1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2013-2020, Intel Corporation. All rights reserved.
4 * Intel Management Engine Interface (Intel MEI) Linux driver
5 */
6
7 #include <linux/pci.h>
8 #include <linux/jiffies.h>
9 #include <linux/ktime.h>
10 #include <linux/delay.h>
11 #include <linux/kthread.h>
12 #include <linux/interrupt.h>
13 #include <linux/pm_runtime.h>
14
15 #include <linux/mei.h>
16
17 #include "mei_dev.h"
18 #include "hw-txe.h"
19 #include "client.h"
20 #include "hbm.h"
21
22 #include "mei-trace.h"
23
24 #define TXE_HBUF_DEPTH (PAYLOAD_SIZE / MEI_SLOT_SIZE)
25
26 /**
27 * mei_txe_reg_read - Reads 32bit data from the txe device
28 *
29 * @base_addr: registers base address
30 * @offset: register offset
31 *
32 * Return: register value
33 */
mei_txe_reg_read(void __iomem * base_addr,unsigned long offset)34 static inline u32 mei_txe_reg_read(void __iomem *base_addr,
35 unsigned long offset)
36 {
37 return ioread32(base_addr + offset);
38 }
39
40 /**
41 * mei_txe_reg_write - Writes 32bit data to the txe device
42 *
43 * @base_addr: registers base address
44 * @offset: register offset
45 * @value: the value to write
46 */
mei_txe_reg_write(void __iomem * base_addr,unsigned long offset,u32 value)47 static inline void mei_txe_reg_write(void __iomem *base_addr,
48 unsigned long offset, u32 value)
49 {
50 iowrite32(value, base_addr + offset);
51 }
52
53 /**
54 * mei_txe_sec_reg_read_silent - Reads 32bit data from the SeC BAR
55 *
56 * @hw: the txe hardware structure
57 * @offset: register offset
58 *
59 * Doesn't check for aliveness while Reads 32bit data from the SeC BAR
60 *
61 * Return: register value
62 */
mei_txe_sec_reg_read_silent(struct mei_txe_hw * hw,unsigned long offset)63 static inline u32 mei_txe_sec_reg_read_silent(struct mei_txe_hw *hw,
64 unsigned long offset)
65 {
66 return mei_txe_reg_read(hw->mem_addr[SEC_BAR], offset);
67 }
68
69 /**
70 * mei_txe_sec_reg_read - Reads 32bit data from the SeC BAR
71 *
72 * @hw: the txe hardware structure
73 * @offset: register offset
74 *
75 * Reads 32bit data from the SeC BAR and shout loud if aliveness is not set
76 *
77 * Return: register value
78 */
mei_txe_sec_reg_read(struct mei_txe_hw * hw,unsigned long offset)79 static inline u32 mei_txe_sec_reg_read(struct mei_txe_hw *hw,
80 unsigned long offset)
81 {
82 WARN(!hw->aliveness, "sec read: aliveness not asserted\n");
83 return mei_txe_sec_reg_read_silent(hw, offset);
84 }
85 /**
86 * mei_txe_sec_reg_write_silent - Writes 32bit data to the SeC BAR
87 * doesn't check for aliveness
88 *
89 * @hw: the txe hardware structure
90 * @offset: register offset
91 * @value: value to write
92 *
93 * Doesn't check for aliveness while writes 32bit data from to the SeC BAR
94 */
mei_txe_sec_reg_write_silent(struct mei_txe_hw * hw,unsigned long offset,u32 value)95 static inline void mei_txe_sec_reg_write_silent(struct mei_txe_hw *hw,
96 unsigned long offset, u32 value)
97 {
98 mei_txe_reg_write(hw->mem_addr[SEC_BAR], offset, value);
99 }
100
101 /**
102 * mei_txe_sec_reg_write - Writes 32bit data to the SeC BAR
103 *
104 * @hw: the txe hardware structure
105 * @offset: register offset
106 * @value: value to write
107 *
108 * Writes 32bit data from the SeC BAR and shout loud if aliveness is not set
109 */
mei_txe_sec_reg_write(struct mei_txe_hw * hw,unsigned long offset,u32 value)110 static inline void mei_txe_sec_reg_write(struct mei_txe_hw *hw,
111 unsigned long offset, u32 value)
112 {
113 WARN(!hw->aliveness, "sec write: aliveness not asserted\n");
114 mei_txe_sec_reg_write_silent(hw, offset, value);
115 }
116 /**
117 * mei_txe_br_reg_read - Reads 32bit data from the Bridge BAR
118 *
119 * @hw: the txe hardware structure
120 * @offset: offset from which to read the data
121 *
122 * Return: the byte read.
123 */
mei_txe_br_reg_read(struct mei_txe_hw * hw,unsigned long offset)124 static inline u32 mei_txe_br_reg_read(struct mei_txe_hw *hw,
125 unsigned long offset)
126 {
127 return mei_txe_reg_read(hw->mem_addr[BRIDGE_BAR], offset);
128 }
129
130 /**
131 * mei_txe_br_reg_write - Writes 32bit data to the Bridge BAR
132 *
133 * @hw: the txe hardware structure
134 * @offset: offset from which to write the data
135 * @value: the byte to write
136 */
mei_txe_br_reg_write(struct mei_txe_hw * hw,unsigned long offset,u32 value)137 static inline void mei_txe_br_reg_write(struct mei_txe_hw *hw,
138 unsigned long offset, u32 value)
139 {
140 mei_txe_reg_write(hw->mem_addr[BRIDGE_BAR], offset, value);
141 }
142
143 /**
144 * mei_txe_aliveness_set - request for aliveness change
145 *
146 * @dev: the device structure
147 * @req: requested aliveness value
148 *
149 * Request for aliveness change and returns true if the change is
150 * really needed and false if aliveness is already
151 * in the requested state
152 *
153 * Locking: called under "dev->device_lock" lock
154 *
155 * Return: true if request was send
156 */
mei_txe_aliveness_set(struct mei_device * dev,u32 req)157 static bool mei_txe_aliveness_set(struct mei_device *dev, u32 req)
158 {
159
160 struct mei_txe_hw *hw = to_txe_hw(dev);
161 bool do_req = hw->aliveness != req;
162
163 dev_dbg(dev->dev, "Aliveness current=%d request=%d\n",
164 hw->aliveness, req);
165 if (do_req) {
166 dev->pg_event = MEI_PG_EVENT_WAIT;
167 mei_txe_br_reg_write(hw, SICR_HOST_ALIVENESS_REQ_REG, req);
168 }
169 return do_req;
170 }
171
172
173 /**
174 * mei_txe_aliveness_req_get - get aliveness requested register value
175 *
176 * @dev: the device structure
177 *
178 * Extract HICR_HOST_ALIVENESS_RESP_ACK bit from
179 * from HICR_HOST_ALIVENESS_REQ register value
180 *
181 * Return: SICR_HOST_ALIVENESS_REQ_REQUESTED bit value
182 */
mei_txe_aliveness_req_get(struct mei_device * dev)183 static u32 mei_txe_aliveness_req_get(struct mei_device *dev)
184 {
185 struct mei_txe_hw *hw = to_txe_hw(dev);
186 u32 reg;
187
188 reg = mei_txe_br_reg_read(hw, SICR_HOST_ALIVENESS_REQ_REG);
189 return reg & SICR_HOST_ALIVENESS_REQ_REQUESTED;
190 }
191
192 /**
193 * mei_txe_aliveness_get - get aliveness response register value
194 *
195 * @dev: the device structure
196 *
197 * Return: HICR_HOST_ALIVENESS_RESP_ACK bit from HICR_HOST_ALIVENESS_RESP
198 * register
199 */
mei_txe_aliveness_get(struct mei_device * dev)200 static u32 mei_txe_aliveness_get(struct mei_device *dev)
201 {
202 struct mei_txe_hw *hw = to_txe_hw(dev);
203 u32 reg;
204
205 reg = mei_txe_br_reg_read(hw, HICR_HOST_ALIVENESS_RESP_REG);
206 return reg & HICR_HOST_ALIVENESS_RESP_ACK;
207 }
208
209 /**
210 * mei_txe_aliveness_poll - waits for aliveness to settle
211 *
212 * @dev: the device structure
213 * @expected: expected aliveness value
214 *
215 * Polls for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
216 *
217 * Return: 0 if the expected value was received, -ETIME otherwise
218 */
mei_txe_aliveness_poll(struct mei_device * dev,u32 expected)219 static int mei_txe_aliveness_poll(struct mei_device *dev, u32 expected)
220 {
221 struct mei_txe_hw *hw = to_txe_hw(dev);
222 ktime_t stop, start;
223
224 start = ktime_get();
225 stop = ktime_add(start, ms_to_ktime(SEC_ALIVENESS_WAIT_TIMEOUT));
226 do {
227 hw->aliveness = mei_txe_aliveness_get(dev);
228 if (hw->aliveness == expected) {
229 dev->pg_event = MEI_PG_EVENT_IDLE;
230 dev_dbg(dev->dev, "aliveness settled after %lld usecs\n",
231 ktime_to_us(ktime_sub(ktime_get(), start)));
232 return 0;
233 }
234 usleep_range(20, 50);
235 } while (ktime_before(ktime_get(), stop));
236
237 dev->pg_event = MEI_PG_EVENT_IDLE;
238 dev_err(dev->dev, "aliveness timed out\n");
239 return -ETIME;
240 }
241
242 /**
243 * mei_txe_aliveness_wait - waits for aliveness to settle
244 *
245 * @dev: the device structure
246 * @expected: expected aliveness value
247 *
248 * Waits for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
249 *
250 * Return: 0 on success and < 0 otherwise
251 */
mei_txe_aliveness_wait(struct mei_device * dev,u32 expected)252 static int mei_txe_aliveness_wait(struct mei_device *dev, u32 expected)
253 {
254 struct mei_txe_hw *hw = to_txe_hw(dev);
255 const unsigned long timeout =
256 msecs_to_jiffies(SEC_ALIVENESS_WAIT_TIMEOUT);
257 long err;
258 int ret;
259
260 hw->aliveness = mei_txe_aliveness_get(dev);
261 if (hw->aliveness == expected)
262 return 0;
263
264 mutex_unlock(&dev->device_lock);
265 err = wait_event_timeout(hw->wait_aliveness_resp,
266 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
267 mutex_lock(&dev->device_lock);
268
269 hw->aliveness = mei_txe_aliveness_get(dev);
270 ret = hw->aliveness == expected ? 0 : -ETIME;
271
272 if (ret)
273 dev_warn(dev->dev, "aliveness timed out = %ld aliveness = %d event = %d\n",
274 err, hw->aliveness, dev->pg_event);
275 else
276 dev_dbg(dev->dev, "aliveness settled after = %d msec aliveness = %d event = %d\n",
277 jiffies_to_msecs(timeout - err),
278 hw->aliveness, dev->pg_event);
279
280 dev->pg_event = MEI_PG_EVENT_IDLE;
281 return ret;
282 }
283
284 /**
285 * mei_txe_aliveness_set_sync - sets an wait for aliveness to complete
286 *
287 * @dev: the device structure
288 * @req: requested aliveness value
289 *
290 * Return: 0 on success and < 0 otherwise
291 */
mei_txe_aliveness_set_sync(struct mei_device * dev,u32 req)292 int mei_txe_aliveness_set_sync(struct mei_device *dev, u32 req)
293 {
294 if (mei_txe_aliveness_set(dev, req))
295 return mei_txe_aliveness_wait(dev, req);
296 return 0;
297 }
298
299 /**
300 * mei_txe_pg_in_transition - is device now in pg transition
301 *
302 * @dev: the device structure
303 *
304 * Return: true if in pg transition, false otherwise
305 */
mei_txe_pg_in_transition(struct mei_device * dev)306 static bool mei_txe_pg_in_transition(struct mei_device *dev)
307 {
308 return dev->pg_event == MEI_PG_EVENT_WAIT;
309 }
310
311 /**
312 * mei_txe_pg_is_enabled - detect if PG is supported by HW
313 *
314 * @dev: the device structure
315 *
316 * Return: true is pg supported, false otherwise
317 */
mei_txe_pg_is_enabled(struct mei_device * dev)318 static bool mei_txe_pg_is_enabled(struct mei_device *dev)
319 {
320 return true;
321 }
322
323 /**
324 * mei_txe_pg_state - translate aliveness register value
325 * to the mei power gating state
326 *
327 * @dev: the device structure
328 *
329 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
330 */
mei_txe_pg_state(struct mei_device * dev)331 static inline enum mei_pg_state mei_txe_pg_state(struct mei_device *dev)
332 {
333 struct mei_txe_hw *hw = to_txe_hw(dev);
334
335 return hw->aliveness ? MEI_PG_OFF : MEI_PG_ON;
336 }
337
338 /**
339 * mei_txe_input_ready_interrupt_enable - sets the Input Ready Interrupt
340 *
341 * @dev: the device structure
342 */
mei_txe_input_ready_interrupt_enable(struct mei_device * dev)343 static void mei_txe_input_ready_interrupt_enable(struct mei_device *dev)
344 {
345 struct mei_txe_hw *hw = to_txe_hw(dev);
346 u32 hintmsk;
347 /* Enable the SEC_IPC_HOST_INT_MASK_IN_RDY interrupt */
348 hintmsk = mei_txe_sec_reg_read(hw, SEC_IPC_HOST_INT_MASK_REG);
349 hintmsk |= SEC_IPC_HOST_INT_MASK_IN_RDY;
350 mei_txe_sec_reg_write(hw, SEC_IPC_HOST_INT_MASK_REG, hintmsk);
351 }
352
353 /**
354 * mei_txe_input_doorbell_set - sets bit 0 in
355 * SEC_IPC_INPUT_DOORBELL.IPC_INPUT_DOORBELL.
356 *
357 * @hw: the txe hardware structure
358 */
mei_txe_input_doorbell_set(struct mei_txe_hw * hw)359 static void mei_txe_input_doorbell_set(struct mei_txe_hw *hw)
360 {
361 /* Clear the interrupt cause */
362 clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause);
363 mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_DOORBELL_REG, 1);
364 }
365
366 /**
367 * mei_txe_output_ready_set - Sets the SICR_SEC_IPC_OUTPUT_STATUS bit to 1
368 *
369 * @hw: the txe hardware structure
370 */
mei_txe_output_ready_set(struct mei_txe_hw * hw)371 static void mei_txe_output_ready_set(struct mei_txe_hw *hw)
372 {
373 mei_txe_br_reg_write(hw,
374 SICR_SEC_IPC_OUTPUT_STATUS_REG,
375 SEC_IPC_OUTPUT_STATUS_RDY);
376 }
377
378 /**
379 * mei_txe_is_input_ready - check if TXE is ready for receiving data
380 *
381 * @dev: the device structure
382 *
383 * Return: true if INPUT STATUS READY bit is set
384 */
mei_txe_is_input_ready(struct mei_device * dev)385 static bool mei_txe_is_input_ready(struct mei_device *dev)
386 {
387 struct mei_txe_hw *hw = to_txe_hw(dev);
388 u32 status;
389
390 status = mei_txe_sec_reg_read(hw, SEC_IPC_INPUT_STATUS_REG);
391 return !!(SEC_IPC_INPUT_STATUS_RDY & status);
392 }
393
394 /**
395 * mei_txe_intr_clear - clear all interrupts
396 *
397 * @dev: the device structure
398 */
mei_txe_intr_clear(struct mei_device * dev)399 static inline void mei_txe_intr_clear(struct mei_device *dev)
400 {
401 struct mei_txe_hw *hw = to_txe_hw(dev);
402
403 mei_txe_sec_reg_write_silent(hw, SEC_IPC_HOST_INT_STATUS_REG,
404 SEC_IPC_HOST_INT_STATUS_PENDING);
405 mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_STS_MSK);
406 mei_txe_br_reg_write(hw, HHISR_REG, IPC_HHIER_MSK);
407 }
408
409 /**
410 * mei_txe_intr_disable - disable all interrupts
411 *
412 * @dev: the device structure
413 */
mei_txe_intr_disable(struct mei_device * dev)414 static void mei_txe_intr_disable(struct mei_device *dev)
415 {
416 struct mei_txe_hw *hw = to_txe_hw(dev);
417
418 mei_txe_br_reg_write(hw, HHIER_REG, 0);
419 mei_txe_br_reg_write(hw, HIER_REG, 0);
420 }
421 /**
422 * mei_txe_intr_enable - enable all interrupts
423 *
424 * @dev: the device structure
425 */
mei_txe_intr_enable(struct mei_device * dev)426 static void mei_txe_intr_enable(struct mei_device *dev)
427 {
428 struct mei_txe_hw *hw = to_txe_hw(dev);
429
430 mei_txe_br_reg_write(hw, HHIER_REG, IPC_HHIER_MSK);
431 mei_txe_br_reg_write(hw, HIER_REG, HIER_INT_EN_MSK);
432 }
433
434 /**
435 * mei_txe_synchronize_irq - wait for pending IRQ handlers
436 *
437 * @dev: the device structure
438 */
mei_txe_synchronize_irq(struct mei_device * dev)439 static void mei_txe_synchronize_irq(struct mei_device *dev)
440 {
441 struct pci_dev *pdev = to_pci_dev(dev->dev);
442
443 synchronize_irq(pdev->irq);
444 }
445
446 /**
447 * mei_txe_pending_interrupts - check if there are pending interrupts
448 * only Aliveness, Input ready, and output doorbell are of relevance
449 *
450 * @dev: the device structure
451 *
452 * Checks if there are pending interrupts
453 * only Aliveness, Readiness, Input ready, and Output doorbell are relevant
454 *
455 * Return: true if there are pending interrupts
456 */
mei_txe_pending_interrupts(struct mei_device * dev)457 static bool mei_txe_pending_interrupts(struct mei_device *dev)
458 {
459
460 struct mei_txe_hw *hw = to_txe_hw(dev);
461 bool ret = (hw->intr_cause & (TXE_INTR_READINESS |
462 TXE_INTR_ALIVENESS |
463 TXE_INTR_IN_READY |
464 TXE_INTR_OUT_DB));
465
466 if (ret) {
467 dev_dbg(dev->dev,
468 "Pending Interrupts InReady=%01d Readiness=%01d, Aliveness=%01d, OutDoor=%01d\n",
469 !!(hw->intr_cause & TXE_INTR_IN_READY),
470 !!(hw->intr_cause & TXE_INTR_READINESS),
471 !!(hw->intr_cause & TXE_INTR_ALIVENESS),
472 !!(hw->intr_cause & TXE_INTR_OUT_DB));
473 }
474 return ret;
475 }
476
477 /**
478 * mei_txe_input_payload_write - write a dword to the host buffer
479 * at offset idx
480 *
481 * @dev: the device structure
482 * @idx: index in the host buffer
483 * @value: value
484 */
mei_txe_input_payload_write(struct mei_device * dev,unsigned long idx,u32 value)485 static void mei_txe_input_payload_write(struct mei_device *dev,
486 unsigned long idx, u32 value)
487 {
488 struct mei_txe_hw *hw = to_txe_hw(dev);
489
490 mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_PAYLOAD_REG +
491 (idx * sizeof(u32)), value);
492 }
493
494 /**
495 * mei_txe_out_data_read - read dword from the device buffer
496 * at offset idx
497 *
498 * @dev: the device structure
499 * @idx: index in the device buffer
500 *
501 * Return: register value at index
502 */
mei_txe_out_data_read(const struct mei_device * dev,unsigned long idx)503 static u32 mei_txe_out_data_read(const struct mei_device *dev,
504 unsigned long idx)
505 {
506 struct mei_txe_hw *hw = to_txe_hw(dev);
507
508 return mei_txe_br_reg_read(hw,
509 BRIDGE_IPC_OUTPUT_PAYLOAD_REG + (idx * sizeof(u32)));
510 }
511
512 /* Readiness */
513
514 /**
515 * mei_txe_readiness_set_host_rdy - set host readiness bit
516 *
517 * @dev: the device structure
518 */
mei_txe_readiness_set_host_rdy(struct mei_device * dev)519 static void mei_txe_readiness_set_host_rdy(struct mei_device *dev)
520 {
521 struct mei_txe_hw *hw = to_txe_hw(dev);
522
523 mei_txe_br_reg_write(hw,
524 SICR_HOST_IPC_READINESS_REQ_REG,
525 SICR_HOST_IPC_READINESS_HOST_RDY);
526 }
527
528 /**
529 * mei_txe_readiness_clear - clear host readiness bit
530 *
531 * @dev: the device structure
532 */
mei_txe_readiness_clear(struct mei_device * dev)533 static void mei_txe_readiness_clear(struct mei_device *dev)
534 {
535 struct mei_txe_hw *hw = to_txe_hw(dev);
536
537 mei_txe_br_reg_write(hw, SICR_HOST_IPC_READINESS_REQ_REG,
538 SICR_HOST_IPC_READINESS_RDY_CLR);
539 }
540 /**
541 * mei_txe_readiness_get - Reads and returns
542 * the HICR_SEC_IPC_READINESS register value
543 *
544 * @dev: the device structure
545 *
546 * Return: the HICR_SEC_IPC_READINESS register value
547 */
mei_txe_readiness_get(struct mei_device * dev)548 static u32 mei_txe_readiness_get(struct mei_device *dev)
549 {
550 struct mei_txe_hw *hw = to_txe_hw(dev);
551
552 return mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
553 }
554
555
556 /**
557 * mei_txe_readiness_is_sec_rdy - check readiness
558 * for HICR_SEC_IPC_READINESS_SEC_RDY
559 *
560 * @readiness: cached readiness state
561 *
562 * Return: true if readiness bit is set
563 */
mei_txe_readiness_is_sec_rdy(u32 readiness)564 static inline bool mei_txe_readiness_is_sec_rdy(u32 readiness)
565 {
566 return !!(readiness & HICR_SEC_IPC_READINESS_SEC_RDY);
567 }
568
569 /**
570 * mei_txe_hw_is_ready - check if the hw is ready
571 *
572 * @dev: the device structure
573 *
574 * Return: true if sec is ready
575 */
mei_txe_hw_is_ready(struct mei_device * dev)576 static bool mei_txe_hw_is_ready(struct mei_device *dev)
577 {
578 u32 readiness = mei_txe_readiness_get(dev);
579
580 return mei_txe_readiness_is_sec_rdy(readiness);
581 }
582
583 /**
584 * mei_txe_host_is_ready - check if the host is ready
585 *
586 * @dev: the device structure
587 *
588 * Return: true if host is ready
589 */
mei_txe_host_is_ready(struct mei_device * dev)590 static inline bool mei_txe_host_is_ready(struct mei_device *dev)
591 {
592 struct mei_txe_hw *hw = to_txe_hw(dev);
593 u32 reg = mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
594
595 return !!(reg & HICR_SEC_IPC_READINESS_HOST_RDY);
596 }
597
598 /**
599 * mei_txe_readiness_wait - wait till readiness settles
600 *
601 * @dev: the device structure
602 *
603 * Return: 0 on success and -ETIME on timeout
604 */
mei_txe_readiness_wait(struct mei_device * dev)605 static int mei_txe_readiness_wait(struct mei_device *dev)
606 {
607 if (mei_txe_hw_is_ready(dev))
608 return 0;
609
610 mutex_unlock(&dev->device_lock);
611 wait_event_timeout(dev->wait_hw_ready, dev->recvd_hw_ready,
612 msecs_to_jiffies(SEC_RESET_WAIT_TIMEOUT));
613 mutex_lock(&dev->device_lock);
614 if (!dev->recvd_hw_ready) {
615 dev_err(dev->dev, "wait for readiness failed\n");
616 return -ETIME;
617 }
618
619 dev->recvd_hw_ready = false;
620 return 0;
621 }
622
623 static const struct mei_fw_status mei_txe_fw_sts = {
624 .count = 2,
625 .status[0] = PCI_CFG_TXE_FW_STS0,
626 .status[1] = PCI_CFG_TXE_FW_STS1
627 };
628
629 /**
630 * mei_txe_fw_status - read fw status register from pci config space
631 *
632 * @dev: mei device
633 * @fw_status: fw status register values
634 *
635 * Return: 0 on success, error otherwise
636 */
mei_txe_fw_status(struct mei_device * dev,struct mei_fw_status * fw_status)637 static int mei_txe_fw_status(struct mei_device *dev,
638 struct mei_fw_status *fw_status)
639 {
640 const struct mei_fw_status *fw_src = &mei_txe_fw_sts;
641 struct pci_dev *pdev = to_pci_dev(dev->dev);
642 int ret;
643 int i;
644
645 if (!fw_status)
646 return -EINVAL;
647
648 fw_status->count = fw_src->count;
649 for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
650 ret = pci_read_config_dword(pdev, fw_src->status[i],
651 &fw_status->status[i]);
652 trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X",
653 fw_src->status[i],
654 fw_status->status[i]);
655 if (ret)
656 return ret;
657 }
658
659 return 0;
660 }
661
662 /**
663 * mei_txe_hw_config - configure hardware at the start of the devices
664 *
665 * @dev: the device structure
666 *
667 * Configure hardware at the start of the device should be done only
668 * once at the device probe time
669 *
670 * Return: always 0
671 */
mei_txe_hw_config(struct mei_device * dev)672 static int mei_txe_hw_config(struct mei_device *dev)
673 {
674
675 struct mei_txe_hw *hw = to_txe_hw(dev);
676
677 hw->aliveness = mei_txe_aliveness_get(dev);
678 hw->readiness = mei_txe_readiness_get(dev);
679
680 dev_dbg(dev->dev, "aliveness_resp = 0x%08x, readiness = 0x%08x.\n",
681 hw->aliveness, hw->readiness);
682
683 return 0;
684 }
685
686 /**
687 * mei_txe_write - writes a message to device.
688 *
689 * @dev: the device structure
690 * @hdr: header of message
691 * @hdr_len: header length in bytes - must multiplication of a slot (4bytes)
692 * @data: payload
693 * @data_len: paylead length in bytes
694 *
695 * Return: 0 if success, < 0 - otherwise.
696 */
mei_txe_write(struct mei_device * dev,const void * hdr,size_t hdr_len,const void * data,size_t data_len)697 static int mei_txe_write(struct mei_device *dev,
698 const void *hdr, size_t hdr_len,
699 const void *data, size_t data_len)
700 {
701 struct mei_txe_hw *hw = to_txe_hw(dev);
702 unsigned long rem;
703 const u32 *reg_buf;
704 u32 slots = TXE_HBUF_DEPTH;
705 u32 dw_cnt;
706 unsigned long i, j;
707
708 if (WARN_ON(!hdr || !data || hdr_len & 0x3))
709 return -EINVAL;
710
711 dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM((struct mei_msg_hdr *)hdr));
712
713 dw_cnt = mei_data2slots(hdr_len + data_len);
714 if (dw_cnt > slots)
715 return -EMSGSIZE;
716
717 if (WARN(!hw->aliveness, "txe write: aliveness not asserted\n"))
718 return -EAGAIN;
719
720 /* Enable Input Ready Interrupt. */
721 mei_txe_input_ready_interrupt_enable(dev);
722
723 if (!mei_txe_is_input_ready(dev)) {
724 char fw_sts_str[MEI_FW_STATUS_STR_SZ];
725
726 mei_fw_status_str(dev, fw_sts_str, MEI_FW_STATUS_STR_SZ);
727 dev_err(dev->dev, "Input is not ready %s\n", fw_sts_str);
728 return -EAGAIN;
729 }
730
731 reg_buf = hdr;
732 for (i = 0; i < hdr_len / MEI_SLOT_SIZE; i++)
733 mei_txe_input_payload_write(dev, i, reg_buf[i]);
734
735 reg_buf = data;
736 for (j = 0; j < data_len / MEI_SLOT_SIZE; j++)
737 mei_txe_input_payload_write(dev, i + j, reg_buf[j]);
738
739 rem = data_len & 0x3;
740 if (rem > 0) {
741 u32 reg = 0;
742
743 memcpy(®, (const u8 *)data + data_len - rem, rem);
744 mei_txe_input_payload_write(dev, i + j, reg);
745 }
746
747 /* after each write the whole buffer is consumed */
748 hw->slots = 0;
749
750 /* Set Input-Doorbell */
751 mei_txe_input_doorbell_set(hw);
752
753 return 0;
754 }
755
756 /**
757 * mei_txe_hbuf_depth - mimics the me hbuf circular buffer
758 *
759 * @dev: the device structure
760 *
761 * Return: the TXE_HBUF_DEPTH
762 */
mei_txe_hbuf_depth(const struct mei_device * dev)763 static u32 mei_txe_hbuf_depth(const struct mei_device *dev)
764 {
765 return TXE_HBUF_DEPTH;
766 }
767
768 /**
769 * mei_txe_hbuf_empty_slots - mimics the me hbuf circular buffer
770 *
771 * @dev: the device structure
772 *
773 * Return: always TXE_HBUF_DEPTH
774 */
mei_txe_hbuf_empty_slots(struct mei_device * dev)775 static int mei_txe_hbuf_empty_slots(struct mei_device *dev)
776 {
777 struct mei_txe_hw *hw = to_txe_hw(dev);
778
779 return hw->slots;
780 }
781
782 /**
783 * mei_txe_count_full_read_slots - mimics the me device circular buffer
784 *
785 * @dev: the device structure
786 *
787 * Return: always buffer size in dwords count
788 */
mei_txe_count_full_read_slots(struct mei_device * dev)789 static int mei_txe_count_full_read_slots(struct mei_device *dev)
790 {
791 /* read buffers has static size */
792 return TXE_HBUF_DEPTH;
793 }
794
795 /**
796 * mei_txe_read_hdr - read message header which is always in 4 first bytes
797 *
798 * @dev: the device structure
799 *
800 * Return: mei message header
801 */
802
mei_txe_read_hdr(const struct mei_device * dev)803 static u32 mei_txe_read_hdr(const struct mei_device *dev)
804 {
805 return mei_txe_out_data_read(dev, 0);
806 }
807 /**
808 * mei_txe_read - reads a message from the txe device.
809 *
810 * @dev: the device structure
811 * @buf: message buffer will be written
812 * @len: message size will be read
813 *
814 * Return: -EINVAL on error wrong argument and 0 on success
815 */
mei_txe_read(struct mei_device * dev,unsigned char * buf,unsigned long len)816 static int mei_txe_read(struct mei_device *dev,
817 unsigned char *buf, unsigned long len)
818 {
819
820 struct mei_txe_hw *hw = to_txe_hw(dev);
821 u32 *reg_buf, reg;
822 u32 rem;
823 u32 i;
824
825 if (WARN_ON(!buf || !len))
826 return -EINVAL;
827
828 reg_buf = (u32 *)buf;
829 rem = len & 0x3;
830
831 dev_dbg(dev->dev, "buffer-length = %lu buf[0]0x%08X\n",
832 len, mei_txe_out_data_read(dev, 0));
833
834 for (i = 0; i < len / MEI_SLOT_SIZE; i++) {
835 /* skip header: index starts from 1 */
836 reg = mei_txe_out_data_read(dev, i + 1);
837 dev_dbg(dev->dev, "buf[%d] = 0x%08X\n", i, reg);
838 *reg_buf++ = reg;
839 }
840
841 if (rem) {
842 reg = mei_txe_out_data_read(dev, i + 1);
843 memcpy(reg_buf, ®, rem);
844 }
845
846 mei_txe_output_ready_set(hw);
847 return 0;
848 }
849
850 /**
851 * mei_txe_hw_reset - resets host and fw.
852 *
853 * @dev: the device structure
854 * @intr_enable: if interrupt should be enabled after reset.
855 *
856 * Return: 0 on success and < 0 in case of error
857 */
mei_txe_hw_reset(struct mei_device * dev,bool intr_enable)858 static int mei_txe_hw_reset(struct mei_device *dev, bool intr_enable)
859 {
860 struct mei_txe_hw *hw = to_txe_hw(dev);
861
862 u32 aliveness_req;
863 /*
864 * read input doorbell to ensure consistency between Bridge and SeC
865 * return value might be garbage return
866 */
867 (void)mei_txe_sec_reg_read_silent(hw, SEC_IPC_INPUT_DOORBELL_REG);
868
869 aliveness_req = mei_txe_aliveness_req_get(dev);
870 hw->aliveness = mei_txe_aliveness_get(dev);
871
872 /* Disable interrupts in this stage we will poll */
873 mei_txe_intr_disable(dev);
874
875 /*
876 * If Aliveness Request and Aliveness Response are not equal then
877 * wait for them to be equal
878 * Since we might have interrupts disabled - poll for it
879 */
880 if (aliveness_req != hw->aliveness)
881 if (mei_txe_aliveness_poll(dev, aliveness_req) < 0) {
882 dev_err(dev->dev, "wait for aliveness settle failed ... bailing out\n");
883 return -EIO;
884 }
885
886 /*
887 * If Aliveness Request and Aliveness Response are set then clear them
888 */
889 if (aliveness_req) {
890 mei_txe_aliveness_set(dev, 0);
891 if (mei_txe_aliveness_poll(dev, 0) < 0) {
892 dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
893 return -EIO;
894 }
895 }
896
897 /*
898 * Set readiness RDY_CLR bit
899 */
900 mei_txe_readiness_clear(dev);
901
902 return 0;
903 }
904
905 /**
906 * mei_txe_hw_start - start the hardware after reset
907 *
908 * @dev: the device structure
909 *
910 * Return: 0 on success an error code otherwise
911 */
mei_txe_hw_start(struct mei_device * dev)912 static int mei_txe_hw_start(struct mei_device *dev)
913 {
914 struct mei_txe_hw *hw = to_txe_hw(dev);
915 int ret;
916
917 u32 hisr;
918
919 /* bring back interrupts */
920 mei_txe_intr_enable(dev);
921
922 ret = mei_txe_readiness_wait(dev);
923 if (ret < 0) {
924 dev_err(dev->dev, "waiting for readiness failed\n");
925 return ret;
926 }
927
928 /*
929 * If HISR.INT2_STS interrupt status bit is set then clear it.
930 */
931 hisr = mei_txe_br_reg_read(hw, HISR_REG);
932 if (hisr & HISR_INT_2_STS)
933 mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_2_STS);
934
935 /* Clear the interrupt cause of OutputDoorbell */
936 clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause);
937
938 ret = mei_txe_aliveness_set_sync(dev, 1);
939 if (ret < 0) {
940 dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
941 return ret;
942 }
943
944 pm_runtime_set_active(dev->dev);
945
946 /* enable input ready interrupts:
947 * SEC_IPC_HOST_INT_MASK.IPC_INPUT_READY_INT_MASK
948 */
949 mei_txe_input_ready_interrupt_enable(dev);
950
951
952 /* Set the SICR_SEC_IPC_OUTPUT_STATUS.IPC_OUTPUT_READY bit */
953 mei_txe_output_ready_set(hw);
954
955 /* Set bit SICR_HOST_IPC_READINESS.HOST_RDY
956 */
957 mei_txe_readiness_set_host_rdy(dev);
958
959 return 0;
960 }
961
962 /**
963 * mei_txe_check_and_ack_intrs - translate multi BAR interrupt into
964 * single bit mask and acknowledge the interrupts
965 *
966 * @dev: the device structure
967 * @do_ack: acknowledge interrupts
968 *
969 * Return: true if found interrupts to process.
970 */
mei_txe_check_and_ack_intrs(struct mei_device * dev,bool do_ack)971 static bool mei_txe_check_and_ack_intrs(struct mei_device *dev, bool do_ack)
972 {
973 struct mei_txe_hw *hw = to_txe_hw(dev);
974 u32 hisr;
975 u32 hhisr;
976 u32 ipc_isr;
977 u32 aliveness;
978 bool generated;
979
980 /* read interrupt registers */
981 hhisr = mei_txe_br_reg_read(hw, HHISR_REG);
982 generated = (hhisr & IPC_HHIER_MSK);
983 if (!generated)
984 goto out;
985
986 hisr = mei_txe_br_reg_read(hw, HISR_REG);
987
988 aliveness = mei_txe_aliveness_get(dev);
989 if (hhisr & IPC_HHIER_SEC && aliveness) {
990 ipc_isr = mei_txe_sec_reg_read_silent(hw,
991 SEC_IPC_HOST_INT_STATUS_REG);
992 } else {
993 ipc_isr = 0;
994 hhisr &= ~IPC_HHIER_SEC;
995 }
996
997 generated = generated ||
998 (hisr & HISR_INT_STS_MSK) ||
999 (ipc_isr & SEC_IPC_HOST_INT_STATUS_PENDING);
1000
1001 if (generated && do_ack) {
1002 /* Save the interrupt causes */
1003 hw->intr_cause |= hisr & HISR_INT_STS_MSK;
1004 if (ipc_isr & SEC_IPC_HOST_INT_STATUS_IN_RDY)
1005 hw->intr_cause |= TXE_INTR_IN_READY;
1006
1007
1008 mei_txe_intr_disable(dev);
1009 /* Clear the interrupts in hierarchy:
1010 * IPC and Bridge, than the High Level */
1011 mei_txe_sec_reg_write_silent(hw,
1012 SEC_IPC_HOST_INT_STATUS_REG, ipc_isr);
1013 mei_txe_br_reg_write(hw, HISR_REG, hisr);
1014 mei_txe_br_reg_write(hw, HHISR_REG, hhisr);
1015 }
1016
1017 out:
1018 return generated;
1019 }
1020
1021 /**
1022 * mei_txe_irq_quick_handler - The ISR of the MEI device
1023 *
1024 * @irq: The irq number
1025 * @dev_id: pointer to the device structure
1026 *
1027 * Return: IRQ_WAKE_THREAD if interrupt is designed for the device
1028 * IRQ_NONE otherwise
1029 */
mei_txe_irq_quick_handler(int irq,void * dev_id)1030 irqreturn_t mei_txe_irq_quick_handler(int irq, void *dev_id)
1031 {
1032 struct mei_device *dev = dev_id;
1033
1034 if (mei_txe_check_and_ack_intrs(dev, true))
1035 return IRQ_WAKE_THREAD;
1036 return IRQ_NONE;
1037 }
1038
1039
1040 /**
1041 * mei_txe_irq_thread_handler - txe interrupt thread
1042 *
1043 * @irq: The irq number
1044 * @dev_id: pointer to the device structure
1045 *
1046 * Return: IRQ_HANDLED
1047 */
mei_txe_irq_thread_handler(int irq,void * dev_id)1048 irqreturn_t mei_txe_irq_thread_handler(int irq, void *dev_id)
1049 {
1050 struct mei_device *dev = (struct mei_device *) dev_id;
1051 struct mei_txe_hw *hw = to_txe_hw(dev);
1052 struct list_head cmpl_list;
1053 s32 slots;
1054 int rets = 0;
1055
1056 dev_dbg(dev->dev, "irq thread: Interrupt Registers HHISR|HISR|SEC=%02X|%04X|%02X\n",
1057 mei_txe_br_reg_read(hw, HHISR_REG),
1058 mei_txe_br_reg_read(hw, HISR_REG),
1059 mei_txe_sec_reg_read_silent(hw, SEC_IPC_HOST_INT_STATUS_REG));
1060
1061
1062 /* initialize our complete list */
1063 mutex_lock(&dev->device_lock);
1064 INIT_LIST_HEAD(&cmpl_list);
1065
1066 if (pci_dev_msi_enabled(to_pci_dev(dev->dev)))
1067 mei_txe_check_and_ack_intrs(dev, true);
1068
1069 /* show irq events */
1070 mei_txe_pending_interrupts(dev);
1071
1072 hw->aliveness = mei_txe_aliveness_get(dev);
1073 hw->readiness = mei_txe_readiness_get(dev);
1074
1075 /* Readiness:
1076 * Detection of TXE driver going through reset
1077 * or TXE driver resetting the HECI interface.
1078 */
1079 if (test_and_clear_bit(TXE_INTR_READINESS_BIT, &hw->intr_cause)) {
1080 dev_dbg(dev->dev, "Readiness Interrupt was received...\n");
1081
1082 /* Check if SeC is going through reset */
1083 if (mei_txe_readiness_is_sec_rdy(hw->readiness)) {
1084 dev_dbg(dev->dev, "we need to start the dev.\n");
1085 dev->recvd_hw_ready = true;
1086 } else {
1087 dev->recvd_hw_ready = false;
1088 if (dev->dev_state != MEI_DEV_RESETTING) {
1089
1090 dev_warn(dev->dev, "FW not ready: resetting.\n");
1091 schedule_work(&dev->reset_work);
1092 goto end;
1093
1094 }
1095 }
1096 wake_up(&dev->wait_hw_ready);
1097 }
1098
1099 /************************************************************/
1100 /* Check interrupt cause:
1101 * Aliveness: Detection of SeC acknowledge of host request that
1102 * it remain alive or host cancellation of that request.
1103 */
1104
1105 if (test_and_clear_bit(TXE_INTR_ALIVENESS_BIT, &hw->intr_cause)) {
1106 /* Clear the interrupt cause */
1107 dev_dbg(dev->dev,
1108 "Aliveness Interrupt: Status: %d\n", hw->aliveness);
1109 dev->pg_event = MEI_PG_EVENT_RECEIVED;
1110 if (waitqueue_active(&hw->wait_aliveness_resp))
1111 wake_up(&hw->wait_aliveness_resp);
1112 }
1113
1114
1115 /* Output Doorbell:
1116 * Detection of SeC having sent output to host
1117 */
1118 slots = mei_count_full_read_slots(dev);
1119 if (test_and_clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause)) {
1120 /* Read from TXE */
1121 rets = mei_irq_read_handler(dev, &cmpl_list, &slots);
1122 if (rets &&
1123 (dev->dev_state != MEI_DEV_RESETTING &&
1124 dev->dev_state != MEI_DEV_POWER_DOWN)) {
1125 dev_err(dev->dev,
1126 "mei_irq_read_handler ret = %d.\n", rets);
1127
1128 schedule_work(&dev->reset_work);
1129 goto end;
1130 }
1131 }
1132 /* Input Ready: Detection if host can write to SeC */
1133 if (test_and_clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause)) {
1134 dev->hbuf_is_ready = true;
1135 hw->slots = TXE_HBUF_DEPTH;
1136 }
1137
1138 if (hw->aliveness && dev->hbuf_is_ready) {
1139 /* get the real register value */
1140 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1141 rets = mei_irq_write_handler(dev, &cmpl_list);
1142 if (rets && rets != -EMSGSIZE)
1143 dev_err(dev->dev, "mei_irq_write_handler ret = %d.\n",
1144 rets);
1145 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1146 }
1147
1148 mei_irq_compl_handler(dev, &cmpl_list);
1149
1150 end:
1151 dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1152
1153 mutex_unlock(&dev->device_lock);
1154
1155 mei_enable_interrupts(dev);
1156 return IRQ_HANDLED;
1157 }
1158
1159 static const struct mei_hw_ops mei_txe_hw_ops = {
1160
1161 .host_is_ready = mei_txe_host_is_ready,
1162
1163 .fw_status = mei_txe_fw_status,
1164 .pg_state = mei_txe_pg_state,
1165
1166 .hw_is_ready = mei_txe_hw_is_ready,
1167 .hw_reset = mei_txe_hw_reset,
1168 .hw_config = mei_txe_hw_config,
1169 .hw_start = mei_txe_hw_start,
1170
1171 .pg_in_transition = mei_txe_pg_in_transition,
1172 .pg_is_enabled = mei_txe_pg_is_enabled,
1173
1174 .intr_clear = mei_txe_intr_clear,
1175 .intr_enable = mei_txe_intr_enable,
1176 .intr_disable = mei_txe_intr_disable,
1177 .synchronize_irq = mei_txe_synchronize_irq,
1178
1179 .hbuf_free_slots = mei_txe_hbuf_empty_slots,
1180 .hbuf_is_ready = mei_txe_is_input_ready,
1181 .hbuf_depth = mei_txe_hbuf_depth,
1182
1183 .write = mei_txe_write,
1184
1185 .rdbuf_full_slots = mei_txe_count_full_read_slots,
1186 .read_hdr = mei_txe_read_hdr,
1187
1188 .read = mei_txe_read,
1189
1190 };
1191
1192 /**
1193 * mei_txe_dev_init - allocates and initializes txe hardware specific structure
1194 *
1195 * @pdev: pci device
1196 *
1197 * Return: struct mei_device * on success or NULL
1198 */
mei_txe_dev_init(struct pci_dev * pdev)1199 struct mei_device *mei_txe_dev_init(struct pci_dev *pdev)
1200 {
1201 struct mei_device *dev;
1202 struct mei_txe_hw *hw;
1203
1204 dev = devm_kzalloc(&pdev->dev, sizeof(*dev) + sizeof(*hw), GFP_KERNEL);
1205 if (!dev)
1206 return NULL;
1207
1208 mei_device_init(dev, &pdev->dev, &mei_txe_hw_ops);
1209
1210 hw = to_txe_hw(dev);
1211
1212 init_waitqueue_head(&hw->wait_aliveness_resp);
1213
1214 return dev;
1215 }
1216
1217 /**
1218 * mei_txe_setup_satt2 - SATT2 configuration for DMA support.
1219 *
1220 * @dev: the device structure
1221 * @addr: physical address start of the range
1222 * @range: physical range size
1223 *
1224 * Return: 0 on success an error code otherwise
1225 */
mei_txe_setup_satt2(struct mei_device * dev,phys_addr_t addr,u32 range)1226 int mei_txe_setup_satt2(struct mei_device *dev, phys_addr_t addr, u32 range)
1227 {
1228 struct mei_txe_hw *hw = to_txe_hw(dev);
1229
1230 u32 lo32 = lower_32_bits(addr);
1231 u32 hi32 = upper_32_bits(addr);
1232 u32 ctrl;
1233
1234 /* SATT is limited to 36 Bits */
1235 if (hi32 & ~0xF)
1236 return -EINVAL;
1237
1238 /* SATT has to be 16Byte aligned */
1239 if (lo32 & 0xF)
1240 return -EINVAL;
1241
1242 /* SATT range has to be 4Bytes aligned */
1243 if (range & 0x4)
1244 return -EINVAL;
1245
1246 /* SATT is limited to 32 MB range*/
1247 if (range > SATT_RANGE_MAX)
1248 return -EINVAL;
1249
1250 ctrl = SATT2_CTRL_VALID_MSK;
1251 ctrl |= hi32 << SATT2_CTRL_BR_BASE_ADDR_REG_SHIFT;
1252
1253 mei_txe_br_reg_write(hw, SATT2_SAP_SIZE_REG, range);
1254 mei_txe_br_reg_write(hw, SATT2_BRG_BA_LSB_REG, lo32);
1255 mei_txe_br_reg_write(hw, SATT2_CTRL_REG, ctrl);
1256 dev_dbg(dev->dev, "SATT2: SAP_SIZE_OFFSET=0x%08X, BRG_BA_LSB_OFFSET=0x%08X, CTRL_OFFSET=0x%08X\n",
1257 range, lo32, ctrl);
1258
1259 return 0;
1260 }
1261