133 		return -ENODEV;
2134 	}
2135 
2136 	/* Activate logical device if needed */
2137 	val = superio_inb(sioaddr, SIO_REG_ENABLE);
2138 	if (!(val & 0x01)) {
2139 		pr_warn("Forcibly enabling Super-I/O. Sensor is probably unusable.\n");
2140 		superio_outb(sioaddr, SIO_REG_ENABLE, val | 0x01);
2141 	}
2142 
2143 	superio_exit(sioaddr);
2144 	pr_info("Found %s chip at %#x\n", sio_name, *addr);
2145 	sio_data->sioreg = sioaddr;
2146 
2147 	return 0;
2148 }
2149 
2150 /*
2151  * when Super-I/O functions move to a separate file, the Super-I/O
2152  * bus will manage the lifetime of the device and this module will only keep
2153  * track of the w83627ehf driver. But since we platform_device_alloc(), we
2154  * must keep track of the device
2155  */
2156 static struct platform_device *pdev;
2157 
sensors_w83627ehf_init(void)2158 static int __init sensors_w83627ehf_init(void)
2159 {
2160 	int err;
2161 	unsigned short address;
2162 	struct resource res;
2163 	struct w83627ehf_sio_data sio_data;
2164 
2165 	/*
2166 	 * initialize sio_data->kind and sio_data->sioreg.
2167 	 *
2168 	 * when Super-I/O functions move to a separate file, the Super-I/O
2169 	 * driver will probe 0x2e and 0x4e and auto-detect the presence of a
2170 	 * w83627ehf hardware monitor, and call probe()
2171 	 */
2172 	if (w83627ehf_find(0x2e, &address, &sio_data) &&
2173 	    w83627ehf_find(0x4e, &address, &sio_data))
2174 		return -ENODEV;
2175 
2176 	err = platform_driver_register(&w83627ehf_driver);
2177 	if (err)
2178 		goto exit;
2179 
2180 	pdev = platform_device_alloc(DRVNAME, address);
2181 	if (!pdev) {
2182 		err = -ENOMEM;
2183 		pr_err("Device allocation failed\n");
2184 		goto exit_unregister;
2185 	}
2186 
2187 	err = platform_device_add_data(pdev, &sio_data,
2188 				       sizeof(struct w83627ehf_sio_data));
2189 	if (err) {
2190 		pr_err("Platform data allocation failed\n");
2191 		goto exit_device_put;
2192 	}
2193 
2194 	memset(&res, 0, sizeof(res));
2195 	res.name = DRVNAME;
2196 	res.start = address + IOREGION_OFFSET;
2197 	res.end = address + IOREGION_OFFSET + IOREGION_LENGTH - 1;
2198 	res.flags = IORESOURCE_IO;
2199 
2200 	err = acpi_check_resource_conflict(&res);
2201 	if (err)
2202 		goto exit_device_put;
2203 
2204 	err = platform_device_add_resources(pdev, &res, 1);
2205 	if (err) {
2206 		pr_err("Device resource addition failed (%d)\n", err);
2207 		goto exit_device_put;
2208 	}
2209 
2210 	/* platform_device_add calls probe() */
2211 	err = platform_device_add(pdev);
2212 	if (err) {
2213 		pr_err("Device addition failed (%d)\n", err);
2214 		goto exit_device_put;
2215 	}
2216 
2217 	return 0;
2218 
2219 exit_device_put:
2220 	platform_device_put(pdev);
2221 exit_unregister:
2222 	platform_driver_unregister(&w83627ehf_driver);
2223 exit:
2224 	return err;
2225 }
2226 
sensors_w83627ehf_exit(void)2227 static void __exit sensors_w83627ehf_exit(void)
2228 {
2229 	platform_device_unregister(pdev);
2230 	platform_driver_unregister(&w83627ehf_driver);
2231 }
2232 
2233 MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
2234 MODULE_DESCRIPTION("W83627EHF driver");
2235 MODULE_LICENSE("GPL");
2236 
2237 module_init(sensors_w83627ehf_init);
2238 module_exit(sensors_w83627ehf_exit);
2239