1 /*
2 * Support for ColdFire CPU based boards using a NS8390 Ethernet device.
3 *
4 * Derived from the many other 8390 drivers.
5 *
6 * (C) Copyright 2012, Greg Ungerer <gerg@uclinux.org>
7 *
8 * This file is subject to the terms and conditions of the GNU General Public
9 * License. See the file COPYING in the main directory of the Linux
10 * distribution for more details.
11 */
12
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/errno.h>
16 #include <linux/platform_device.h>
17 #include <linux/netdevice.h>
18 #include <linux/etherdevice.h>
19 #include <linux/jiffies.h>
20 #include <linux/io.h>
21 #include <asm/mcf8390.h>
22
23 static const char version[] =
24 "mcf8390.c: (15-06-2012) Greg Ungerer <gerg@uclinux.org>";
25
26 #define NE_CMD 0x00
27 #define NE_DATAPORT 0x10 /* NatSemi-defined port window offset */
28 #define NE_RESET 0x1f /* Issue a read to reset ,a write to clear */
29 #define NE_EN0_ISR 0x07
30 #define NE_EN0_DCFG 0x0e
31 #define NE_EN0_RSARLO 0x08
32 #define NE_EN0_RSARHI 0x09
33 #define NE_EN0_RCNTLO 0x0a
34 #define NE_EN0_RXCR 0x0c
35 #define NE_EN0_TXCR 0x0d
36 #define NE_EN0_RCNTHI 0x0b
37 #define NE_EN0_IMR 0x0f
38
39 #define NESM_START_PG 0x40 /* First page of TX buffer */
40 #define NESM_STOP_PG 0x80 /* Last page +1 of RX ring */
41
42 #ifdef NE2000_ODDOFFSET
43 /*
44 * A lot of the ColdFire boards use a separate address region for odd offset
45 * register addresses. The following functions convert and map as required.
46 * Note that the data port accesses are treated a little differently, and
47 * always accessed via the insX/outsX functions.
48 */
NE_PTR(u32 addr)49 static inline u32 NE_PTR(u32 addr)
50 {
51 if (addr & 1)
52 return addr - 1 + NE2000_ODDOFFSET;
53 return addr;
54 }
55
NE_DATA_PTR(u32 addr)56 static inline u32 NE_DATA_PTR(u32 addr)
57 {
58 return addr;
59 }
60
ei_outb(u32 val,u32 addr)61 void ei_outb(u32 val, u32 addr)
62 {
63 NE2000_BYTE *rp;
64
65 rp = (NE2000_BYTE *) NE_PTR(addr);
66 *rp = RSWAP(val);
67 }
68
69 #define ei_inb ei_inb
ei_inb(u32 addr)70 u8 ei_inb(u32 addr)
71 {
72 NE2000_BYTE *rp, val;
73
74 rp = (NE2000_BYTE *) NE_PTR(addr);
75 val = *rp;
76 return (u8) (RSWAP(val) & 0xff);
77 }
78
ei_insb(u32 addr,void * vbuf,int len)79 void ei_insb(u32 addr, void *vbuf, int len)
80 {
81 NE2000_BYTE *rp, val;
82 u8 *buf;
83
84 buf = (u8 *) vbuf;
85 rp = (NE2000_BYTE *) NE_DATA_PTR(addr);
86 for (; (len > 0); len--) {
87 val = *rp;
88 *buf++ = RSWAP(val);
89 }
90 }
91
ei_insw(u32 addr,void * vbuf,int len)92 void ei_insw(u32 addr, void *vbuf, int len)
93 {
94 volatile u16 *rp;
95 u16 w, *buf;
96
97 buf = (u16 *) vbuf;
98 rp = (volatile u16 *) NE_DATA_PTR(addr);
99 for (; (len > 0); len--) {
100 w = *rp;
101 *buf++ = BSWAP(w);
102 }
103 }
104
ei_outsb(u32 addr,const void * vbuf,int len)105 void ei_outsb(u32 addr, const void *vbuf, int len)
106 {
107 NE2000_BYTE *rp, val;
108 u8 *buf;
109
110 buf = (u8 *) vbuf;
111 rp = (NE2000_BYTE *) NE_DATA_PTR(addr);
112 for (; (len > 0); len--) {
113 val = *buf++;
114 *rp = RSWAP(val);
115 }
116 }
117
ei_outsw(u32 addr,const void * vbuf,int len)118 void ei_outsw(u32 addr, const void *vbuf, int len)
119 {
120 volatile u16 *rp;
121 u16 w, *buf;
122
123 buf = (u16 *) vbuf;
124 rp = (volatile u16 *) NE_DATA_PTR(addr);
125 for (; (len > 0); len--) {
126 w = *buf++;
127 *rp = BSWAP(w);
128 }
129 }
130
131 #else /* !NE2000_ODDOFFSET */
132
133 #define ei_inb inb
134 #define ei_outb outb
135 #define ei_insb insb
136 #define ei_insw insw
137 #define ei_outsb outsb
138 #define ei_outsw outsw
139
140 #endif /* !NE2000_ODDOFFSET */
141
142 #define ei_inb_p ei_inb
143 #define ei_outb_p ei_outb
144
145 #include "lib8390.c"
146
147 /*
148 * Hard reset the card. This used to pause for the same period that a
149 * 8390 reset command required, but that shouldn't be necessary.
150 */
mcf8390_reset_8390(struct net_device * dev)151 static void mcf8390_reset_8390(struct net_device *dev)
152 {
153 unsigned long reset_start_time = jiffies;
154 u32 addr = dev->base_addr;
155 struct ei_device *ei_local = netdev_priv(dev);
156
157 netif_dbg(ei_local, hw, dev, "resetting the 8390 t=%ld...\n", jiffies);
158
159 ei_outb(ei_inb(addr + NE_RESET), addr + NE_RESET);
160
161 ei_status.txing = 0;
162 ei_status.dmaing = 0;
163
164 /* This check _should_not_ be necessary, omit eventually. */
165 while ((ei_inb(addr + NE_EN0_ISR) & ENISR_RESET) == 0) {
166 if (time_after(jiffies, reset_start_time + 2 * HZ / 100)) {
167 netdev_warn(dev, "%s: did not complete\n", __func__);
168 break;
169 }
170 }
171
172 ei_outb(ENISR_RESET, addr + NE_EN0_ISR);
173 }
174
175 /*
176 * This *shouldn't* happen.
177 * If it does, it's the last thing you'll see
178 */
mcf8390_dmaing_err(const char * func,struct net_device * dev,struct ei_device * ei_local)179 static void mcf8390_dmaing_err(const char *func, struct net_device *dev,
180 struct ei_device *ei_local)
181 {
182 netdev_err(dev, "%s: DMAing conflict [DMAstat:%d][irqlock:%d]\n",
183 func, ei_local->dmaing, ei_local->irqlock);
184 }
185
186 /*
187 * Grab the 8390 specific header. Similar to the block_input routine, but
188 * we don't need to be concerned with ring wrap as the header will be at
189 * the start of a page, so we optimize accordingly.
190 */
mcf8390_get_8390_hdr(struct net_device * dev,struct e8390_pkt_hdr * hdr,int ring_page)191 static void mcf8390_get_8390_hdr(struct net_device *dev,
192 struct e8390_pkt_hdr *hdr, int ring_page)
193 {
194 struct ei_device *ei_local = netdev_priv(dev);
195 u32 addr = dev->base_addr;
196
197 if (ei_local->dmaing) {
198 mcf8390_dmaing_err(__func__, dev, ei_local);
199 return;
200 }
201
202 ei_local->dmaing |= 0x01;
203 ei_outb(E8390_NODMA + E8390_PAGE0 + E8390_START, addr + NE_CMD);
204 ei_outb(ENISR_RDC, addr + NE_EN0_ISR);
205 ei_outb(sizeof(struct e8390_pkt_hdr), addr + NE_EN0_RCNTLO);
206 ei_outb(0, addr + NE_EN0_RCNTHI);
207 ei_outb(0, addr + NE_EN0_RSARLO); /* On page boundary */
208 ei_outb(ring_page, addr + NE_EN0_RSARHI);
209 ei_outb(E8390_RREAD + E8390_START, addr + NE_CMD);
210
211 ei_insw(addr + NE_DATAPORT, hdr, sizeof(struct e8390_pkt_hdr) >> 1);
212
213 outb(ENISR_RDC, addr + NE_EN0_ISR); /* Ack intr */
214 ei_local->dmaing &= ~0x01;
215
216 hdr->count = cpu_to_le16(hdr->count);
217 }
218
219 /*
220 * Block input and output, similar to the Crynwr packet driver.
221 * If you are porting to a new ethercard, look at the packet driver source
222 * for hints. The NEx000 doesn't share the on-board packet memory --
223 * you have to put the packet out through the "remote DMA" dataport
224 * using z_writeb.
225 */
mcf8390_block_input(struct net_device * dev,int count,struct sk_buff * skb,int ring_offset)226 static void mcf8390_block_input(struct net_device *dev, int count,
227 struct sk_buff *skb, int ring_offset)
228 {
229 struct ei_device *ei_local = netdev_priv(dev);
230 u32 addr = dev->base_addr;
231 char *buf = skb->data;
232
233 if (ei_local->dmaing) {
234 mcf8390_dmaing_err(__func__, dev, ei_local);
235 return;
236 }
237
238 ei_local->dmaing |= 0x01;
239 ei_outb(E8390_NODMA + E8390_PAGE0 + E8390_START, addr + NE_CMD);
240 ei_outb(ENISR_RDC, addr + NE_EN0_ISR);
241 ei_outb(count & 0xff, addr + NE_EN0_RCNTLO);
242 ei_outb(count >> 8, addr + NE_EN0_RCNTHI);
243 ei_outb(ring_offset & 0xff, addr + NE_EN0_RSARLO);
244 ei_outb(ring_offset >> 8, addr + NE_EN0_RSARHI);
245 ei_outb(E8390_RREAD + E8390_START, addr + NE_CMD);
246
247 ei_insw(addr + NE_DATAPORT, buf, count >> 1);
248 if (count & 1)
249 buf[count - 1] = ei_inb(addr + NE_DATAPORT);
250
251 ei_outb(ENISR_RDC, addr + NE_EN0_ISR); /* Ack intr */
252 ei_local->dmaing &= ~0x01;
253 }
254
mcf8390_block_output(struct net_device * dev,int count,const unsigned char * buf,const int start_page)255 static void mcf8390_block_output(struct net_device *dev, int count,
256 const unsigned char *buf,
257 const int start_page)
258 {
259 struct ei_device *ei_local = netdev_priv(dev);
260 u32 addr = dev->base_addr;
261 unsigned long dma_start;
262
263 /* Make sure we transfer all bytes if 16bit IO writes */
264 if (count & 0x1)
265 count++;
266
267 if (ei_local->dmaing) {
268 mcf8390_dmaing_err(__func__, dev, ei_local);
269 return;
270 }
271
272 ei_local->dmaing |= 0x01;
273 /* We should already be in page 0, but to be safe... */
274 ei_outb(E8390_PAGE0 + E8390_START + E8390_NODMA, addr + NE_CMD);
275
276 ei_outb(ENISR_RDC, addr + NE_EN0_ISR);
277
278 /* Now the normal output. */
279 ei_outb(count & 0xff, addr + NE_EN0_RCNTLO);
280 ei_outb(count >> 8, addr + NE_EN0_RCNTHI);
281 ei_outb(0x00, addr + NE_EN0_RSARLO);
282 ei_outb(start_page, addr + NE_EN0_RSARHI);
283 ei_outb(E8390_RWRITE + E8390_START, addr + NE_CMD);
284
285 ei_outsw(addr + NE_DATAPORT, buf, count >> 1);
286
287 dma_start = jiffies;
288 while ((ei_inb(addr + NE_EN0_ISR) & ENISR_RDC) == 0) {
289 if (time_after(jiffies, dma_start + 2 * HZ / 100)) { /* 20ms */
290 netdev_warn(dev, "timeout waiting for Tx RDC\n");
291 mcf8390_reset_8390(dev);
292 __NS8390_init(dev, 1);
293 break;
294 }
295 }
296
297 ei_outb(ENISR_RDC, addr + NE_EN0_ISR); /* Ack intr */
298 ei_local->dmaing &= ~0x01;
299 }
300
301 static const struct net_device_ops mcf8390_netdev_ops = {
302 .ndo_open = __ei_open,
303 .ndo_stop = __ei_close,
304 .ndo_start_xmit = __ei_start_xmit,
305 .ndo_tx_timeout = __ei_tx_timeout,
306 .ndo_get_stats = __ei_get_stats,
307 .ndo_set_rx_mode = __ei_set_multicast_list,
308 .ndo_validate_addr = eth_validate_addr,
309 .ndo_set_mac_address = eth_mac_addr,
310 #ifdef CONFIG_NET_POLL_CONTROLLER
311 .ndo_poll_controller = __ei_poll,
312 #endif
313 };
314
mcf8390_init(struct net_device * dev)315 static int mcf8390_init(struct net_device *dev)
316 {
317 static u32 offsets[] = {
318 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
319 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
320 };
321 struct ei_device *ei_local = netdev_priv(dev);
322 unsigned char SA_prom[32];
323 u32 addr = dev->base_addr;
324 int start_page, stop_page;
325 int i, ret;
326
327 mcf8390_reset_8390(dev);
328
329 /*
330 * Read the 16 bytes of station address PROM.
331 * We must first initialize registers,
332 * similar to NS8390_init(eifdev, 0).
333 * We can't reliably read the SAPROM address without this.
334 * (I learned the hard way!).
335 */
336 {
337 static const struct {
338 u32 value;
339 u32 offset;
340 } program_seq[] = {
341 {E8390_NODMA + E8390_PAGE0 + E8390_STOP, NE_CMD},
342 /* Select page 0 */
343 {0x48, NE_EN0_DCFG}, /* 0x48: Set byte-wide access */
344 {0x00, NE_EN0_RCNTLO}, /* Clear the count regs */
345 {0x00, NE_EN0_RCNTHI},
346 {0x00, NE_EN0_IMR}, /* Mask completion irq */
347 {0xFF, NE_EN0_ISR},
348 {E8390_RXOFF, NE_EN0_RXCR}, /* 0x20 Set to monitor */
349 {E8390_TXOFF, NE_EN0_TXCR}, /* 0x02 and loopback mode */
350 {32, NE_EN0_RCNTLO},
351 {0x00, NE_EN0_RCNTHI},
352 {0x00, NE_EN0_RSARLO}, /* DMA starting at 0x0000 */
353 {0x00, NE_EN0_RSARHI},
354 {E8390_RREAD + E8390_START, NE_CMD},
355 };
356 for (i = 0; i < ARRAY_SIZE(program_seq); i++) {
357 ei_outb(program_seq[i].value,
358 addr + program_seq[i].offset);
359 }
360 }
361
362 for (i = 0; i < 16; i++) {
363 SA_prom[i] = ei_inb(addr + NE_DATAPORT);
364 ei_inb(addr + NE_DATAPORT);
365 }
366
367 /* We must set the 8390 for word mode. */
368 ei_outb(0x49, addr + NE_EN0_DCFG);
369 start_page = NESM_START_PG;
370 stop_page = NESM_STOP_PG;
371
372 /* Install the Interrupt handler */
373 ret = request_irq(dev->irq, __ei_interrupt, 0, dev->name, dev);
374 if (ret)
375 return ret;
376
377 for (i = 0; i < ETH_ALEN; i++)
378 dev->dev_addr[i] = SA_prom[i];
379
380 netdev_dbg(dev, "Found ethernet address: %pM\n", dev->dev_addr);
381
382 ei_local->name = "mcf8390";
383 ei_local->tx_start_page = start_page;
384 ei_local->stop_page = stop_page;
385 ei_local->word16 = 1;
386 ei_local->rx_start_page = start_page + TX_PAGES;
387 ei_local->reset_8390 = mcf8390_reset_8390;
388 ei_local->block_input = mcf8390_block_input;
389 ei_local->block_output = mcf8390_block_output;
390 ei_local->get_8390_hdr = mcf8390_get_8390_hdr;
391 ei_local->reg_offset = offsets;
392
393 dev->netdev_ops = &mcf8390_netdev_ops;
394 __NS8390_init(dev, 0);
395 ret = register_netdev(dev);
396 if (ret) {
397 free_irq(dev->irq, dev);
398 return ret;
399 }
400
401 netdev_info(dev, "addr=0x%08x irq=%d, Ethernet Address %pM\n",
402 addr, dev->irq, dev->dev_addr);
403 return 0;
404 }
405
mcf8390_probe(struct platform_device * pdev)406 static int mcf8390_probe(struct platform_device *pdev)
407 {
408 struct net_device *dev;
409 struct resource *mem;
410 resource_size_t msize;
411 int ret, irq;
412
413 irq = platform_get_irq(pdev, 0);
414 if (irq < 0) {
415 dev_err(&pdev->dev, "no IRQ specified?\n");
416 return -ENXIO;
417 }
418
419 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
420 if (mem == NULL) {
421 dev_err(&pdev->dev, "no memory address specified?\n");
422 return -ENXIO;
423 }
424 msize = resource_size(mem);
425 if (!request_mem_region(mem->start, msize, pdev->name))
426 return -EBUSY;
427
428 dev = ____alloc_ei_netdev(0);
429 if (dev == NULL) {
430 release_mem_region(mem->start, msize);
431 return -ENOMEM;
432 }
433
434 SET_NETDEV_DEV(dev, &pdev->dev);
435 platform_set_drvdata(pdev, dev);
436
437 dev->irq = irq;
438 dev->base_addr = mem->start;
439
440 ret = mcf8390_init(dev);
441 if (ret) {
442 release_mem_region(mem->start, msize);
443 free_netdev(dev);
444 return ret;
445 }
446 return 0;
447 }
448
mcf8390_remove(struct platform_device * pdev)449 static int mcf8390_remove(struct platform_device *pdev)
450 {
451 struct net_device *dev = platform_get_drvdata(pdev);
452 struct resource *mem;
453
454 unregister_netdev(dev);
455 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
456 if (mem)
457 release_mem_region(mem->start, resource_size(mem));
458 free_netdev(dev);
459 return 0;
460 }
461
462 static struct platform_driver mcf8390_drv = {
463 .driver = {
464 .name = "mcf8390",
465 },
466 .probe = mcf8390_probe,
467 .remove = mcf8390_remove,
468 };
469
470 module_platform_driver(mcf8390_drv);
471
472 MODULE_DESCRIPTION("MCF8390 ColdFire NS8390 driver");
473 MODULE_AUTHOR("Greg Ungerer <gerg@uclinux.org>");
474 MODULE_LICENSE("GPL");
475 MODULE_ALIAS("platform:mcf8390");
476