• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Amlogic Meson Successive Approximation Register (SAR) A/D Converter
4  *
5  * Copyright (C) 2017 Martin Blumenstingl <martin.blumenstingl@googlemail.com>
6  */
7 
8 #include <linux/bitfield.h>
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/delay.h>
12 #include <linux/io.h>
13 #include <linux/iio/iio.h>
14 #include <linux/module.h>
15 #include <linux/nvmem-consumer.h>
16 #include <linux/interrupt.h>
17 #include <linux/of.h>
18 #include <linux/of_irq.h>
19 #include <linux/of_device.h>
20 #include <linux/platform_device.h>
21 #include <linux/regmap.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/mfd/syscon.h>
24 
25 #define MESON_SAR_ADC_REG0					0x00
26 	#define MESON_SAR_ADC_REG0_PANEL_DETECT			BIT(31)
27 	#define MESON_SAR_ADC_REG0_BUSY_MASK			GENMASK(30, 28)
28 	#define MESON_SAR_ADC_REG0_DELTA_BUSY			BIT(30)
29 	#define MESON_SAR_ADC_REG0_AVG_BUSY			BIT(29)
30 	#define MESON_SAR_ADC_REG0_SAMPLE_BUSY			BIT(28)
31 	#define MESON_SAR_ADC_REG0_FIFO_FULL			BIT(27)
32 	#define MESON_SAR_ADC_REG0_FIFO_EMPTY			BIT(26)
33 	#define MESON_SAR_ADC_REG0_FIFO_COUNT_MASK		GENMASK(25, 21)
34 	#define MESON_SAR_ADC_REG0_ADC_BIAS_CTRL_MASK		GENMASK(20, 19)
35 	#define MESON_SAR_ADC_REG0_CURR_CHAN_ID_MASK		GENMASK(18, 16)
36 	#define MESON_SAR_ADC_REG0_ADC_TEMP_SEN_SEL		BIT(15)
37 	#define MESON_SAR_ADC_REG0_SAMPLING_STOP		BIT(14)
38 	#define MESON_SAR_ADC_REG0_CHAN_DELTA_EN_MASK		GENMASK(13, 12)
39 	#define MESON_SAR_ADC_REG0_DETECT_IRQ_POL		BIT(10)
40 	#define MESON_SAR_ADC_REG0_DETECT_IRQ_EN		BIT(9)
41 	#define MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK		GENMASK(8, 4)
42 	#define MESON_SAR_ADC_REG0_FIFO_IRQ_EN			BIT(3)
43 	#define MESON_SAR_ADC_REG0_SAMPLING_START		BIT(2)
44 	#define MESON_SAR_ADC_REG0_CONTINUOUS_EN		BIT(1)
45 	#define MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE		BIT(0)
46 
47 #define MESON_SAR_ADC_CHAN_LIST					0x04
48 	#define MESON_SAR_ADC_CHAN_LIST_MAX_INDEX_MASK		GENMASK(26, 24)
49 	#define MESON_SAR_ADC_CHAN_LIST_ENTRY_MASK(_chan)	\
50 					(GENMASK(2, 0) << ((_chan) * 3))
51 
52 #define MESON_SAR_ADC_AVG_CNTL					0x08
53 	#define MESON_SAR_ADC_AVG_CNTL_AVG_MODE_SHIFT(_chan)	\
54 					(16 + ((_chan) * 2))
55 	#define MESON_SAR_ADC_AVG_CNTL_AVG_MODE_MASK(_chan)	\
56 					(GENMASK(17, 16) << ((_chan) * 2))
57 	#define MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_SHIFT(_chan)	\
58 					(0 + ((_chan) * 2))
59 	#define MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_MASK(_chan)	\
60 					(GENMASK(1, 0) << ((_chan) * 2))
61 
62 #define MESON_SAR_ADC_REG3					0x0c
63 	#define MESON_SAR_ADC_REG3_CNTL_USE_SC_DLY		BIT(31)
64 	#define MESON_SAR_ADC_REG3_CLK_EN			BIT(30)
65 	#define MESON_SAR_ADC_REG3_BL30_INITIALIZED		BIT(28)
66 	#define MESON_SAR_ADC_REG3_CTRL_CONT_RING_COUNTER_EN	BIT(27)
67 	#define MESON_SAR_ADC_REG3_CTRL_SAMPLING_CLOCK_PHASE	BIT(26)
68 	#define MESON_SAR_ADC_REG3_CTRL_CHAN7_MUX_SEL_MASK	GENMASK(25, 23)
69 	#define MESON_SAR_ADC_REG3_DETECT_EN			BIT(22)
70 	#define MESON_SAR_ADC_REG3_ADC_EN			BIT(21)
71 	#define MESON_SAR_ADC_REG3_PANEL_DETECT_COUNT_MASK	GENMASK(20, 18)
72 	#define MESON_SAR_ADC_REG3_PANEL_DETECT_FILTER_TB_MASK	GENMASK(17, 16)
73 	#define MESON_SAR_ADC_REG3_ADC_CLK_DIV_SHIFT		10
74 	#define MESON_SAR_ADC_REG3_ADC_CLK_DIV_WIDTH		6
75 	#define MESON_SAR_ADC_REG3_BLOCK_DLY_SEL_MASK		GENMASK(9, 8)
76 	#define MESON_SAR_ADC_REG3_BLOCK_DLY_MASK		GENMASK(7, 0)
77 
78 #define MESON_SAR_ADC_DELAY					0x10
79 	#define MESON_SAR_ADC_DELAY_INPUT_DLY_SEL_MASK		GENMASK(25, 24)
80 	#define MESON_SAR_ADC_DELAY_BL30_BUSY			BIT(15)
81 	#define MESON_SAR_ADC_DELAY_KERNEL_BUSY			BIT(14)
82 	#define MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK		GENMASK(23, 16)
83 	#define MESON_SAR_ADC_DELAY_SAMPLE_DLY_SEL_MASK		GENMASK(9, 8)
84 	#define MESON_SAR_ADC_DELAY_SAMPLE_DLY_CNT_MASK		GENMASK(7, 0)
85 
86 #define MESON_SAR_ADC_LAST_RD					0x14
87 	#define MESON_SAR_ADC_LAST_RD_LAST_CHANNEL1_MASK	GENMASK(23, 16)
88 	#define MESON_SAR_ADC_LAST_RD_LAST_CHANNEL0_MASK	GENMASK(9, 0)
89 
90 #define MESON_SAR_ADC_FIFO_RD					0x18
91 	#define MESON_SAR_ADC_FIFO_RD_CHAN_ID_MASK		GENMASK(14, 12)
92 	#define MESON_SAR_ADC_FIFO_RD_SAMPLE_VALUE_MASK		GENMASK(11, 0)
93 
94 #define MESON_SAR_ADC_AUX_SW					0x1c
95 	#define MESON_SAR_ADC_AUX_SW_MUX_SEL_CHAN_SHIFT(_chan)	\
96 					(8 + (((_chan) - 2) * 3))
97 	#define MESON_SAR_ADC_AUX_SW_VREF_P_MUX			BIT(6)
98 	#define MESON_SAR_ADC_AUX_SW_VREF_N_MUX			BIT(5)
99 	#define MESON_SAR_ADC_AUX_SW_MODE_SEL			BIT(4)
100 	#define MESON_SAR_ADC_AUX_SW_YP_DRIVE_SW		BIT(3)
101 	#define MESON_SAR_ADC_AUX_SW_XP_DRIVE_SW		BIT(2)
102 	#define MESON_SAR_ADC_AUX_SW_YM_DRIVE_SW		BIT(1)
103 	#define MESON_SAR_ADC_AUX_SW_XM_DRIVE_SW		BIT(0)
104 
105 #define MESON_SAR_ADC_CHAN_10_SW				0x20
106 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_MUX_SEL_MASK	GENMASK(25, 23)
107 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_VREF_P_MUX	BIT(22)
108 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_VREF_N_MUX	BIT(21)
109 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_MODE_SEL		BIT(20)
110 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_YP_DRIVE_SW	BIT(19)
111 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_XP_DRIVE_SW	BIT(18)
112 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_YM_DRIVE_SW	BIT(17)
113 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_XM_DRIVE_SW	BIT(16)
114 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_MUX_SEL_MASK	GENMASK(9, 7)
115 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_VREF_P_MUX	BIT(6)
116 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_VREF_N_MUX	BIT(5)
117 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_MODE_SEL		BIT(4)
118 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_YP_DRIVE_SW	BIT(3)
119 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_XP_DRIVE_SW	BIT(2)
120 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_YM_DRIVE_SW	BIT(1)
121 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_XM_DRIVE_SW	BIT(0)
122 
123 #define MESON_SAR_ADC_DETECT_IDLE_SW				0x24
124 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_SW_EN	BIT(26)
125 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MUX_MASK	GENMASK(25, 23)
126 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_VREF_P_MUX	BIT(22)
127 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_VREF_N_MUX	BIT(21)
128 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MODE_SEL	BIT(20)
129 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_YP_DRIVE_SW	BIT(19)
130 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_XP_DRIVE_SW	BIT(18)
131 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_YM_DRIVE_SW	BIT(17)
132 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_XM_DRIVE_SW	BIT(16)
133 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MUX_SEL_MASK	GENMASK(9, 7)
134 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_VREF_P_MUX	BIT(6)
135 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_VREF_N_MUX	BIT(5)
136 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MODE_SEL	BIT(4)
137 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_YP_DRIVE_SW	BIT(3)
138 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_XP_DRIVE_SW	BIT(2)
139 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_YM_DRIVE_SW	BIT(1)
140 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_XM_DRIVE_SW	BIT(0)
141 
142 #define MESON_SAR_ADC_DELTA_10					0x28
143 	#define MESON_SAR_ADC_DELTA_10_TEMP_SEL			BIT(27)
144 	#define MESON_SAR_ADC_DELTA_10_TS_REVE1			BIT(26)
145 	#define MESON_SAR_ADC_DELTA_10_CHAN1_DELTA_VALUE_MASK	GENMASK(25, 16)
146 	#define MESON_SAR_ADC_DELTA_10_TS_REVE0			BIT(15)
147 	#define MESON_SAR_ADC_DELTA_10_TS_C_MASK		GENMASK(14, 11)
148 	#define MESON_SAR_ADC_DELTA_10_TS_VBG_EN		BIT(10)
149 	#define MESON_SAR_ADC_DELTA_10_CHAN0_DELTA_VALUE_MASK	GENMASK(9, 0)
150 
151 /*
152  * NOTE: registers from here are undocumented (the vendor Linux kernel driver
153  * and u-boot source served as reference). These only seem to be relevant on
154  * GXBB and newer.
155  */
156 #define MESON_SAR_ADC_REG11					0x2c
157 	#define MESON_SAR_ADC_REG11_BANDGAP_EN			BIT(13)
158 
159 #define MESON_SAR_ADC_REG13					0x34
160 	#define MESON_SAR_ADC_REG13_12BIT_CALIBRATION_MASK	GENMASK(13, 8)
161 
162 #define MESON_SAR_ADC_MAX_FIFO_SIZE				32
163 #define MESON_SAR_ADC_TIMEOUT					100 /* ms */
164 #define MESON_SAR_ADC_VOLTAGE_AND_TEMP_CHANNEL			6
165 #define MESON_SAR_ADC_TEMP_OFFSET				27
166 
167 /* temperature sensor calibration information in eFuse */
168 #define MESON_SAR_ADC_EFUSE_BYTES				4
169 #define MESON_SAR_ADC_EFUSE_BYTE3_UPPER_ADC_VAL			GENMASK(6, 0)
170 #define MESON_SAR_ADC_EFUSE_BYTE3_IS_CALIBRATED			BIT(7)
171 
172 #define MESON_HHI_DPLL_TOP_0					0x318
173 #define MESON_HHI_DPLL_TOP_0_TSC_BIT4				BIT(9)
174 
175 /* for use with IIO_VAL_INT_PLUS_MICRO */
176 #define MILLION							1000000
177 
178 #define MESON_SAR_ADC_CHAN(_chan) {					\
179 	.type = IIO_VOLTAGE,						\
180 	.indexed = 1,							\
181 	.channel = _chan,						\
182 	.address = _chan,						\
183 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
184 				BIT(IIO_CHAN_INFO_AVERAGE_RAW),		\
185 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),		\
186 	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_CALIBBIAS) |	\
187 				BIT(IIO_CHAN_INFO_CALIBSCALE),		\
188 	.datasheet_name = "SAR_ADC_CH"#_chan,				\
189 }
190 
191 #define MESON_SAR_ADC_TEMP_CHAN(_chan) {				\
192 	.type = IIO_TEMP,						\
193 	.channel = _chan,						\
194 	.address = MESON_SAR_ADC_VOLTAGE_AND_TEMP_CHANNEL,		\
195 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
196 				BIT(IIO_CHAN_INFO_AVERAGE_RAW),		\
197 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) |		\
198 					BIT(IIO_CHAN_INFO_SCALE),	\
199 	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_CALIBBIAS) |	\
200 				BIT(IIO_CHAN_INFO_CALIBSCALE),		\
201 	.datasheet_name = "TEMP_SENSOR",				\
202 }
203 
204 static const struct iio_chan_spec meson_sar_adc_iio_channels[] = {
205 	MESON_SAR_ADC_CHAN(0),
206 	MESON_SAR_ADC_CHAN(1),
207 	MESON_SAR_ADC_CHAN(2),
208 	MESON_SAR_ADC_CHAN(3),
209 	MESON_SAR_ADC_CHAN(4),
210 	MESON_SAR_ADC_CHAN(5),
211 	MESON_SAR_ADC_CHAN(6),
212 	MESON_SAR_ADC_CHAN(7),
213 	IIO_CHAN_SOFT_TIMESTAMP(8),
214 };
215 
216 static const struct iio_chan_spec meson_sar_adc_and_temp_iio_channels[] = {
217 	MESON_SAR_ADC_CHAN(0),
218 	MESON_SAR_ADC_CHAN(1),
219 	MESON_SAR_ADC_CHAN(2),
220 	MESON_SAR_ADC_CHAN(3),
221 	MESON_SAR_ADC_CHAN(4),
222 	MESON_SAR_ADC_CHAN(5),
223 	MESON_SAR_ADC_CHAN(6),
224 	MESON_SAR_ADC_CHAN(7),
225 	MESON_SAR_ADC_TEMP_CHAN(8),
226 	IIO_CHAN_SOFT_TIMESTAMP(9),
227 };
228 
229 enum meson_sar_adc_avg_mode {
230 	NO_AVERAGING = 0x0,
231 	MEAN_AVERAGING = 0x1,
232 	MEDIAN_AVERAGING = 0x2,
233 };
234 
235 enum meson_sar_adc_num_samples {
236 	ONE_SAMPLE = 0x0,
237 	TWO_SAMPLES = 0x1,
238 	FOUR_SAMPLES = 0x2,
239 	EIGHT_SAMPLES = 0x3,
240 };
241 
242 enum meson_sar_adc_chan7_mux_sel {
243 	CHAN7_MUX_VSS = 0x0,
244 	CHAN7_MUX_VDD_DIV4 = 0x1,
245 	CHAN7_MUX_VDD_DIV2 = 0x2,
246 	CHAN7_MUX_VDD_MUL3_DIV4 = 0x3,
247 	CHAN7_MUX_VDD = 0x4,
248 	CHAN7_MUX_CH7_INPUT = 0x7,
249 };
250 
251 struct meson_sar_adc_param {
252 	bool					has_bl30_integration;
253 	unsigned long				clock_rate;
254 	u32					bandgap_reg;
255 	unsigned int				resolution;
256 	const struct regmap_config		*regmap_config;
257 	u8					temperature_trimming_bits;
258 	unsigned int				temperature_multiplier;
259 	unsigned int				temperature_divider;
260 };
261 
262 struct meson_sar_adc_data {
263 	const struct meson_sar_adc_param	*param;
264 	const char				*name;
265 };
266 
267 struct meson_sar_adc_priv {
268 	struct regmap				*regmap;
269 	struct regulator			*vref;
270 	const struct meson_sar_adc_param	*param;
271 	struct clk				*clkin;
272 	struct clk				*core_clk;
273 	struct clk				*adc_sel_clk;
274 	struct clk				*adc_clk;
275 	struct clk_gate				clk_gate;
276 	struct clk				*adc_div_clk;
277 	struct clk_divider			clk_div;
278 	struct completion			done;
279 	int					calibbias;
280 	int					calibscale;
281 	struct regmap				*tsc_regmap;
282 	bool					temperature_sensor_calibrated;
283 	u8					temperature_sensor_coefficient;
284 	u16					temperature_sensor_adc_val;
285 };
286 
287 static const struct regmap_config meson_sar_adc_regmap_config_gxbb = {
288 	.reg_bits = 8,
289 	.val_bits = 32,
290 	.reg_stride = 4,
291 	.max_register = MESON_SAR_ADC_REG13,
292 };
293 
294 static const struct regmap_config meson_sar_adc_regmap_config_meson8 = {
295 	.reg_bits = 8,
296 	.val_bits = 32,
297 	.reg_stride = 4,
298 	.max_register = MESON_SAR_ADC_DELTA_10,
299 };
300 
meson_sar_adc_get_fifo_count(struct iio_dev * indio_dev)301 static unsigned int meson_sar_adc_get_fifo_count(struct iio_dev *indio_dev)
302 {
303 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
304 	u32 regval;
305 
306 	regmap_read(priv->regmap, MESON_SAR_ADC_REG0, &regval);
307 
308 	return FIELD_GET(MESON_SAR_ADC_REG0_FIFO_COUNT_MASK, regval);
309 }
310 
meson_sar_adc_calib_val(struct iio_dev * indio_dev,int val)311 static int meson_sar_adc_calib_val(struct iio_dev *indio_dev, int val)
312 {
313 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
314 	int tmp;
315 
316 	/* use val_calib = scale * val_raw + offset calibration function */
317 	tmp = div_s64((s64)val * priv->calibscale, MILLION) + priv->calibbias;
318 
319 	return clamp(tmp, 0, (1 << priv->param->resolution) - 1);
320 }
321 
meson_sar_adc_wait_busy_clear(struct iio_dev * indio_dev)322 static int meson_sar_adc_wait_busy_clear(struct iio_dev *indio_dev)
323 {
324 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
325 	int regval, timeout = 10000;
326 
327 	/*
328 	 * NOTE: we need a small delay before reading the status, otherwise
329 	 * the sample engine may not have started internally (which would
330 	 * seem to us that sampling is already finished).
331 	 */
332 	do {
333 		udelay(1);
334 		regmap_read(priv->regmap, MESON_SAR_ADC_REG0, &regval);
335 	} while (FIELD_GET(MESON_SAR_ADC_REG0_BUSY_MASK, regval) && timeout--);
336 
337 	if (timeout < 0)
338 		return -ETIMEDOUT;
339 
340 	return 0;
341 }
342 
meson_sar_adc_read_raw_sample(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,int * val)343 static int meson_sar_adc_read_raw_sample(struct iio_dev *indio_dev,
344 					 const struct iio_chan_spec *chan,
345 					 int *val)
346 {
347 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
348 	int regval, fifo_chan, fifo_val, count;
349 
350 	if(!wait_for_completion_timeout(&priv->done,
351 				msecs_to_jiffies(MESON_SAR_ADC_TIMEOUT)))
352 		return -ETIMEDOUT;
353 
354 	count = meson_sar_adc_get_fifo_count(indio_dev);
355 	if (count != 1) {
356 		dev_err(&indio_dev->dev,
357 			"ADC FIFO has %d element(s) instead of one\n", count);
358 		return -EINVAL;
359 	}
360 
361 	regmap_read(priv->regmap, MESON_SAR_ADC_FIFO_RD, &regval);
362 	fifo_chan = FIELD_GET(MESON_SAR_ADC_FIFO_RD_CHAN_ID_MASK, regval);
363 	if (fifo_chan != chan->address) {
364 		dev_err(&indio_dev->dev,
365 			"ADC FIFO entry belongs to channel %d instead of %lu\n",
366 			fifo_chan, chan->address);
367 		return -EINVAL;
368 	}
369 
370 	fifo_val = FIELD_GET(MESON_SAR_ADC_FIFO_RD_SAMPLE_VALUE_MASK, regval);
371 	fifo_val &= GENMASK(priv->param->resolution - 1, 0);
372 	*val = meson_sar_adc_calib_val(indio_dev, fifo_val);
373 
374 	return 0;
375 }
376 
meson_sar_adc_set_averaging(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum meson_sar_adc_avg_mode mode,enum meson_sar_adc_num_samples samples)377 static void meson_sar_adc_set_averaging(struct iio_dev *indio_dev,
378 					const struct iio_chan_spec *chan,
379 					enum meson_sar_adc_avg_mode mode,
380 					enum meson_sar_adc_num_samples samples)
381 {
382 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
383 	int val, address = chan->address;
384 
385 	val = samples << MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_SHIFT(address);
386 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_AVG_CNTL,
387 			   MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_MASK(address),
388 			   val);
389 
390 	val = mode << MESON_SAR_ADC_AVG_CNTL_AVG_MODE_SHIFT(address);
391 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_AVG_CNTL,
392 			   MESON_SAR_ADC_AVG_CNTL_AVG_MODE_MASK(address), val);
393 }
394 
meson_sar_adc_enable_channel(struct iio_dev * indio_dev,const struct iio_chan_spec * chan)395 static void meson_sar_adc_enable_channel(struct iio_dev *indio_dev,
396 					const struct iio_chan_spec *chan)
397 {
398 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
399 	u32 regval;
400 
401 	/*
402 	 * the SAR ADC engine allows sampling multiple channels at the same
403 	 * time. to keep it simple we're only working with one *internal*
404 	 * channel, which starts counting at index 0 (which means: count = 1).
405 	 */
406 	regval = FIELD_PREP(MESON_SAR_ADC_CHAN_LIST_MAX_INDEX_MASK, 0);
407 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_LIST,
408 			   MESON_SAR_ADC_CHAN_LIST_MAX_INDEX_MASK, regval);
409 
410 	/* map channel index 0 to the channel which we want to read */
411 	regval = FIELD_PREP(MESON_SAR_ADC_CHAN_LIST_ENTRY_MASK(0),
412 			    chan->address);
413 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_LIST,
414 			   MESON_SAR_ADC_CHAN_LIST_ENTRY_MASK(0), regval);
415 
416 	regval = FIELD_PREP(MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MUX_MASK,
417 			    chan->address);
418 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_DETECT_IDLE_SW,
419 			   MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MUX_MASK,
420 			   regval);
421 
422 	regval = FIELD_PREP(MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MUX_SEL_MASK,
423 			    chan->address);
424 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_DETECT_IDLE_SW,
425 			   MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MUX_SEL_MASK,
426 			   regval);
427 
428 	if (chan->address == MESON_SAR_ADC_VOLTAGE_AND_TEMP_CHANNEL) {
429 		if (chan->type == IIO_TEMP)
430 			regval = MESON_SAR_ADC_DELTA_10_TEMP_SEL;
431 		else
432 			regval = 0;
433 
434 		regmap_update_bits(priv->regmap,
435 				   MESON_SAR_ADC_DELTA_10,
436 				   MESON_SAR_ADC_DELTA_10_TEMP_SEL, regval);
437 	}
438 }
439 
meson_sar_adc_set_chan7_mux(struct iio_dev * indio_dev,enum meson_sar_adc_chan7_mux_sel sel)440 static void meson_sar_adc_set_chan7_mux(struct iio_dev *indio_dev,
441 					enum meson_sar_adc_chan7_mux_sel sel)
442 {
443 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
444 	u32 regval;
445 
446 	regval = FIELD_PREP(MESON_SAR_ADC_REG3_CTRL_CHAN7_MUX_SEL_MASK, sel);
447 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
448 			   MESON_SAR_ADC_REG3_CTRL_CHAN7_MUX_SEL_MASK, regval);
449 
450 	usleep_range(10, 20);
451 }
452 
meson_sar_adc_start_sample_engine(struct iio_dev * indio_dev)453 static void meson_sar_adc_start_sample_engine(struct iio_dev *indio_dev)
454 {
455 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
456 
457 	reinit_completion(&priv->done);
458 
459 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
460 			   MESON_SAR_ADC_REG0_FIFO_IRQ_EN,
461 			   MESON_SAR_ADC_REG0_FIFO_IRQ_EN);
462 
463 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
464 			   MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE,
465 			   MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE);
466 
467 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
468 			   MESON_SAR_ADC_REG0_SAMPLING_START,
469 			   MESON_SAR_ADC_REG0_SAMPLING_START);
470 }
471 
meson_sar_adc_stop_sample_engine(struct iio_dev * indio_dev)472 static void meson_sar_adc_stop_sample_engine(struct iio_dev *indio_dev)
473 {
474 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
475 
476 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
477 			   MESON_SAR_ADC_REG0_FIFO_IRQ_EN, 0);
478 
479 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
480 			   MESON_SAR_ADC_REG0_SAMPLING_STOP,
481 			   MESON_SAR_ADC_REG0_SAMPLING_STOP);
482 
483 	/* wait until all modules are stopped */
484 	meson_sar_adc_wait_busy_clear(indio_dev);
485 
486 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
487 			   MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE, 0);
488 }
489 
meson_sar_adc_lock(struct iio_dev * indio_dev)490 static int meson_sar_adc_lock(struct iio_dev *indio_dev)
491 {
492 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
493 	int val, timeout = 10000;
494 
495 	mutex_lock(&indio_dev->mlock);
496 
497 	if (priv->param->has_bl30_integration) {
498 		/* prevent BL30 from using the SAR ADC while we are using it */
499 		regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
500 				MESON_SAR_ADC_DELAY_KERNEL_BUSY,
501 				MESON_SAR_ADC_DELAY_KERNEL_BUSY);
502 
503 		/*
504 		 * wait until BL30 releases it's lock (so we can use the SAR
505 		 * ADC)
506 		 */
507 		do {
508 			udelay(1);
509 			regmap_read(priv->regmap, MESON_SAR_ADC_DELAY, &val);
510 		} while (val & MESON_SAR_ADC_DELAY_BL30_BUSY && timeout--);
511 
512 		if (timeout < 0) {
513 			mutex_unlock(&indio_dev->mlock);
514 			return -ETIMEDOUT;
515 		}
516 	}
517 
518 	return 0;
519 }
520 
meson_sar_adc_unlock(struct iio_dev * indio_dev)521 static void meson_sar_adc_unlock(struct iio_dev *indio_dev)
522 {
523 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
524 
525 	if (priv->param->has_bl30_integration)
526 		/* allow BL30 to use the SAR ADC again */
527 		regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
528 				MESON_SAR_ADC_DELAY_KERNEL_BUSY, 0);
529 
530 	mutex_unlock(&indio_dev->mlock);
531 }
532 
meson_sar_adc_clear_fifo(struct iio_dev * indio_dev)533 static void meson_sar_adc_clear_fifo(struct iio_dev *indio_dev)
534 {
535 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
536 	unsigned int count, tmp;
537 
538 	for (count = 0; count < MESON_SAR_ADC_MAX_FIFO_SIZE; count++) {
539 		if (!meson_sar_adc_get_fifo_count(indio_dev))
540 			break;
541 
542 		regmap_read(priv->regmap, MESON_SAR_ADC_FIFO_RD, &tmp);
543 	}
544 }
545 
meson_sar_adc_get_sample(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum meson_sar_adc_avg_mode avg_mode,enum meson_sar_adc_num_samples avg_samples,int * val)546 static int meson_sar_adc_get_sample(struct iio_dev *indio_dev,
547 				    const struct iio_chan_spec *chan,
548 				    enum meson_sar_adc_avg_mode avg_mode,
549 				    enum meson_sar_adc_num_samples avg_samples,
550 				    int *val)
551 {
552 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
553 	int ret;
554 
555 	if (chan->type == IIO_TEMP && !priv->temperature_sensor_calibrated)
556 		return -ENOTSUPP;
557 
558 	ret = meson_sar_adc_lock(indio_dev);
559 	if (ret)
560 		return ret;
561 
562 	/* clear the FIFO to make sure we're not reading old values */
563 	meson_sar_adc_clear_fifo(indio_dev);
564 
565 	meson_sar_adc_set_averaging(indio_dev, chan, avg_mode, avg_samples);
566 
567 	meson_sar_adc_enable_channel(indio_dev, chan);
568 
569 	meson_sar_adc_start_sample_engine(indio_dev);
570 	ret = meson_sar_adc_read_raw_sample(indio_dev, chan, val);
571 	meson_sar_adc_stop_sample_engine(indio_dev);
572 
573 	meson_sar_adc_unlock(indio_dev);
574 
575 	if (ret) {
576 		dev_warn(indio_dev->dev.parent,
577 			 "failed to read sample for channel %lu: %d\n",
578 			 chan->address, ret);
579 		return ret;
580 	}
581 
582 	return IIO_VAL_INT;
583 }
584 
meson_sar_adc_iio_info_read_raw(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,int * val,int * val2,long mask)585 static int meson_sar_adc_iio_info_read_raw(struct iio_dev *indio_dev,
586 					   const struct iio_chan_spec *chan,
587 					   int *val, int *val2, long mask)
588 {
589 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
590 	int ret;
591 
592 	switch (mask) {
593 	case IIO_CHAN_INFO_RAW:
594 		return meson_sar_adc_get_sample(indio_dev, chan, NO_AVERAGING,
595 						ONE_SAMPLE, val);
596 		break;
597 
598 	case IIO_CHAN_INFO_AVERAGE_RAW:
599 		return meson_sar_adc_get_sample(indio_dev, chan,
600 						MEAN_AVERAGING, EIGHT_SAMPLES,
601 						val);
602 		break;
603 
604 	case IIO_CHAN_INFO_SCALE:
605 		if (chan->type == IIO_VOLTAGE) {
606 			ret = regulator_get_voltage(priv->vref);
607 			if (ret < 0) {
608 				dev_err(indio_dev->dev.parent,
609 					"failed to get vref voltage: %d\n",
610 					ret);
611 				return ret;
612 			}
613 
614 			*val = ret / 1000;
615 			*val2 = priv->param->resolution;
616 			return IIO_VAL_FRACTIONAL_LOG2;
617 		} else if (chan->type == IIO_TEMP) {
618 			/* SoC specific multiplier and divider */
619 			*val = priv->param->temperature_multiplier;
620 			*val2 = priv->param->temperature_divider;
621 
622 			/* celsius to millicelsius */
623 			*val *= 1000;
624 
625 			return IIO_VAL_FRACTIONAL;
626 		} else {
627 			return -EINVAL;
628 		}
629 
630 	case IIO_CHAN_INFO_CALIBBIAS:
631 		*val = priv->calibbias;
632 		return IIO_VAL_INT;
633 
634 	case IIO_CHAN_INFO_CALIBSCALE:
635 		*val = priv->calibscale / MILLION;
636 		*val2 = priv->calibscale % MILLION;
637 		return IIO_VAL_INT_PLUS_MICRO;
638 
639 	case IIO_CHAN_INFO_OFFSET:
640 		*val = DIV_ROUND_CLOSEST(MESON_SAR_ADC_TEMP_OFFSET *
641 					 priv->param->temperature_divider,
642 					 priv->param->temperature_multiplier);
643 		*val -= priv->temperature_sensor_adc_val;
644 		return IIO_VAL_INT;
645 
646 	default:
647 		return -EINVAL;
648 	}
649 }
650 
meson_sar_adc_clk_init(struct iio_dev * indio_dev,void __iomem * base)651 static int meson_sar_adc_clk_init(struct iio_dev *indio_dev,
652 				  void __iomem *base)
653 {
654 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
655 	struct clk_init_data init;
656 	const char *clk_parents[1];
657 
658 	init.name = devm_kasprintf(&indio_dev->dev, GFP_KERNEL, "%s#adc_div",
659 				   dev_name(indio_dev->dev.parent));
660 	if (!init.name)
661 		return -ENOMEM;
662 
663 	init.flags = 0;
664 	init.ops = &clk_divider_ops;
665 	clk_parents[0] = __clk_get_name(priv->clkin);
666 	init.parent_names = clk_parents;
667 	init.num_parents = 1;
668 
669 	priv->clk_div.reg = base + MESON_SAR_ADC_REG3;
670 	priv->clk_div.shift = MESON_SAR_ADC_REG3_ADC_CLK_DIV_SHIFT;
671 	priv->clk_div.width = MESON_SAR_ADC_REG3_ADC_CLK_DIV_WIDTH;
672 	priv->clk_div.hw.init = &init;
673 	priv->clk_div.flags = 0;
674 
675 	priv->adc_div_clk = devm_clk_register(&indio_dev->dev,
676 					      &priv->clk_div.hw);
677 	if (WARN_ON(IS_ERR(priv->adc_div_clk)))
678 		return PTR_ERR(priv->adc_div_clk);
679 
680 	init.name = devm_kasprintf(&indio_dev->dev, GFP_KERNEL, "%s#adc_en",
681 				   dev_name(indio_dev->dev.parent));
682 	if (!init.name)
683 		return -ENOMEM;
684 
685 	init.flags = CLK_SET_RATE_PARENT;
686 	init.ops = &clk_gate_ops;
687 	clk_parents[0] = __clk_get_name(priv->adc_div_clk);
688 	init.parent_names = clk_parents;
689 	init.num_parents = 1;
690 
691 	priv->clk_gate.reg = base + MESON_SAR_ADC_REG3;
692 	priv->clk_gate.bit_idx = __ffs(MESON_SAR_ADC_REG3_CLK_EN);
693 	priv->clk_gate.hw.init = &init;
694 
695 	priv->adc_clk = devm_clk_register(&indio_dev->dev, &priv->clk_gate.hw);
696 	if (WARN_ON(IS_ERR(priv->adc_clk)))
697 		return PTR_ERR(priv->adc_clk);
698 
699 	return 0;
700 }
701 
meson_sar_adc_temp_sensor_init(struct iio_dev * indio_dev)702 static int meson_sar_adc_temp_sensor_init(struct iio_dev *indio_dev)
703 {
704 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
705 	u8 *buf, trimming_bits, trimming_mask, upper_adc_val;
706 	struct nvmem_cell *temperature_calib;
707 	size_t read_len;
708 	int ret;
709 
710 	temperature_calib = devm_nvmem_cell_get(indio_dev->dev.parent,
711 						"temperature_calib");
712 	if (IS_ERR(temperature_calib)) {
713 		ret = PTR_ERR(temperature_calib);
714 
715 		/*
716 		 * leave the temperature sensor disabled if no calibration data
717 		 * was passed via nvmem-cells.
718 		 */
719 		if (ret == -ENODEV)
720 			return 0;
721 
722 		return dev_err_probe(indio_dev->dev.parent, ret,
723 				     "failed to get temperature_calib cell\n");
724 	}
725 
726 	priv->tsc_regmap =
727 		syscon_regmap_lookup_by_phandle(indio_dev->dev.parent->of_node,
728 						"amlogic,hhi-sysctrl");
729 	if (IS_ERR(priv->tsc_regmap)) {
730 		dev_err(indio_dev->dev.parent,
731 			"failed to get amlogic,hhi-sysctrl regmap\n");
732 		return PTR_ERR(priv->tsc_regmap);
733 	}
734 
735 	read_len = MESON_SAR_ADC_EFUSE_BYTES;
736 	buf = nvmem_cell_read(temperature_calib, &read_len);
737 	if (IS_ERR(buf)) {
738 		dev_err(indio_dev->dev.parent,
739 			"failed to read temperature_calib cell\n");
740 		return PTR_ERR(buf);
741 	} else if (read_len != MESON_SAR_ADC_EFUSE_BYTES) {
742 		kfree(buf);
743 		dev_err(indio_dev->dev.parent,
744 			"invalid read size of temperature_calib cell\n");
745 		return -EINVAL;
746 	}
747 
748 	trimming_bits = priv->param->temperature_trimming_bits;
749 	trimming_mask = BIT(trimming_bits) - 1;
750 
751 	priv->temperature_sensor_calibrated =
752 		buf[3] & MESON_SAR_ADC_EFUSE_BYTE3_IS_CALIBRATED;
753 	priv->temperature_sensor_coefficient = buf[2] & trimming_mask;
754 
755 	upper_adc_val = FIELD_GET(MESON_SAR_ADC_EFUSE_BYTE3_UPPER_ADC_VAL,
756 				  buf[3]);
757 
758 	priv->temperature_sensor_adc_val = buf[2];
759 	priv->temperature_sensor_adc_val |= upper_adc_val << BITS_PER_BYTE;
760 	priv->temperature_sensor_adc_val >>= trimming_bits;
761 
762 	kfree(buf);
763 
764 	return 0;
765 }
766 
meson_sar_adc_init(struct iio_dev * indio_dev)767 static int meson_sar_adc_init(struct iio_dev *indio_dev)
768 {
769 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
770 	int regval, i, ret;
771 
772 	/*
773 	 * make sure we start at CH7 input since the other muxes are only used
774 	 * for internal calibration.
775 	 */
776 	meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_CH7_INPUT);
777 
778 	if (priv->param->has_bl30_integration) {
779 		/*
780 		 * leave sampling delay and the input clocks as configured by
781 		 * BL30 to make sure BL30 gets the values it expects when
782 		 * reading the temperature sensor.
783 		 */
784 		regmap_read(priv->regmap, MESON_SAR_ADC_REG3, &regval);
785 		if (regval & MESON_SAR_ADC_REG3_BL30_INITIALIZED)
786 			return 0;
787 	}
788 
789 	meson_sar_adc_stop_sample_engine(indio_dev);
790 
791 	/*
792 	 * disable this bit as seems to be only relevant for Meson6 (based
793 	 * on the vendor driver), which we don't support at the moment.
794 	 */
795 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
796 			MESON_SAR_ADC_REG0_ADC_TEMP_SEN_SEL, 0);
797 
798 	/* disable all channels by default */
799 	regmap_write(priv->regmap, MESON_SAR_ADC_CHAN_LIST, 0x0);
800 
801 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
802 			   MESON_SAR_ADC_REG3_CTRL_SAMPLING_CLOCK_PHASE, 0);
803 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
804 			   MESON_SAR_ADC_REG3_CNTL_USE_SC_DLY,
805 			   MESON_SAR_ADC_REG3_CNTL_USE_SC_DLY);
806 
807 	/* delay between two samples = (10+1) * 1uS */
808 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
809 			   MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK,
810 			   FIELD_PREP(MESON_SAR_ADC_DELAY_SAMPLE_DLY_CNT_MASK,
811 				      10));
812 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
813 			   MESON_SAR_ADC_DELAY_SAMPLE_DLY_SEL_MASK,
814 			   FIELD_PREP(MESON_SAR_ADC_DELAY_SAMPLE_DLY_SEL_MASK,
815 				      0));
816 
817 	/* delay between two samples = (10+1) * 1uS */
818 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
819 			   MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK,
820 			   FIELD_PREP(MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK,
821 				      10));
822 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
823 			   MESON_SAR_ADC_DELAY_INPUT_DLY_SEL_MASK,
824 			   FIELD_PREP(MESON_SAR_ADC_DELAY_INPUT_DLY_SEL_MASK,
825 				      1));
826 
827 	/*
828 	 * set up the input channel muxes in MESON_SAR_ADC_CHAN_10_SW
829 	 * (0 = SAR_ADC_CH0, 1 = SAR_ADC_CH1)
830 	 */
831 	regval = FIELD_PREP(MESON_SAR_ADC_CHAN_10_SW_CHAN0_MUX_SEL_MASK, 0);
832 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_10_SW,
833 			   MESON_SAR_ADC_CHAN_10_SW_CHAN0_MUX_SEL_MASK,
834 			   regval);
835 	regval = FIELD_PREP(MESON_SAR_ADC_CHAN_10_SW_CHAN1_MUX_SEL_MASK, 1);
836 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_10_SW,
837 			   MESON_SAR_ADC_CHAN_10_SW_CHAN1_MUX_SEL_MASK,
838 			   regval);
839 
840 	/*
841 	 * set up the input channel muxes in MESON_SAR_ADC_AUX_SW
842 	 * (2 = SAR_ADC_CH2, 3 = SAR_ADC_CH3, ...) and enable
843 	 * MESON_SAR_ADC_AUX_SW_YP_DRIVE_SW and
844 	 * MESON_SAR_ADC_AUX_SW_XP_DRIVE_SW like the vendor driver.
845 	 */
846 	regval = 0;
847 	for (i = 2; i <= 7; i++)
848 		regval |= i << MESON_SAR_ADC_AUX_SW_MUX_SEL_CHAN_SHIFT(i);
849 	regval |= MESON_SAR_ADC_AUX_SW_YP_DRIVE_SW;
850 	regval |= MESON_SAR_ADC_AUX_SW_XP_DRIVE_SW;
851 	regmap_write(priv->regmap, MESON_SAR_ADC_AUX_SW, regval);
852 
853 	if (priv->temperature_sensor_calibrated) {
854 		regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
855 				   MESON_SAR_ADC_DELTA_10_TS_REVE1,
856 				   MESON_SAR_ADC_DELTA_10_TS_REVE1);
857 		regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
858 				   MESON_SAR_ADC_DELTA_10_TS_REVE0,
859 				   MESON_SAR_ADC_DELTA_10_TS_REVE0);
860 
861 		/*
862 		 * set bits [3:0] of the TSC (temperature sensor coefficient)
863 		 * to get the correct values when reading the temperature.
864 		 */
865 		regval = FIELD_PREP(MESON_SAR_ADC_DELTA_10_TS_C_MASK,
866 				    priv->temperature_sensor_coefficient);
867 		regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
868 				   MESON_SAR_ADC_DELTA_10_TS_C_MASK, regval);
869 
870 		if (priv->param->temperature_trimming_bits == 5) {
871 			if (priv->temperature_sensor_coefficient & BIT(4))
872 				regval = MESON_HHI_DPLL_TOP_0_TSC_BIT4;
873 			else
874 				regval = 0;
875 
876 			/*
877 			 * bit [4] (the 5th bit when starting to count at 1)
878 			 * of the TSC is located in the HHI register area.
879 			 */
880 			regmap_update_bits(priv->tsc_regmap,
881 					   MESON_HHI_DPLL_TOP_0,
882 					   MESON_HHI_DPLL_TOP_0_TSC_BIT4,
883 					   regval);
884 		}
885 	} else {
886 		regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
887 				   MESON_SAR_ADC_DELTA_10_TS_REVE1, 0);
888 		regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
889 				   MESON_SAR_ADC_DELTA_10_TS_REVE0, 0);
890 	}
891 
892 	ret = clk_set_parent(priv->adc_sel_clk, priv->clkin);
893 	if (ret) {
894 		dev_err(indio_dev->dev.parent,
895 			"failed to set adc parent to clkin\n");
896 		return ret;
897 	}
898 
899 	ret = clk_set_rate(priv->adc_clk, priv->param->clock_rate);
900 	if (ret) {
901 		dev_err(indio_dev->dev.parent,
902 			"failed to set adc clock rate\n");
903 		return ret;
904 	}
905 
906 	return 0;
907 }
908 
meson_sar_adc_set_bandgap(struct iio_dev * indio_dev,bool on_off)909 static void meson_sar_adc_set_bandgap(struct iio_dev *indio_dev, bool on_off)
910 {
911 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
912 	const struct meson_sar_adc_param *param = priv->param;
913 	u32 enable_mask;
914 
915 	if (param->bandgap_reg == MESON_SAR_ADC_REG11)
916 		enable_mask = MESON_SAR_ADC_REG11_BANDGAP_EN;
917 	else
918 		enable_mask = MESON_SAR_ADC_DELTA_10_TS_VBG_EN;
919 
920 	regmap_update_bits(priv->regmap, param->bandgap_reg, enable_mask,
921 			   on_off ? enable_mask : 0);
922 }
923 
meson_sar_adc_hw_enable(struct iio_dev * indio_dev)924 static int meson_sar_adc_hw_enable(struct iio_dev *indio_dev)
925 {
926 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
927 	int ret;
928 	u32 regval;
929 
930 	ret = meson_sar_adc_lock(indio_dev);
931 	if (ret)
932 		goto err_lock;
933 
934 	ret = regulator_enable(priv->vref);
935 	if (ret < 0) {
936 		dev_err(indio_dev->dev.parent,
937 			"failed to enable vref regulator\n");
938 		goto err_vref;
939 	}
940 
941 	ret = clk_prepare_enable(priv->core_clk);
942 	if (ret) {
943 		dev_err(indio_dev->dev.parent, "failed to enable core clk\n");
944 		goto err_core_clk;
945 	}
946 
947 	regval = FIELD_PREP(MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK, 1);
948 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
949 			   MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK, regval);
950 
951 	meson_sar_adc_set_bandgap(indio_dev, true);
952 
953 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
954 			   MESON_SAR_ADC_REG3_ADC_EN,
955 			   MESON_SAR_ADC_REG3_ADC_EN);
956 
957 	udelay(5);
958 
959 	ret = clk_prepare_enable(priv->adc_clk);
960 	if (ret) {
961 		dev_err(indio_dev->dev.parent, "failed to enable adc clk\n");
962 		goto err_adc_clk;
963 	}
964 
965 	meson_sar_adc_unlock(indio_dev);
966 
967 	return 0;
968 
969 err_adc_clk:
970 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
971 			   MESON_SAR_ADC_REG3_ADC_EN, 0);
972 	meson_sar_adc_set_bandgap(indio_dev, false);
973 	clk_disable_unprepare(priv->core_clk);
974 err_core_clk:
975 	regulator_disable(priv->vref);
976 err_vref:
977 	meson_sar_adc_unlock(indio_dev);
978 err_lock:
979 	return ret;
980 }
981 
meson_sar_adc_hw_disable(struct iio_dev * indio_dev)982 static int meson_sar_adc_hw_disable(struct iio_dev *indio_dev)
983 {
984 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
985 	int ret;
986 
987 	ret = meson_sar_adc_lock(indio_dev);
988 	if (ret)
989 		return ret;
990 
991 	clk_disable_unprepare(priv->adc_clk);
992 
993 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
994 			   MESON_SAR_ADC_REG3_ADC_EN, 0);
995 
996 	meson_sar_adc_set_bandgap(indio_dev, false);
997 
998 	clk_disable_unprepare(priv->core_clk);
999 
1000 	regulator_disable(priv->vref);
1001 
1002 	meson_sar_adc_unlock(indio_dev);
1003 
1004 	return 0;
1005 }
1006 
meson_sar_adc_irq(int irq,void * data)1007 static irqreturn_t meson_sar_adc_irq(int irq, void *data)
1008 {
1009 	struct iio_dev *indio_dev = data;
1010 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
1011 	unsigned int cnt, threshold;
1012 	u32 regval;
1013 
1014 	regmap_read(priv->regmap, MESON_SAR_ADC_REG0, &regval);
1015 	cnt = FIELD_GET(MESON_SAR_ADC_REG0_FIFO_COUNT_MASK, regval);
1016 	threshold = FIELD_GET(MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK, regval);
1017 
1018 	if (cnt < threshold)
1019 		return IRQ_NONE;
1020 
1021 	complete(&priv->done);
1022 
1023 	return IRQ_HANDLED;
1024 }
1025 
meson_sar_adc_calib(struct iio_dev * indio_dev)1026 static int meson_sar_adc_calib(struct iio_dev *indio_dev)
1027 {
1028 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
1029 	int ret, nominal0, nominal1, value0, value1;
1030 
1031 	/* use points 25% and 75% for calibration */
1032 	nominal0 = (1 << priv->param->resolution) / 4;
1033 	nominal1 = (1 << priv->param->resolution) * 3 / 4;
1034 
1035 	meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_VDD_DIV4);
1036 	usleep_range(10, 20);
1037 	ret = meson_sar_adc_get_sample(indio_dev,
1038 				       &indio_dev->channels[7],
1039 				       MEAN_AVERAGING, EIGHT_SAMPLES, &value0);
1040 	if (ret < 0)
1041 		goto out;
1042 
1043 	meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_VDD_MUL3_DIV4);
1044 	usleep_range(10, 20);
1045 	ret = meson_sar_adc_get_sample(indio_dev,
1046 				       &indio_dev->channels[7],
1047 				       MEAN_AVERAGING, EIGHT_SAMPLES, &value1);
1048 	if (ret < 0)
1049 		goto out;
1050 
1051 	if (value1 <= value0) {
1052 		ret = -EINVAL;
1053 		goto out;
1054 	}
1055 
1056 	priv->calibscale = div_s64((nominal1 - nominal0) * (s64)MILLION,
1057 				   value1 - value0);
1058 	priv->calibbias = nominal0 - div_s64((s64)value0 * priv->calibscale,
1059 					     MILLION);
1060 	ret = 0;
1061 out:
1062 	meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_CH7_INPUT);
1063 
1064 	return ret;
1065 }
1066 
1067 static const struct iio_info meson_sar_adc_iio_info = {
1068 	.read_raw = meson_sar_adc_iio_info_read_raw,
1069 };
1070 
1071 static const struct meson_sar_adc_param meson_sar_adc_meson8_param = {
1072 	.has_bl30_integration = false,
1073 	.clock_rate = 1150000,
1074 	.bandgap_reg = MESON_SAR_ADC_DELTA_10,
1075 	.regmap_config = &meson_sar_adc_regmap_config_meson8,
1076 	.resolution = 10,
1077 	.temperature_trimming_bits = 4,
1078 	.temperature_multiplier = 18 * 10000,
1079 	.temperature_divider = 1024 * 10 * 85,
1080 };
1081 
1082 static const struct meson_sar_adc_param meson_sar_adc_meson8b_param = {
1083 	.has_bl30_integration = false,
1084 	.clock_rate = 1150000,
1085 	.bandgap_reg = MESON_SAR_ADC_DELTA_10,
1086 	.regmap_config = &meson_sar_adc_regmap_config_meson8,
1087 	.resolution = 10,
1088 	.temperature_trimming_bits = 5,
1089 	.temperature_multiplier = 10,
1090 	.temperature_divider = 32,
1091 };
1092 
1093 static const struct meson_sar_adc_param meson_sar_adc_gxbb_param = {
1094 	.has_bl30_integration = true,
1095 	.clock_rate = 1200000,
1096 	.bandgap_reg = MESON_SAR_ADC_REG11,
1097 	.regmap_config = &meson_sar_adc_regmap_config_gxbb,
1098 	.resolution = 10,
1099 };
1100 
1101 static const struct meson_sar_adc_param meson_sar_adc_gxl_param = {
1102 	.has_bl30_integration = true,
1103 	.clock_rate = 1200000,
1104 	.bandgap_reg = MESON_SAR_ADC_REG11,
1105 	.regmap_config = &meson_sar_adc_regmap_config_gxbb,
1106 	.resolution = 12,
1107 };
1108 
1109 static const struct meson_sar_adc_data meson_sar_adc_meson8_data = {
1110 	.param = &meson_sar_adc_meson8_param,
1111 	.name = "meson-meson8-saradc",
1112 };
1113 
1114 static const struct meson_sar_adc_data meson_sar_adc_meson8b_data = {
1115 	.param = &meson_sar_adc_meson8b_param,
1116 	.name = "meson-meson8b-saradc",
1117 };
1118 
1119 static const struct meson_sar_adc_data meson_sar_adc_meson8m2_data = {
1120 	.param = &meson_sar_adc_meson8b_param,
1121 	.name = "meson-meson8m2-saradc",
1122 };
1123 
1124 static const struct meson_sar_adc_data meson_sar_adc_gxbb_data = {
1125 	.param = &meson_sar_adc_gxbb_param,
1126 	.name = "meson-gxbb-saradc",
1127 };
1128 
1129 static const struct meson_sar_adc_data meson_sar_adc_gxl_data = {
1130 	.param = &meson_sar_adc_gxl_param,
1131 	.name = "meson-gxl-saradc",
1132 };
1133 
1134 static const struct meson_sar_adc_data meson_sar_adc_gxm_data = {
1135 	.param = &meson_sar_adc_gxl_param,
1136 	.name = "meson-gxm-saradc",
1137 };
1138 
1139 static const struct meson_sar_adc_data meson_sar_adc_axg_data = {
1140 	.param = &meson_sar_adc_gxl_param,
1141 	.name = "meson-axg-saradc",
1142 };
1143 
1144 static const struct meson_sar_adc_data meson_sar_adc_g12a_data = {
1145 	.param = &meson_sar_adc_gxl_param,
1146 	.name = "meson-g12a-saradc",
1147 };
1148 
1149 static const struct of_device_id meson_sar_adc_of_match[] = {
1150 	{
1151 		.compatible = "amlogic,meson8-saradc",
1152 		.data = &meson_sar_adc_meson8_data,
1153 	}, {
1154 		.compatible = "amlogic,meson8b-saradc",
1155 		.data = &meson_sar_adc_meson8b_data,
1156 	}, {
1157 		.compatible = "amlogic,meson8m2-saradc",
1158 		.data = &meson_sar_adc_meson8m2_data,
1159 	}, {
1160 		.compatible = "amlogic,meson-gxbb-saradc",
1161 		.data = &meson_sar_adc_gxbb_data,
1162 	}, {
1163 		.compatible = "amlogic,meson-gxl-saradc",
1164 		.data = &meson_sar_adc_gxl_data,
1165 	}, {
1166 		.compatible = "amlogic,meson-gxm-saradc",
1167 		.data = &meson_sar_adc_gxm_data,
1168 	}, {
1169 		.compatible = "amlogic,meson-axg-saradc",
1170 		.data = &meson_sar_adc_axg_data,
1171 	}, {
1172 		.compatible = "amlogic,meson-g12a-saradc",
1173 		.data = &meson_sar_adc_g12a_data,
1174 	},
1175 	{ /* sentinel */ }
1176 };
1177 MODULE_DEVICE_TABLE(of, meson_sar_adc_of_match);
1178 
meson_sar_adc_probe(struct platform_device * pdev)1179 static int meson_sar_adc_probe(struct platform_device *pdev)
1180 {
1181 	const struct meson_sar_adc_data *match_data;
1182 	struct meson_sar_adc_priv *priv;
1183 	struct iio_dev *indio_dev;
1184 	void __iomem *base;
1185 	int irq, ret;
1186 
1187 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*priv));
1188 	if (!indio_dev) {
1189 		dev_err(&pdev->dev, "failed allocating iio device\n");
1190 		return -ENOMEM;
1191 	}
1192 
1193 	priv = iio_priv(indio_dev);
1194 	init_completion(&priv->done);
1195 
1196 	match_data = of_device_get_match_data(&pdev->dev);
1197 	if (!match_data) {
1198 		dev_err(&pdev->dev, "failed to get match data\n");
1199 		return -ENODEV;
1200 	}
1201 
1202 	priv->param = match_data->param;
1203 
1204 	indio_dev->name = match_data->name;
1205 	indio_dev->modes = INDIO_DIRECT_MODE;
1206 	indio_dev->info = &meson_sar_adc_iio_info;
1207 
1208 	base = devm_platform_ioremap_resource(pdev, 0);
1209 	if (IS_ERR(base))
1210 		return PTR_ERR(base);
1211 
1212 	priv->regmap = devm_regmap_init_mmio(&pdev->dev, base,
1213 					     priv->param->regmap_config);
1214 	if (IS_ERR(priv->regmap))
1215 		return PTR_ERR(priv->regmap);
1216 
1217 	irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1218 	if (!irq)
1219 		return -EINVAL;
1220 
1221 	ret = devm_request_irq(&pdev->dev, irq, meson_sar_adc_irq, IRQF_SHARED,
1222 			       dev_name(&pdev->dev), indio_dev);
1223 	if (ret)
1224 		return ret;
1225 
1226 	priv->clkin = devm_clk_get(&pdev->dev, "clkin");
1227 	if (IS_ERR(priv->clkin)) {
1228 		dev_err(&pdev->dev, "failed to get clkin\n");
1229 		return PTR_ERR(priv->clkin);
1230 	}
1231 
1232 	priv->core_clk = devm_clk_get(&pdev->dev, "core");
1233 	if (IS_ERR(priv->core_clk)) {
1234 		dev_err(&pdev->dev, "failed to get core clk\n");
1235 		return PTR_ERR(priv->core_clk);
1236 	}
1237 
1238 	priv->adc_clk = devm_clk_get(&pdev->dev, "adc_clk");
1239 	if (IS_ERR(priv->adc_clk)) {
1240 		if (PTR_ERR(priv->adc_clk) == -ENOENT) {
1241 			priv->adc_clk = NULL;
1242 		} else {
1243 			dev_err(&pdev->dev, "failed to get adc clk\n");
1244 			return PTR_ERR(priv->adc_clk);
1245 		}
1246 	}
1247 
1248 	priv->adc_sel_clk = devm_clk_get(&pdev->dev, "adc_sel");
1249 	if (IS_ERR(priv->adc_sel_clk)) {
1250 		if (PTR_ERR(priv->adc_sel_clk) == -ENOENT) {
1251 			priv->adc_sel_clk = NULL;
1252 		} else {
1253 			dev_err(&pdev->dev, "failed to get adc_sel clk\n");
1254 			return PTR_ERR(priv->adc_sel_clk);
1255 		}
1256 	}
1257 
1258 	/* on pre-GXBB SoCs the SAR ADC itself provides the ADC clock: */
1259 	if (!priv->adc_clk) {
1260 		ret = meson_sar_adc_clk_init(indio_dev, base);
1261 		if (ret)
1262 			return ret;
1263 	}
1264 
1265 	priv->vref = devm_regulator_get(&pdev->dev, "vref");
1266 	if (IS_ERR(priv->vref)) {
1267 		dev_err(&pdev->dev, "failed to get vref regulator\n");
1268 		return PTR_ERR(priv->vref);
1269 	}
1270 
1271 	priv->calibscale = MILLION;
1272 
1273 	if (priv->param->temperature_trimming_bits) {
1274 		ret = meson_sar_adc_temp_sensor_init(indio_dev);
1275 		if (ret)
1276 			return ret;
1277 	}
1278 
1279 	if (priv->temperature_sensor_calibrated) {
1280 		indio_dev->channels = meson_sar_adc_and_temp_iio_channels;
1281 		indio_dev->num_channels =
1282 			ARRAY_SIZE(meson_sar_adc_and_temp_iio_channels);
1283 	} else {
1284 		indio_dev->channels = meson_sar_adc_iio_channels;
1285 		indio_dev->num_channels =
1286 			ARRAY_SIZE(meson_sar_adc_iio_channels);
1287 	}
1288 
1289 	ret = meson_sar_adc_init(indio_dev);
1290 	if (ret)
1291 		goto err;
1292 
1293 	ret = meson_sar_adc_hw_enable(indio_dev);
1294 	if (ret)
1295 		goto err;
1296 
1297 	ret = meson_sar_adc_calib(indio_dev);
1298 	if (ret)
1299 		dev_warn(&pdev->dev, "calibration failed\n");
1300 
1301 	platform_set_drvdata(pdev, indio_dev);
1302 
1303 	ret = iio_device_register(indio_dev);
1304 	if (ret)
1305 		goto err_hw;
1306 
1307 	return 0;
1308 
1309 err_hw:
1310 	meson_sar_adc_hw_disable(indio_dev);
1311 err:
1312 	return ret;
1313 }
1314 
meson_sar_adc_remove(struct platform_device * pdev)1315 static int meson_sar_adc_remove(struct platform_device *pdev)
1316 {
1317 	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1318 
1319 	iio_device_unregister(indio_dev);
1320 
1321 	return meson_sar_adc_hw_disable(indio_dev);
1322 }
1323 
meson_sar_adc_suspend(struct device * dev)1324 static int __maybe_unused meson_sar_adc_suspend(struct device *dev)
1325 {
1326 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1327 
1328 	return meson_sar_adc_hw_disable(indio_dev);
1329 }
1330 
meson_sar_adc_resume(struct device * dev)1331 static int __maybe_unused meson_sar_adc_resume(struct device *dev)
1332 {
1333 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1334 
1335 	return meson_sar_adc_hw_enable(indio_dev);
1336 }
1337 
1338 static SIMPLE_DEV_PM_OPS(meson_sar_adc_pm_ops,
1339 			 meson_sar_adc_suspend, meson_sar_adc_resume);
1340 
1341 static struct platform_driver meson_sar_adc_driver = {
1342 	.probe		= meson_sar_adc_probe,
1343 	.remove		= meson_sar_adc_remove,
1344 	.driver		= {
1345 		.name	= "meson-saradc",
1346 		.of_match_table = meson_sar_adc_of_match,
1347 		.pm = &meson_sar_adc_pm_ops,
1348 	},
1349 };
1350 
1351 module_platform_driver(meson_sar_adc_driver);
1352 
1353 MODULE_AUTHOR("Martin Blumenstingl <martin.blumenstingl@googlemail.com>");
1354 MODULE_DESCRIPTION("Amlogic Meson SAR ADC driver");
1355 MODULE_LICENSE("GPL v2");
1356