• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * slcan.c - serial line CAN interface driver (using tty line discipline)
3  *
4  * This file is derived from linux/drivers/net/slip/slip.c
5  *
6  * slip.c Authors  : Laurence Culhane <loz@holmes.demon.co.uk>
7  *                   Fred N. van Kempen <waltje@uwalt.nl.mugnet.org>
8  * slcan.c Author  : Oliver Hartkopp <socketcan@hartkopp.net>
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see http://www.gnu.org/licenses/gpl.html
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
29  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
34  * DAMAGE.
35  *
36  */
37 
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 
41 #include <linux/uaccess.h>
42 #include <linux/bitops.h>
43 #include <linux/string.h>
44 #include <linux/tty.h>
45 #include <linux/errno.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>
48 #include <linux/rtnetlink.h>
49 #include <linux/if_arp.h>
50 #include <linux/if_ether.h>
51 #include <linux/sched.h>
52 #include <linux/delay.h>
53 #include <linux/init.h>
54 #include <linux/kernel.h>
55 #include <linux/workqueue.h>
56 #include <linux/can.h>
57 #include <linux/can/skb.h>
58 #include <linux/can/can-ml.h>
59 
60 MODULE_ALIAS_LDISC(N_SLCAN);
61 MODULE_DESCRIPTION("serial line CAN interface");
62 MODULE_LICENSE("GPL");
63 MODULE_AUTHOR("Oliver Hartkopp <socketcan@hartkopp.net>");
64 
65 #define SLCAN_MAGIC 0x53CA
66 
67 static int maxdev = 10;		/* MAX number of SLCAN channels;
68 				   This can be overridden with
69 				   insmod slcan.ko maxdev=nnn	*/
70 module_param(maxdev, int, 0);
71 MODULE_PARM_DESC(maxdev, "Maximum number of slcan interfaces");
72 
73 /* maximum rx buffer len: extended CAN frame with timestamp */
74 #define SLC_MTU (sizeof("T1111222281122334455667788EA5F\r")+1)
75 
76 #define SLC_CMD_LEN 1
77 #define SLC_SFF_ID_LEN 3
78 #define SLC_EFF_ID_LEN 8
79 
80 struct slcan {
81 	int			magic;
82 
83 	/* Various fields. */
84 	struct tty_struct	*tty;		/* ptr to TTY structure	     */
85 	struct net_device	*dev;		/* easy for intr handling    */
86 	spinlock_t		lock;
87 	struct work_struct	tx_work;	/* Flushes transmit buffer   */
88 
89 	/* These are pointers to the malloc()ed frame buffers. */
90 	unsigned char		rbuff[SLC_MTU];	/* receiver buffer	     */
91 	int			rcount;         /* received chars counter    */
92 	unsigned char		xbuff[SLC_MTU];	/* transmitter buffer	     */
93 	unsigned char		*xhead;         /* pointer to next XMIT byte */
94 	int			xleft;          /* bytes left in XMIT queue  */
95 
96 	unsigned long		flags;		/* Flag values/ mode etc     */
97 #define SLF_INUSE		0		/* Channel in use            */
98 #define SLF_ERROR		1               /* Parity, etc. error        */
99 };
100 
101 static struct net_device **slcan_devs;
102 
103  /************************************************************************
104   *			SLCAN ENCAPSULATION FORMAT			 *
105   ************************************************************************/
106 
107 /*
108  * A CAN frame has a can_id (11 bit standard frame format OR 29 bit extended
109  * frame format) a data length code (can_dlc) which can be from 0 to 8
110  * and up to <can_dlc> data bytes as payload.
111  * Additionally a CAN frame may become a remote transmission frame if the
112  * RTR-bit is set. This causes another ECU to send a CAN frame with the
113  * given can_id.
114  *
115  * The SLCAN ASCII representation of these different frame types is:
116  * <type> <id> <dlc> <data>*
117  *
118  * Extended frames (29 bit) are defined by capital characters in the type.
119  * RTR frames are defined as 'r' types - normal frames have 't' type:
120  * t => 11 bit data frame
121  * r => 11 bit RTR frame
122  * T => 29 bit data frame
123  * R => 29 bit RTR frame
124  *
125  * The <id> is 3 (standard) or 8 (extended) bytes in ASCII Hex (base64).
126  * The <dlc> is a one byte ASCII number ('0' - '8')
127  * The <data> section has at much ASCII Hex bytes as defined by the <dlc>
128  *
129  * Examples:
130  *
131  * t1230 : can_id 0x123, can_dlc 0, no data
132  * t4563112233 : can_id 0x456, can_dlc 3, data 0x11 0x22 0x33
133  * T12ABCDEF2AA55 : extended can_id 0x12ABCDEF, can_dlc 2, data 0xAA 0x55
134  * r1230 : can_id 0x123, can_dlc 0, no data, remote transmission request
135  *
136  */
137 
138  /************************************************************************
139   *			STANDARD SLCAN DECAPSULATION			 *
140   ************************************************************************/
141 
142 /* Send one completely decapsulated can_frame to the network layer */
slc_bump(struct slcan * sl)143 static void slc_bump(struct slcan *sl)
144 {
145 	struct sk_buff *skb;
146 	struct can_frame cf;
147 	int i, tmp;
148 	u32 tmpid;
149 	char *cmd = sl->rbuff;
150 
151 	memset(&cf, 0, sizeof(cf));
152 
153 	switch (*cmd) {
154 	case 'r':
155 		cf.can_id = CAN_RTR_FLAG;
156 		fallthrough;
157 	case 't':
158 		/* store dlc ASCII value and terminate SFF CAN ID string */
159 		cf.can_dlc = sl->rbuff[SLC_CMD_LEN + SLC_SFF_ID_LEN];
160 		sl->rbuff[SLC_CMD_LEN + SLC_SFF_ID_LEN] = 0;
161 		/* point to payload data behind the dlc */
162 		cmd += SLC_CMD_LEN + SLC_SFF_ID_LEN + 1;
163 		break;
164 	case 'R':
165 		cf.can_id = CAN_RTR_FLAG;
166 		fallthrough;
167 	case 'T':
168 		cf.can_id |= CAN_EFF_FLAG;
169 		/* store dlc ASCII value and terminate EFF CAN ID string */
170 		cf.can_dlc = sl->rbuff[SLC_CMD_LEN + SLC_EFF_ID_LEN];
171 		sl->rbuff[SLC_CMD_LEN + SLC_EFF_ID_LEN] = 0;
172 		/* point to payload data behind the dlc */
173 		cmd += SLC_CMD_LEN + SLC_EFF_ID_LEN + 1;
174 		break;
175 	default:
176 		return;
177 	}
178 
179 	if (kstrtou32(sl->rbuff + SLC_CMD_LEN, 16, &tmpid))
180 		return;
181 
182 	cf.can_id |= tmpid;
183 
184 	/* get can_dlc from sanitized ASCII value */
185 	if (cf.can_dlc >= '0' && cf.can_dlc < '9')
186 		cf.can_dlc -= '0';
187 	else
188 		return;
189 
190 	/* RTR frames may have a dlc > 0 but they never have any data bytes */
191 	if (!(cf.can_id & CAN_RTR_FLAG)) {
192 		for (i = 0; i < cf.can_dlc; i++) {
193 			tmp = hex_to_bin(*cmd++);
194 			if (tmp < 0)
195 				return;
196 			cf.data[i] = (tmp << 4);
197 			tmp = hex_to_bin(*cmd++);
198 			if (tmp < 0)
199 				return;
200 			cf.data[i] |= tmp;
201 		}
202 	}
203 
204 	skb = dev_alloc_skb(sizeof(struct can_frame) +
205 			    sizeof(struct can_skb_priv));
206 	if (!skb)
207 		return;
208 
209 	skb->dev = sl->dev;
210 	skb->protocol = htons(ETH_P_CAN);
211 	skb->pkt_type = PACKET_BROADCAST;
212 	skb->ip_summed = CHECKSUM_UNNECESSARY;
213 
214 	can_skb_reserve(skb);
215 	can_skb_prv(skb)->ifindex = sl->dev->ifindex;
216 	can_skb_prv(skb)->skbcnt = 0;
217 
218 	skb_put_data(skb, &cf, sizeof(struct can_frame));
219 
220 	sl->dev->stats.rx_packets++;
221 	sl->dev->stats.rx_bytes += cf.can_dlc;
222 	netif_rx_ni(skb);
223 }
224 
225 /* parse tty input stream */
slcan_unesc(struct slcan * sl,unsigned char s)226 static void slcan_unesc(struct slcan *sl, unsigned char s)
227 {
228 	if ((s == '\r') || (s == '\a')) { /* CR or BEL ends the pdu */
229 		if (!test_and_clear_bit(SLF_ERROR, &sl->flags) &&
230 		    (sl->rcount > 4))  {
231 			slc_bump(sl);
232 		}
233 		sl->rcount = 0;
234 	} else {
235 		if (!test_bit(SLF_ERROR, &sl->flags))  {
236 			if (sl->rcount < SLC_MTU)  {
237 				sl->rbuff[sl->rcount++] = s;
238 				return;
239 			} else {
240 				sl->dev->stats.rx_over_errors++;
241 				set_bit(SLF_ERROR, &sl->flags);
242 			}
243 		}
244 	}
245 }
246 
247  /************************************************************************
248   *			STANDARD SLCAN ENCAPSULATION			 *
249   ************************************************************************/
250 
251 /* Encapsulate one can_frame and stuff into a TTY queue. */
slc_encaps(struct slcan * sl,struct can_frame * cf)252 static void slc_encaps(struct slcan *sl, struct can_frame *cf)
253 {
254 	int actual, i;
255 	unsigned char *pos;
256 	unsigned char *endpos;
257 	canid_t id = cf->can_id;
258 
259 	pos = sl->xbuff;
260 
261 	if (cf->can_id & CAN_RTR_FLAG)
262 		*pos = 'R'; /* becomes 'r' in standard frame format (SFF) */
263 	else
264 		*pos = 'T'; /* becomes 't' in standard frame format (SSF) */
265 
266 	/* determine number of chars for the CAN-identifier */
267 	if (cf->can_id & CAN_EFF_FLAG) {
268 		id &= CAN_EFF_MASK;
269 		endpos = pos + SLC_EFF_ID_LEN;
270 	} else {
271 		*pos |= 0x20; /* convert R/T to lower case for SFF */
272 		id &= CAN_SFF_MASK;
273 		endpos = pos + SLC_SFF_ID_LEN;
274 	}
275 
276 	/* build 3 (SFF) or 8 (EFF) digit CAN identifier */
277 	pos++;
278 	while (endpos >= pos) {
279 		*endpos-- = hex_asc_upper[id & 0xf];
280 		id >>= 4;
281 	}
282 
283 	pos += (cf->can_id & CAN_EFF_FLAG) ? SLC_EFF_ID_LEN : SLC_SFF_ID_LEN;
284 
285 	*pos++ = cf->can_dlc + '0';
286 
287 	/* RTR frames may have a dlc > 0 but they never have any data bytes */
288 	if (!(cf->can_id & CAN_RTR_FLAG)) {
289 		for (i = 0; i < cf->can_dlc; i++)
290 			pos = hex_byte_pack_upper(pos, cf->data[i]);
291 	}
292 
293 	*pos++ = '\r';
294 
295 	/* Order of next two lines is *very* important.
296 	 * When we are sending a little amount of data,
297 	 * the transfer may be completed inside the ops->write()
298 	 * routine, because it's running with interrupts enabled.
299 	 * In this case we *never* got WRITE_WAKEUP event,
300 	 * if we did not request it before write operation.
301 	 *       14 Oct 1994  Dmitry Gorodchanin.
302 	 */
303 	set_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags);
304 	actual = sl->tty->ops->write(sl->tty, sl->xbuff, pos - sl->xbuff);
305 	sl->xleft = (pos - sl->xbuff) - actual;
306 	sl->xhead = sl->xbuff + actual;
307 	sl->dev->stats.tx_bytes += cf->can_dlc;
308 }
309 
310 /* Write out any remaining transmit buffer. Scheduled when tty is writable */
slcan_transmit(struct work_struct * work)311 static void slcan_transmit(struct work_struct *work)
312 {
313 	struct slcan *sl = container_of(work, struct slcan, tx_work);
314 	int actual;
315 
316 	spin_lock_bh(&sl->lock);
317 	/* First make sure we're connected. */
318 	if (!sl->tty || sl->magic != SLCAN_MAGIC || !netif_running(sl->dev)) {
319 		spin_unlock_bh(&sl->lock);
320 		return;
321 	}
322 
323 	if (sl->xleft <= 0)  {
324 		/* Now serial buffer is almost free & we can start
325 		 * transmission of another packet */
326 		sl->dev->stats.tx_packets++;
327 		clear_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags);
328 		spin_unlock_bh(&sl->lock);
329 		netif_wake_queue(sl->dev);
330 		return;
331 	}
332 
333 	actual = sl->tty->ops->write(sl->tty, sl->xhead, sl->xleft);
334 	sl->xleft -= actual;
335 	sl->xhead += actual;
336 	spin_unlock_bh(&sl->lock);
337 }
338 
339 /*
340  * Called by the driver when there's room for more data.
341  * Schedule the transmit.
342  */
slcan_write_wakeup(struct tty_struct * tty)343 static void slcan_write_wakeup(struct tty_struct *tty)
344 {
345 	struct slcan *sl;
346 
347 	rcu_read_lock();
348 	sl = rcu_dereference(tty->disc_data);
349 	if (sl)
350 		schedule_work(&sl->tx_work);
351 	rcu_read_unlock();
352 }
353 
354 /* Send a can_frame to a TTY queue. */
slc_xmit(struct sk_buff * skb,struct net_device * dev)355 static netdev_tx_t slc_xmit(struct sk_buff *skb, struct net_device *dev)
356 {
357 	struct slcan *sl = netdev_priv(dev);
358 
359 	if (skb->len != CAN_MTU)
360 		goto out;
361 
362 	spin_lock(&sl->lock);
363 	if (!netif_running(dev))  {
364 		spin_unlock(&sl->lock);
365 		printk(KERN_WARNING "%s: xmit: iface is down\n", dev->name);
366 		goto out;
367 	}
368 	if (sl->tty == NULL) {
369 		spin_unlock(&sl->lock);
370 		goto out;
371 	}
372 
373 	netif_stop_queue(sl->dev);
374 	slc_encaps(sl, (struct can_frame *) skb->data); /* encaps & send */
375 	spin_unlock(&sl->lock);
376 
377 out:
378 	kfree_skb(skb);
379 	return NETDEV_TX_OK;
380 }
381 
382 
383 /******************************************
384  *   Routines looking at netdevice side.
385  ******************************************/
386 
387 /* Netdevice UP -> DOWN routine */
slc_close(struct net_device * dev)388 static int slc_close(struct net_device *dev)
389 {
390 	struct slcan *sl = netdev_priv(dev);
391 
392 	spin_lock_bh(&sl->lock);
393 	if (sl->tty) {
394 		/* TTY discipline is running. */
395 		clear_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags);
396 	}
397 	netif_stop_queue(dev);
398 	sl->rcount   = 0;
399 	sl->xleft    = 0;
400 	spin_unlock_bh(&sl->lock);
401 
402 	return 0;
403 }
404 
405 /* Netdevice DOWN -> UP routine */
slc_open(struct net_device * dev)406 static int slc_open(struct net_device *dev)
407 {
408 	struct slcan *sl = netdev_priv(dev);
409 
410 	if (sl->tty == NULL)
411 		return -ENODEV;
412 
413 	sl->flags &= (1 << SLF_INUSE);
414 	netif_start_queue(dev);
415 	return 0;
416 }
417 
418 /* Hook the destructor so we can free slcan devs at the right point in time */
slc_free_netdev(struct net_device * dev)419 static void slc_free_netdev(struct net_device *dev)
420 {
421 	int i = dev->base_addr;
422 
423 	slcan_devs[i] = NULL;
424 }
425 
slcan_change_mtu(struct net_device * dev,int new_mtu)426 static int slcan_change_mtu(struct net_device *dev, int new_mtu)
427 {
428 	return -EINVAL;
429 }
430 
431 static const struct net_device_ops slc_netdev_ops = {
432 	.ndo_open               = slc_open,
433 	.ndo_stop               = slc_close,
434 	.ndo_start_xmit         = slc_xmit,
435 	.ndo_change_mtu         = slcan_change_mtu,
436 };
437 
slc_setup(struct net_device * dev)438 static void slc_setup(struct net_device *dev)
439 {
440 	dev->netdev_ops		= &slc_netdev_ops;
441 	dev->needs_free_netdev	= true;
442 	dev->priv_destructor	= slc_free_netdev;
443 
444 	dev->hard_header_len	= 0;
445 	dev->addr_len		= 0;
446 	dev->tx_queue_len	= 10;
447 
448 	dev->mtu		= CAN_MTU;
449 	dev->type		= ARPHRD_CAN;
450 
451 	/* New-style flags. */
452 	dev->flags		= IFF_NOARP;
453 	dev->features           = NETIF_F_HW_CSUM;
454 }
455 
456 /******************************************
457   Routines looking at TTY side.
458  ******************************************/
459 
460 /*
461  * Handle the 'receiver data ready' interrupt.
462  * This function is called by the 'tty_io' module in the kernel when
463  * a block of SLCAN data has been received, which can now be decapsulated
464  * and sent on to some IP layer for further processing. This will not
465  * be re-entered while running but other ldisc functions may be called
466  * in parallel
467  */
468 
slcan_receive_buf(struct tty_struct * tty,const unsigned char * cp,char * fp,int count)469 static void slcan_receive_buf(struct tty_struct *tty,
470 			      const unsigned char *cp, char *fp, int count)
471 {
472 	struct slcan *sl = (struct slcan *) tty->disc_data;
473 
474 	if (!sl || sl->magic != SLCAN_MAGIC || !netif_running(sl->dev))
475 		return;
476 
477 	/* Read the characters out of the buffer */
478 	while (count--) {
479 		if (fp && *fp++) {
480 			if (!test_and_set_bit(SLF_ERROR, &sl->flags))
481 				sl->dev->stats.rx_errors++;
482 			cp++;
483 			continue;
484 		}
485 		slcan_unesc(sl, *cp++);
486 	}
487 }
488 
489 /************************************
490  *  slcan_open helper routines.
491  ************************************/
492 
493 /* Collect hanged up channels */
slc_sync(void)494 static void slc_sync(void)
495 {
496 	int i;
497 	struct net_device *dev;
498 	struct slcan	  *sl;
499 
500 	for (i = 0; i < maxdev; i++) {
501 		dev = slcan_devs[i];
502 		if (dev == NULL)
503 			break;
504 
505 		sl = netdev_priv(dev);
506 		if (sl->tty)
507 			continue;
508 		if (dev->flags & IFF_UP)
509 			dev_close(dev);
510 	}
511 }
512 
513 /* Find a free SLCAN channel, and link in this `tty' line. */
slc_alloc(void)514 static struct slcan *slc_alloc(void)
515 {
516 	int i;
517 	char name[IFNAMSIZ];
518 	struct net_device *dev = NULL;
519 	struct can_ml_priv *can_ml;
520 	struct slcan       *sl;
521 	int size;
522 
523 	for (i = 0; i < maxdev; i++) {
524 		dev = slcan_devs[i];
525 		if (dev == NULL)
526 			break;
527 
528 	}
529 
530 	/* Sorry, too many, all slots in use */
531 	if (i >= maxdev)
532 		return NULL;
533 
534 	sprintf(name, "slcan%d", i);
535 	size = ALIGN(sizeof(*sl), NETDEV_ALIGN) + sizeof(struct can_ml_priv);
536 	dev = alloc_netdev(size, name, NET_NAME_UNKNOWN, slc_setup);
537 	if (!dev)
538 		return NULL;
539 
540 	dev->base_addr  = i;
541 	sl = netdev_priv(dev);
542 	can_ml = (void *)sl + ALIGN(sizeof(*sl), NETDEV_ALIGN);
543 	can_set_ml_priv(dev, can_ml);
544 
545 	/* Initialize channel control data */
546 	sl->magic = SLCAN_MAGIC;
547 	sl->dev	= dev;
548 	spin_lock_init(&sl->lock);
549 	INIT_WORK(&sl->tx_work, slcan_transmit);
550 	slcan_devs[i] = dev;
551 
552 	return sl;
553 }
554 
555 /*
556  * Open the high-level part of the SLCAN channel.
557  * This function is called by the TTY module when the
558  * SLCAN line discipline is called for.  Because we are
559  * sure the tty line exists, we only have to link it to
560  * a free SLCAN channel...
561  *
562  * Called in process context serialized from other ldisc calls.
563  */
564 
slcan_open(struct tty_struct * tty)565 static int slcan_open(struct tty_struct *tty)
566 {
567 	struct slcan *sl;
568 	int err;
569 
570 	if (!capable(CAP_NET_ADMIN))
571 		return -EPERM;
572 
573 	if (tty->ops->write == NULL)
574 		return -EOPNOTSUPP;
575 
576 	/* RTnetlink lock is misused here to serialize concurrent
577 	   opens of slcan channels. There are better ways, but it is
578 	   the simplest one.
579 	 */
580 	rtnl_lock();
581 
582 	/* Collect hanged up channels. */
583 	slc_sync();
584 
585 	sl = tty->disc_data;
586 
587 	err = -EEXIST;
588 	/* First make sure we're not already connected. */
589 	if (sl && sl->magic == SLCAN_MAGIC)
590 		goto err_exit;
591 
592 	/* OK.  Find a free SLCAN channel to use. */
593 	err = -ENFILE;
594 	sl = slc_alloc();
595 	if (sl == NULL)
596 		goto err_exit;
597 
598 	sl->tty = tty;
599 	tty->disc_data = sl;
600 
601 	if (!test_bit(SLF_INUSE, &sl->flags)) {
602 		/* Perform the low-level SLCAN initialization. */
603 		sl->rcount   = 0;
604 		sl->xleft    = 0;
605 
606 		set_bit(SLF_INUSE, &sl->flags);
607 
608 		err = register_netdevice(sl->dev);
609 		if (err)
610 			goto err_free_chan;
611 	}
612 
613 	/* Done.  We have linked the TTY line to a channel. */
614 	rtnl_unlock();
615 	tty->receive_room = 65536;	/* We don't flow control */
616 
617 	/* TTY layer expects 0 on success */
618 	return 0;
619 
620 err_free_chan:
621 	sl->tty = NULL;
622 	tty->disc_data = NULL;
623 	clear_bit(SLF_INUSE, &sl->flags);
624 	slc_free_netdev(sl->dev);
625 	/* do not call free_netdev before rtnl_unlock */
626 	rtnl_unlock();
627 	free_netdev(sl->dev);
628 	return err;
629 
630 err_exit:
631 	rtnl_unlock();
632 
633 	/* Count references from TTY module */
634 	return err;
635 }
636 
637 /*
638  * Close down a SLCAN channel.
639  * This means flushing out any pending queues, and then returning. This
640  * call is serialized against other ldisc functions.
641  *
642  * We also use this method for a hangup event.
643  */
644 
slcan_close(struct tty_struct * tty)645 static void slcan_close(struct tty_struct *tty)
646 {
647 	struct slcan *sl = (struct slcan *) tty->disc_data;
648 
649 	/* First make sure we're connected. */
650 	if (!sl || sl->magic != SLCAN_MAGIC || sl->tty != tty)
651 		return;
652 
653 	spin_lock_bh(&sl->lock);
654 	rcu_assign_pointer(tty->disc_data, NULL);
655 	sl->tty = NULL;
656 	spin_unlock_bh(&sl->lock);
657 
658 	synchronize_rcu();
659 	flush_work(&sl->tx_work);
660 
661 	/* Flush network side */
662 	unregister_netdev(sl->dev);
663 	/* This will complete via sl_free_netdev */
664 }
665 
slcan_hangup(struct tty_struct * tty)666 static int slcan_hangup(struct tty_struct *tty)
667 {
668 	slcan_close(tty);
669 	return 0;
670 }
671 
672 /* Perform I/O control on an active SLCAN channel. */
slcan_ioctl(struct tty_struct * tty,struct file * file,unsigned int cmd,unsigned long arg)673 static int slcan_ioctl(struct tty_struct *tty, struct file *file,
674 		       unsigned int cmd, unsigned long arg)
675 {
676 	struct slcan *sl = (struct slcan *) tty->disc_data;
677 	unsigned int tmp;
678 
679 	/* First make sure we're connected. */
680 	if (!sl || sl->magic != SLCAN_MAGIC)
681 		return -EINVAL;
682 
683 	switch (cmd) {
684 	case SIOCGIFNAME:
685 		tmp = strlen(sl->dev->name) + 1;
686 		if (copy_to_user((void __user *)arg, sl->dev->name, tmp))
687 			return -EFAULT;
688 		return 0;
689 
690 	case SIOCSIFHWADDR:
691 		return -EINVAL;
692 
693 	default:
694 		return tty_mode_ioctl(tty, file, cmd, arg);
695 	}
696 }
697 
698 static struct tty_ldisc_ops slc_ldisc = {
699 	.owner		= THIS_MODULE,
700 	.magic		= TTY_LDISC_MAGIC,
701 	.name		= "slcan",
702 	.open		= slcan_open,
703 	.close		= slcan_close,
704 	.hangup		= slcan_hangup,
705 	.ioctl		= slcan_ioctl,
706 	.receive_buf	= slcan_receive_buf,
707 	.write_wakeup	= slcan_write_wakeup,
708 };
709 
slcan_init(void)710 static int __init slcan_init(void)
711 {
712 	int status;
713 
714 	if (maxdev < 4)
715 		maxdev = 4; /* Sanity */
716 
717 	pr_info("slcan: serial line CAN interface driver\n");
718 	pr_info("slcan: %d dynamic interface channels.\n", maxdev);
719 
720 	slcan_devs = kcalloc(maxdev, sizeof(struct net_device *), GFP_KERNEL);
721 	if (!slcan_devs)
722 		return -ENOMEM;
723 
724 	/* Fill in our line protocol discipline, and register it */
725 	status = tty_register_ldisc(N_SLCAN, &slc_ldisc);
726 	if (status)  {
727 		printk(KERN_ERR "slcan: can't register line discipline\n");
728 		kfree(slcan_devs);
729 	}
730 	return status;
731 }
732 
slcan_exit(void)733 static void __exit slcan_exit(void)
734 {
735 	int i;
736 	struct net_device *dev;
737 	struct slcan *sl;
738 	unsigned long timeout = jiffies + HZ;
739 	int busy = 0;
740 
741 	if (slcan_devs == NULL)
742 		return;
743 
744 	/* First of all: check for active disciplines and hangup them.
745 	 */
746 	do {
747 		if (busy)
748 			msleep_interruptible(100);
749 
750 		busy = 0;
751 		for (i = 0; i < maxdev; i++) {
752 			dev = slcan_devs[i];
753 			if (!dev)
754 				continue;
755 			sl = netdev_priv(dev);
756 			spin_lock_bh(&sl->lock);
757 			if (sl->tty) {
758 				busy++;
759 				tty_hangup(sl->tty);
760 			}
761 			spin_unlock_bh(&sl->lock);
762 		}
763 	} while (busy && time_before(jiffies, timeout));
764 
765 	/* FIXME: hangup is async so we should wait when doing this second
766 	   phase */
767 
768 	for (i = 0; i < maxdev; i++) {
769 		dev = slcan_devs[i];
770 		if (!dev)
771 			continue;
772 		slcan_devs[i] = NULL;
773 
774 		sl = netdev_priv(dev);
775 		if (sl->tty) {
776 			printk(KERN_ERR "%s: tty discipline still running\n",
777 			       dev->name);
778 		}
779 
780 		unregister_netdev(dev);
781 	}
782 
783 	kfree(slcan_devs);
784 	slcan_devs = NULL;
785 
786 	i = tty_unregister_ldisc(N_SLCAN);
787 	if (i)
788 		printk(KERN_ERR "slcan: can't unregister ldisc (err %d)\n", i);
789 }
790 
791 module_init(slcan_init);
792 module_exit(slcan_exit);
793