1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2016 Linaro Limited. All rights reserved.
4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5 */
6
7 #include <linux/atomic.h>
8 #include <linux/coresight.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/iommu.h>
11 #include <linux/idr.h>
12 #include <linux/mutex.h>
13 #include <linux/refcount.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 #include <linux/vmalloc.h>
17 #include "coresight-catu.h"
18 #include "coresight-etm-perf.h"
19 #include "coresight-priv.h"
20 #include "coresight-tmc.h"
21
22 struct etr_flat_buf {
23 struct device *dev;
24 dma_addr_t daddr;
25 void *vaddr;
26 size_t size;
27 };
28
29 /*
30 * etr_perf_buffer - Perf buffer used for ETR
31 * @drvdata - The ETR drvdaga this buffer has been allocated for.
32 * @etr_buf - Actual buffer used by the ETR
33 * @pid - The PID this etr_perf_buffer belongs to.
34 * @snaphost - Perf session mode
35 * @head - handle->head at the beginning of the session.
36 * @nr_pages - Number of pages in the ring buffer.
37 * @pages - Array of Pages in the ring buffer.
38 */
39 struct etr_perf_buffer {
40 struct tmc_drvdata *drvdata;
41 struct etr_buf *etr_buf;
42 pid_t pid;
43 bool snapshot;
44 unsigned long head;
45 int nr_pages;
46 void **pages;
47 };
48
49 /* Convert the perf index to an offset within the ETR buffer */
50 #define PERF_IDX2OFF(idx, buf) \
51 ((idx) % ((unsigned long)(buf)->nr_pages << PAGE_SHIFT))
52
53 /* Lower limit for ETR hardware buffer */
54 #define TMC_ETR_PERF_MIN_BUF_SIZE SZ_1M
55
56 /*
57 * The TMC ETR SG has a page size of 4K. The SG table contains pointers
58 * to 4KB buffers. However, the OS may use a PAGE_SIZE different from
59 * 4K (i.e, 16KB or 64KB). This implies that a single OS page could
60 * contain more than one SG buffer and tables.
61 *
62 * A table entry has the following format:
63 *
64 * ---Bit31------------Bit4-------Bit1-----Bit0--
65 * | Address[39:12] | SBZ | Entry Type |
66 * ----------------------------------------------
67 *
68 * Address: Bits [39:12] of a physical page address. Bits [11:0] are
69 * always zero.
70 *
71 * Entry type:
72 * b00 - Reserved.
73 * b01 - Last entry in the tables, points to 4K page buffer.
74 * b10 - Normal entry, points to 4K page buffer.
75 * b11 - Link. The address points to the base of next table.
76 */
77
78 typedef u32 sgte_t;
79
80 #define ETR_SG_PAGE_SHIFT 12
81 #define ETR_SG_PAGE_SIZE (1UL << ETR_SG_PAGE_SHIFT)
82 #define ETR_SG_PAGES_PER_SYSPAGE (PAGE_SIZE / ETR_SG_PAGE_SIZE)
83 #define ETR_SG_PTRS_PER_PAGE (ETR_SG_PAGE_SIZE / sizeof(sgte_t))
84 #define ETR_SG_PTRS_PER_SYSPAGE (PAGE_SIZE / sizeof(sgte_t))
85
86 #define ETR_SG_ET_MASK 0x3
87 #define ETR_SG_ET_LAST 0x1
88 #define ETR_SG_ET_NORMAL 0x2
89 #define ETR_SG_ET_LINK 0x3
90
91 #define ETR_SG_ADDR_SHIFT 4
92
93 #define ETR_SG_ENTRY(addr, type) \
94 (sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \
95 (type & ETR_SG_ET_MASK))
96
97 #define ETR_SG_ADDR(entry) \
98 (((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT)
99 #define ETR_SG_ET(entry) ((entry) & ETR_SG_ET_MASK)
100
101 /*
102 * struct etr_sg_table : ETR SG Table
103 * @sg_table: Generic SG Table holding the data/table pages.
104 * @hwaddr: hwaddress used by the TMC, which is the base
105 * address of the table.
106 */
107 struct etr_sg_table {
108 struct tmc_sg_table *sg_table;
109 dma_addr_t hwaddr;
110 };
111
112 /*
113 * tmc_etr_sg_table_entries: Total number of table entries required to map
114 * @nr_pages system pages.
115 *
116 * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages.
117 * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers,
118 * with the last entry pointing to another page of table entries.
119 * If we spill over to a new page for mapping 1 entry, we could as
120 * well replace the link entry of the previous page with the last entry.
121 */
122 static inline unsigned long __attribute_const__
tmc_etr_sg_table_entries(int nr_pages)123 tmc_etr_sg_table_entries(int nr_pages)
124 {
125 unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE;
126 unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1);
127 /*
128 * If we spill over to a new page for 1 entry, we could as well
129 * make it the LAST entry in the previous page, skipping the Link
130 * address.
131 */
132 if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2))
133 nr_sglinks--;
134 return nr_sgpages + nr_sglinks;
135 }
136
137 /*
138 * tmc_pages_get_offset: Go through all the pages in the tmc_pages
139 * and map the device address @addr to an offset within the virtual
140 * contiguous buffer.
141 */
142 static long
tmc_pages_get_offset(struct tmc_pages * tmc_pages,dma_addr_t addr)143 tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr)
144 {
145 int i;
146 dma_addr_t page_start;
147
148 for (i = 0; i < tmc_pages->nr_pages; i++) {
149 page_start = tmc_pages->daddrs[i];
150 if (addr >= page_start && addr < (page_start + PAGE_SIZE))
151 return i * PAGE_SIZE + (addr - page_start);
152 }
153
154 return -EINVAL;
155 }
156
157 /*
158 * tmc_pages_free : Unmap and free the pages used by tmc_pages.
159 * If the pages were not allocated in tmc_pages_alloc(), we would
160 * simply drop the refcount.
161 */
tmc_pages_free(struct tmc_pages * tmc_pages,struct device * dev,enum dma_data_direction dir)162 static void tmc_pages_free(struct tmc_pages *tmc_pages,
163 struct device *dev, enum dma_data_direction dir)
164 {
165 int i;
166 struct device *real_dev = dev->parent;
167
168 for (i = 0; i < tmc_pages->nr_pages; i++) {
169 if (tmc_pages->daddrs && tmc_pages->daddrs[i])
170 dma_unmap_page(real_dev, tmc_pages->daddrs[i],
171 PAGE_SIZE, dir);
172 if (tmc_pages->pages && tmc_pages->pages[i])
173 __free_page(tmc_pages->pages[i]);
174 }
175
176 kfree(tmc_pages->pages);
177 kfree(tmc_pages->daddrs);
178 tmc_pages->pages = NULL;
179 tmc_pages->daddrs = NULL;
180 tmc_pages->nr_pages = 0;
181 }
182
183 /*
184 * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages.
185 * If @pages is not NULL, the list of page virtual addresses are
186 * used as the data pages. The pages are then dma_map'ed for @dev
187 * with dma_direction @dir.
188 *
189 * Returns 0 upon success, else the error number.
190 */
tmc_pages_alloc(struct tmc_pages * tmc_pages,struct device * dev,int node,enum dma_data_direction dir,void ** pages)191 static int tmc_pages_alloc(struct tmc_pages *tmc_pages,
192 struct device *dev, int node,
193 enum dma_data_direction dir, void **pages)
194 {
195 int i, nr_pages;
196 dma_addr_t paddr;
197 struct page *page;
198 struct device *real_dev = dev->parent;
199
200 nr_pages = tmc_pages->nr_pages;
201 tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs),
202 GFP_KERNEL);
203 if (!tmc_pages->daddrs)
204 return -ENOMEM;
205 tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages),
206 GFP_KERNEL);
207 if (!tmc_pages->pages) {
208 kfree(tmc_pages->daddrs);
209 tmc_pages->daddrs = NULL;
210 return -ENOMEM;
211 }
212
213 for (i = 0; i < nr_pages; i++) {
214 if (pages && pages[i]) {
215 page = virt_to_page(pages[i]);
216 /* Hold a refcount on the page */
217 get_page(page);
218 } else {
219 page = alloc_pages_node(node,
220 GFP_KERNEL | __GFP_ZERO, 0);
221 if (!page)
222 goto err;
223 }
224 paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir);
225 if (dma_mapping_error(real_dev, paddr))
226 goto err;
227 tmc_pages->daddrs[i] = paddr;
228 tmc_pages->pages[i] = page;
229 }
230 return 0;
231 err:
232 tmc_pages_free(tmc_pages, dev, dir);
233 return -ENOMEM;
234 }
235
236 static inline long
tmc_sg_get_data_page_offset(struct tmc_sg_table * sg_table,dma_addr_t addr)237 tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr)
238 {
239 return tmc_pages_get_offset(&sg_table->data_pages, addr);
240 }
241
tmc_free_table_pages(struct tmc_sg_table * sg_table)242 static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table)
243 {
244 if (sg_table->table_vaddr)
245 vunmap(sg_table->table_vaddr);
246 tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE);
247 }
248
tmc_free_data_pages(struct tmc_sg_table * sg_table)249 static void tmc_free_data_pages(struct tmc_sg_table *sg_table)
250 {
251 if (sg_table->data_vaddr)
252 vunmap(sg_table->data_vaddr);
253 tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE);
254 }
255
tmc_free_sg_table(struct tmc_sg_table * sg_table)256 void tmc_free_sg_table(struct tmc_sg_table *sg_table)
257 {
258 tmc_free_table_pages(sg_table);
259 tmc_free_data_pages(sg_table);
260 }
261 EXPORT_SYMBOL_GPL(tmc_free_sg_table);
262
263 /*
264 * Alloc pages for the table. Since this will be used by the device,
265 * allocate the pages closer to the device (i.e, dev_to_node(dev)
266 * rather than the CPU node).
267 */
tmc_alloc_table_pages(struct tmc_sg_table * sg_table)268 static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table)
269 {
270 int rc;
271 struct tmc_pages *table_pages = &sg_table->table_pages;
272
273 rc = tmc_pages_alloc(table_pages, sg_table->dev,
274 dev_to_node(sg_table->dev),
275 DMA_TO_DEVICE, NULL);
276 if (rc)
277 return rc;
278 sg_table->table_vaddr = vmap(table_pages->pages,
279 table_pages->nr_pages,
280 VM_MAP,
281 PAGE_KERNEL);
282 if (!sg_table->table_vaddr)
283 rc = -ENOMEM;
284 else
285 sg_table->table_daddr = table_pages->daddrs[0];
286 return rc;
287 }
288
tmc_alloc_data_pages(struct tmc_sg_table * sg_table,void ** pages)289 static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages)
290 {
291 int rc;
292
293 /* Allocate data pages on the node requested by the caller */
294 rc = tmc_pages_alloc(&sg_table->data_pages,
295 sg_table->dev, sg_table->node,
296 DMA_FROM_DEVICE, pages);
297 if (!rc) {
298 sg_table->data_vaddr = vmap(sg_table->data_pages.pages,
299 sg_table->data_pages.nr_pages,
300 VM_MAP,
301 PAGE_KERNEL);
302 if (!sg_table->data_vaddr)
303 rc = -ENOMEM;
304 }
305 return rc;
306 }
307
308 /*
309 * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table
310 * and data buffers. TMC writes to the data buffers and reads from the SG
311 * Table pages.
312 *
313 * @dev - Coresight device to which page should be DMA mapped.
314 * @node - Numa node for mem allocations
315 * @nr_tpages - Number of pages for the table entries.
316 * @nr_dpages - Number of pages for Data buffer.
317 * @pages - Optional list of virtual address of pages.
318 */
tmc_alloc_sg_table(struct device * dev,int node,int nr_tpages,int nr_dpages,void ** pages)319 struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev,
320 int node,
321 int nr_tpages,
322 int nr_dpages,
323 void **pages)
324 {
325 long rc;
326 struct tmc_sg_table *sg_table;
327
328 sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL);
329 if (!sg_table)
330 return ERR_PTR(-ENOMEM);
331 sg_table->data_pages.nr_pages = nr_dpages;
332 sg_table->table_pages.nr_pages = nr_tpages;
333 sg_table->node = node;
334 sg_table->dev = dev;
335
336 rc = tmc_alloc_data_pages(sg_table, pages);
337 if (!rc)
338 rc = tmc_alloc_table_pages(sg_table);
339 if (rc) {
340 tmc_free_sg_table(sg_table);
341 kfree(sg_table);
342 return ERR_PTR(rc);
343 }
344
345 return sg_table;
346 }
347 EXPORT_SYMBOL_GPL(tmc_alloc_sg_table);
348
349 /*
350 * tmc_sg_table_sync_data_range: Sync the data buffer written
351 * by the device from @offset upto a @size bytes.
352 */
tmc_sg_table_sync_data_range(struct tmc_sg_table * table,u64 offset,u64 size)353 void tmc_sg_table_sync_data_range(struct tmc_sg_table *table,
354 u64 offset, u64 size)
355 {
356 int i, index, start;
357 int npages = DIV_ROUND_UP(size, PAGE_SIZE);
358 struct device *real_dev = table->dev->parent;
359 struct tmc_pages *data = &table->data_pages;
360
361 start = offset >> PAGE_SHIFT;
362 for (i = start; i < (start + npages); i++) {
363 index = i % data->nr_pages;
364 dma_sync_single_for_cpu(real_dev, data->daddrs[index],
365 PAGE_SIZE, DMA_FROM_DEVICE);
366 }
367 }
368 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_data_range);
369
370 /* tmc_sg_sync_table: Sync the page table */
tmc_sg_table_sync_table(struct tmc_sg_table * sg_table)371 void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table)
372 {
373 int i;
374 struct device *real_dev = sg_table->dev->parent;
375 struct tmc_pages *table_pages = &sg_table->table_pages;
376
377 for (i = 0; i < table_pages->nr_pages; i++)
378 dma_sync_single_for_device(real_dev, table_pages->daddrs[i],
379 PAGE_SIZE, DMA_TO_DEVICE);
380 }
381 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_table);
382
383 /*
384 * tmc_sg_table_get_data: Get the buffer pointer for data @offset
385 * in the SG buffer. The @bufpp is updated to point to the buffer.
386 * Returns :
387 * the length of linear data available at @offset.
388 * or
389 * <= 0 if no data is available.
390 */
tmc_sg_table_get_data(struct tmc_sg_table * sg_table,u64 offset,size_t len,char ** bufpp)391 ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table,
392 u64 offset, size_t len, char **bufpp)
393 {
394 size_t size;
395 int pg_idx = offset >> PAGE_SHIFT;
396 int pg_offset = offset & (PAGE_SIZE - 1);
397 struct tmc_pages *data_pages = &sg_table->data_pages;
398
399 size = tmc_sg_table_buf_size(sg_table);
400 if (offset >= size)
401 return -EINVAL;
402
403 /* Make sure we don't go beyond the end */
404 len = (len < (size - offset)) ? len : size - offset;
405 /* Respect the page boundaries */
406 len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset);
407 if (len > 0)
408 *bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset;
409 return len;
410 }
411 EXPORT_SYMBOL_GPL(tmc_sg_table_get_data);
412
413 #ifdef ETR_SG_DEBUG
414 /* Map a dma address to virtual address */
415 static unsigned long
tmc_sg_daddr_to_vaddr(struct tmc_sg_table * sg_table,dma_addr_t addr,bool table)416 tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table,
417 dma_addr_t addr, bool table)
418 {
419 long offset;
420 unsigned long base;
421 struct tmc_pages *tmc_pages;
422
423 if (table) {
424 tmc_pages = &sg_table->table_pages;
425 base = (unsigned long)sg_table->table_vaddr;
426 } else {
427 tmc_pages = &sg_table->data_pages;
428 base = (unsigned long)sg_table->data_vaddr;
429 }
430
431 offset = tmc_pages_get_offset(tmc_pages, addr);
432 if (offset < 0)
433 return 0;
434 return base + offset;
435 }
436
437 /* Dump the given sg_table */
tmc_etr_sg_table_dump(struct etr_sg_table * etr_table)438 static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table)
439 {
440 sgte_t *ptr;
441 int i = 0;
442 dma_addr_t addr;
443 struct tmc_sg_table *sg_table = etr_table->sg_table;
444
445 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
446 etr_table->hwaddr, true);
447 while (ptr) {
448 addr = ETR_SG_ADDR(*ptr);
449 switch (ETR_SG_ET(*ptr)) {
450 case ETR_SG_ET_NORMAL:
451 dev_dbg(sg_table->dev,
452 "%05d: %p\t:[N] 0x%llx\n", i, ptr, addr);
453 ptr++;
454 break;
455 case ETR_SG_ET_LINK:
456 dev_dbg(sg_table->dev,
457 "%05d: *** %p\t:{L} 0x%llx ***\n",
458 i, ptr, addr);
459 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
460 addr, true);
461 break;
462 case ETR_SG_ET_LAST:
463 dev_dbg(sg_table->dev,
464 "%05d: ### %p\t:[L] 0x%llx ###\n",
465 i, ptr, addr);
466 return;
467 default:
468 dev_dbg(sg_table->dev,
469 "%05d: xxx %p\t:[INVALID] 0x%llx xxx\n",
470 i, ptr, addr);
471 return;
472 }
473 i++;
474 }
475 dev_dbg(sg_table->dev, "******* End of Table *****\n");
476 }
477 #else
tmc_etr_sg_table_dump(struct etr_sg_table * etr_table)478 static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {}
479 #endif
480
481 /*
482 * Populate the SG Table page table entries from table/data
483 * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages.
484 * So does a Table page. So we keep track of indices of the tables
485 * in each system page and move the pointers accordingly.
486 */
487 #define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size))
tmc_etr_sg_table_populate(struct etr_sg_table * etr_table)488 static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table)
489 {
490 dma_addr_t paddr;
491 int i, type, nr_entries;
492 int tpidx = 0; /* index to the current system table_page */
493 int sgtidx = 0; /* index to the sg_table within the current syspage */
494 int sgtentry = 0; /* the entry within the sg_table */
495 int dpidx = 0; /* index to the current system data_page */
496 int spidx = 0; /* index to the SG page within the current data page */
497 sgte_t *ptr; /* pointer to the table entry to fill */
498 struct tmc_sg_table *sg_table = etr_table->sg_table;
499 dma_addr_t *table_daddrs = sg_table->table_pages.daddrs;
500 dma_addr_t *data_daddrs = sg_table->data_pages.daddrs;
501
502 nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages);
503 /*
504 * Use the contiguous virtual address of the table to update entries.
505 */
506 ptr = sg_table->table_vaddr;
507 /*
508 * Fill all the entries, except the last entry to avoid special
509 * checks within the loop.
510 */
511 for (i = 0; i < nr_entries - 1; i++) {
512 if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) {
513 /*
514 * Last entry in a sg_table page is a link address to
515 * the next table page. If this sg_table is the last
516 * one in the system page, it links to the first
517 * sg_table in the next system page. Otherwise, it
518 * links to the next sg_table page within the system
519 * page.
520 */
521 if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) {
522 paddr = table_daddrs[tpidx + 1];
523 } else {
524 paddr = table_daddrs[tpidx] +
525 (ETR_SG_PAGE_SIZE * (sgtidx + 1));
526 }
527 type = ETR_SG_ET_LINK;
528 } else {
529 /*
530 * Update the indices to the data_pages to point to the
531 * next sg_page in the data buffer.
532 */
533 type = ETR_SG_ET_NORMAL;
534 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
535 if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE))
536 dpidx++;
537 }
538 *ptr++ = ETR_SG_ENTRY(paddr, type);
539 /*
540 * Move to the next table pointer, moving the table page index
541 * if necessary
542 */
543 if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) {
544 if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE))
545 tpidx++;
546 }
547 }
548
549 /* Set up the last entry, which is always a data pointer */
550 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
551 *ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST);
552 }
553
554 /*
555 * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and
556 * populate the table.
557 *
558 * @dev - Device pointer for the TMC
559 * @node - NUMA node where the memory should be allocated
560 * @size - Total size of the data buffer
561 * @pages - Optional list of page virtual address
562 */
563 static struct etr_sg_table *
tmc_init_etr_sg_table(struct device * dev,int node,unsigned long size,void ** pages)564 tmc_init_etr_sg_table(struct device *dev, int node,
565 unsigned long size, void **pages)
566 {
567 int nr_entries, nr_tpages;
568 int nr_dpages = size >> PAGE_SHIFT;
569 struct tmc_sg_table *sg_table;
570 struct etr_sg_table *etr_table;
571
572 etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL);
573 if (!etr_table)
574 return ERR_PTR(-ENOMEM);
575 nr_entries = tmc_etr_sg_table_entries(nr_dpages);
576 nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE);
577
578 sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages);
579 if (IS_ERR(sg_table)) {
580 kfree(etr_table);
581 return ERR_CAST(sg_table);
582 }
583
584 etr_table->sg_table = sg_table;
585 /* TMC should use table base address for DBA */
586 etr_table->hwaddr = sg_table->table_daddr;
587 tmc_etr_sg_table_populate(etr_table);
588 /* Sync the table pages for the HW */
589 tmc_sg_table_sync_table(sg_table);
590 tmc_etr_sg_table_dump(etr_table);
591
592 return etr_table;
593 }
594
595 /*
596 * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer.
597 */
tmc_etr_alloc_flat_buf(struct tmc_drvdata * drvdata,struct etr_buf * etr_buf,int node,void ** pages)598 static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata,
599 struct etr_buf *etr_buf, int node,
600 void **pages)
601 {
602 struct etr_flat_buf *flat_buf;
603 struct device *real_dev = drvdata->csdev->dev.parent;
604
605 /* We cannot reuse existing pages for flat buf */
606 if (pages)
607 return -EINVAL;
608
609 flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL);
610 if (!flat_buf)
611 return -ENOMEM;
612
613 flat_buf->vaddr = dma_alloc_noncoherent(real_dev, etr_buf->size,
614 &flat_buf->daddr,
615 DMA_FROM_DEVICE, GFP_KERNEL);
616 if (!flat_buf->vaddr) {
617 kfree(flat_buf);
618 return -ENOMEM;
619 }
620
621 flat_buf->size = etr_buf->size;
622 flat_buf->dev = &drvdata->csdev->dev;
623 etr_buf->hwaddr = flat_buf->daddr;
624 etr_buf->mode = ETR_MODE_FLAT;
625 etr_buf->private = flat_buf;
626 return 0;
627 }
628
tmc_etr_free_flat_buf(struct etr_buf * etr_buf)629 static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf)
630 {
631 struct etr_flat_buf *flat_buf = etr_buf->private;
632
633 if (flat_buf && flat_buf->daddr) {
634 struct device *real_dev = flat_buf->dev->parent;
635
636 dma_free_noncoherent(real_dev, etr_buf->size,
637 flat_buf->vaddr, flat_buf->daddr,
638 DMA_FROM_DEVICE);
639 }
640 kfree(flat_buf);
641 }
642
tmc_etr_sync_flat_buf(struct etr_buf * etr_buf,u64 rrp,u64 rwp)643 static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
644 {
645 struct etr_flat_buf *flat_buf = etr_buf->private;
646 struct device *real_dev = flat_buf->dev->parent;
647
648 /*
649 * Adjust the buffer to point to the beginning of the trace data
650 * and update the available trace data.
651 */
652 etr_buf->offset = rrp - etr_buf->hwaddr;
653 if (etr_buf->full)
654 etr_buf->len = etr_buf->size;
655 else
656 etr_buf->len = rwp - rrp;
657
658 /*
659 * The driver always starts tracing at the beginning of the buffer,
660 * the only reason why we would get a wrap around is when the buffer
661 * is full. Sync the entire buffer in one go for this case.
662 */
663 if (etr_buf->offset + etr_buf->len > etr_buf->size)
664 dma_sync_single_for_cpu(real_dev, flat_buf->daddr,
665 etr_buf->size, DMA_FROM_DEVICE);
666 else
667 dma_sync_single_for_cpu(real_dev,
668 flat_buf->daddr + etr_buf->offset,
669 etr_buf->len, DMA_FROM_DEVICE);
670 }
671
tmc_etr_get_data_flat_buf(struct etr_buf * etr_buf,u64 offset,size_t len,char ** bufpp)672 static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf,
673 u64 offset, size_t len, char **bufpp)
674 {
675 struct etr_flat_buf *flat_buf = etr_buf->private;
676
677 *bufpp = (char *)flat_buf->vaddr + offset;
678 /*
679 * tmc_etr_buf_get_data already adjusts the length to handle
680 * buffer wrapping around.
681 */
682 return len;
683 }
684
685 static const struct etr_buf_operations etr_flat_buf_ops = {
686 .alloc = tmc_etr_alloc_flat_buf,
687 .free = tmc_etr_free_flat_buf,
688 .sync = tmc_etr_sync_flat_buf,
689 .get_data = tmc_etr_get_data_flat_buf,
690 };
691
692 /*
693 * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters
694 * appropriately.
695 */
tmc_etr_alloc_sg_buf(struct tmc_drvdata * drvdata,struct etr_buf * etr_buf,int node,void ** pages)696 static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata,
697 struct etr_buf *etr_buf, int node,
698 void **pages)
699 {
700 struct etr_sg_table *etr_table;
701 struct device *dev = &drvdata->csdev->dev;
702
703 etr_table = tmc_init_etr_sg_table(dev, node,
704 etr_buf->size, pages);
705 if (IS_ERR(etr_table))
706 return -ENOMEM;
707 etr_buf->hwaddr = etr_table->hwaddr;
708 etr_buf->mode = ETR_MODE_ETR_SG;
709 etr_buf->private = etr_table;
710 return 0;
711 }
712
tmc_etr_free_sg_buf(struct etr_buf * etr_buf)713 static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf)
714 {
715 struct etr_sg_table *etr_table = etr_buf->private;
716
717 if (etr_table) {
718 tmc_free_sg_table(etr_table->sg_table);
719 kfree(etr_table);
720 }
721 }
722
tmc_etr_get_data_sg_buf(struct etr_buf * etr_buf,u64 offset,size_t len,char ** bufpp)723 static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset,
724 size_t len, char **bufpp)
725 {
726 struct etr_sg_table *etr_table = etr_buf->private;
727
728 return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp);
729 }
730
tmc_etr_sync_sg_buf(struct etr_buf * etr_buf,u64 rrp,u64 rwp)731 static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
732 {
733 long r_offset, w_offset;
734 struct etr_sg_table *etr_table = etr_buf->private;
735 struct tmc_sg_table *table = etr_table->sg_table;
736
737 /* Convert hw address to offset in the buffer */
738 r_offset = tmc_sg_get_data_page_offset(table, rrp);
739 if (r_offset < 0) {
740 dev_warn(table->dev,
741 "Unable to map RRP %llx to offset\n", rrp);
742 etr_buf->len = 0;
743 return;
744 }
745
746 w_offset = tmc_sg_get_data_page_offset(table, rwp);
747 if (w_offset < 0) {
748 dev_warn(table->dev,
749 "Unable to map RWP %llx to offset\n", rwp);
750 etr_buf->len = 0;
751 return;
752 }
753
754 etr_buf->offset = r_offset;
755 if (etr_buf->full)
756 etr_buf->len = etr_buf->size;
757 else
758 etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) +
759 w_offset - r_offset;
760 tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len);
761 }
762
763 static const struct etr_buf_operations etr_sg_buf_ops = {
764 .alloc = tmc_etr_alloc_sg_buf,
765 .free = tmc_etr_free_sg_buf,
766 .sync = tmc_etr_sync_sg_buf,
767 .get_data = tmc_etr_get_data_sg_buf,
768 };
769
770 /*
771 * TMC ETR could be connected to a CATU device, which can provide address
772 * translation service. This is represented by the Output port of the TMC
773 * (ETR) connected to the input port of the CATU.
774 *
775 * Returns : coresight_device ptr for the CATU device if a CATU is found.
776 * : NULL otherwise.
777 */
778 struct coresight_device *
tmc_etr_get_catu_device(struct tmc_drvdata * drvdata)779 tmc_etr_get_catu_device(struct tmc_drvdata *drvdata)
780 {
781 int i;
782 struct coresight_device *tmp, *etr = drvdata->csdev;
783
784 if (!IS_ENABLED(CONFIG_CORESIGHT_CATU))
785 return NULL;
786
787 for (i = 0; i < etr->pdata->nr_outport; i++) {
788 tmp = etr->pdata->conns[i].child_dev;
789 if (tmp && coresight_is_catu_device(tmp))
790 return tmp;
791 }
792
793 return NULL;
794 }
795 EXPORT_SYMBOL_GPL(tmc_etr_get_catu_device);
796
tmc_etr_enable_catu(struct tmc_drvdata * drvdata,struct etr_buf * etr_buf)797 static inline int tmc_etr_enable_catu(struct tmc_drvdata *drvdata,
798 struct etr_buf *etr_buf)
799 {
800 struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
801
802 if (catu && helper_ops(catu)->enable)
803 return helper_ops(catu)->enable(catu, etr_buf);
804 return 0;
805 }
806
tmc_etr_disable_catu(struct tmc_drvdata * drvdata)807 static inline void tmc_etr_disable_catu(struct tmc_drvdata *drvdata)
808 {
809 struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
810
811 if (catu && helper_ops(catu)->disable)
812 helper_ops(catu)->disable(catu, drvdata->etr_buf);
813 }
814
815 static const struct etr_buf_operations *etr_buf_ops[] = {
816 [ETR_MODE_FLAT] = &etr_flat_buf_ops,
817 [ETR_MODE_ETR_SG] = &etr_sg_buf_ops,
818 [ETR_MODE_CATU] = NULL,
819 };
820
tmc_etr_set_catu_ops(const struct etr_buf_operations * catu)821 void tmc_etr_set_catu_ops(const struct etr_buf_operations *catu)
822 {
823 etr_buf_ops[ETR_MODE_CATU] = catu;
824 }
825 EXPORT_SYMBOL_GPL(tmc_etr_set_catu_ops);
826
tmc_etr_remove_catu_ops(void)827 void tmc_etr_remove_catu_ops(void)
828 {
829 etr_buf_ops[ETR_MODE_CATU] = NULL;
830 }
831 EXPORT_SYMBOL_GPL(tmc_etr_remove_catu_ops);
832
tmc_etr_mode_alloc_buf(int mode,struct tmc_drvdata * drvdata,struct etr_buf * etr_buf,int node,void ** pages)833 static inline int tmc_etr_mode_alloc_buf(int mode,
834 struct tmc_drvdata *drvdata,
835 struct etr_buf *etr_buf, int node,
836 void **pages)
837 {
838 int rc = -EINVAL;
839
840 switch (mode) {
841 case ETR_MODE_FLAT:
842 case ETR_MODE_ETR_SG:
843 case ETR_MODE_CATU:
844 if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc)
845 rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf,
846 node, pages);
847 if (!rc)
848 etr_buf->ops = etr_buf_ops[mode];
849 return rc;
850 default:
851 return -EINVAL;
852 }
853 }
854
855 /*
856 * tmc_alloc_etr_buf: Allocate a buffer use by ETR.
857 * @drvdata : ETR device details.
858 * @size : size of the requested buffer.
859 * @flags : Required properties for the buffer.
860 * @node : Node for memory allocations.
861 * @pages : An optional list of pages.
862 */
tmc_alloc_etr_buf(struct tmc_drvdata * drvdata,ssize_t size,int flags,int node,void ** pages)863 static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata,
864 ssize_t size, int flags,
865 int node, void **pages)
866 {
867 int rc = -ENOMEM;
868 bool has_etr_sg, has_iommu;
869 bool has_sg, has_catu;
870 struct etr_buf *etr_buf;
871 struct device *dev = &drvdata->csdev->dev;
872
873 has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG);
874 has_iommu = iommu_get_domain_for_dev(dev->parent);
875 has_catu = !!tmc_etr_get_catu_device(drvdata);
876
877 has_sg = has_catu || has_etr_sg;
878
879 etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL);
880 if (!etr_buf)
881 return ERR_PTR(-ENOMEM);
882
883 etr_buf->size = size;
884
885 /*
886 * If we have to use an existing list of pages, we cannot reliably
887 * use a contiguous DMA memory (even if we have an IOMMU). Otherwise,
888 * we use the contiguous DMA memory if at least one of the following
889 * conditions is true:
890 * a) The ETR cannot use Scatter-Gather.
891 * b) we have a backing IOMMU
892 * c) The requested memory size is smaller (< 1M).
893 *
894 * Fallback to available mechanisms.
895 *
896 */
897 if (!pages &&
898 (!has_sg || has_iommu || size < SZ_1M))
899 rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata,
900 etr_buf, node, pages);
901 if (rc && has_etr_sg)
902 rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata,
903 etr_buf, node, pages);
904 if (rc && has_catu)
905 rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata,
906 etr_buf, node, pages);
907 if (rc) {
908 kfree(etr_buf);
909 return ERR_PTR(rc);
910 }
911
912 refcount_set(&etr_buf->refcount, 1);
913 dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n",
914 (unsigned long)size >> 10, etr_buf->mode);
915 return etr_buf;
916 }
917
tmc_free_etr_buf(struct etr_buf * etr_buf)918 static void tmc_free_etr_buf(struct etr_buf *etr_buf)
919 {
920 WARN_ON(!etr_buf->ops || !etr_buf->ops->free);
921 etr_buf->ops->free(etr_buf);
922 kfree(etr_buf);
923 }
924
925 /*
926 * tmc_etr_buf_get_data: Get the pointer the trace data at @offset
927 * with a maximum of @len bytes.
928 * Returns: The size of the linear data available @pos, with *bufpp
929 * updated to point to the buffer.
930 */
tmc_etr_buf_get_data(struct etr_buf * etr_buf,u64 offset,size_t len,char ** bufpp)931 static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf,
932 u64 offset, size_t len, char **bufpp)
933 {
934 /* Adjust the length to limit this transaction to end of buffer */
935 len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset;
936
937 return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp);
938 }
939
940 static inline s64
tmc_etr_buf_insert_barrier_packet(struct etr_buf * etr_buf,u64 offset)941 tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset)
942 {
943 ssize_t len;
944 char *bufp;
945
946 len = tmc_etr_buf_get_data(etr_buf, offset,
947 CORESIGHT_BARRIER_PKT_SIZE, &bufp);
948 if (WARN_ON(len < 0 || len < CORESIGHT_BARRIER_PKT_SIZE))
949 return -EINVAL;
950 coresight_insert_barrier_packet(bufp);
951 return offset + CORESIGHT_BARRIER_PKT_SIZE;
952 }
953
954 /*
955 * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata.
956 * Makes sure the trace data is synced to the memory for consumption.
957 * @etr_buf->offset will hold the offset to the beginning of the trace data
958 * within the buffer, with @etr_buf->len bytes to consume.
959 */
tmc_sync_etr_buf(struct tmc_drvdata * drvdata)960 static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata)
961 {
962 struct etr_buf *etr_buf = drvdata->etr_buf;
963 u64 rrp, rwp;
964 u32 status;
965
966 rrp = tmc_read_rrp(drvdata);
967 rwp = tmc_read_rwp(drvdata);
968 status = readl_relaxed(drvdata->base + TMC_STS);
969
970 /*
971 * If there were memory errors in the session, truncate the
972 * buffer.
973 */
974 if (WARN_ON_ONCE(status & TMC_STS_MEMERR)) {
975 dev_dbg(&drvdata->csdev->dev,
976 "tmc memory error detected, truncating buffer\n");
977 etr_buf->len = 0;
978 etr_buf->full = 0;
979 return;
980 }
981
982 etr_buf->full = status & TMC_STS_FULL;
983
984 WARN_ON(!etr_buf->ops || !etr_buf->ops->sync);
985
986 etr_buf->ops->sync(etr_buf, rrp, rwp);
987 }
988
__tmc_etr_enable_hw(struct tmc_drvdata * drvdata)989 static void __tmc_etr_enable_hw(struct tmc_drvdata *drvdata)
990 {
991 u32 axictl, sts;
992 struct etr_buf *etr_buf = drvdata->etr_buf;
993
994 CS_UNLOCK(drvdata->base);
995
996 /* Wait for TMCSReady bit to be set */
997 tmc_wait_for_tmcready(drvdata);
998
999 writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ);
1000 writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE);
1001
1002 axictl = readl_relaxed(drvdata->base + TMC_AXICTL);
1003 axictl &= ~TMC_AXICTL_CLEAR_MASK;
1004 axictl |= (TMC_AXICTL_PROT_CTL_B1 | TMC_AXICTL_WR_BURST_16);
1005 axictl |= TMC_AXICTL_AXCACHE_OS;
1006
1007 if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) {
1008 axictl &= ~TMC_AXICTL_ARCACHE_MASK;
1009 axictl |= TMC_AXICTL_ARCACHE_OS;
1010 }
1011
1012 if (etr_buf->mode == ETR_MODE_ETR_SG)
1013 axictl |= TMC_AXICTL_SCT_GAT_MODE;
1014
1015 writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
1016 tmc_write_dba(drvdata, etr_buf->hwaddr);
1017 /*
1018 * If the TMC pointers must be programmed before the session,
1019 * we have to set it properly (i.e, RRP/RWP to base address and
1020 * STS to "not full").
1021 */
1022 if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) {
1023 tmc_write_rrp(drvdata, etr_buf->hwaddr);
1024 tmc_write_rwp(drvdata, etr_buf->hwaddr);
1025 sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL;
1026 writel_relaxed(sts, drvdata->base + TMC_STS);
1027 }
1028
1029 writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI |
1030 TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT |
1031 TMC_FFCR_TRIGON_TRIGIN,
1032 drvdata->base + TMC_FFCR);
1033 writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG);
1034 tmc_enable_hw(drvdata);
1035
1036 CS_LOCK(drvdata->base);
1037 }
1038
tmc_etr_enable_hw(struct tmc_drvdata * drvdata,struct etr_buf * etr_buf)1039 static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata,
1040 struct etr_buf *etr_buf)
1041 {
1042 int rc;
1043
1044 /* Callers should provide an appropriate buffer for use */
1045 if (WARN_ON(!etr_buf))
1046 return -EINVAL;
1047
1048 if ((etr_buf->mode == ETR_MODE_ETR_SG) &&
1049 WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG)))
1050 return -EINVAL;
1051
1052 if (WARN_ON(drvdata->etr_buf))
1053 return -EBUSY;
1054
1055 /*
1056 * If this ETR is connected to a CATU, enable it before we turn
1057 * this on.
1058 */
1059 rc = tmc_etr_enable_catu(drvdata, etr_buf);
1060 if (rc)
1061 return rc;
1062 rc = coresight_claim_device(drvdata->csdev);
1063 if (!rc) {
1064 drvdata->etr_buf = etr_buf;
1065 __tmc_etr_enable_hw(drvdata);
1066 }
1067
1068 return rc;
1069 }
1070
1071 /*
1072 * Return the available trace data in the buffer (starts at etr_buf->offset,
1073 * limited by etr_buf->len) from @pos, with a maximum limit of @len,
1074 * also updating the @bufpp on where to find it. Since the trace data
1075 * starts at anywhere in the buffer, depending on the RRP, we adjust the
1076 * @len returned to handle buffer wrapping around.
1077 *
1078 * We are protected here by drvdata->reading != 0, which ensures the
1079 * sysfs_buf stays alive.
1080 */
tmc_etr_get_sysfs_trace(struct tmc_drvdata * drvdata,loff_t pos,size_t len,char ** bufpp)1081 ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata,
1082 loff_t pos, size_t len, char **bufpp)
1083 {
1084 s64 offset;
1085 ssize_t actual = len;
1086 struct etr_buf *etr_buf = drvdata->sysfs_buf;
1087
1088 if (pos + actual > etr_buf->len)
1089 actual = etr_buf->len - pos;
1090 if (actual <= 0)
1091 return actual;
1092
1093 /* Compute the offset from which we read the data */
1094 offset = etr_buf->offset + pos;
1095 if (offset >= etr_buf->size)
1096 offset -= etr_buf->size;
1097 return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp);
1098 }
1099
1100 static struct etr_buf *
tmc_etr_setup_sysfs_buf(struct tmc_drvdata * drvdata)1101 tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata)
1102 {
1103 return tmc_alloc_etr_buf(drvdata, drvdata->size,
1104 0, cpu_to_node(0), NULL);
1105 }
1106
1107 static void
tmc_etr_free_sysfs_buf(struct etr_buf * buf)1108 tmc_etr_free_sysfs_buf(struct etr_buf *buf)
1109 {
1110 if (buf)
1111 tmc_free_etr_buf(buf);
1112 }
1113
tmc_etr_sync_sysfs_buf(struct tmc_drvdata * drvdata)1114 static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata)
1115 {
1116 struct etr_buf *etr_buf = drvdata->etr_buf;
1117
1118 if (WARN_ON(drvdata->sysfs_buf != etr_buf)) {
1119 tmc_etr_free_sysfs_buf(drvdata->sysfs_buf);
1120 drvdata->sysfs_buf = NULL;
1121 } else {
1122 tmc_sync_etr_buf(drvdata);
1123 /*
1124 * Insert barrier packets at the beginning, if there was
1125 * an overflow.
1126 */
1127 if (etr_buf->full)
1128 tmc_etr_buf_insert_barrier_packet(etr_buf,
1129 etr_buf->offset);
1130 }
1131 }
1132
__tmc_etr_disable_hw(struct tmc_drvdata * drvdata)1133 static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1134 {
1135 CS_UNLOCK(drvdata->base);
1136
1137 tmc_flush_and_stop(drvdata);
1138 /*
1139 * When operating in sysFS mode the content of the buffer needs to be
1140 * read before the TMC is disabled.
1141 */
1142 if (drvdata->mode == CS_MODE_SYSFS)
1143 tmc_etr_sync_sysfs_buf(drvdata);
1144
1145 tmc_disable_hw(drvdata);
1146
1147 CS_LOCK(drvdata->base);
1148
1149 }
1150
tmc_etr_disable_hw(struct tmc_drvdata * drvdata)1151 void tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1152 {
1153 __tmc_etr_disable_hw(drvdata);
1154 /* Disable CATU device if this ETR is connected to one */
1155 tmc_etr_disable_catu(drvdata);
1156 coresight_disclaim_device(drvdata->csdev);
1157 /* Reset the ETR buf used by hardware */
1158 drvdata->etr_buf = NULL;
1159 }
1160
tmc_enable_etr_sink_sysfs(struct coresight_device * csdev)1161 static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev)
1162 {
1163 int ret = 0;
1164 unsigned long flags;
1165 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1166 struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL;
1167
1168 /*
1169 * If we are enabling the ETR from disabled state, we need to make
1170 * sure we have a buffer with the right size. The etr_buf is not reset
1171 * immediately after we stop the tracing in SYSFS mode as we wait for
1172 * the user to collect the data. We may be able to reuse the existing
1173 * buffer, provided the size matches. Any allocation has to be done
1174 * with the lock released.
1175 */
1176 spin_lock_irqsave(&drvdata->spinlock, flags);
1177 sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1178 if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) {
1179 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1180
1181 /* Allocate memory with the locks released */
1182 free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata);
1183 if (IS_ERR(new_buf))
1184 return PTR_ERR(new_buf);
1185
1186 /* Let's try again */
1187 spin_lock_irqsave(&drvdata->spinlock, flags);
1188 }
1189
1190 if (drvdata->reading || drvdata->mode == CS_MODE_PERF) {
1191 ret = -EBUSY;
1192 goto out;
1193 }
1194
1195 /*
1196 * In sysFS mode we can have multiple writers per sink. Since this
1197 * sink is already enabled no memory is needed and the HW need not be
1198 * touched, even if the buffer size has changed.
1199 */
1200 if (drvdata->mode == CS_MODE_SYSFS) {
1201 atomic_inc(csdev->refcnt);
1202 goto out;
1203 }
1204
1205 /*
1206 * If we don't have a buffer or it doesn't match the requested size,
1207 * use the buffer allocated above. Otherwise reuse the existing buffer.
1208 */
1209 sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1210 if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) {
1211 free_buf = sysfs_buf;
1212 drvdata->sysfs_buf = new_buf;
1213 }
1214
1215 ret = tmc_etr_enable_hw(drvdata, drvdata->sysfs_buf);
1216 if (!ret) {
1217 drvdata->mode = CS_MODE_SYSFS;
1218 atomic_inc(csdev->refcnt);
1219 }
1220 out:
1221 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1222
1223 /* Free memory outside the spinlock if need be */
1224 if (free_buf)
1225 tmc_etr_free_sysfs_buf(free_buf);
1226
1227 if (!ret)
1228 dev_dbg(&csdev->dev, "TMC-ETR enabled\n");
1229
1230 return ret;
1231 }
1232
1233 /*
1234 * alloc_etr_buf: Allocate ETR buffer for use by perf.
1235 * The size of the hardware buffer is dependent on the size configured
1236 * via sysfs and the perf ring buffer size. We prefer to allocate the
1237 * largest possible size, scaling down the size by half until it
1238 * reaches a minimum limit (1M), beyond which we give up.
1239 */
1240 static struct etr_buf *
alloc_etr_buf(struct tmc_drvdata * drvdata,struct perf_event * event,int nr_pages,void ** pages,bool snapshot)1241 alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1242 int nr_pages, void **pages, bool snapshot)
1243 {
1244 int node;
1245 struct etr_buf *etr_buf;
1246 unsigned long size;
1247
1248 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1249 /*
1250 * Try to match the perf ring buffer size if it is larger
1251 * than the size requested via sysfs.
1252 */
1253 if ((nr_pages << PAGE_SHIFT) > drvdata->size) {
1254 etr_buf = tmc_alloc_etr_buf(drvdata, ((ssize_t)nr_pages << PAGE_SHIFT),
1255 0, node, NULL);
1256 if (!IS_ERR(etr_buf))
1257 goto done;
1258 }
1259
1260 /*
1261 * Else switch to configured size for this ETR
1262 * and scale down until we hit the minimum limit.
1263 */
1264 size = drvdata->size;
1265 do {
1266 etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL);
1267 if (!IS_ERR(etr_buf))
1268 goto done;
1269 size /= 2;
1270 } while (size >= TMC_ETR_PERF_MIN_BUF_SIZE);
1271
1272 return ERR_PTR(-ENOMEM);
1273
1274 done:
1275 return etr_buf;
1276 }
1277
1278 static struct etr_buf *
get_perf_etr_buf_cpu_wide(struct tmc_drvdata * drvdata,struct perf_event * event,int nr_pages,void ** pages,bool snapshot)1279 get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata,
1280 struct perf_event *event, int nr_pages,
1281 void **pages, bool snapshot)
1282 {
1283 int ret;
1284 pid_t pid = task_pid_nr(event->owner);
1285 struct etr_buf *etr_buf;
1286
1287 retry:
1288 /*
1289 * An etr_perf_buffer is associated with an event and holds a reference
1290 * to the AUX ring buffer that was created for that event. In CPU-wide
1291 * N:1 mode multiple events (one per CPU), each with its own AUX ring
1292 * buffer, share a sink. As such an etr_perf_buffer is created for each
1293 * event but a single etr_buf associated with the ETR is shared between
1294 * them. The last event in a trace session will copy the content of the
1295 * etr_buf to its AUX ring buffer. Ring buffer associated to other
1296 * events are simply not used an freed as events are destoyed. We still
1297 * need to allocate a ring buffer for each event since we don't know
1298 * which event will be last.
1299 */
1300
1301 /*
1302 * The first thing to do here is check if an etr_buf has already been
1303 * allocated for this session. If so it is shared with this event,
1304 * otherwise it is created.
1305 */
1306 mutex_lock(&drvdata->idr_mutex);
1307 etr_buf = idr_find(&drvdata->idr, pid);
1308 if (etr_buf) {
1309 refcount_inc(&etr_buf->refcount);
1310 mutex_unlock(&drvdata->idr_mutex);
1311 return etr_buf;
1312 }
1313
1314 /* If we made it here no buffer has been allocated, do so now. */
1315 mutex_unlock(&drvdata->idr_mutex);
1316
1317 etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1318 if (IS_ERR(etr_buf))
1319 return etr_buf;
1320
1321 /* Now that we have a buffer, add it to the IDR. */
1322 mutex_lock(&drvdata->idr_mutex);
1323 ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL);
1324 mutex_unlock(&drvdata->idr_mutex);
1325
1326 /* Another event with this session ID has allocated this buffer. */
1327 if (ret == -ENOSPC) {
1328 tmc_free_etr_buf(etr_buf);
1329 goto retry;
1330 }
1331
1332 /* The IDR can't allocate room for a new session, abandon ship. */
1333 if (ret == -ENOMEM) {
1334 tmc_free_etr_buf(etr_buf);
1335 return ERR_PTR(ret);
1336 }
1337
1338
1339 return etr_buf;
1340 }
1341
1342 static struct etr_buf *
get_perf_etr_buf_per_thread(struct tmc_drvdata * drvdata,struct perf_event * event,int nr_pages,void ** pages,bool snapshot)1343 get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata,
1344 struct perf_event *event, int nr_pages,
1345 void **pages, bool snapshot)
1346 {
1347 /*
1348 * In per-thread mode the etr_buf isn't shared, so just go ahead
1349 * with memory allocation.
1350 */
1351 return alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1352 }
1353
1354 static struct etr_buf *
get_perf_etr_buf(struct tmc_drvdata * drvdata,struct perf_event * event,int nr_pages,void ** pages,bool snapshot)1355 get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1356 int nr_pages, void **pages, bool snapshot)
1357 {
1358 if (event->cpu == -1)
1359 return get_perf_etr_buf_per_thread(drvdata, event, nr_pages,
1360 pages, snapshot);
1361
1362 return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages,
1363 pages, snapshot);
1364 }
1365
1366 static struct etr_perf_buffer *
tmc_etr_setup_perf_buf(struct tmc_drvdata * drvdata,struct perf_event * event,int nr_pages,void ** pages,bool snapshot)1367 tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1368 int nr_pages, void **pages, bool snapshot)
1369 {
1370 int node;
1371 struct etr_buf *etr_buf;
1372 struct etr_perf_buffer *etr_perf;
1373
1374 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1375
1376 etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node);
1377 if (!etr_perf)
1378 return ERR_PTR(-ENOMEM);
1379
1380 etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1381 if (!IS_ERR(etr_buf))
1382 goto done;
1383
1384 kfree(etr_perf);
1385 return ERR_PTR(-ENOMEM);
1386
1387 done:
1388 /*
1389 * Keep a reference to the ETR this buffer has been allocated for
1390 * in order to have access to the IDR in tmc_free_etr_buffer().
1391 */
1392 etr_perf->drvdata = drvdata;
1393 etr_perf->etr_buf = etr_buf;
1394
1395 return etr_perf;
1396 }
1397
1398
tmc_alloc_etr_buffer(struct coresight_device * csdev,struct perf_event * event,void ** pages,int nr_pages,bool snapshot)1399 static void *tmc_alloc_etr_buffer(struct coresight_device *csdev,
1400 struct perf_event *event, void **pages,
1401 int nr_pages, bool snapshot)
1402 {
1403 struct etr_perf_buffer *etr_perf;
1404 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1405
1406 etr_perf = tmc_etr_setup_perf_buf(drvdata, event,
1407 nr_pages, pages, snapshot);
1408 if (IS_ERR(etr_perf)) {
1409 dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n");
1410 return NULL;
1411 }
1412
1413 etr_perf->pid = task_pid_nr(event->owner);
1414 etr_perf->snapshot = snapshot;
1415 etr_perf->nr_pages = nr_pages;
1416 etr_perf->pages = pages;
1417
1418 return etr_perf;
1419 }
1420
tmc_free_etr_buffer(void * config)1421 static void tmc_free_etr_buffer(void *config)
1422 {
1423 struct etr_perf_buffer *etr_perf = config;
1424 struct tmc_drvdata *drvdata = etr_perf->drvdata;
1425 struct etr_buf *buf, *etr_buf = etr_perf->etr_buf;
1426
1427 if (!etr_buf)
1428 goto free_etr_perf_buffer;
1429
1430 mutex_lock(&drvdata->idr_mutex);
1431 /* If we are not the last one to use the buffer, don't touch it. */
1432 if (!refcount_dec_and_test(&etr_buf->refcount)) {
1433 mutex_unlock(&drvdata->idr_mutex);
1434 goto free_etr_perf_buffer;
1435 }
1436
1437 /* We are the last one, remove from the IDR and free the buffer. */
1438 buf = idr_remove(&drvdata->idr, etr_perf->pid);
1439 mutex_unlock(&drvdata->idr_mutex);
1440
1441 /*
1442 * Something went very wrong if the buffer associated with this ID
1443 * is not the same in the IDR. Leak to avoid use after free.
1444 */
1445 if (buf && WARN_ON(buf != etr_buf))
1446 goto free_etr_perf_buffer;
1447
1448 tmc_free_etr_buf(etr_perf->etr_buf);
1449
1450 free_etr_perf_buffer:
1451 kfree(etr_perf);
1452 }
1453
1454 /*
1455 * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware
1456 * buffer to the perf ring buffer.
1457 */
tmc_etr_sync_perf_buffer(struct etr_perf_buffer * etr_perf,unsigned long src_offset,unsigned long to_copy)1458 static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf,
1459 unsigned long src_offset,
1460 unsigned long to_copy)
1461 {
1462 long bytes;
1463 long pg_idx, pg_offset;
1464 unsigned long head = etr_perf->head;
1465 char **dst_pages, *src_buf;
1466 struct etr_buf *etr_buf = etr_perf->etr_buf;
1467
1468 head = etr_perf->head;
1469 pg_idx = head >> PAGE_SHIFT;
1470 pg_offset = head & (PAGE_SIZE - 1);
1471 dst_pages = (char **)etr_perf->pages;
1472
1473 while (to_copy > 0) {
1474 /*
1475 * In one iteration, we can copy minimum of :
1476 * 1) what is available in the source buffer,
1477 * 2) what is available in the source buffer, before it
1478 * wraps around.
1479 * 3) what is available in the destination page.
1480 * in one iteration.
1481 */
1482 if (src_offset >= etr_buf->size)
1483 src_offset -= etr_buf->size;
1484 bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy,
1485 &src_buf);
1486 if (WARN_ON_ONCE(bytes <= 0))
1487 break;
1488 bytes = min(bytes, (long)(PAGE_SIZE - pg_offset));
1489
1490 memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes);
1491
1492 to_copy -= bytes;
1493
1494 /* Move destination pointers */
1495 pg_offset += bytes;
1496 if (pg_offset == PAGE_SIZE) {
1497 pg_offset = 0;
1498 if (++pg_idx == etr_perf->nr_pages)
1499 pg_idx = 0;
1500 }
1501
1502 /* Move source pointers */
1503 src_offset += bytes;
1504 }
1505 }
1506
1507 /*
1508 * tmc_update_etr_buffer : Update the perf ring buffer with the
1509 * available trace data. We use software double buffering at the moment.
1510 *
1511 * TODO: Add support for reusing the perf ring buffer.
1512 */
1513 static unsigned long
tmc_update_etr_buffer(struct coresight_device * csdev,struct perf_output_handle * handle,void * config)1514 tmc_update_etr_buffer(struct coresight_device *csdev,
1515 struct perf_output_handle *handle,
1516 void *config)
1517 {
1518 bool lost = false;
1519 unsigned long flags, offset, size = 0;
1520 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1521 struct etr_perf_buffer *etr_perf = config;
1522 struct etr_buf *etr_buf = etr_perf->etr_buf;
1523
1524 spin_lock_irqsave(&drvdata->spinlock, flags);
1525
1526 /* Don't do anything if another tracer is using this sink */
1527 if (atomic_read(csdev->refcnt) != 1) {
1528 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1529 goto out;
1530 }
1531
1532 if (WARN_ON(drvdata->perf_buf != etr_buf)) {
1533 lost = true;
1534 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1535 goto out;
1536 }
1537
1538 CS_UNLOCK(drvdata->base);
1539
1540 tmc_flush_and_stop(drvdata);
1541 tmc_sync_etr_buf(drvdata);
1542
1543 CS_LOCK(drvdata->base);
1544 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1545
1546 lost = etr_buf->full;
1547 offset = etr_buf->offset;
1548 size = etr_buf->len;
1549
1550 /*
1551 * The ETR buffer may be bigger than the space available in the
1552 * perf ring buffer (handle->size). If so advance the offset so that we
1553 * get the latest trace data. In snapshot mode none of that matters
1554 * since we are expected to clobber stale data in favour of the latest
1555 * traces.
1556 */
1557 if (!etr_perf->snapshot && size > handle->size) {
1558 u32 mask = tmc_get_memwidth_mask(drvdata);
1559
1560 /*
1561 * Make sure the new size is aligned in accordance with the
1562 * requirement explained in function tmc_get_memwidth_mask().
1563 */
1564 size = handle->size & mask;
1565 offset = etr_buf->offset + etr_buf->len - size;
1566
1567 if (offset >= etr_buf->size)
1568 offset -= etr_buf->size;
1569 lost = true;
1570 }
1571
1572 /* Insert barrier packets at the beginning, if there was an overflow */
1573 if (lost)
1574 tmc_etr_buf_insert_barrier_packet(etr_buf, offset);
1575 tmc_etr_sync_perf_buffer(etr_perf, offset, size);
1576
1577 /*
1578 * In snapshot mode we simply increment the head by the number of byte
1579 * that were written. User space function cs_etm_find_snapshot() will
1580 * figure out how many bytes to get from the AUX buffer based on the
1581 * position of the head.
1582 */
1583 if (etr_perf->snapshot)
1584 handle->head += size;
1585
1586 /*
1587 * Ensure that the AUX trace data is visible before the aux_head
1588 * is updated via perf_aux_output_end(), as expected by the
1589 * perf ring buffer.
1590 */
1591 smp_wmb();
1592
1593 out:
1594 /*
1595 * Don't set the TRUNCATED flag in snapshot mode because 1) the
1596 * captured buffer is expected to be truncated and 2) a full buffer
1597 * prevents the event from being re-enabled by the perf core,
1598 * resulting in stale data being send to user space.
1599 */
1600 if (!etr_perf->snapshot && lost)
1601 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
1602 return size;
1603 }
1604
tmc_enable_etr_sink_perf(struct coresight_device * csdev,void * data)1605 static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data)
1606 {
1607 int rc = 0;
1608 pid_t pid;
1609 unsigned long flags;
1610 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1611 struct perf_output_handle *handle = data;
1612 struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle);
1613
1614 spin_lock_irqsave(&drvdata->spinlock, flags);
1615 /* Don't use this sink if it is already claimed by sysFS */
1616 if (drvdata->mode == CS_MODE_SYSFS) {
1617 rc = -EBUSY;
1618 goto unlock_out;
1619 }
1620
1621 if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) {
1622 rc = -EINVAL;
1623 goto unlock_out;
1624 }
1625
1626 /* Get a handle on the pid of the process to monitor */
1627 pid = etr_perf->pid;
1628
1629 /* Do not proceed if this device is associated with another session */
1630 if (drvdata->pid != -1 && drvdata->pid != pid) {
1631 rc = -EBUSY;
1632 goto unlock_out;
1633 }
1634
1635 etr_perf->head = PERF_IDX2OFF(handle->head, etr_perf);
1636
1637 /*
1638 * No HW configuration is needed if the sink is already in
1639 * use for this session.
1640 */
1641 if (drvdata->pid == pid) {
1642 atomic_inc(csdev->refcnt);
1643 goto unlock_out;
1644 }
1645
1646 rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf);
1647 if (!rc) {
1648 /* Associate with monitored process. */
1649 drvdata->pid = pid;
1650 drvdata->mode = CS_MODE_PERF;
1651 drvdata->perf_buf = etr_perf->etr_buf;
1652 atomic_inc(csdev->refcnt);
1653 }
1654
1655 unlock_out:
1656 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1657 return rc;
1658 }
1659
tmc_enable_etr_sink(struct coresight_device * csdev,u32 mode,void * data)1660 static int tmc_enable_etr_sink(struct coresight_device *csdev,
1661 u32 mode, void *data)
1662 {
1663 switch (mode) {
1664 case CS_MODE_SYSFS:
1665 return tmc_enable_etr_sink_sysfs(csdev);
1666 case CS_MODE_PERF:
1667 return tmc_enable_etr_sink_perf(csdev, data);
1668 }
1669
1670 /* We shouldn't be here */
1671 return -EINVAL;
1672 }
1673
tmc_disable_etr_sink(struct coresight_device * csdev)1674 static int tmc_disable_etr_sink(struct coresight_device *csdev)
1675 {
1676 unsigned long flags;
1677 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1678
1679 spin_lock_irqsave(&drvdata->spinlock, flags);
1680
1681 if (drvdata->reading) {
1682 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1683 return -EBUSY;
1684 }
1685
1686 if (atomic_dec_return(csdev->refcnt)) {
1687 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1688 return -EBUSY;
1689 }
1690
1691 /* Complain if we (somehow) got out of sync */
1692 WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED);
1693 tmc_etr_disable_hw(drvdata);
1694 /* Dissociate from monitored process. */
1695 drvdata->pid = -1;
1696 drvdata->mode = CS_MODE_DISABLED;
1697 /* Reset perf specific data */
1698 drvdata->perf_buf = NULL;
1699
1700 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1701
1702 dev_dbg(&csdev->dev, "TMC-ETR disabled\n");
1703 return 0;
1704 }
1705
1706 static const struct coresight_ops_sink tmc_etr_sink_ops = {
1707 .enable = tmc_enable_etr_sink,
1708 .disable = tmc_disable_etr_sink,
1709 .alloc_buffer = tmc_alloc_etr_buffer,
1710 .update_buffer = tmc_update_etr_buffer,
1711 .free_buffer = tmc_free_etr_buffer,
1712 };
1713
1714 const struct coresight_ops tmc_etr_cs_ops = {
1715 .sink_ops = &tmc_etr_sink_ops,
1716 };
1717
tmc_read_prepare_etr(struct tmc_drvdata * drvdata)1718 int tmc_read_prepare_etr(struct tmc_drvdata *drvdata)
1719 {
1720 int ret = 0;
1721 unsigned long flags;
1722
1723 /* config types are set a boot time and never change */
1724 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1725 return -EINVAL;
1726
1727 spin_lock_irqsave(&drvdata->spinlock, flags);
1728 if (drvdata->reading) {
1729 ret = -EBUSY;
1730 goto out;
1731 }
1732
1733 /*
1734 * We can safely allow reads even if the ETR is operating in PERF mode,
1735 * since the sysfs session is captured in mode specific data.
1736 * If drvdata::sysfs_data is NULL the trace data has been read already.
1737 */
1738 if (!drvdata->sysfs_buf) {
1739 ret = -EINVAL;
1740 goto out;
1741 }
1742
1743 /* Disable the TMC if we are trying to read from a running session. */
1744 if (drvdata->mode == CS_MODE_SYSFS)
1745 __tmc_etr_disable_hw(drvdata);
1746
1747 drvdata->reading = true;
1748 out:
1749 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1750
1751 return ret;
1752 }
1753
tmc_read_unprepare_etr(struct tmc_drvdata * drvdata)1754 int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata)
1755 {
1756 unsigned long flags;
1757 struct etr_buf *sysfs_buf = NULL;
1758
1759 /* config types are set a boot time and never change */
1760 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1761 return -EINVAL;
1762
1763 spin_lock_irqsave(&drvdata->spinlock, flags);
1764
1765 /* RE-enable the TMC if need be */
1766 if (drvdata->mode == CS_MODE_SYSFS) {
1767 /*
1768 * The trace run will continue with the same allocated trace
1769 * buffer. Since the tracer is still enabled drvdata::buf can't
1770 * be NULL.
1771 */
1772 __tmc_etr_enable_hw(drvdata);
1773 } else {
1774 /*
1775 * The ETR is not tracing and the buffer was just read.
1776 * As such prepare to free the trace buffer.
1777 */
1778 sysfs_buf = drvdata->sysfs_buf;
1779 drvdata->sysfs_buf = NULL;
1780 }
1781
1782 drvdata->reading = false;
1783 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1784
1785 /* Free allocated memory out side of the spinlock */
1786 if (sysfs_buf)
1787 tmc_etr_free_sysfs_buf(sysfs_buf);
1788
1789 return 0;
1790 }
1791