1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * The Marvell camera core. This device appears in a number of settings,
4 * so it needs platform-specific support outside of the core.
5 *
6 * Copyright 2011 Jonathan Corbet corbet@lwn.net
7 * Copyright 2018 Lubomir Rintel <lkundrak@v3.sk>
8 */
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/i2c.h>
14 #include <linux/interrupt.h>
15 #include <linux/spinlock.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/wait.h>
19 #include <linux/list.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/delay.h>
22 #include <linux/vmalloc.h>
23 #include <linux/io.h>
24 #include <linux/clk.h>
25 #include <linux/clk-provider.h>
26 #include <linux/videodev2.h>
27 #include <linux/pm_runtime.h>
28 #include <media/v4l2-device.h>
29 #include <media/v4l2-ioctl.h>
30 #include <media/v4l2-ctrls.h>
31 #include <media/v4l2-event.h>
32 #include <media/videobuf2-vmalloc.h>
33 #include <media/videobuf2-dma-contig.h>
34 #include <media/videobuf2-dma-sg.h>
35
36 #include "mcam-core.h"
37
38 #ifdef MCAM_MODE_VMALLOC
39 /*
40 * Internal DMA buffer management. Since the controller cannot do S/G I/O,
41 * we must have physically contiguous buffers to bring frames into.
42 * These parameters control how many buffers we use, whether we
43 * allocate them at load time (better chance of success, but nails down
44 * memory) or when somebody tries to use the camera (riskier), and,
45 * for load-time allocation, how big they should be.
46 *
47 * The controller can cycle through three buffers. We could use
48 * more by flipping pointers around, but it probably makes little
49 * sense.
50 */
51
52 static bool alloc_bufs_at_read;
53 module_param(alloc_bufs_at_read, bool, 0444);
54 MODULE_PARM_DESC(alloc_bufs_at_read,
55 "Non-zero value causes DMA buffers to be allocated when the video capture device is read, rather than at module load time. This saves memory, but decreases the chances of successfully getting those buffers. This parameter is only used in the vmalloc buffer mode");
56
57 static int n_dma_bufs = 3;
58 module_param(n_dma_bufs, uint, 0644);
59 MODULE_PARM_DESC(n_dma_bufs,
60 "The number of DMA buffers to allocate. Can be either two (saves memory, makes timing tighter) or three.");
61
62 static int dma_buf_size = VGA_WIDTH * VGA_HEIGHT * 2; /* Worst case */
63 module_param(dma_buf_size, uint, 0444);
64 MODULE_PARM_DESC(dma_buf_size,
65 "The size of the allocated DMA buffers. If actual operating parameters require larger buffers, an attempt to reallocate will be made.");
66 #else /* MCAM_MODE_VMALLOC */
67 static const bool alloc_bufs_at_read;
68 static const int n_dma_bufs = 3; /* Used by S/G_PARM */
69 #endif /* MCAM_MODE_VMALLOC */
70
71 static bool flip;
72 module_param(flip, bool, 0444);
73 MODULE_PARM_DESC(flip,
74 "If set, the sensor will be instructed to flip the image vertically.");
75
76 static int buffer_mode = -1;
77 module_param(buffer_mode, int, 0444);
78 MODULE_PARM_DESC(buffer_mode,
79 "Set the buffer mode to be used; default is to go with what the platform driver asks for. Set to 0 for vmalloc, 1 for DMA contiguous.");
80
81 /*
82 * Status flags. Always manipulated with bit operations.
83 */
84 #define CF_BUF0_VALID 0 /* Buffers valid - first three */
85 #define CF_BUF1_VALID 1
86 #define CF_BUF2_VALID 2
87 #define CF_DMA_ACTIVE 3 /* A frame is incoming */
88 #define CF_CONFIG_NEEDED 4 /* Must configure hardware */
89 #define CF_SINGLE_BUFFER 5 /* Running with a single buffer */
90 #define CF_SG_RESTART 6 /* SG restart needed */
91 #define CF_FRAME_SOF0 7 /* Frame 0 started */
92 #define CF_FRAME_SOF1 8
93 #define CF_FRAME_SOF2 9
94
95 #define sensor_call(cam, o, f, args...) \
96 v4l2_subdev_call(cam->sensor, o, f, ##args)
97
98 #define notifier_to_mcam(notifier) \
99 container_of(notifier, struct mcam_camera, notifier)
100
101 static struct mcam_format_struct {
102 __u32 pixelformat;
103 int bpp; /* Bytes per pixel */
104 bool planar;
105 u32 mbus_code;
106 } mcam_formats[] = {
107 {
108 .pixelformat = V4L2_PIX_FMT_YUYV,
109 .mbus_code = MEDIA_BUS_FMT_YUYV8_2X8,
110 .bpp = 2,
111 .planar = false,
112 },
113 {
114 .pixelformat = V4L2_PIX_FMT_YVYU,
115 .mbus_code = MEDIA_BUS_FMT_YUYV8_2X8,
116 .bpp = 2,
117 .planar = false,
118 },
119 {
120 .pixelformat = V4L2_PIX_FMT_YUV420,
121 .mbus_code = MEDIA_BUS_FMT_YUYV8_2X8,
122 .bpp = 1,
123 .planar = true,
124 },
125 {
126 .pixelformat = V4L2_PIX_FMT_YVU420,
127 .mbus_code = MEDIA_BUS_FMT_YUYV8_2X8,
128 .bpp = 1,
129 .planar = true,
130 },
131 {
132 .pixelformat = V4L2_PIX_FMT_XRGB444,
133 .mbus_code = MEDIA_BUS_FMT_RGB444_2X8_PADHI_LE,
134 .bpp = 2,
135 .planar = false,
136 },
137 {
138 .pixelformat = V4L2_PIX_FMT_RGB565,
139 .mbus_code = MEDIA_BUS_FMT_RGB565_2X8_LE,
140 .bpp = 2,
141 .planar = false,
142 },
143 {
144 .pixelformat = V4L2_PIX_FMT_SBGGR8,
145 .mbus_code = MEDIA_BUS_FMT_SBGGR8_1X8,
146 .bpp = 1,
147 .planar = false,
148 },
149 };
150 #define N_MCAM_FMTS ARRAY_SIZE(mcam_formats)
151
mcam_find_format(u32 pixelformat)152 static struct mcam_format_struct *mcam_find_format(u32 pixelformat)
153 {
154 unsigned i;
155
156 for (i = 0; i < N_MCAM_FMTS; i++)
157 if (mcam_formats[i].pixelformat == pixelformat)
158 return mcam_formats + i;
159 /* Not found? Then return the first format. */
160 return mcam_formats;
161 }
162
163 /*
164 * The default format we use until somebody says otherwise.
165 */
166 static const struct v4l2_pix_format mcam_def_pix_format = {
167 .width = VGA_WIDTH,
168 .height = VGA_HEIGHT,
169 .pixelformat = V4L2_PIX_FMT_YUYV,
170 .field = V4L2_FIELD_NONE,
171 .bytesperline = VGA_WIDTH*2,
172 .sizeimage = VGA_WIDTH*VGA_HEIGHT*2,
173 .colorspace = V4L2_COLORSPACE_SRGB,
174 };
175
176 static const u32 mcam_def_mbus_code = MEDIA_BUS_FMT_YUYV8_2X8;
177
178
179 /*
180 * The two-word DMA descriptor format used by the Armada 610 and like. There
181 * Is a three-word format as well (set C1_DESC_3WORD) where the third
182 * word is a pointer to the next descriptor, but we don't use it. Two-word
183 * descriptors have to be contiguous in memory.
184 */
185 struct mcam_dma_desc {
186 u32 dma_addr;
187 u32 segment_len;
188 };
189
190 /*
191 * Our buffer type for working with videobuf2. Note that the vb2
192 * developers have decreed that struct vb2_v4l2_buffer must be at the
193 * beginning of this structure.
194 */
195 struct mcam_vb_buffer {
196 struct vb2_v4l2_buffer vb_buf;
197 struct list_head queue;
198 struct mcam_dma_desc *dma_desc; /* Descriptor virtual address */
199 dma_addr_t dma_desc_pa; /* Descriptor physical address */
200 };
201
vb_to_mvb(struct vb2_v4l2_buffer * vb)202 static inline struct mcam_vb_buffer *vb_to_mvb(struct vb2_v4l2_buffer *vb)
203 {
204 return container_of(vb, struct mcam_vb_buffer, vb_buf);
205 }
206
207 /*
208 * Hand a completed buffer back to user space.
209 */
mcam_buffer_done(struct mcam_camera * cam,int frame,struct vb2_v4l2_buffer * vbuf)210 static void mcam_buffer_done(struct mcam_camera *cam, int frame,
211 struct vb2_v4l2_buffer *vbuf)
212 {
213 vbuf->vb2_buf.planes[0].bytesused = cam->pix_format.sizeimage;
214 vbuf->sequence = cam->buf_seq[frame];
215 vbuf->field = V4L2_FIELD_NONE;
216 vbuf->vb2_buf.timestamp = ktime_get_ns();
217 vb2_set_plane_payload(&vbuf->vb2_buf, 0, cam->pix_format.sizeimage);
218 vb2_buffer_done(&vbuf->vb2_buf, VB2_BUF_STATE_DONE);
219 }
220
221
222
223 /*
224 * Debugging and related.
225 */
226 #define cam_err(cam, fmt, arg...) \
227 dev_err((cam)->dev, fmt, ##arg);
228 #define cam_warn(cam, fmt, arg...) \
229 dev_warn((cam)->dev, fmt, ##arg);
230 #define cam_dbg(cam, fmt, arg...) \
231 dev_dbg((cam)->dev, fmt, ##arg);
232
233
234 /*
235 * Flag manipulation helpers
236 */
mcam_reset_buffers(struct mcam_camera * cam)237 static void mcam_reset_buffers(struct mcam_camera *cam)
238 {
239 int i;
240
241 cam->next_buf = -1;
242 for (i = 0; i < cam->nbufs; i++) {
243 clear_bit(i, &cam->flags);
244 clear_bit(CF_FRAME_SOF0 + i, &cam->flags);
245 }
246 }
247
mcam_needs_config(struct mcam_camera * cam)248 static inline int mcam_needs_config(struct mcam_camera *cam)
249 {
250 return test_bit(CF_CONFIG_NEEDED, &cam->flags);
251 }
252
mcam_set_config_needed(struct mcam_camera * cam,int needed)253 static void mcam_set_config_needed(struct mcam_camera *cam, int needed)
254 {
255 if (needed)
256 set_bit(CF_CONFIG_NEEDED, &cam->flags);
257 else
258 clear_bit(CF_CONFIG_NEEDED, &cam->flags);
259 }
260
261 /* ------------------------------------------------------------------- */
262 /*
263 * Make the controller start grabbing images. Everything must
264 * be set up before doing this.
265 */
mcam_ctlr_start(struct mcam_camera * cam)266 static void mcam_ctlr_start(struct mcam_camera *cam)
267 {
268 /* set_bit performs a read, so no other barrier should be
269 needed here */
270 mcam_reg_set_bit(cam, REG_CTRL0, C0_ENABLE);
271 }
272
mcam_ctlr_stop(struct mcam_camera * cam)273 static void mcam_ctlr_stop(struct mcam_camera *cam)
274 {
275 mcam_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
276 }
277
mcam_enable_mipi(struct mcam_camera * mcam)278 static void mcam_enable_mipi(struct mcam_camera *mcam)
279 {
280 /* Using MIPI mode and enable MIPI */
281 if (mcam->calc_dphy)
282 mcam->calc_dphy(mcam);
283 cam_dbg(mcam, "camera: DPHY3=0x%x, DPHY5=0x%x, DPHY6=0x%x\n",
284 mcam->dphy[0], mcam->dphy[1], mcam->dphy[2]);
285 mcam_reg_write(mcam, REG_CSI2_DPHY3, mcam->dphy[0]);
286 mcam_reg_write(mcam, REG_CSI2_DPHY5, mcam->dphy[1]);
287 mcam_reg_write(mcam, REG_CSI2_DPHY6, mcam->dphy[2]);
288
289 if (!mcam->mipi_enabled) {
290 if (mcam->lane > 4 || mcam->lane <= 0) {
291 cam_warn(mcam, "lane number error\n");
292 mcam->lane = 1; /* set the default value */
293 }
294 /*
295 * 0x41 actives 1 lane
296 * 0x43 actives 2 lanes
297 * 0x45 actives 3 lanes (never happen)
298 * 0x47 actives 4 lanes
299 */
300 mcam_reg_write(mcam, REG_CSI2_CTRL0,
301 CSI2_C0_MIPI_EN | CSI2_C0_ACT_LANE(mcam->lane));
302 mcam->mipi_enabled = true;
303 }
304 }
305
mcam_disable_mipi(struct mcam_camera * mcam)306 static void mcam_disable_mipi(struct mcam_camera *mcam)
307 {
308 /* Using Parallel mode or disable MIPI */
309 mcam_reg_write(mcam, REG_CSI2_CTRL0, 0x0);
310 mcam_reg_write(mcam, REG_CSI2_DPHY3, 0x0);
311 mcam_reg_write(mcam, REG_CSI2_DPHY5, 0x0);
312 mcam_reg_write(mcam, REG_CSI2_DPHY6, 0x0);
313 mcam->mipi_enabled = false;
314 }
315
mcam_fmt_is_planar(__u32 pfmt)316 static bool mcam_fmt_is_planar(__u32 pfmt)
317 {
318 struct mcam_format_struct *f;
319
320 f = mcam_find_format(pfmt);
321 return f->planar;
322 }
323
mcam_write_yuv_bases(struct mcam_camera * cam,unsigned frame,dma_addr_t base)324 static void mcam_write_yuv_bases(struct mcam_camera *cam,
325 unsigned frame, dma_addr_t base)
326 {
327 struct v4l2_pix_format *fmt = &cam->pix_format;
328 u32 pixel_count = fmt->width * fmt->height;
329 dma_addr_t y, u = 0, v = 0;
330
331 y = base;
332
333 switch (fmt->pixelformat) {
334 case V4L2_PIX_FMT_YUV420:
335 u = y + pixel_count;
336 v = u + pixel_count / 4;
337 break;
338 case V4L2_PIX_FMT_YVU420:
339 v = y + pixel_count;
340 u = v + pixel_count / 4;
341 break;
342 default:
343 break;
344 }
345
346 mcam_reg_write(cam, REG_Y0BAR + frame * 4, y);
347 if (mcam_fmt_is_planar(fmt->pixelformat)) {
348 mcam_reg_write(cam, REG_U0BAR + frame * 4, u);
349 mcam_reg_write(cam, REG_V0BAR + frame * 4, v);
350 }
351 }
352
353 /* ------------------------------------------------------------------- */
354
355 #ifdef MCAM_MODE_VMALLOC
356 /*
357 * Code specific to the vmalloc buffer mode.
358 */
359
360 /*
361 * Allocate in-kernel DMA buffers for vmalloc mode.
362 */
mcam_alloc_dma_bufs(struct mcam_camera * cam,int loadtime)363 static int mcam_alloc_dma_bufs(struct mcam_camera *cam, int loadtime)
364 {
365 int i;
366
367 mcam_set_config_needed(cam, 1);
368 if (loadtime)
369 cam->dma_buf_size = dma_buf_size;
370 else
371 cam->dma_buf_size = cam->pix_format.sizeimage;
372 if (n_dma_bufs > 3)
373 n_dma_bufs = 3;
374
375 cam->nbufs = 0;
376 for (i = 0; i < n_dma_bufs; i++) {
377 cam->dma_bufs[i] = dma_alloc_coherent(cam->dev,
378 cam->dma_buf_size, cam->dma_handles + i,
379 GFP_KERNEL);
380 if (cam->dma_bufs[i] == NULL) {
381 cam_warn(cam, "Failed to allocate DMA buffer\n");
382 break;
383 }
384 (cam->nbufs)++;
385 }
386
387 switch (cam->nbufs) {
388 case 1:
389 dma_free_coherent(cam->dev, cam->dma_buf_size,
390 cam->dma_bufs[0], cam->dma_handles[0]);
391 cam->nbufs = 0;
392 fallthrough;
393 case 0:
394 cam_err(cam, "Insufficient DMA buffers, cannot operate\n");
395 return -ENOMEM;
396
397 case 2:
398 if (n_dma_bufs > 2)
399 cam_warn(cam, "Will limp along with only 2 buffers\n");
400 break;
401 }
402 return 0;
403 }
404
mcam_free_dma_bufs(struct mcam_camera * cam)405 static void mcam_free_dma_bufs(struct mcam_camera *cam)
406 {
407 int i;
408
409 for (i = 0; i < cam->nbufs; i++) {
410 dma_free_coherent(cam->dev, cam->dma_buf_size,
411 cam->dma_bufs[i], cam->dma_handles[i]);
412 cam->dma_bufs[i] = NULL;
413 }
414 cam->nbufs = 0;
415 }
416
417
418 /*
419 * Set up DMA buffers when operating in vmalloc mode
420 */
mcam_ctlr_dma_vmalloc(struct mcam_camera * cam)421 static void mcam_ctlr_dma_vmalloc(struct mcam_camera *cam)
422 {
423 /*
424 * Store the first two YUV buffers. Then either
425 * set the third if it exists, or tell the controller
426 * to just use two.
427 */
428 mcam_write_yuv_bases(cam, 0, cam->dma_handles[0]);
429 mcam_write_yuv_bases(cam, 1, cam->dma_handles[1]);
430 if (cam->nbufs > 2) {
431 mcam_write_yuv_bases(cam, 2, cam->dma_handles[2]);
432 mcam_reg_clear_bit(cam, REG_CTRL1, C1_TWOBUFS);
433 } else
434 mcam_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS);
435 if (cam->chip_id == MCAM_CAFE)
436 mcam_reg_write(cam, REG_UBAR, 0); /* 32 bits only */
437 }
438
439 /*
440 * Copy data out to user space in the vmalloc case
441 */
mcam_frame_tasklet(struct tasklet_struct * t)442 static void mcam_frame_tasklet(struct tasklet_struct *t)
443 {
444 struct mcam_camera *cam = from_tasklet(cam, t, s_tasklet);
445 int i;
446 unsigned long flags;
447 struct mcam_vb_buffer *buf;
448
449 spin_lock_irqsave(&cam->dev_lock, flags);
450 for (i = 0; i < cam->nbufs; i++) {
451 int bufno = cam->next_buf;
452
453 if (cam->state != S_STREAMING || bufno < 0)
454 break; /* I/O got stopped */
455 if (++(cam->next_buf) >= cam->nbufs)
456 cam->next_buf = 0;
457 if (!test_bit(bufno, &cam->flags))
458 continue;
459 if (list_empty(&cam->buffers)) {
460 cam->frame_state.singles++;
461 break; /* Leave it valid, hope for better later */
462 }
463 cam->frame_state.delivered++;
464 clear_bit(bufno, &cam->flags);
465 buf = list_first_entry(&cam->buffers, struct mcam_vb_buffer,
466 queue);
467 list_del_init(&buf->queue);
468 /*
469 * Drop the lock during the big copy. This *should* be safe...
470 */
471 spin_unlock_irqrestore(&cam->dev_lock, flags);
472 memcpy(vb2_plane_vaddr(&buf->vb_buf.vb2_buf, 0),
473 cam->dma_bufs[bufno],
474 cam->pix_format.sizeimage);
475 mcam_buffer_done(cam, bufno, &buf->vb_buf);
476 spin_lock_irqsave(&cam->dev_lock, flags);
477 }
478 spin_unlock_irqrestore(&cam->dev_lock, flags);
479 }
480
481
482 /*
483 * Make sure our allocated buffers are up to the task.
484 */
mcam_check_dma_buffers(struct mcam_camera * cam)485 static int mcam_check_dma_buffers(struct mcam_camera *cam)
486 {
487 if (cam->nbufs > 0 && cam->dma_buf_size < cam->pix_format.sizeimage)
488 mcam_free_dma_bufs(cam);
489 if (cam->nbufs == 0)
490 return mcam_alloc_dma_bufs(cam, 0);
491 return 0;
492 }
493
mcam_vmalloc_done(struct mcam_camera * cam,int frame)494 static void mcam_vmalloc_done(struct mcam_camera *cam, int frame)
495 {
496 tasklet_schedule(&cam->s_tasklet);
497 }
498
499 #else /* MCAM_MODE_VMALLOC */
500
mcam_alloc_dma_bufs(struct mcam_camera * cam,int loadtime)501 static inline int mcam_alloc_dma_bufs(struct mcam_camera *cam, int loadtime)
502 {
503 return 0;
504 }
505
mcam_free_dma_bufs(struct mcam_camera * cam)506 static inline void mcam_free_dma_bufs(struct mcam_camera *cam)
507 {
508 return;
509 }
510
mcam_check_dma_buffers(struct mcam_camera * cam)511 static inline int mcam_check_dma_buffers(struct mcam_camera *cam)
512 {
513 return 0;
514 }
515
516
517
518 #endif /* MCAM_MODE_VMALLOC */
519
520
521 #ifdef MCAM_MODE_DMA_CONTIG
522 /* ---------------------------------------------------------------------- */
523 /*
524 * DMA-contiguous code.
525 */
526
527 /*
528 * Set up a contiguous buffer for the given frame. Here also is where
529 * the underrun strategy is set: if there is no buffer available, reuse
530 * the buffer from the other BAR and set the CF_SINGLE_BUFFER flag to
531 * keep the interrupt handler from giving that buffer back to user
532 * space. In this way, we always have a buffer to DMA to and don't
533 * have to try to play games stopping and restarting the controller.
534 */
mcam_set_contig_buffer(struct mcam_camera * cam,int frame)535 static void mcam_set_contig_buffer(struct mcam_camera *cam, int frame)
536 {
537 struct mcam_vb_buffer *buf;
538 dma_addr_t dma_handle;
539 struct vb2_v4l2_buffer *vb;
540
541 /*
542 * If there are no available buffers, go into single mode
543 */
544 if (list_empty(&cam->buffers)) {
545 buf = cam->vb_bufs[frame ^ 0x1];
546 set_bit(CF_SINGLE_BUFFER, &cam->flags);
547 cam->frame_state.singles++;
548 } else {
549 /*
550 * OK, we have a buffer we can use.
551 */
552 buf = list_first_entry(&cam->buffers, struct mcam_vb_buffer,
553 queue);
554 list_del_init(&buf->queue);
555 clear_bit(CF_SINGLE_BUFFER, &cam->flags);
556 }
557
558 cam->vb_bufs[frame] = buf;
559 vb = &buf->vb_buf;
560
561 dma_handle = vb2_dma_contig_plane_dma_addr(&vb->vb2_buf, 0);
562 mcam_write_yuv_bases(cam, frame, dma_handle);
563 }
564
565 /*
566 * Initial B_DMA_contig setup.
567 */
mcam_ctlr_dma_contig(struct mcam_camera * cam)568 static void mcam_ctlr_dma_contig(struct mcam_camera *cam)
569 {
570 mcam_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS);
571 cam->nbufs = 2;
572 mcam_set_contig_buffer(cam, 0);
573 mcam_set_contig_buffer(cam, 1);
574 }
575
576 /*
577 * Frame completion handling.
578 */
mcam_dma_contig_done(struct mcam_camera * cam,int frame)579 static void mcam_dma_contig_done(struct mcam_camera *cam, int frame)
580 {
581 struct mcam_vb_buffer *buf = cam->vb_bufs[frame];
582
583 if (!test_bit(CF_SINGLE_BUFFER, &cam->flags)) {
584 cam->frame_state.delivered++;
585 cam->vb_bufs[frame] = NULL;
586 mcam_buffer_done(cam, frame, &buf->vb_buf);
587 }
588 mcam_set_contig_buffer(cam, frame);
589 }
590
591 #endif /* MCAM_MODE_DMA_CONTIG */
592
593 #ifdef MCAM_MODE_DMA_SG
594 /* ---------------------------------------------------------------------- */
595 /*
596 * Scatter/gather-specific code.
597 */
598
599 /*
600 * Set up the next buffer for S/G I/O; caller should be sure that
601 * the controller is stopped and a buffer is available.
602 */
mcam_sg_next_buffer(struct mcam_camera * cam)603 static void mcam_sg_next_buffer(struct mcam_camera *cam)
604 {
605 struct mcam_vb_buffer *buf;
606 struct sg_table *sg_table;
607
608 buf = list_first_entry(&cam->buffers, struct mcam_vb_buffer, queue);
609 list_del_init(&buf->queue);
610 sg_table = vb2_dma_sg_plane_desc(&buf->vb_buf.vb2_buf, 0);
611 /*
612 * Very Bad Not Good Things happen if you don't clear
613 * C1_DESC_ENA before making any descriptor changes.
614 */
615 mcam_reg_clear_bit(cam, REG_CTRL1, C1_DESC_ENA);
616 mcam_reg_write(cam, REG_DMA_DESC_Y, buf->dma_desc_pa);
617 mcam_reg_write(cam, REG_DESC_LEN_Y,
618 sg_table->nents * sizeof(struct mcam_dma_desc));
619 mcam_reg_write(cam, REG_DESC_LEN_U, 0);
620 mcam_reg_write(cam, REG_DESC_LEN_V, 0);
621 mcam_reg_set_bit(cam, REG_CTRL1, C1_DESC_ENA);
622 cam->vb_bufs[0] = buf;
623 }
624
625 /*
626 * Initial B_DMA_sg setup
627 */
mcam_ctlr_dma_sg(struct mcam_camera * cam)628 static void mcam_ctlr_dma_sg(struct mcam_camera *cam)
629 {
630 /*
631 * The list-empty condition can hit us at resume time
632 * if the buffer list was empty when the system was suspended.
633 */
634 if (list_empty(&cam->buffers)) {
635 set_bit(CF_SG_RESTART, &cam->flags);
636 return;
637 }
638
639 mcam_reg_clear_bit(cam, REG_CTRL1, C1_DESC_3WORD);
640 mcam_sg_next_buffer(cam);
641 cam->nbufs = 3;
642 }
643
644
645 /*
646 * Frame completion with S/G is trickier. We can't muck with
647 * a descriptor chain on the fly, since the controller buffers it
648 * internally. So we have to actually stop and restart; Marvell
649 * says this is the way to do it.
650 *
651 * Of course, stopping is easier said than done; experience shows
652 * that the controller can start a frame *after* C0_ENABLE has been
653 * cleared. So when running in S/G mode, the controller is "stopped"
654 * on receipt of the start-of-frame interrupt. That means we can
655 * safely change the DMA descriptor array here and restart things
656 * (assuming there's another buffer waiting to go).
657 */
mcam_dma_sg_done(struct mcam_camera * cam,int frame)658 static void mcam_dma_sg_done(struct mcam_camera *cam, int frame)
659 {
660 struct mcam_vb_buffer *buf = cam->vb_bufs[0];
661
662 /*
663 * If we're no longer supposed to be streaming, don't do anything.
664 */
665 if (cam->state != S_STREAMING)
666 return;
667 /*
668 * If we have another buffer available, put it in and
669 * restart the engine.
670 */
671 if (!list_empty(&cam->buffers)) {
672 mcam_sg_next_buffer(cam);
673 mcam_ctlr_start(cam);
674 /*
675 * Otherwise set CF_SG_RESTART and the controller will
676 * be restarted once another buffer shows up.
677 */
678 } else {
679 set_bit(CF_SG_RESTART, &cam->flags);
680 cam->frame_state.singles++;
681 cam->vb_bufs[0] = NULL;
682 }
683 /*
684 * Now we can give the completed frame back to user space.
685 */
686 cam->frame_state.delivered++;
687 mcam_buffer_done(cam, frame, &buf->vb_buf);
688 }
689
690
691 /*
692 * Scatter/gather mode requires stopping the controller between
693 * frames so we can put in a new DMA descriptor array. If no new
694 * buffer exists at frame completion, the controller is left stopped;
695 * this function is charged with gettig things going again.
696 */
mcam_sg_restart(struct mcam_camera * cam)697 static void mcam_sg_restart(struct mcam_camera *cam)
698 {
699 mcam_ctlr_dma_sg(cam);
700 mcam_ctlr_start(cam);
701 clear_bit(CF_SG_RESTART, &cam->flags);
702 }
703
704 #else /* MCAM_MODE_DMA_SG */
705
mcam_sg_restart(struct mcam_camera * cam)706 static inline void mcam_sg_restart(struct mcam_camera *cam)
707 {
708 return;
709 }
710
711 #endif /* MCAM_MODE_DMA_SG */
712
713 /* ---------------------------------------------------------------------- */
714 /*
715 * Buffer-mode-independent controller code.
716 */
717
718 /*
719 * Image format setup
720 */
mcam_ctlr_image(struct mcam_camera * cam)721 static void mcam_ctlr_image(struct mcam_camera *cam)
722 {
723 struct v4l2_pix_format *fmt = &cam->pix_format;
724 u32 widthy = 0, widthuv = 0, imgsz_h, imgsz_w;
725
726 cam_dbg(cam, "camera: bytesperline = %d; height = %d\n",
727 fmt->bytesperline, fmt->sizeimage / fmt->bytesperline);
728 imgsz_h = (fmt->height << IMGSZ_V_SHIFT) & IMGSZ_V_MASK;
729 imgsz_w = (fmt->width * 2) & IMGSZ_H_MASK;
730
731 switch (fmt->pixelformat) {
732 case V4L2_PIX_FMT_YUYV:
733 case V4L2_PIX_FMT_YVYU:
734 widthy = fmt->width * 2;
735 widthuv = 0;
736 break;
737 case V4L2_PIX_FMT_YUV420:
738 case V4L2_PIX_FMT_YVU420:
739 widthy = fmt->width;
740 widthuv = fmt->width / 2;
741 break;
742 default:
743 widthy = fmt->bytesperline;
744 widthuv = 0;
745 break;
746 }
747
748 mcam_reg_write_mask(cam, REG_IMGPITCH, widthuv << 16 | widthy,
749 IMGP_YP_MASK | IMGP_UVP_MASK);
750 mcam_reg_write(cam, REG_IMGSIZE, imgsz_h | imgsz_w);
751 mcam_reg_write(cam, REG_IMGOFFSET, 0x0);
752
753 /*
754 * Tell the controller about the image format we are using.
755 */
756 switch (fmt->pixelformat) {
757 case V4L2_PIX_FMT_YUV420:
758 case V4L2_PIX_FMT_YVU420:
759 mcam_reg_write_mask(cam, REG_CTRL0,
760 C0_DF_YUV | C0_YUV_420PL | C0_YUVE_VYUY, C0_DF_MASK);
761 break;
762 case V4L2_PIX_FMT_YUYV:
763 mcam_reg_write_mask(cam, REG_CTRL0,
764 C0_DF_YUV | C0_YUV_PACKED | C0_YUVE_NOSWAP, C0_DF_MASK);
765 break;
766 case V4L2_PIX_FMT_YVYU:
767 mcam_reg_write_mask(cam, REG_CTRL0,
768 C0_DF_YUV | C0_YUV_PACKED | C0_YUVE_SWAP24, C0_DF_MASK);
769 break;
770 case V4L2_PIX_FMT_XRGB444:
771 mcam_reg_write_mask(cam, REG_CTRL0,
772 C0_DF_RGB | C0_RGBF_444 | C0_RGB4_XBGR, C0_DF_MASK);
773 break;
774 case V4L2_PIX_FMT_RGB565:
775 mcam_reg_write_mask(cam, REG_CTRL0,
776 C0_DF_RGB | C0_RGBF_565 | C0_RGB5_BGGR, C0_DF_MASK);
777 break;
778 case V4L2_PIX_FMT_SBGGR8:
779 mcam_reg_write_mask(cam, REG_CTRL0,
780 C0_DF_RGB | C0_RGB5_GRBG, C0_DF_MASK);
781 break;
782 default:
783 cam_err(cam, "camera: unknown format: %#x\n", fmt->pixelformat);
784 break;
785 }
786
787 /*
788 * Make sure it knows we want to use hsync/vsync.
789 */
790 mcam_reg_write_mask(cam, REG_CTRL0, C0_SIF_HVSYNC, C0_SIFM_MASK);
791 }
792
793
794 /*
795 * Configure the controller for operation; caller holds the
796 * device mutex.
797 */
mcam_ctlr_configure(struct mcam_camera * cam)798 static int mcam_ctlr_configure(struct mcam_camera *cam)
799 {
800 unsigned long flags;
801
802 spin_lock_irqsave(&cam->dev_lock, flags);
803 clear_bit(CF_SG_RESTART, &cam->flags);
804 cam->dma_setup(cam);
805 mcam_ctlr_image(cam);
806 mcam_set_config_needed(cam, 0);
807 spin_unlock_irqrestore(&cam->dev_lock, flags);
808 return 0;
809 }
810
mcam_ctlr_irq_enable(struct mcam_camera * cam)811 static void mcam_ctlr_irq_enable(struct mcam_camera *cam)
812 {
813 /*
814 * Clear any pending interrupts, since we do not
815 * expect to have I/O active prior to enabling.
816 */
817 mcam_reg_write(cam, REG_IRQSTAT, FRAMEIRQS);
818 mcam_reg_set_bit(cam, REG_IRQMASK, FRAMEIRQS);
819 }
820
mcam_ctlr_irq_disable(struct mcam_camera * cam)821 static void mcam_ctlr_irq_disable(struct mcam_camera *cam)
822 {
823 mcam_reg_clear_bit(cam, REG_IRQMASK, FRAMEIRQS);
824 }
825
826 /*
827 * Stop the controller, and don't return until we're really sure that no
828 * further DMA is going on.
829 */
mcam_ctlr_stop_dma(struct mcam_camera * cam)830 static void mcam_ctlr_stop_dma(struct mcam_camera *cam)
831 {
832 unsigned long flags;
833
834 /*
835 * Theory: stop the camera controller (whether it is operating
836 * or not). Delay briefly just in case we race with the SOF
837 * interrupt, then wait until no DMA is active.
838 */
839 spin_lock_irqsave(&cam->dev_lock, flags);
840 clear_bit(CF_SG_RESTART, &cam->flags);
841 mcam_ctlr_stop(cam);
842 cam->state = S_IDLE;
843 spin_unlock_irqrestore(&cam->dev_lock, flags);
844 /*
845 * This is a brutally long sleep, but experience shows that
846 * it can take the controller a while to get the message that
847 * it needs to stop grabbing frames. In particular, we can
848 * sometimes (on mmp) get a frame at the end WITHOUT the
849 * start-of-frame indication.
850 */
851 msleep(150);
852 if (test_bit(CF_DMA_ACTIVE, &cam->flags))
853 cam_err(cam, "Timeout waiting for DMA to end\n");
854 /* This would be bad news - what now? */
855 spin_lock_irqsave(&cam->dev_lock, flags);
856 mcam_ctlr_irq_disable(cam);
857 spin_unlock_irqrestore(&cam->dev_lock, flags);
858 }
859
860 /*
861 * Power up and down.
862 */
mcam_ctlr_power_up(struct mcam_camera * cam)863 static int mcam_ctlr_power_up(struct mcam_camera *cam)
864 {
865 unsigned long flags;
866 int ret;
867
868 spin_lock_irqsave(&cam->dev_lock, flags);
869 if (cam->plat_power_up) {
870 ret = cam->plat_power_up(cam);
871 if (ret) {
872 spin_unlock_irqrestore(&cam->dev_lock, flags);
873 return ret;
874 }
875 }
876 mcam_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
877 spin_unlock_irqrestore(&cam->dev_lock, flags);
878 return 0;
879 }
880
mcam_ctlr_power_down(struct mcam_camera * cam)881 static void mcam_ctlr_power_down(struct mcam_camera *cam)
882 {
883 unsigned long flags;
884
885 spin_lock_irqsave(&cam->dev_lock, flags);
886 /*
887 * School of hard knocks department: be sure we do any register
888 * twiddling on the controller *before* calling the platform
889 * power down routine.
890 */
891 mcam_reg_set_bit(cam, REG_CTRL1, C1_PWRDWN);
892 if (cam->plat_power_down)
893 cam->plat_power_down(cam);
894 spin_unlock_irqrestore(&cam->dev_lock, flags);
895 }
896
897 /* ---------------------------------------------------------------------- */
898 /*
899 * Master sensor clock.
900 */
mclk_prepare(struct clk_hw * hw)901 static int mclk_prepare(struct clk_hw *hw)
902 {
903 struct mcam_camera *cam = container_of(hw, struct mcam_camera, mclk_hw);
904
905 clk_prepare(cam->clk[0]);
906 return 0;
907 }
908
mclk_unprepare(struct clk_hw * hw)909 static void mclk_unprepare(struct clk_hw *hw)
910 {
911 struct mcam_camera *cam = container_of(hw, struct mcam_camera, mclk_hw);
912
913 clk_unprepare(cam->clk[0]);
914 }
915
mclk_enable(struct clk_hw * hw)916 static int mclk_enable(struct clk_hw *hw)
917 {
918 struct mcam_camera *cam = container_of(hw, struct mcam_camera, mclk_hw);
919 int mclk_src;
920 int mclk_div;
921 int ret;
922
923 /*
924 * Clock the sensor appropriately. Controller clock should
925 * be 48MHz, sensor "typical" value is half that.
926 */
927 if (cam->bus_type == V4L2_MBUS_CSI2_DPHY) {
928 mclk_src = cam->mclk_src;
929 mclk_div = cam->mclk_div;
930 } else {
931 mclk_src = 3;
932 mclk_div = 2;
933 }
934
935 ret = pm_runtime_resume_and_get(cam->dev);
936 if (ret < 0)
937 return ret;
938 clk_enable(cam->clk[0]);
939 mcam_reg_write(cam, REG_CLKCTRL, (mclk_src << 29) | mclk_div);
940 mcam_ctlr_power_up(cam);
941
942 return 0;
943 }
944
mclk_disable(struct clk_hw * hw)945 static void mclk_disable(struct clk_hw *hw)
946 {
947 struct mcam_camera *cam = container_of(hw, struct mcam_camera, mclk_hw);
948
949 mcam_ctlr_power_down(cam);
950 clk_disable(cam->clk[0]);
951 pm_runtime_put(cam->dev);
952 }
953
mclk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)954 static unsigned long mclk_recalc_rate(struct clk_hw *hw,
955 unsigned long parent_rate)
956 {
957 return 48000000;
958 }
959
960 static const struct clk_ops mclk_ops = {
961 .prepare = mclk_prepare,
962 .unprepare = mclk_unprepare,
963 .enable = mclk_enable,
964 .disable = mclk_disable,
965 .recalc_rate = mclk_recalc_rate,
966 };
967
968 /* -------------------------------------------------------------------- */
969 /*
970 * Communications with the sensor.
971 */
972
__mcam_cam_reset(struct mcam_camera * cam)973 static int __mcam_cam_reset(struct mcam_camera *cam)
974 {
975 return sensor_call(cam, core, reset, 0);
976 }
977
978 /*
979 * We have found the sensor on the i2c. Let's try to have a
980 * conversation.
981 */
mcam_cam_init(struct mcam_camera * cam)982 static int mcam_cam_init(struct mcam_camera *cam)
983 {
984 int ret;
985
986 if (cam->state != S_NOTREADY)
987 cam_warn(cam, "Cam init with device in funky state %d",
988 cam->state);
989 ret = __mcam_cam_reset(cam);
990 /* Get/set parameters? */
991 cam->state = S_IDLE;
992 return ret;
993 }
994
995 /*
996 * Configure the sensor to match the parameters we have. Caller should
997 * hold s_mutex
998 */
mcam_cam_set_flip(struct mcam_camera * cam)999 static int mcam_cam_set_flip(struct mcam_camera *cam)
1000 {
1001 struct v4l2_control ctrl;
1002
1003 memset(&ctrl, 0, sizeof(ctrl));
1004 ctrl.id = V4L2_CID_VFLIP;
1005 ctrl.value = flip;
1006 return v4l2_s_ctrl(NULL, cam->sensor->ctrl_handler, &ctrl);
1007 }
1008
1009
mcam_cam_configure(struct mcam_camera * cam)1010 static int mcam_cam_configure(struct mcam_camera *cam)
1011 {
1012 struct v4l2_subdev_format format = {
1013 .which = V4L2_SUBDEV_FORMAT_ACTIVE,
1014 };
1015 int ret;
1016
1017 v4l2_fill_mbus_format(&format.format, &cam->pix_format, cam->mbus_code);
1018 ret = sensor_call(cam, core, init, 0);
1019 if (ret == 0)
1020 ret = sensor_call(cam, pad, set_fmt, NULL, &format);
1021 /*
1022 * OV7670 does weird things if flip is set *before* format...
1023 */
1024 ret += mcam_cam_set_flip(cam);
1025 return ret;
1026 }
1027
1028 /*
1029 * Get everything ready, and start grabbing frames.
1030 */
mcam_read_setup(struct mcam_camera * cam)1031 static int mcam_read_setup(struct mcam_camera *cam)
1032 {
1033 int ret;
1034 unsigned long flags;
1035
1036 /*
1037 * Configuration. If we still don't have DMA buffers,
1038 * make one last, desperate attempt.
1039 */
1040 if (cam->buffer_mode == B_vmalloc && cam->nbufs == 0 &&
1041 mcam_alloc_dma_bufs(cam, 0))
1042 return -ENOMEM;
1043
1044 if (mcam_needs_config(cam)) {
1045 mcam_cam_configure(cam);
1046 ret = mcam_ctlr_configure(cam);
1047 if (ret)
1048 return ret;
1049 }
1050
1051 /*
1052 * Turn it loose.
1053 */
1054 spin_lock_irqsave(&cam->dev_lock, flags);
1055 clear_bit(CF_DMA_ACTIVE, &cam->flags);
1056 mcam_reset_buffers(cam);
1057 if (cam->bus_type == V4L2_MBUS_CSI2_DPHY)
1058 mcam_enable_mipi(cam);
1059 else
1060 mcam_disable_mipi(cam);
1061 mcam_ctlr_irq_enable(cam);
1062 cam->state = S_STREAMING;
1063 if (!test_bit(CF_SG_RESTART, &cam->flags))
1064 mcam_ctlr_start(cam);
1065 spin_unlock_irqrestore(&cam->dev_lock, flags);
1066 return 0;
1067 }
1068
1069 /* ----------------------------------------------------------------------- */
1070 /*
1071 * Videobuf2 interface code.
1072 */
1073
mcam_vb_queue_setup(struct vb2_queue * vq,unsigned int * nbufs,unsigned int * num_planes,unsigned int sizes[],struct device * alloc_devs[])1074 static int mcam_vb_queue_setup(struct vb2_queue *vq,
1075 unsigned int *nbufs,
1076 unsigned int *num_planes, unsigned int sizes[],
1077 struct device *alloc_devs[])
1078 {
1079 struct mcam_camera *cam = vb2_get_drv_priv(vq);
1080 int minbufs = (cam->buffer_mode == B_DMA_contig) ? 3 : 2;
1081 unsigned size = cam->pix_format.sizeimage;
1082
1083 if (*nbufs < minbufs)
1084 *nbufs = minbufs;
1085
1086 if (*num_planes)
1087 return sizes[0] < size ? -EINVAL : 0;
1088 sizes[0] = size;
1089 *num_planes = 1; /* Someday we have to support planar formats... */
1090 return 0;
1091 }
1092
1093
mcam_vb_buf_queue(struct vb2_buffer * vb)1094 static void mcam_vb_buf_queue(struct vb2_buffer *vb)
1095 {
1096 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1097 struct mcam_vb_buffer *mvb = vb_to_mvb(vbuf);
1098 struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
1099 unsigned long flags;
1100 int start;
1101
1102 spin_lock_irqsave(&cam->dev_lock, flags);
1103 start = (cam->state == S_BUFWAIT) && !list_empty(&cam->buffers);
1104 list_add(&mvb->queue, &cam->buffers);
1105 if (cam->state == S_STREAMING && test_bit(CF_SG_RESTART, &cam->flags))
1106 mcam_sg_restart(cam);
1107 spin_unlock_irqrestore(&cam->dev_lock, flags);
1108 if (start)
1109 mcam_read_setup(cam);
1110 }
1111
mcam_vb_requeue_bufs(struct vb2_queue * vq,enum vb2_buffer_state state)1112 static void mcam_vb_requeue_bufs(struct vb2_queue *vq,
1113 enum vb2_buffer_state state)
1114 {
1115 struct mcam_camera *cam = vb2_get_drv_priv(vq);
1116 struct mcam_vb_buffer *buf, *node;
1117 unsigned long flags;
1118 unsigned i;
1119
1120 spin_lock_irqsave(&cam->dev_lock, flags);
1121 list_for_each_entry_safe(buf, node, &cam->buffers, queue) {
1122 vb2_buffer_done(&buf->vb_buf.vb2_buf, state);
1123 list_del(&buf->queue);
1124 }
1125 for (i = 0; i < MAX_DMA_BUFS; i++) {
1126 buf = cam->vb_bufs[i];
1127
1128 if (buf) {
1129 vb2_buffer_done(&buf->vb_buf.vb2_buf, state);
1130 cam->vb_bufs[i] = NULL;
1131 }
1132 }
1133 spin_unlock_irqrestore(&cam->dev_lock, flags);
1134 }
1135
1136 /*
1137 * These need to be called with the mutex held from vb2
1138 */
mcam_vb_start_streaming(struct vb2_queue * vq,unsigned int count)1139 static int mcam_vb_start_streaming(struct vb2_queue *vq, unsigned int count)
1140 {
1141 struct mcam_camera *cam = vb2_get_drv_priv(vq);
1142 unsigned int frame;
1143 int ret;
1144
1145 if (cam->state != S_IDLE) {
1146 mcam_vb_requeue_bufs(vq, VB2_BUF_STATE_QUEUED);
1147 return -EINVAL;
1148 }
1149 cam->frame_state.frames = 0;
1150 cam->frame_state.singles = 0;
1151 cam->frame_state.delivered = 0;
1152 cam->sequence = 0;
1153 /*
1154 * Videobuf2 sneakily hoards all the buffers and won't
1155 * give them to us until *after* streaming starts. But
1156 * we can't actually start streaming until we have a
1157 * destination. So go into a wait state and hope they
1158 * give us buffers soon.
1159 */
1160 if (cam->buffer_mode != B_vmalloc && list_empty(&cam->buffers)) {
1161 cam->state = S_BUFWAIT;
1162 return 0;
1163 }
1164
1165 /*
1166 * Ensure clear the left over frame flags
1167 * before every really start streaming
1168 */
1169 for (frame = 0; frame < cam->nbufs; frame++)
1170 clear_bit(CF_FRAME_SOF0 + frame, &cam->flags);
1171
1172 ret = mcam_read_setup(cam);
1173 if (ret)
1174 mcam_vb_requeue_bufs(vq, VB2_BUF_STATE_QUEUED);
1175 return ret;
1176 }
1177
mcam_vb_stop_streaming(struct vb2_queue * vq)1178 static void mcam_vb_stop_streaming(struct vb2_queue *vq)
1179 {
1180 struct mcam_camera *cam = vb2_get_drv_priv(vq);
1181
1182 cam_dbg(cam, "stop_streaming: %d frames, %d singles, %d delivered\n",
1183 cam->frame_state.frames, cam->frame_state.singles,
1184 cam->frame_state.delivered);
1185 if (cam->state == S_BUFWAIT) {
1186 /* They never gave us buffers */
1187 cam->state = S_IDLE;
1188 return;
1189 }
1190 if (cam->state != S_STREAMING)
1191 return;
1192 mcam_ctlr_stop_dma(cam);
1193 /*
1194 * VB2 reclaims the buffers, so we need to forget
1195 * about them.
1196 */
1197 mcam_vb_requeue_bufs(vq, VB2_BUF_STATE_ERROR);
1198 }
1199
1200
1201 static const struct vb2_ops mcam_vb2_ops = {
1202 .queue_setup = mcam_vb_queue_setup,
1203 .buf_queue = mcam_vb_buf_queue,
1204 .start_streaming = mcam_vb_start_streaming,
1205 .stop_streaming = mcam_vb_stop_streaming,
1206 .wait_prepare = vb2_ops_wait_prepare,
1207 .wait_finish = vb2_ops_wait_finish,
1208 };
1209
1210
1211 #ifdef MCAM_MODE_DMA_SG
1212 /*
1213 * Scatter/gather mode uses all of the above functions plus a
1214 * few extras to deal with DMA mapping.
1215 */
mcam_vb_sg_buf_init(struct vb2_buffer * vb)1216 static int mcam_vb_sg_buf_init(struct vb2_buffer *vb)
1217 {
1218 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1219 struct mcam_vb_buffer *mvb = vb_to_mvb(vbuf);
1220 struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
1221 int ndesc = cam->pix_format.sizeimage/PAGE_SIZE + 1;
1222
1223 mvb->dma_desc = dma_alloc_coherent(cam->dev,
1224 ndesc * sizeof(struct mcam_dma_desc),
1225 &mvb->dma_desc_pa, GFP_KERNEL);
1226 if (mvb->dma_desc == NULL) {
1227 cam_err(cam, "Unable to get DMA descriptor array\n");
1228 return -ENOMEM;
1229 }
1230 return 0;
1231 }
1232
mcam_vb_sg_buf_prepare(struct vb2_buffer * vb)1233 static int mcam_vb_sg_buf_prepare(struct vb2_buffer *vb)
1234 {
1235 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1236 struct mcam_vb_buffer *mvb = vb_to_mvb(vbuf);
1237 struct sg_table *sg_table = vb2_dma_sg_plane_desc(vb, 0);
1238 struct mcam_dma_desc *desc = mvb->dma_desc;
1239 struct scatterlist *sg;
1240 int i;
1241
1242 for_each_sg(sg_table->sgl, sg, sg_table->nents, i) {
1243 desc->dma_addr = sg_dma_address(sg);
1244 desc->segment_len = sg_dma_len(sg);
1245 desc++;
1246 }
1247 return 0;
1248 }
1249
mcam_vb_sg_buf_cleanup(struct vb2_buffer * vb)1250 static void mcam_vb_sg_buf_cleanup(struct vb2_buffer *vb)
1251 {
1252 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1253 struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
1254 struct mcam_vb_buffer *mvb = vb_to_mvb(vbuf);
1255 int ndesc = cam->pix_format.sizeimage/PAGE_SIZE + 1;
1256
1257 dma_free_coherent(cam->dev, ndesc * sizeof(struct mcam_dma_desc),
1258 mvb->dma_desc, mvb->dma_desc_pa);
1259 }
1260
1261
1262 static const struct vb2_ops mcam_vb2_sg_ops = {
1263 .queue_setup = mcam_vb_queue_setup,
1264 .buf_init = mcam_vb_sg_buf_init,
1265 .buf_prepare = mcam_vb_sg_buf_prepare,
1266 .buf_queue = mcam_vb_buf_queue,
1267 .buf_cleanup = mcam_vb_sg_buf_cleanup,
1268 .start_streaming = mcam_vb_start_streaming,
1269 .stop_streaming = mcam_vb_stop_streaming,
1270 .wait_prepare = vb2_ops_wait_prepare,
1271 .wait_finish = vb2_ops_wait_finish,
1272 };
1273
1274 #endif /* MCAM_MODE_DMA_SG */
1275
mcam_setup_vb2(struct mcam_camera * cam)1276 static int mcam_setup_vb2(struct mcam_camera *cam)
1277 {
1278 struct vb2_queue *vq = &cam->vb_queue;
1279
1280 memset(vq, 0, sizeof(*vq));
1281 vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
1282 vq->drv_priv = cam;
1283 vq->lock = &cam->s_mutex;
1284 vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
1285 vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF | VB2_READ;
1286 vq->buf_struct_size = sizeof(struct mcam_vb_buffer);
1287 vq->dev = cam->dev;
1288 INIT_LIST_HEAD(&cam->buffers);
1289 switch (cam->buffer_mode) {
1290 case B_DMA_contig:
1291 #ifdef MCAM_MODE_DMA_CONTIG
1292 vq->ops = &mcam_vb2_ops;
1293 vq->mem_ops = &vb2_dma_contig_memops;
1294 cam->dma_setup = mcam_ctlr_dma_contig;
1295 cam->frame_complete = mcam_dma_contig_done;
1296 #endif
1297 break;
1298 case B_DMA_sg:
1299 #ifdef MCAM_MODE_DMA_SG
1300 vq->ops = &mcam_vb2_sg_ops;
1301 vq->mem_ops = &vb2_dma_sg_memops;
1302 cam->dma_setup = mcam_ctlr_dma_sg;
1303 cam->frame_complete = mcam_dma_sg_done;
1304 #endif
1305 break;
1306 case B_vmalloc:
1307 #ifdef MCAM_MODE_VMALLOC
1308 tasklet_setup(&cam->s_tasklet, mcam_frame_tasklet);
1309 vq->ops = &mcam_vb2_ops;
1310 vq->mem_ops = &vb2_vmalloc_memops;
1311 cam->dma_setup = mcam_ctlr_dma_vmalloc;
1312 cam->frame_complete = mcam_vmalloc_done;
1313 #endif
1314 break;
1315 }
1316 return vb2_queue_init(vq);
1317 }
1318
1319
1320 /* ---------------------------------------------------------------------- */
1321 /*
1322 * The long list of V4L2 ioctl() operations.
1323 */
1324
mcam_vidioc_querycap(struct file * file,void * priv,struct v4l2_capability * cap)1325 static int mcam_vidioc_querycap(struct file *file, void *priv,
1326 struct v4l2_capability *cap)
1327 {
1328 struct mcam_camera *cam = video_drvdata(file);
1329
1330 strscpy(cap->driver, "marvell_ccic", sizeof(cap->driver));
1331 strscpy(cap->card, "marvell_ccic", sizeof(cap->card));
1332 strscpy(cap->bus_info, cam->bus_info, sizeof(cap->bus_info));
1333 return 0;
1334 }
1335
1336
mcam_vidioc_enum_fmt_vid_cap(struct file * filp,void * priv,struct v4l2_fmtdesc * fmt)1337 static int mcam_vidioc_enum_fmt_vid_cap(struct file *filp,
1338 void *priv, struct v4l2_fmtdesc *fmt)
1339 {
1340 if (fmt->index >= N_MCAM_FMTS)
1341 return -EINVAL;
1342 fmt->pixelformat = mcam_formats[fmt->index].pixelformat;
1343 return 0;
1344 }
1345
mcam_vidioc_try_fmt_vid_cap(struct file * filp,void * priv,struct v4l2_format * fmt)1346 static int mcam_vidioc_try_fmt_vid_cap(struct file *filp, void *priv,
1347 struct v4l2_format *fmt)
1348 {
1349 struct mcam_camera *cam = video_drvdata(filp);
1350 struct mcam_format_struct *f;
1351 struct v4l2_pix_format *pix = &fmt->fmt.pix;
1352 struct v4l2_subdev_pad_config pad_cfg;
1353 struct v4l2_subdev_format format = {
1354 .which = V4L2_SUBDEV_FORMAT_TRY,
1355 };
1356 int ret;
1357
1358 f = mcam_find_format(pix->pixelformat);
1359 pix->pixelformat = f->pixelformat;
1360 v4l2_fill_mbus_format(&format.format, pix, f->mbus_code);
1361 ret = sensor_call(cam, pad, set_fmt, &pad_cfg, &format);
1362 v4l2_fill_pix_format(pix, &format.format);
1363 pix->bytesperline = pix->width * f->bpp;
1364 switch (f->pixelformat) {
1365 case V4L2_PIX_FMT_YUV420:
1366 case V4L2_PIX_FMT_YVU420:
1367 pix->sizeimage = pix->height * pix->bytesperline * 3 / 2;
1368 break;
1369 default:
1370 pix->sizeimage = pix->height * pix->bytesperline;
1371 break;
1372 }
1373 pix->colorspace = V4L2_COLORSPACE_SRGB;
1374 return ret;
1375 }
1376
mcam_vidioc_s_fmt_vid_cap(struct file * filp,void * priv,struct v4l2_format * fmt)1377 static int mcam_vidioc_s_fmt_vid_cap(struct file *filp, void *priv,
1378 struct v4l2_format *fmt)
1379 {
1380 struct mcam_camera *cam = video_drvdata(filp);
1381 struct mcam_format_struct *f;
1382 int ret;
1383
1384 /*
1385 * Can't do anything if the device is not idle
1386 * Also can't if there are streaming buffers in place.
1387 */
1388 if (cam->state != S_IDLE || vb2_is_busy(&cam->vb_queue))
1389 return -EBUSY;
1390
1391 f = mcam_find_format(fmt->fmt.pix.pixelformat);
1392
1393 /*
1394 * See if the formatting works in principle.
1395 */
1396 ret = mcam_vidioc_try_fmt_vid_cap(filp, priv, fmt);
1397 if (ret)
1398 return ret;
1399 /*
1400 * Now we start to change things for real, so let's do it
1401 * under lock.
1402 */
1403 cam->pix_format = fmt->fmt.pix;
1404 cam->mbus_code = f->mbus_code;
1405
1406 /*
1407 * Make sure we have appropriate DMA buffers.
1408 */
1409 if (cam->buffer_mode == B_vmalloc) {
1410 ret = mcam_check_dma_buffers(cam);
1411 if (ret)
1412 goto out;
1413 }
1414 mcam_set_config_needed(cam, 1);
1415 out:
1416 return ret;
1417 }
1418
1419 /*
1420 * Return our stored notion of how the camera is/should be configured.
1421 * The V4l2 spec wants us to be smarter, and actually get this from
1422 * the camera (and not mess with it at open time). Someday.
1423 */
mcam_vidioc_g_fmt_vid_cap(struct file * filp,void * priv,struct v4l2_format * f)1424 static int mcam_vidioc_g_fmt_vid_cap(struct file *filp, void *priv,
1425 struct v4l2_format *f)
1426 {
1427 struct mcam_camera *cam = video_drvdata(filp);
1428
1429 f->fmt.pix = cam->pix_format;
1430 return 0;
1431 }
1432
1433 /*
1434 * We only have one input - the sensor - so minimize the nonsense here.
1435 */
mcam_vidioc_enum_input(struct file * filp,void * priv,struct v4l2_input * input)1436 static int mcam_vidioc_enum_input(struct file *filp, void *priv,
1437 struct v4l2_input *input)
1438 {
1439 if (input->index != 0)
1440 return -EINVAL;
1441
1442 input->type = V4L2_INPUT_TYPE_CAMERA;
1443 strscpy(input->name, "Camera", sizeof(input->name));
1444 return 0;
1445 }
1446
mcam_vidioc_g_input(struct file * filp,void * priv,unsigned int * i)1447 static int mcam_vidioc_g_input(struct file *filp, void *priv, unsigned int *i)
1448 {
1449 *i = 0;
1450 return 0;
1451 }
1452
mcam_vidioc_s_input(struct file * filp,void * priv,unsigned int i)1453 static int mcam_vidioc_s_input(struct file *filp, void *priv, unsigned int i)
1454 {
1455 if (i != 0)
1456 return -EINVAL;
1457 return 0;
1458 }
1459
1460 /*
1461 * G/S_PARM. Most of this is done by the sensor, but we are
1462 * the level which controls the number of read buffers.
1463 */
mcam_vidioc_g_parm(struct file * filp,void * priv,struct v4l2_streamparm * a)1464 static int mcam_vidioc_g_parm(struct file *filp, void *priv,
1465 struct v4l2_streamparm *a)
1466 {
1467 struct mcam_camera *cam = video_drvdata(filp);
1468 int ret;
1469
1470 ret = v4l2_g_parm_cap(video_devdata(filp), cam->sensor, a);
1471 a->parm.capture.readbuffers = n_dma_bufs;
1472 return ret;
1473 }
1474
mcam_vidioc_s_parm(struct file * filp,void * priv,struct v4l2_streamparm * a)1475 static int mcam_vidioc_s_parm(struct file *filp, void *priv,
1476 struct v4l2_streamparm *a)
1477 {
1478 struct mcam_camera *cam = video_drvdata(filp);
1479 int ret;
1480
1481 ret = v4l2_s_parm_cap(video_devdata(filp), cam->sensor, a);
1482 a->parm.capture.readbuffers = n_dma_bufs;
1483 return ret;
1484 }
1485
mcam_vidioc_enum_framesizes(struct file * filp,void * priv,struct v4l2_frmsizeenum * sizes)1486 static int mcam_vidioc_enum_framesizes(struct file *filp, void *priv,
1487 struct v4l2_frmsizeenum *sizes)
1488 {
1489 struct mcam_camera *cam = video_drvdata(filp);
1490 struct mcam_format_struct *f;
1491 struct v4l2_subdev_frame_size_enum fse = {
1492 .index = sizes->index,
1493 .which = V4L2_SUBDEV_FORMAT_ACTIVE,
1494 };
1495 int ret;
1496
1497 f = mcam_find_format(sizes->pixel_format);
1498 if (f->pixelformat != sizes->pixel_format)
1499 return -EINVAL;
1500 fse.code = f->mbus_code;
1501 ret = sensor_call(cam, pad, enum_frame_size, NULL, &fse);
1502 if (ret)
1503 return ret;
1504 if (fse.min_width == fse.max_width &&
1505 fse.min_height == fse.max_height) {
1506 sizes->type = V4L2_FRMSIZE_TYPE_DISCRETE;
1507 sizes->discrete.width = fse.min_width;
1508 sizes->discrete.height = fse.min_height;
1509 return 0;
1510 }
1511 sizes->type = V4L2_FRMSIZE_TYPE_CONTINUOUS;
1512 sizes->stepwise.min_width = fse.min_width;
1513 sizes->stepwise.max_width = fse.max_width;
1514 sizes->stepwise.min_height = fse.min_height;
1515 sizes->stepwise.max_height = fse.max_height;
1516 sizes->stepwise.step_width = 1;
1517 sizes->stepwise.step_height = 1;
1518 return 0;
1519 }
1520
mcam_vidioc_enum_frameintervals(struct file * filp,void * priv,struct v4l2_frmivalenum * interval)1521 static int mcam_vidioc_enum_frameintervals(struct file *filp, void *priv,
1522 struct v4l2_frmivalenum *interval)
1523 {
1524 struct mcam_camera *cam = video_drvdata(filp);
1525 struct mcam_format_struct *f;
1526 struct v4l2_subdev_frame_interval_enum fie = {
1527 .index = interval->index,
1528 .width = interval->width,
1529 .height = interval->height,
1530 .which = V4L2_SUBDEV_FORMAT_ACTIVE,
1531 };
1532 int ret;
1533
1534 f = mcam_find_format(interval->pixel_format);
1535 if (f->pixelformat != interval->pixel_format)
1536 return -EINVAL;
1537 fie.code = f->mbus_code;
1538 ret = sensor_call(cam, pad, enum_frame_interval, NULL, &fie);
1539 if (ret)
1540 return ret;
1541 interval->type = V4L2_FRMIVAL_TYPE_DISCRETE;
1542 interval->discrete = fie.interval;
1543 return 0;
1544 }
1545
1546 #ifdef CONFIG_VIDEO_ADV_DEBUG
mcam_vidioc_g_register(struct file * file,void * priv,struct v4l2_dbg_register * reg)1547 static int mcam_vidioc_g_register(struct file *file, void *priv,
1548 struct v4l2_dbg_register *reg)
1549 {
1550 struct mcam_camera *cam = video_drvdata(file);
1551
1552 if (reg->reg > cam->regs_size - 4)
1553 return -EINVAL;
1554 reg->val = mcam_reg_read(cam, reg->reg);
1555 reg->size = 4;
1556 return 0;
1557 }
1558
mcam_vidioc_s_register(struct file * file,void * priv,const struct v4l2_dbg_register * reg)1559 static int mcam_vidioc_s_register(struct file *file, void *priv,
1560 const struct v4l2_dbg_register *reg)
1561 {
1562 struct mcam_camera *cam = video_drvdata(file);
1563
1564 if (reg->reg > cam->regs_size - 4)
1565 return -EINVAL;
1566 mcam_reg_write(cam, reg->reg, reg->val);
1567 return 0;
1568 }
1569 #endif
1570
1571 static const struct v4l2_ioctl_ops mcam_v4l_ioctl_ops = {
1572 .vidioc_querycap = mcam_vidioc_querycap,
1573 .vidioc_enum_fmt_vid_cap = mcam_vidioc_enum_fmt_vid_cap,
1574 .vidioc_try_fmt_vid_cap = mcam_vidioc_try_fmt_vid_cap,
1575 .vidioc_s_fmt_vid_cap = mcam_vidioc_s_fmt_vid_cap,
1576 .vidioc_g_fmt_vid_cap = mcam_vidioc_g_fmt_vid_cap,
1577 .vidioc_enum_input = mcam_vidioc_enum_input,
1578 .vidioc_g_input = mcam_vidioc_g_input,
1579 .vidioc_s_input = mcam_vidioc_s_input,
1580 .vidioc_reqbufs = vb2_ioctl_reqbufs,
1581 .vidioc_create_bufs = vb2_ioctl_create_bufs,
1582 .vidioc_querybuf = vb2_ioctl_querybuf,
1583 .vidioc_qbuf = vb2_ioctl_qbuf,
1584 .vidioc_dqbuf = vb2_ioctl_dqbuf,
1585 .vidioc_expbuf = vb2_ioctl_expbuf,
1586 .vidioc_streamon = vb2_ioctl_streamon,
1587 .vidioc_streamoff = vb2_ioctl_streamoff,
1588 .vidioc_g_parm = mcam_vidioc_g_parm,
1589 .vidioc_s_parm = mcam_vidioc_s_parm,
1590 .vidioc_enum_framesizes = mcam_vidioc_enum_framesizes,
1591 .vidioc_enum_frameintervals = mcam_vidioc_enum_frameintervals,
1592 .vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
1593 .vidioc_unsubscribe_event = v4l2_event_unsubscribe,
1594 #ifdef CONFIG_VIDEO_ADV_DEBUG
1595 .vidioc_g_register = mcam_vidioc_g_register,
1596 .vidioc_s_register = mcam_vidioc_s_register,
1597 #endif
1598 };
1599
1600 /* ---------------------------------------------------------------------- */
1601 /*
1602 * Our various file operations.
1603 */
mcam_v4l_open(struct file * filp)1604 static int mcam_v4l_open(struct file *filp)
1605 {
1606 struct mcam_camera *cam = video_drvdata(filp);
1607 int ret;
1608
1609 mutex_lock(&cam->s_mutex);
1610 ret = v4l2_fh_open(filp);
1611 if (ret)
1612 goto out;
1613 if (v4l2_fh_is_singular_file(filp)) {
1614 ret = sensor_call(cam, core, s_power, 1);
1615 if (ret)
1616 goto out;
1617 ret = pm_runtime_resume_and_get(cam->dev);
1618 if (ret < 0)
1619 goto out;
1620 __mcam_cam_reset(cam);
1621 mcam_set_config_needed(cam, 1);
1622 }
1623 out:
1624 mutex_unlock(&cam->s_mutex);
1625 if (ret)
1626 v4l2_fh_release(filp);
1627 return ret;
1628 }
1629
1630
mcam_v4l_release(struct file * filp)1631 static int mcam_v4l_release(struct file *filp)
1632 {
1633 struct mcam_camera *cam = video_drvdata(filp);
1634 bool last_open;
1635
1636 mutex_lock(&cam->s_mutex);
1637 last_open = v4l2_fh_is_singular_file(filp);
1638 _vb2_fop_release(filp, NULL);
1639 if (last_open) {
1640 mcam_disable_mipi(cam);
1641 sensor_call(cam, core, s_power, 0);
1642 pm_runtime_put(cam->dev);
1643 if (cam->buffer_mode == B_vmalloc && alloc_bufs_at_read)
1644 mcam_free_dma_bufs(cam);
1645 }
1646
1647 mutex_unlock(&cam->s_mutex);
1648 return 0;
1649 }
1650
1651 static const struct v4l2_file_operations mcam_v4l_fops = {
1652 .owner = THIS_MODULE,
1653 .open = mcam_v4l_open,
1654 .release = mcam_v4l_release,
1655 .read = vb2_fop_read,
1656 .poll = vb2_fop_poll,
1657 .mmap = vb2_fop_mmap,
1658 .unlocked_ioctl = video_ioctl2,
1659 };
1660
1661
1662 /*
1663 * This template device holds all of those v4l2 methods; we
1664 * clone it for specific real devices.
1665 */
1666 static const struct video_device mcam_v4l_template = {
1667 .name = "mcam",
1668 .fops = &mcam_v4l_fops,
1669 .ioctl_ops = &mcam_v4l_ioctl_ops,
1670 .release = video_device_release_empty,
1671 .device_caps = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_READWRITE |
1672 V4L2_CAP_STREAMING,
1673 };
1674
1675 /* ---------------------------------------------------------------------- */
1676 /*
1677 * Interrupt handler stuff
1678 */
mcam_frame_complete(struct mcam_camera * cam,int frame)1679 static void mcam_frame_complete(struct mcam_camera *cam, int frame)
1680 {
1681 /*
1682 * Basic frame housekeeping.
1683 */
1684 set_bit(frame, &cam->flags);
1685 clear_bit(CF_DMA_ACTIVE, &cam->flags);
1686 cam->next_buf = frame;
1687 cam->buf_seq[frame] = cam->sequence++;
1688 cam->frame_state.frames++;
1689 /*
1690 * "This should never happen"
1691 */
1692 if (cam->state != S_STREAMING)
1693 return;
1694 /*
1695 * Process the frame and set up the next one.
1696 */
1697 cam->frame_complete(cam, frame);
1698 }
1699
1700
1701 /*
1702 * The interrupt handler; this needs to be called from the
1703 * platform irq handler with the lock held.
1704 */
mccic_irq(struct mcam_camera * cam,unsigned int irqs)1705 int mccic_irq(struct mcam_camera *cam, unsigned int irqs)
1706 {
1707 unsigned int frame, handled = 0;
1708
1709 mcam_reg_write(cam, REG_IRQSTAT, FRAMEIRQS); /* Clear'em all */
1710 /*
1711 * Handle any frame completions. There really should
1712 * not be more than one of these, or we have fallen
1713 * far behind.
1714 *
1715 * When running in S/G mode, the frame number lacks any
1716 * real meaning - there's only one descriptor array - but
1717 * the controller still picks a different one to signal
1718 * each time.
1719 */
1720 for (frame = 0; frame < cam->nbufs; frame++)
1721 if (irqs & (IRQ_EOF0 << frame) &&
1722 test_bit(CF_FRAME_SOF0 + frame, &cam->flags)) {
1723 mcam_frame_complete(cam, frame);
1724 handled = 1;
1725 clear_bit(CF_FRAME_SOF0 + frame, &cam->flags);
1726 if (cam->buffer_mode == B_DMA_sg)
1727 break;
1728 }
1729 /*
1730 * If a frame starts, note that we have DMA active. This
1731 * code assumes that we won't get multiple frame interrupts
1732 * at once; may want to rethink that.
1733 */
1734 for (frame = 0; frame < cam->nbufs; frame++) {
1735 if (irqs & (IRQ_SOF0 << frame)) {
1736 set_bit(CF_FRAME_SOF0 + frame, &cam->flags);
1737 handled = IRQ_HANDLED;
1738 }
1739 }
1740
1741 if (handled == IRQ_HANDLED) {
1742 set_bit(CF_DMA_ACTIVE, &cam->flags);
1743 if (cam->buffer_mode == B_DMA_sg)
1744 mcam_ctlr_stop(cam);
1745 }
1746 return handled;
1747 }
1748 EXPORT_SYMBOL_GPL(mccic_irq);
1749
1750 /* ---------------------------------------------------------------------- */
1751 /*
1752 * Registration and such.
1753 */
1754
mccic_notify_bound(struct v4l2_async_notifier * notifier,struct v4l2_subdev * subdev,struct v4l2_async_subdev * asd)1755 static int mccic_notify_bound(struct v4l2_async_notifier *notifier,
1756 struct v4l2_subdev *subdev, struct v4l2_async_subdev *asd)
1757 {
1758 struct mcam_camera *cam = notifier_to_mcam(notifier);
1759 int ret;
1760
1761 mutex_lock(&cam->s_mutex);
1762 if (cam->sensor) {
1763 cam_err(cam, "sensor already bound\n");
1764 ret = -EBUSY;
1765 goto out;
1766 }
1767
1768 v4l2_set_subdev_hostdata(subdev, cam);
1769 cam->sensor = subdev;
1770
1771 ret = mcam_cam_init(cam);
1772 if (ret) {
1773 cam->sensor = NULL;
1774 goto out;
1775 }
1776
1777 ret = mcam_setup_vb2(cam);
1778 if (ret) {
1779 cam->sensor = NULL;
1780 goto out;
1781 }
1782
1783 cam->vdev = mcam_v4l_template;
1784 cam->vdev.v4l2_dev = &cam->v4l2_dev;
1785 cam->vdev.lock = &cam->s_mutex;
1786 cam->vdev.queue = &cam->vb_queue;
1787 video_set_drvdata(&cam->vdev, cam);
1788 ret = video_register_device(&cam->vdev, VFL_TYPE_VIDEO, -1);
1789 if (ret) {
1790 cam->sensor = NULL;
1791 goto out;
1792 }
1793
1794 cam_dbg(cam, "sensor %s bound\n", subdev->name);
1795 out:
1796 mutex_unlock(&cam->s_mutex);
1797 return ret;
1798 }
1799
mccic_notify_unbind(struct v4l2_async_notifier * notifier,struct v4l2_subdev * subdev,struct v4l2_async_subdev * asd)1800 static void mccic_notify_unbind(struct v4l2_async_notifier *notifier,
1801 struct v4l2_subdev *subdev, struct v4l2_async_subdev *asd)
1802 {
1803 struct mcam_camera *cam = notifier_to_mcam(notifier);
1804
1805 mutex_lock(&cam->s_mutex);
1806 if (cam->sensor != subdev) {
1807 cam_err(cam, "sensor %s not bound\n", subdev->name);
1808 goto out;
1809 }
1810
1811 video_unregister_device(&cam->vdev);
1812 cam->sensor = NULL;
1813 cam_dbg(cam, "sensor %s unbound\n", subdev->name);
1814
1815 out:
1816 mutex_unlock(&cam->s_mutex);
1817 }
1818
mccic_notify_complete(struct v4l2_async_notifier * notifier)1819 static int mccic_notify_complete(struct v4l2_async_notifier *notifier)
1820 {
1821 struct mcam_camera *cam = notifier_to_mcam(notifier);
1822 int ret;
1823
1824 /*
1825 * Get the v4l2 setup done.
1826 */
1827 ret = v4l2_ctrl_handler_init(&cam->ctrl_handler, 10);
1828 if (!ret)
1829 cam->v4l2_dev.ctrl_handler = &cam->ctrl_handler;
1830
1831 return ret;
1832 }
1833
1834 static const struct v4l2_async_notifier_operations mccic_notify_ops = {
1835 .bound = mccic_notify_bound,
1836 .unbind = mccic_notify_unbind,
1837 .complete = mccic_notify_complete,
1838 };
1839
mccic_register(struct mcam_camera * cam)1840 int mccic_register(struct mcam_camera *cam)
1841 {
1842 struct clk_init_data mclk_init = { };
1843 int ret;
1844
1845 /*
1846 * Validate the requested buffer mode.
1847 */
1848 if (buffer_mode >= 0)
1849 cam->buffer_mode = buffer_mode;
1850 if (cam->buffer_mode == B_DMA_sg &&
1851 cam->chip_id == MCAM_CAFE) {
1852 printk(KERN_ERR "marvell-cam: Cafe can't do S/G I/O, attempting vmalloc mode instead\n");
1853 cam->buffer_mode = B_vmalloc;
1854 }
1855
1856 if (!mcam_buffer_mode_supported(cam->buffer_mode)) {
1857 printk(KERN_ERR "marvell-cam: buffer mode %d unsupported\n",
1858 cam->buffer_mode);
1859 ret = -EINVAL;
1860 goto out;
1861 }
1862
1863 /*
1864 * Register with V4L
1865 */
1866 ret = v4l2_device_register(cam->dev, &cam->v4l2_dev);
1867 if (ret)
1868 goto out;
1869
1870 mutex_init(&cam->s_mutex);
1871 cam->state = S_NOTREADY;
1872 mcam_set_config_needed(cam, 1);
1873 cam->pix_format = mcam_def_pix_format;
1874 cam->mbus_code = mcam_def_mbus_code;
1875
1876 /*
1877 * Register sensor notifier.
1878 */
1879 v4l2_async_notifier_init(&cam->notifier);
1880 ret = v4l2_async_notifier_add_subdev(&cam->notifier, &cam->asd);
1881 if (ret) {
1882 cam_warn(cam, "failed to add subdev to a notifier");
1883 goto out;
1884 }
1885
1886 cam->notifier.ops = &mccic_notify_ops;
1887 ret = v4l2_async_notifier_register(&cam->v4l2_dev, &cam->notifier);
1888 if (ret < 0) {
1889 cam_warn(cam, "failed to register a sensor notifier");
1890 goto out;
1891 }
1892
1893 /*
1894 * Register sensor master clock.
1895 */
1896 mclk_init.parent_names = NULL;
1897 mclk_init.num_parents = 0;
1898 mclk_init.ops = &mclk_ops;
1899 mclk_init.name = "mclk";
1900
1901 of_property_read_string(cam->dev->of_node, "clock-output-names",
1902 &mclk_init.name);
1903
1904 cam->mclk_hw.init = &mclk_init;
1905
1906 cam->mclk = devm_clk_register(cam->dev, &cam->mclk_hw);
1907 if (IS_ERR(cam->mclk)) {
1908 ret = PTR_ERR(cam->mclk);
1909 dev_err(cam->dev, "can't register clock\n");
1910 goto out;
1911 }
1912
1913 /*
1914 * If so requested, try to get our DMA buffers now.
1915 */
1916 if (cam->buffer_mode == B_vmalloc && !alloc_bufs_at_read) {
1917 if (mcam_alloc_dma_bufs(cam, 1))
1918 cam_warn(cam, "Unable to alloc DMA buffers at load will try again later.");
1919 }
1920
1921 return 0;
1922
1923 out:
1924 v4l2_async_notifier_unregister(&cam->notifier);
1925 v4l2_device_unregister(&cam->v4l2_dev);
1926 v4l2_async_notifier_cleanup(&cam->notifier);
1927 return ret;
1928 }
1929 EXPORT_SYMBOL_GPL(mccic_register);
1930
mccic_shutdown(struct mcam_camera * cam)1931 void mccic_shutdown(struct mcam_camera *cam)
1932 {
1933 /*
1934 * If we have no users (and we really, really should have no
1935 * users) the device will already be powered down. Trying to
1936 * take it down again will wedge the machine, which is frowned
1937 * upon.
1938 */
1939 if (!list_empty(&cam->vdev.fh_list)) {
1940 cam_warn(cam, "Removing a device with users!\n");
1941 sensor_call(cam, core, s_power, 0);
1942 }
1943 if (cam->buffer_mode == B_vmalloc)
1944 mcam_free_dma_bufs(cam);
1945 v4l2_ctrl_handler_free(&cam->ctrl_handler);
1946 v4l2_async_notifier_unregister(&cam->notifier);
1947 v4l2_device_unregister(&cam->v4l2_dev);
1948 v4l2_async_notifier_cleanup(&cam->notifier);
1949 }
1950 EXPORT_SYMBOL_GPL(mccic_shutdown);
1951
1952 /*
1953 * Power management
1954 */
mccic_suspend(struct mcam_camera * cam)1955 void mccic_suspend(struct mcam_camera *cam)
1956 {
1957 mutex_lock(&cam->s_mutex);
1958 if (!list_empty(&cam->vdev.fh_list)) {
1959 enum mcam_state cstate = cam->state;
1960
1961 mcam_ctlr_stop_dma(cam);
1962 sensor_call(cam, core, s_power, 0);
1963 cam->state = cstate;
1964 }
1965 mutex_unlock(&cam->s_mutex);
1966 }
1967 EXPORT_SYMBOL_GPL(mccic_suspend);
1968
mccic_resume(struct mcam_camera * cam)1969 int mccic_resume(struct mcam_camera *cam)
1970 {
1971 int ret = 0;
1972
1973 mutex_lock(&cam->s_mutex);
1974 if (!list_empty(&cam->vdev.fh_list)) {
1975 ret = sensor_call(cam, core, s_power, 1);
1976 if (ret) {
1977 mutex_unlock(&cam->s_mutex);
1978 return ret;
1979 }
1980 __mcam_cam_reset(cam);
1981 } else {
1982 sensor_call(cam, core, s_power, 0);
1983 }
1984 mutex_unlock(&cam->s_mutex);
1985
1986 set_bit(CF_CONFIG_NEEDED, &cam->flags);
1987 if (cam->state == S_STREAMING) {
1988 /*
1989 * If there was a buffer in the DMA engine at suspend
1990 * time, put it back on the queue or we'll forget about it.
1991 */
1992 if (cam->buffer_mode == B_DMA_sg && cam->vb_bufs[0])
1993 list_add(&cam->vb_bufs[0]->queue, &cam->buffers);
1994 ret = mcam_read_setup(cam);
1995 }
1996 return ret;
1997 }
1998 EXPORT_SYMBOL_GPL(mccic_resume);
1999
2000 MODULE_LICENSE("GPL v2");
2001 MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>");
2002