• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Altera Triple-Speed Ethernet MAC driver
3  * Copyright (C) 2008-2014 Altera Corporation. All rights reserved
4  *
5  * Contributors:
6  *   Dalon Westergreen
7  *   Thomas Chou
8  *   Ian Abbott
9  *   Yuriy Kozlov
10  *   Tobias Klauser
11  *   Andriy Smolskyy
12  *   Roman Bulgakov
13  *   Dmytro Mytarchuk
14  *   Matthew Gerlach
15  *
16  * Original driver contributed by SLS.
17  * Major updates contributed by GlobalLogic
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/delay.h>
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/init.h>
25 #include <linux/interrupt.h>
26 #include <linux/io.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/mii.h>
30 #include <linux/netdevice.h>
31 #include <linux/of_device.h>
32 #include <linux/of_mdio.h>
33 #include <linux/of_net.h>
34 #include <linux/of_platform.h>
35 #include <linux/phy.h>
36 #include <linux/platform_device.h>
37 #include <linux/skbuff.h>
38 #include <asm/cacheflush.h>
39 
40 #include "altera_utils.h"
41 #include "altera_tse.h"
42 #include "altera_sgdma.h"
43 #include "altera_msgdma.h"
44 
45 static atomic_t instance_count = ATOMIC_INIT(~0);
46 /* Module parameters */
47 static int debug = -1;
48 module_param(debug, int, 0644);
49 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
50 
51 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
52 					NETIF_MSG_LINK | NETIF_MSG_IFUP |
53 					NETIF_MSG_IFDOWN);
54 
55 #define RX_DESCRIPTORS 64
56 static int dma_rx_num = RX_DESCRIPTORS;
57 module_param(dma_rx_num, int, 0644);
58 MODULE_PARM_DESC(dma_rx_num, "Number of descriptors in the RX list");
59 
60 #define TX_DESCRIPTORS 64
61 static int dma_tx_num = TX_DESCRIPTORS;
62 module_param(dma_tx_num, int, 0644);
63 MODULE_PARM_DESC(dma_tx_num, "Number of descriptors in the TX list");
64 
65 
66 #define POLL_PHY (-1)
67 
68 /* Make sure DMA buffer size is larger than the max frame size
69  * plus some alignment offset and a VLAN header. If the max frame size is
70  * 1518, a VLAN header would be additional 4 bytes and additional
71  * headroom for alignment is 2 bytes, 2048 is just fine.
72  */
73 #define ALTERA_RXDMABUFFER_SIZE	2048
74 
75 /* Allow network stack to resume queueing packets after we've
76  * finished transmitting at least 1/4 of the packets in the queue.
77  */
78 #define TSE_TX_THRESH(x)	(x->tx_ring_size / 4)
79 
80 #define TXQUEUESTOP_THRESHHOLD	2
81 
82 static const struct of_device_id altera_tse_ids[];
83 
tse_tx_avail(struct altera_tse_private * priv)84 static inline u32 tse_tx_avail(struct altera_tse_private *priv)
85 {
86 	return priv->tx_cons + priv->tx_ring_size - priv->tx_prod - 1;
87 }
88 
89 /* PCS Register read/write functions
90  */
sgmii_pcs_read(struct altera_tse_private * priv,int regnum)91 static u16 sgmii_pcs_read(struct altera_tse_private *priv, int regnum)
92 {
93 	return csrrd32(priv->mac_dev,
94 		       tse_csroffs(mdio_phy0) + regnum * 4) & 0xffff;
95 }
96 
sgmii_pcs_write(struct altera_tse_private * priv,int regnum,u16 value)97 static void sgmii_pcs_write(struct altera_tse_private *priv, int regnum,
98 				u16 value)
99 {
100 	csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy0) + regnum * 4);
101 }
102 
103 /* Check PCS scratch memory */
sgmii_pcs_scratch_test(struct altera_tse_private * priv,u16 value)104 static int sgmii_pcs_scratch_test(struct altera_tse_private *priv, u16 value)
105 {
106 	sgmii_pcs_write(priv, SGMII_PCS_SCRATCH, value);
107 	return (sgmii_pcs_read(priv, SGMII_PCS_SCRATCH) == value);
108 }
109 
110 /* MDIO specific functions
111  */
altera_tse_mdio_read(struct mii_bus * bus,int mii_id,int regnum)112 static int altera_tse_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
113 {
114 	struct net_device *ndev = bus->priv;
115 	struct altera_tse_private *priv = netdev_priv(ndev);
116 
117 	/* set MDIO address */
118 	csrwr32((mii_id & 0x1f), priv->mac_dev,
119 		tse_csroffs(mdio_phy1_addr));
120 
121 	/* get the data */
122 	return csrrd32(priv->mac_dev,
123 		       tse_csroffs(mdio_phy1) + regnum * 4) & 0xffff;
124 }
125 
altera_tse_mdio_write(struct mii_bus * bus,int mii_id,int regnum,u16 value)126 static int altera_tse_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
127 				 u16 value)
128 {
129 	struct net_device *ndev = bus->priv;
130 	struct altera_tse_private *priv = netdev_priv(ndev);
131 
132 	/* set MDIO address */
133 	csrwr32((mii_id & 0x1f), priv->mac_dev,
134 		tse_csroffs(mdio_phy1_addr));
135 
136 	/* write the data */
137 	csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy1) + regnum * 4);
138 	return 0;
139 }
140 
altera_tse_mdio_create(struct net_device * dev,unsigned int id)141 static int altera_tse_mdio_create(struct net_device *dev, unsigned int id)
142 {
143 	struct altera_tse_private *priv = netdev_priv(dev);
144 	int ret;
145 	struct device_node *mdio_node = NULL;
146 	struct mii_bus *mdio = NULL;
147 	struct device_node *child_node = NULL;
148 
149 	for_each_child_of_node(priv->device->of_node, child_node) {
150 		if (of_device_is_compatible(child_node, "altr,tse-mdio")) {
151 			mdio_node = child_node;
152 			break;
153 		}
154 	}
155 
156 	if (mdio_node) {
157 		netdev_dbg(dev, "FOUND MDIO subnode\n");
158 	} else {
159 		netdev_dbg(dev, "NO MDIO subnode\n");
160 		return 0;
161 	}
162 
163 	mdio = mdiobus_alloc();
164 	if (mdio == NULL) {
165 		netdev_err(dev, "Error allocating MDIO bus\n");
166 		ret = -ENOMEM;
167 		goto put_node;
168 	}
169 
170 	mdio->name = ALTERA_TSE_RESOURCE_NAME;
171 	mdio->read = &altera_tse_mdio_read;
172 	mdio->write = &altera_tse_mdio_write;
173 	snprintf(mdio->id, MII_BUS_ID_SIZE, "%s-%u", mdio->name, id);
174 
175 	mdio->priv = dev;
176 	mdio->parent = priv->device;
177 
178 	ret = of_mdiobus_register(mdio, mdio_node);
179 	if (ret != 0) {
180 		netdev_err(dev, "Cannot register MDIO bus %s\n",
181 			   mdio->id);
182 		goto out_free_mdio;
183 	}
184 	of_node_put(mdio_node);
185 
186 	if (netif_msg_drv(priv))
187 		netdev_info(dev, "MDIO bus %s: created\n", mdio->id);
188 
189 	priv->mdio = mdio;
190 	return 0;
191 out_free_mdio:
192 	mdiobus_free(mdio);
193 	mdio = NULL;
194 put_node:
195 	of_node_put(mdio_node);
196 	return ret;
197 }
198 
altera_tse_mdio_destroy(struct net_device * dev)199 static void altera_tse_mdio_destroy(struct net_device *dev)
200 {
201 	struct altera_tse_private *priv = netdev_priv(dev);
202 
203 	if (priv->mdio == NULL)
204 		return;
205 
206 	if (netif_msg_drv(priv))
207 		netdev_info(dev, "MDIO bus %s: removed\n",
208 			    priv->mdio->id);
209 
210 	mdiobus_unregister(priv->mdio);
211 	mdiobus_free(priv->mdio);
212 	priv->mdio = NULL;
213 }
214 
tse_init_rx_buffer(struct altera_tse_private * priv,struct tse_buffer * rxbuffer,int len)215 static int tse_init_rx_buffer(struct altera_tse_private *priv,
216 			      struct tse_buffer *rxbuffer, int len)
217 {
218 	rxbuffer->skb = netdev_alloc_skb_ip_align(priv->dev, len);
219 	if (!rxbuffer->skb)
220 		return -ENOMEM;
221 
222 	rxbuffer->dma_addr = dma_map_single(priv->device, rxbuffer->skb->data,
223 						len,
224 						DMA_FROM_DEVICE);
225 
226 	if (dma_mapping_error(priv->device, rxbuffer->dma_addr)) {
227 		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
228 		dev_kfree_skb_any(rxbuffer->skb);
229 		return -EINVAL;
230 	}
231 	rxbuffer->dma_addr &= (dma_addr_t)~3;
232 	rxbuffer->len = len;
233 	return 0;
234 }
235 
tse_free_rx_buffer(struct altera_tse_private * priv,struct tse_buffer * rxbuffer)236 static void tse_free_rx_buffer(struct altera_tse_private *priv,
237 			       struct tse_buffer *rxbuffer)
238 {
239 	struct sk_buff *skb = rxbuffer->skb;
240 	dma_addr_t dma_addr = rxbuffer->dma_addr;
241 
242 	if (skb != NULL) {
243 		if (dma_addr)
244 			dma_unmap_single(priv->device, dma_addr,
245 					 rxbuffer->len,
246 					 DMA_FROM_DEVICE);
247 		dev_kfree_skb_any(skb);
248 		rxbuffer->skb = NULL;
249 		rxbuffer->dma_addr = 0;
250 	}
251 }
252 
253 /* Unmap and free Tx buffer resources
254  */
tse_free_tx_buffer(struct altera_tse_private * priv,struct tse_buffer * buffer)255 static void tse_free_tx_buffer(struct altera_tse_private *priv,
256 			       struct tse_buffer *buffer)
257 {
258 	if (buffer->dma_addr) {
259 		if (buffer->mapped_as_page)
260 			dma_unmap_page(priv->device, buffer->dma_addr,
261 				       buffer->len, DMA_TO_DEVICE);
262 		else
263 			dma_unmap_single(priv->device, buffer->dma_addr,
264 					 buffer->len, DMA_TO_DEVICE);
265 		buffer->dma_addr = 0;
266 	}
267 	if (buffer->skb) {
268 		dev_kfree_skb_any(buffer->skb);
269 		buffer->skb = NULL;
270 	}
271 }
272 
alloc_init_skbufs(struct altera_tse_private * priv)273 static int alloc_init_skbufs(struct altera_tse_private *priv)
274 {
275 	unsigned int rx_descs = priv->rx_ring_size;
276 	unsigned int tx_descs = priv->tx_ring_size;
277 	int ret = -ENOMEM;
278 	int i;
279 
280 	/* Create Rx ring buffer */
281 	priv->rx_ring = kcalloc(rx_descs, sizeof(struct tse_buffer),
282 				GFP_KERNEL);
283 	if (!priv->rx_ring)
284 		goto err_rx_ring;
285 
286 	/* Create Tx ring buffer */
287 	priv->tx_ring = kcalloc(tx_descs, sizeof(struct tse_buffer),
288 				GFP_KERNEL);
289 	if (!priv->tx_ring)
290 		goto err_tx_ring;
291 
292 	priv->tx_cons = 0;
293 	priv->tx_prod = 0;
294 
295 	/* Init Rx ring */
296 	for (i = 0; i < rx_descs; i++) {
297 		ret = tse_init_rx_buffer(priv, &priv->rx_ring[i],
298 					 priv->rx_dma_buf_sz);
299 		if (ret)
300 			goto err_init_rx_buffers;
301 	}
302 
303 	priv->rx_cons = 0;
304 	priv->rx_prod = 0;
305 
306 	return 0;
307 err_init_rx_buffers:
308 	while (--i >= 0)
309 		tse_free_rx_buffer(priv, &priv->rx_ring[i]);
310 	kfree(priv->tx_ring);
311 err_tx_ring:
312 	kfree(priv->rx_ring);
313 err_rx_ring:
314 	return ret;
315 }
316 
free_skbufs(struct net_device * dev)317 static void free_skbufs(struct net_device *dev)
318 {
319 	struct altera_tse_private *priv = netdev_priv(dev);
320 	unsigned int rx_descs = priv->rx_ring_size;
321 	unsigned int tx_descs = priv->tx_ring_size;
322 	int i;
323 
324 	/* Release the DMA TX/RX socket buffers */
325 	for (i = 0; i < rx_descs; i++)
326 		tse_free_rx_buffer(priv, &priv->rx_ring[i]);
327 	for (i = 0; i < tx_descs; i++)
328 		tse_free_tx_buffer(priv, &priv->tx_ring[i]);
329 
330 
331 	kfree(priv->tx_ring);
332 }
333 
334 /* Reallocate the skb for the reception process
335  */
tse_rx_refill(struct altera_tse_private * priv)336 static inline void tse_rx_refill(struct altera_tse_private *priv)
337 {
338 	unsigned int rxsize = priv->rx_ring_size;
339 	unsigned int entry;
340 	int ret;
341 
342 	for (; priv->rx_cons - priv->rx_prod > 0;
343 			priv->rx_prod++) {
344 		entry = priv->rx_prod % rxsize;
345 		if (likely(priv->rx_ring[entry].skb == NULL)) {
346 			ret = tse_init_rx_buffer(priv, &priv->rx_ring[entry],
347 				priv->rx_dma_buf_sz);
348 			if (unlikely(ret != 0))
349 				break;
350 			priv->dmaops->add_rx_desc(priv, &priv->rx_ring[entry]);
351 		}
352 	}
353 }
354 
355 /* Pull out the VLAN tag and fix up the packet
356  */
tse_rx_vlan(struct net_device * dev,struct sk_buff * skb)357 static inline void tse_rx_vlan(struct net_device *dev, struct sk_buff *skb)
358 {
359 	struct ethhdr *eth_hdr;
360 	u16 vid;
361 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
362 	    !__vlan_get_tag(skb, &vid)) {
363 		eth_hdr = (struct ethhdr *)skb->data;
364 		memmove(skb->data + VLAN_HLEN, eth_hdr, ETH_ALEN * 2);
365 		skb_pull(skb, VLAN_HLEN);
366 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
367 	}
368 }
369 
370 /* Receive a packet: retrieve and pass over to upper levels
371  */
tse_rx(struct altera_tse_private * priv,int limit)372 static int tse_rx(struct altera_tse_private *priv, int limit)
373 {
374 	unsigned int count = 0;
375 	unsigned int next_entry;
376 	struct sk_buff *skb;
377 	unsigned int entry = priv->rx_cons % priv->rx_ring_size;
378 	u32 rxstatus;
379 	u16 pktlength;
380 	u16 pktstatus;
381 
382 	/* Check for count < limit first as get_rx_status is changing
383 	* the response-fifo so we must process the next packet
384 	* after calling get_rx_status if a response is pending.
385 	* (reading the last byte of the response pops the value from the fifo.)
386 	*/
387 	while ((count < limit) &&
388 	       ((rxstatus = priv->dmaops->get_rx_status(priv)) != 0)) {
389 		pktstatus = rxstatus >> 16;
390 		pktlength = rxstatus & 0xffff;
391 
392 		if ((pktstatus & 0xFF) || (pktlength == 0))
393 			netdev_err(priv->dev,
394 				   "RCV pktstatus %08X pktlength %08X\n",
395 				   pktstatus, pktlength);
396 
397 		/* DMA trasfer from TSE starts with 2 aditional bytes for
398 		 * IP payload alignment. Status returned by get_rx_status()
399 		 * contains DMA transfer length. Packet is 2 bytes shorter.
400 		 */
401 		pktlength -= 2;
402 
403 		count++;
404 		next_entry = (++priv->rx_cons) % priv->rx_ring_size;
405 
406 		skb = priv->rx_ring[entry].skb;
407 		if (unlikely(!skb)) {
408 			netdev_err(priv->dev,
409 				   "%s: Inconsistent Rx descriptor chain\n",
410 				   __func__);
411 			priv->dev->stats.rx_dropped++;
412 			break;
413 		}
414 		priv->rx_ring[entry].skb = NULL;
415 
416 		skb_put(skb, pktlength);
417 
418 		dma_unmap_single(priv->device, priv->rx_ring[entry].dma_addr,
419 				 priv->rx_ring[entry].len, DMA_FROM_DEVICE);
420 
421 		if (netif_msg_pktdata(priv)) {
422 			netdev_info(priv->dev, "frame received %d bytes\n",
423 				    pktlength);
424 			print_hex_dump(KERN_ERR, "data: ", DUMP_PREFIX_OFFSET,
425 				       16, 1, skb->data, pktlength, true);
426 		}
427 
428 		tse_rx_vlan(priv->dev, skb);
429 
430 		skb->protocol = eth_type_trans(skb, priv->dev);
431 		skb_checksum_none_assert(skb);
432 
433 		napi_gro_receive(&priv->napi, skb);
434 
435 		priv->dev->stats.rx_packets++;
436 		priv->dev->stats.rx_bytes += pktlength;
437 
438 		entry = next_entry;
439 
440 		tse_rx_refill(priv);
441 	}
442 
443 	return count;
444 }
445 
446 /* Reclaim resources after transmission completes
447  */
tse_tx_complete(struct altera_tse_private * priv)448 static int tse_tx_complete(struct altera_tse_private *priv)
449 {
450 	unsigned int txsize = priv->tx_ring_size;
451 	u32 ready;
452 	unsigned int entry;
453 	struct tse_buffer *tx_buff;
454 	int txcomplete = 0;
455 
456 	spin_lock(&priv->tx_lock);
457 
458 	ready = priv->dmaops->tx_completions(priv);
459 
460 	/* Free sent buffers */
461 	while (ready && (priv->tx_cons != priv->tx_prod)) {
462 		entry = priv->tx_cons % txsize;
463 		tx_buff = &priv->tx_ring[entry];
464 
465 		if (netif_msg_tx_done(priv))
466 			netdev_dbg(priv->dev, "%s: curr %d, dirty %d\n",
467 				   __func__, priv->tx_prod, priv->tx_cons);
468 
469 		if (likely(tx_buff->skb))
470 			priv->dev->stats.tx_packets++;
471 
472 		tse_free_tx_buffer(priv, tx_buff);
473 		priv->tx_cons++;
474 
475 		txcomplete++;
476 		ready--;
477 	}
478 
479 	if (unlikely(netif_queue_stopped(priv->dev) &&
480 		     tse_tx_avail(priv) > TSE_TX_THRESH(priv))) {
481 		if (netif_queue_stopped(priv->dev) &&
482 		    tse_tx_avail(priv) > TSE_TX_THRESH(priv)) {
483 			if (netif_msg_tx_done(priv))
484 				netdev_dbg(priv->dev, "%s: restart transmit\n",
485 					   __func__);
486 			netif_wake_queue(priv->dev);
487 		}
488 	}
489 
490 	spin_unlock(&priv->tx_lock);
491 	return txcomplete;
492 }
493 
494 /* NAPI polling function
495  */
tse_poll(struct napi_struct * napi,int budget)496 static int tse_poll(struct napi_struct *napi, int budget)
497 {
498 	struct altera_tse_private *priv =
499 			container_of(napi, struct altera_tse_private, napi);
500 	int rxcomplete = 0;
501 	unsigned long int flags;
502 
503 	tse_tx_complete(priv);
504 
505 	rxcomplete = tse_rx(priv, budget);
506 
507 	if (rxcomplete < budget) {
508 
509 		napi_complete_done(napi, rxcomplete);
510 
511 		netdev_dbg(priv->dev,
512 			   "NAPI Complete, did %d packets with budget %d\n",
513 			   rxcomplete, budget);
514 
515 		spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
516 		priv->dmaops->enable_rxirq(priv);
517 		priv->dmaops->enable_txirq(priv);
518 		spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
519 	}
520 	return rxcomplete;
521 }
522 
523 /* DMA TX & RX FIFO interrupt routing
524  */
altera_isr(int irq,void * dev_id)525 static irqreturn_t altera_isr(int irq, void *dev_id)
526 {
527 	struct net_device *dev = dev_id;
528 	struct altera_tse_private *priv;
529 
530 	if (unlikely(!dev)) {
531 		pr_err("%s: invalid dev pointer\n", __func__);
532 		return IRQ_NONE;
533 	}
534 	priv = netdev_priv(dev);
535 
536 	spin_lock(&priv->rxdma_irq_lock);
537 	/* reset IRQs */
538 	priv->dmaops->clear_rxirq(priv);
539 	priv->dmaops->clear_txirq(priv);
540 	spin_unlock(&priv->rxdma_irq_lock);
541 
542 	if (likely(napi_schedule_prep(&priv->napi))) {
543 		spin_lock(&priv->rxdma_irq_lock);
544 		priv->dmaops->disable_rxirq(priv);
545 		priv->dmaops->disable_txirq(priv);
546 		spin_unlock(&priv->rxdma_irq_lock);
547 		__napi_schedule(&priv->napi);
548 	}
549 
550 
551 	return IRQ_HANDLED;
552 }
553 
554 /* Transmit a packet (called by the kernel). Dispatches
555  * either the SGDMA method for transmitting or the
556  * MSGDMA method, assumes no scatter/gather support,
557  * implying an assumption that there's only one
558  * physically contiguous fragment starting at
559  * skb->data, for length of skb_headlen(skb).
560  */
tse_start_xmit(struct sk_buff * skb,struct net_device * dev)561 static netdev_tx_t tse_start_xmit(struct sk_buff *skb, struct net_device *dev)
562 {
563 	struct altera_tse_private *priv = netdev_priv(dev);
564 	unsigned int txsize = priv->tx_ring_size;
565 	unsigned int entry;
566 	struct tse_buffer *buffer = NULL;
567 	int nfrags = skb_shinfo(skb)->nr_frags;
568 	unsigned int nopaged_len = skb_headlen(skb);
569 	netdev_tx_t ret = NETDEV_TX_OK;
570 	dma_addr_t dma_addr;
571 
572 	spin_lock_bh(&priv->tx_lock);
573 
574 	if (unlikely(tse_tx_avail(priv) < nfrags + 1)) {
575 		if (!netif_queue_stopped(dev)) {
576 			netif_stop_queue(dev);
577 			/* This is a hard error, log it. */
578 			netdev_err(priv->dev,
579 				   "%s: Tx list full when queue awake\n",
580 				   __func__);
581 		}
582 		ret = NETDEV_TX_BUSY;
583 		goto out;
584 	}
585 
586 	/* Map the first skb fragment */
587 	entry = priv->tx_prod % txsize;
588 	buffer = &priv->tx_ring[entry];
589 
590 	dma_addr = dma_map_single(priv->device, skb->data, nopaged_len,
591 				  DMA_TO_DEVICE);
592 	if (dma_mapping_error(priv->device, dma_addr)) {
593 		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
594 		ret = NETDEV_TX_OK;
595 		goto out;
596 	}
597 
598 	buffer->skb = skb;
599 	buffer->dma_addr = dma_addr;
600 	buffer->len = nopaged_len;
601 
602 	priv->dmaops->tx_buffer(priv, buffer);
603 
604 	skb_tx_timestamp(skb);
605 
606 	priv->tx_prod++;
607 	dev->stats.tx_bytes += skb->len;
608 
609 	if (unlikely(tse_tx_avail(priv) <= TXQUEUESTOP_THRESHHOLD)) {
610 		if (netif_msg_hw(priv))
611 			netdev_dbg(priv->dev, "%s: stop transmitted packets\n",
612 				   __func__);
613 		netif_stop_queue(dev);
614 	}
615 
616 out:
617 	spin_unlock_bh(&priv->tx_lock);
618 
619 	return ret;
620 }
621 
622 /* Called every time the controller might need to be made
623  * aware of new link state.  The PHY code conveys this
624  * information through variables in the phydev structure, and this
625  * function converts those variables into the appropriate
626  * register values, and can bring down the device if needed.
627  */
altera_tse_adjust_link(struct net_device * dev)628 static void altera_tse_adjust_link(struct net_device *dev)
629 {
630 	struct altera_tse_private *priv = netdev_priv(dev);
631 	struct phy_device *phydev = dev->phydev;
632 	int new_state = 0;
633 
634 	/* only change config if there is a link */
635 	spin_lock(&priv->mac_cfg_lock);
636 	if (phydev->link) {
637 		/* Read old config */
638 		u32 cfg_reg = ioread32(&priv->mac_dev->command_config);
639 
640 		/* Check duplex */
641 		if (phydev->duplex != priv->oldduplex) {
642 			new_state = 1;
643 			if (!(phydev->duplex))
644 				cfg_reg |= MAC_CMDCFG_HD_ENA;
645 			else
646 				cfg_reg &= ~MAC_CMDCFG_HD_ENA;
647 
648 			netdev_dbg(priv->dev, "%s: Link duplex = 0x%x\n",
649 				   dev->name, phydev->duplex);
650 
651 			priv->oldduplex = phydev->duplex;
652 		}
653 
654 		/* Check speed */
655 		if (phydev->speed != priv->oldspeed) {
656 			new_state = 1;
657 			switch (phydev->speed) {
658 			case 1000:
659 				cfg_reg |= MAC_CMDCFG_ETH_SPEED;
660 				cfg_reg &= ~MAC_CMDCFG_ENA_10;
661 				break;
662 			case 100:
663 				cfg_reg &= ~MAC_CMDCFG_ETH_SPEED;
664 				cfg_reg &= ~MAC_CMDCFG_ENA_10;
665 				break;
666 			case 10:
667 				cfg_reg &= ~MAC_CMDCFG_ETH_SPEED;
668 				cfg_reg |= MAC_CMDCFG_ENA_10;
669 				break;
670 			default:
671 				if (netif_msg_link(priv))
672 					netdev_warn(dev, "Speed (%d) is not 10/100/1000!\n",
673 						    phydev->speed);
674 				break;
675 			}
676 			priv->oldspeed = phydev->speed;
677 		}
678 		iowrite32(cfg_reg, &priv->mac_dev->command_config);
679 
680 		if (!priv->oldlink) {
681 			new_state = 1;
682 			priv->oldlink = 1;
683 		}
684 	} else if (priv->oldlink) {
685 		new_state = 1;
686 		priv->oldlink = 0;
687 		priv->oldspeed = 0;
688 		priv->oldduplex = -1;
689 	}
690 
691 	if (new_state && netif_msg_link(priv))
692 		phy_print_status(phydev);
693 
694 	spin_unlock(&priv->mac_cfg_lock);
695 }
connect_local_phy(struct net_device * dev)696 static struct phy_device *connect_local_phy(struct net_device *dev)
697 {
698 	struct altera_tse_private *priv = netdev_priv(dev);
699 	struct phy_device *phydev = NULL;
700 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
701 
702 	if (priv->phy_addr != POLL_PHY) {
703 		snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT,
704 			 priv->mdio->id, priv->phy_addr);
705 
706 		netdev_dbg(dev, "trying to attach to %s\n", phy_id_fmt);
707 
708 		phydev = phy_connect(dev, phy_id_fmt, &altera_tse_adjust_link,
709 				     priv->phy_iface);
710 		if (IS_ERR(phydev)) {
711 			netdev_err(dev, "Could not attach to PHY\n");
712 			phydev = NULL;
713 		}
714 
715 	} else {
716 		int ret;
717 		phydev = phy_find_first(priv->mdio);
718 		if (phydev == NULL) {
719 			netdev_err(dev, "No PHY found\n");
720 			return phydev;
721 		}
722 
723 		ret = phy_connect_direct(dev, phydev, &altera_tse_adjust_link,
724 				priv->phy_iface);
725 		if (ret != 0) {
726 			netdev_err(dev, "Could not attach to PHY\n");
727 			phydev = NULL;
728 		}
729 	}
730 	return phydev;
731 }
732 
altera_tse_phy_get_addr_mdio_create(struct net_device * dev)733 static int altera_tse_phy_get_addr_mdio_create(struct net_device *dev)
734 {
735 	struct altera_tse_private *priv = netdev_priv(dev);
736 	struct device_node *np = priv->device->of_node;
737 	int ret;
738 
739 	ret = of_get_phy_mode(np, &priv->phy_iface);
740 
741 	/* Avoid get phy addr and create mdio if no phy is present */
742 	if (ret)
743 		return 0;
744 
745 	/* try to get PHY address from device tree, use PHY autodetection if
746 	 * no valid address is given
747 	 */
748 
749 	if (of_property_read_u32(priv->device->of_node, "phy-addr",
750 			 &priv->phy_addr)) {
751 		priv->phy_addr = POLL_PHY;
752 	}
753 
754 	if (!((priv->phy_addr == POLL_PHY) ||
755 		  ((priv->phy_addr >= 0) && (priv->phy_addr < PHY_MAX_ADDR)))) {
756 		netdev_err(dev, "invalid phy-addr specified %d\n",
757 			priv->phy_addr);
758 		return -ENODEV;
759 	}
760 
761 	/* Create/attach to MDIO bus */
762 	ret = altera_tse_mdio_create(dev,
763 					 atomic_add_return(1, &instance_count));
764 
765 	if (ret)
766 		return -ENODEV;
767 
768 	return 0;
769 }
770 
771 /* Initialize driver's PHY state, and attach to the PHY
772  */
init_phy(struct net_device * dev)773 static int init_phy(struct net_device *dev)
774 {
775 	struct altera_tse_private *priv = netdev_priv(dev);
776 	struct phy_device *phydev;
777 	struct device_node *phynode;
778 	bool fixed_link = false;
779 	int rc = 0;
780 
781 	/* Avoid init phy in case of no phy present */
782 	if (!priv->phy_iface)
783 		return 0;
784 
785 	priv->oldlink = 0;
786 	priv->oldspeed = 0;
787 	priv->oldduplex = -1;
788 
789 	phynode = of_parse_phandle(priv->device->of_node, "phy-handle", 0);
790 
791 	if (!phynode) {
792 		/* check if a fixed-link is defined in device-tree */
793 		if (of_phy_is_fixed_link(priv->device->of_node)) {
794 			rc = of_phy_register_fixed_link(priv->device->of_node);
795 			if (rc < 0) {
796 				netdev_err(dev, "cannot register fixed PHY\n");
797 				return rc;
798 			}
799 
800 			/* In the case of a fixed PHY, the DT node associated
801 			 * to the PHY is the Ethernet MAC DT node.
802 			 */
803 			phynode = of_node_get(priv->device->of_node);
804 			fixed_link = true;
805 
806 			netdev_dbg(dev, "fixed-link detected\n");
807 			phydev = of_phy_connect(dev, phynode,
808 						&altera_tse_adjust_link,
809 						0, priv->phy_iface);
810 		} else {
811 			netdev_dbg(dev, "no phy-handle found\n");
812 			if (!priv->mdio) {
813 				netdev_err(dev, "No phy-handle nor local mdio specified\n");
814 				return -ENODEV;
815 			}
816 			phydev = connect_local_phy(dev);
817 		}
818 	} else {
819 		netdev_dbg(dev, "phy-handle found\n");
820 		phydev = of_phy_connect(dev, phynode,
821 			&altera_tse_adjust_link, 0, priv->phy_iface);
822 	}
823 	of_node_put(phynode);
824 
825 	if (!phydev) {
826 		netdev_err(dev, "Could not find the PHY\n");
827 		if (fixed_link)
828 			of_phy_deregister_fixed_link(priv->device->of_node);
829 		return -ENODEV;
830 	}
831 
832 	/* Stop Advertising 1000BASE Capability if interface is not GMII
833 	 */
834 	if ((priv->phy_iface == PHY_INTERFACE_MODE_MII) ||
835 	    (priv->phy_iface == PHY_INTERFACE_MODE_RMII))
836 		phy_set_max_speed(phydev, SPEED_100);
837 
838 	/* Broken HW is sometimes missing the pull-up resistor on the
839 	 * MDIO line, which results in reads to non-existent devices returning
840 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
841 	 * device as well. If a fixed-link is used the phy_id is always 0.
842 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
843 	 */
844 	if ((phydev->phy_id == 0) && !fixed_link) {
845 		netdev_err(dev, "Bad PHY UID 0x%08x\n", phydev->phy_id);
846 		phy_disconnect(phydev);
847 		return -ENODEV;
848 	}
849 
850 	netdev_dbg(dev, "attached to PHY %d UID 0x%08x Link = %d\n",
851 		   phydev->mdio.addr, phydev->phy_id, phydev->link);
852 
853 	return 0;
854 }
855 
tse_update_mac_addr(struct altera_tse_private * priv,u8 * addr)856 static void tse_update_mac_addr(struct altera_tse_private *priv, u8 *addr)
857 {
858 	u32 msb;
859 	u32 lsb;
860 
861 	msb = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
862 	lsb = ((addr[5] << 8) | addr[4]) & 0xffff;
863 
864 	/* Set primary MAC address */
865 	csrwr32(msb, priv->mac_dev, tse_csroffs(mac_addr_0));
866 	csrwr32(lsb, priv->mac_dev, tse_csroffs(mac_addr_1));
867 }
868 
869 /* MAC software reset.
870  * When reset is triggered, the MAC function completes the current
871  * transmission or reception, and subsequently disables the transmit and
872  * receive logic, flushes the receive FIFO buffer, and resets the statistics
873  * counters.
874  */
reset_mac(struct altera_tse_private * priv)875 static int reset_mac(struct altera_tse_private *priv)
876 {
877 	int counter;
878 	u32 dat;
879 
880 	dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
881 	dat &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
882 	dat |= MAC_CMDCFG_SW_RESET | MAC_CMDCFG_CNT_RESET;
883 	csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
884 
885 	counter = 0;
886 	while (counter++ < ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
887 		if (tse_bit_is_clear(priv->mac_dev, tse_csroffs(command_config),
888 				     MAC_CMDCFG_SW_RESET))
889 			break;
890 		udelay(1);
891 	}
892 
893 	if (counter >= ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
894 		dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
895 		dat &= ~MAC_CMDCFG_SW_RESET;
896 		csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
897 		return -1;
898 	}
899 	return 0;
900 }
901 
902 /* Initialize MAC core registers
903 */
init_mac(struct altera_tse_private * priv)904 static int init_mac(struct altera_tse_private *priv)
905 {
906 	unsigned int cmd = 0;
907 	u32 frm_length;
908 
909 	/* Setup Rx FIFO */
910 	csrwr32(priv->rx_fifo_depth - ALTERA_TSE_RX_SECTION_EMPTY,
911 		priv->mac_dev, tse_csroffs(rx_section_empty));
912 
913 	csrwr32(ALTERA_TSE_RX_SECTION_FULL, priv->mac_dev,
914 		tse_csroffs(rx_section_full));
915 
916 	csrwr32(ALTERA_TSE_RX_ALMOST_EMPTY, priv->mac_dev,
917 		tse_csroffs(rx_almost_empty));
918 
919 	csrwr32(ALTERA_TSE_RX_ALMOST_FULL, priv->mac_dev,
920 		tse_csroffs(rx_almost_full));
921 
922 	/* Setup Tx FIFO */
923 	csrwr32(priv->tx_fifo_depth - ALTERA_TSE_TX_SECTION_EMPTY,
924 		priv->mac_dev, tse_csroffs(tx_section_empty));
925 
926 	csrwr32(ALTERA_TSE_TX_SECTION_FULL, priv->mac_dev,
927 		tse_csroffs(tx_section_full));
928 
929 	csrwr32(ALTERA_TSE_TX_ALMOST_EMPTY, priv->mac_dev,
930 		tse_csroffs(tx_almost_empty));
931 
932 	csrwr32(ALTERA_TSE_TX_ALMOST_FULL, priv->mac_dev,
933 		tse_csroffs(tx_almost_full));
934 
935 	/* MAC Address Configuration */
936 	tse_update_mac_addr(priv, priv->dev->dev_addr);
937 
938 	/* MAC Function Configuration */
939 	frm_length = ETH_HLEN + priv->dev->mtu + ETH_FCS_LEN;
940 	csrwr32(frm_length, priv->mac_dev, tse_csroffs(frm_length));
941 
942 	csrwr32(ALTERA_TSE_TX_IPG_LENGTH, priv->mac_dev,
943 		tse_csroffs(tx_ipg_length));
944 
945 	/* Disable RX/TX shift 16 for alignment of all received frames on 16-bit
946 	 * start address
947 	 */
948 	tse_set_bit(priv->mac_dev, tse_csroffs(rx_cmd_stat),
949 		    ALTERA_TSE_RX_CMD_STAT_RX_SHIFT16);
950 
951 	tse_clear_bit(priv->mac_dev, tse_csroffs(tx_cmd_stat),
952 		      ALTERA_TSE_TX_CMD_STAT_TX_SHIFT16 |
953 		      ALTERA_TSE_TX_CMD_STAT_OMIT_CRC);
954 
955 	/* Set the MAC options */
956 	cmd = csrrd32(priv->mac_dev, tse_csroffs(command_config));
957 	cmd &= ~MAC_CMDCFG_PAD_EN;	/* No padding Removal on Receive */
958 	cmd &= ~MAC_CMDCFG_CRC_FWD;	/* CRC Removal */
959 	cmd |= MAC_CMDCFG_RX_ERR_DISC;	/* Automatically discard frames
960 					 * with CRC errors
961 					 */
962 	cmd |= MAC_CMDCFG_CNTL_FRM_ENA;
963 	cmd &= ~MAC_CMDCFG_TX_ENA;
964 	cmd &= ~MAC_CMDCFG_RX_ENA;
965 
966 	/* Default speed and duplex setting, full/100 */
967 	cmd &= ~MAC_CMDCFG_HD_ENA;
968 	cmd &= ~MAC_CMDCFG_ETH_SPEED;
969 	cmd &= ~MAC_CMDCFG_ENA_10;
970 
971 	csrwr32(cmd, priv->mac_dev, tse_csroffs(command_config));
972 
973 	csrwr32(ALTERA_TSE_PAUSE_QUANTA, priv->mac_dev,
974 		tse_csroffs(pause_quanta));
975 
976 	if (netif_msg_hw(priv))
977 		dev_dbg(priv->device,
978 			"MAC post-initialization: CMD_CONFIG = 0x%08x\n", cmd);
979 
980 	return 0;
981 }
982 
983 /* Start/stop MAC transmission logic
984  */
tse_set_mac(struct altera_tse_private * priv,bool enable)985 static void tse_set_mac(struct altera_tse_private *priv, bool enable)
986 {
987 	u32 value = csrrd32(priv->mac_dev, tse_csroffs(command_config));
988 
989 	if (enable)
990 		value |= MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA;
991 	else
992 		value &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
993 
994 	csrwr32(value, priv->mac_dev, tse_csroffs(command_config));
995 }
996 
997 /* Change the MTU
998  */
tse_change_mtu(struct net_device * dev,int new_mtu)999 static int tse_change_mtu(struct net_device *dev, int new_mtu)
1000 {
1001 	if (netif_running(dev)) {
1002 		netdev_err(dev, "must be stopped to change its MTU\n");
1003 		return -EBUSY;
1004 	}
1005 
1006 	dev->mtu = new_mtu;
1007 	netdev_update_features(dev);
1008 
1009 	return 0;
1010 }
1011 
altera_tse_set_mcfilter(struct net_device * dev)1012 static void altera_tse_set_mcfilter(struct net_device *dev)
1013 {
1014 	struct altera_tse_private *priv = netdev_priv(dev);
1015 	int i;
1016 	struct netdev_hw_addr *ha;
1017 
1018 	/* clear the hash filter */
1019 	for (i = 0; i < 64; i++)
1020 		csrwr32(0, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
1021 
1022 	netdev_for_each_mc_addr(ha, dev) {
1023 		unsigned int hash = 0;
1024 		int mac_octet;
1025 
1026 		for (mac_octet = 5; mac_octet >= 0; mac_octet--) {
1027 			unsigned char xor_bit = 0;
1028 			unsigned char octet = ha->addr[mac_octet];
1029 			unsigned int bitshift;
1030 
1031 			for (bitshift = 0; bitshift < 8; bitshift++)
1032 				xor_bit ^= ((octet >> bitshift) & 0x01);
1033 
1034 			hash = (hash << 1) | xor_bit;
1035 		}
1036 		csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + hash * 4);
1037 	}
1038 }
1039 
1040 
altera_tse_set_mcfilterall(struct net_device * dev)1041 static void altera_tse_set_mcfilterall(struct net_device *dev)
1042 {
1043 	struct altera_tse_private *priv = netdev_priv(dev);
1044 	int i;
1045 
1046 	/* set the hash filter */
1047 	for (i = 0; i < 64; i++)
1048 		csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
1049 }
1050 
1051 /* Set or clear the multicast filter for this adaptor
1052  */
tse_set_rx_mode_hashfilter(struct net_device * dev)1053 static void tse_set_rx_mode_hashfilter(struct net_device *dev)
1054 {
1055 	struct altera_tse_private *priv = netdev_priv(dev);
1056 
1057 	spin_lock(&priv->mac_cfg_lock);
1058 
1059 	if (dev->flags & IFF_PROMISC)
1060 		tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
1061 			    MAC_CMDCFG_PROMIS_EN);
1062 
1063 	if (dev->flags & IFF_ALLMULTI)
1064 		altera_tse_set_mcfilterall(dev);
1065 	else
1066 		altera_tse_set_mcfilter(dev);
1067 
1068 	spin_unlock(&priv->mac_cfg_lock);
1069 }
1070 
1071 /* Set or clear the multicast filter for this adaptor
1072  */
tse_set_rx_mode(struct net_device * dev)1073 static void tse_set_rx_mode(struct net_device *dev)
1074 {
1075 	struct altera_tse_private *priv = netdev_priv(dev);
1076 
1077 	spin_lock(&priv->mac_cfg_lock);
1078 
1079 	if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI) ||
1080 	    !netdev_mc_empty(dev) || !netdev_uc_empty(dev))
1081 		tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
1082 			    MAC_CMDCFG_PROMIS_EN);
1083 	else
1084 		tse_clear_bit(priv->mac_dev, tse_csroffs(command_config),
1085 			      MAC_CMDCFG_PROMIS_EN);
1086 
1087 	spin_unlock(&priv->mac_cfg_lock);
1088 }
1089 
1090 /* Initialise (if necessary) the SGMII PCS component
1091  */
init_sgmii_pcs(struct net_device * dev)1092 static int init_sgmii_pcs(struct net_device *dev)
1093 {
1094 	struct altera_tse_private *priv = netdev_priv(dev);
1095 	int n;
1096 	unsigned int tmp_reg = 0;
1097 
1098 	if (priv->phy_iface != PHY_INTERFACE_MODE_SGMII)
1099 		return 0; /* Nothing to do, not in SGMII mode */
1100 
1101 	/* The TSE SGMII PCS block looks a little like a PHY, it is
1102 	 * mapped into the zeroth MDIO space of the MAC and it has
1103 	 * ID registers like a PHY would.  Sadly this is often
1104 	 * configured to zeroes, so don't be surprised if it does
1105 	 * show 0x00000000.
1106 	 */
1107 
1108 	if (sgmii_pcs_scratch_test(priv, 0x0000) &&
1109 		sgmii_pcs_scratch_test(priv, 0xffff) &&
1110 		sgmii_pcs_scratch_test(priv, 0xa5a5) &&
1111 		sgmii_pcs_scratch_test(priv, 0x5a5a)) {
1112 		netdev_info(dev, "PCS PHY ID: 0x%04x%04x\n",
1113 				sgmii_pcs_read(priv, MII_PHYSID1),
1114 				sgmii_pcs_read(priv, MII_PHYSID2));
1115 	} else {
1116 		netdev_err(dev, "SGMII PCS Scratch memory test failed.\n");
1117 		return -ENOMEM;
1118 	}
1119 
1120 	/* Starting on page 5-29 of the MegaCore Function User Guide
1121 	 * Set SGMII Link timer to 1.6ms
1122 	 */
1123 	sgmii_pcs_write(priv, SGMII_PCS_LINK_TIMER_0, 0x0D40);
1124 	sgmii_pcs_write(priv, SGMII_PCS_LINK_TIMER_1, 0x03);
1125 
1126 	/* Enable SGMII Interface and Enable SGMII Auto Negotiation */
1127 	sgmii_pcs_write(priv, SGMII_PCS_IF_MODE, 0x3);
1128 
1129 	/* Enable Autonegotiation */
1130 	tmp_reg = sgmii_pcs_read(priv, MII_BMCR);
1131 	tmp_reg |= (BMCR_SPEED1000 | BMCR_FULLDPLX | BMCR_ANENABLE);
1132 	sgmii_pcs_write(priv, MII_BMCR, tmp_reg);
1133 
1134 	/* Reset PCS block */
1135 	tmp_reg |= BMCR_RESET;
1136 	sgmii_pcs_write(priv, MII_BMCR, tmp_reg);
1137 	for (n = 0; n < SGMII_PCS_SW_RESET_TIMEOUT; n++) {
1138 		if (!(sgmii_pcs_read(priv, MII_BMCR) & BMCR_RESET)) {
1139 			netdev_info(dev, "SGMII PCS block initialised OK\n");
1140 			return 0;
1141 		}
1142 		udelay(1);
1143 	}
1144 
1145 	/* We failed to reset the block, return a timeout */
1146 	netdev_err(dev, "SGMII PCS block reset failed.\n");
1147 	return -ETIMEDOUT;
1148 }
1149 
1150 /* Open and initialize the interface
1151  */
tse_open(struct net_device * dev)1152 static int tse_open(struct net_device *dev)
1153 {
1154 	struct altera_tse_private *priv = netdev_priv(dev);
1155 	int ret = 0;
1156 	int i;
1157 	unsigned long int flags;
1158 
1159 	/* Reset and configure TSE MAC and probe associated PHY */
1160 	ret = priv->dmaops->init_dma(priv);
1161 	if (ret != 0) {
1162 		netdev_err(dev, "Cannot initialize DMA\n");
1163 		goto phy_error;
1164 	}
1165 
1166 	if (netif_msg_ifup(priv))
1167 		netdev_warn(dev, "device MAC address %pM\n",
1168 			    dev->dev_addr);
1169 
1170 	if ((priv->revision < 0xd00) || (priv->revision > 0xe00))
1171 		netdev_warn(dev, "TSE revision %x\n", priv->revision);
1172 
1173 	spin_lock(&priv->mac_cfg_lock);
1174 	/* no-op if MAC not operating in SGMII mode*/
1175 	ret = init_sgmii_pcs(dev);
1176 	if (ret) {
1177 		netdev_err(dev,
1178 			   "Cannot init the SGMII PCS (error: %d)\n", ret);
1179 		spin_unlock(&priv->mac_cfg_lock);
1180 		goto phy_error;
1181 	}
1182 
1183 	ret = reset_mac(priv);
1184 	/* Note that reset_mac will fail if the clocks are gated by the PHY
1185 	 * due to the PHY being put into isolation or power down mode.
1186 	 * This is not an error if reset fails due to no clock.
1187 	 */
1188 	if (ret)
1189 		netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
1190 
1191 	ret = init_mac(priv);
1192 	spin_unlock(&priv->mac_cfg_lock);
1193 	if (ret) {
1194 		netdev_err(dev, "Cannot init MAC core (error: %d)\n", ret);
1195 		goto alloc_skbuf_error;
1196 	}
1197 
1198 	priv->dmaops->reset_dma(priv);
1199 
1200 	/* Create and initialize the TX/RX descriptors chains. */
1201 	priv->rx_ring_size = dma_rx_num;
1202 	priv->tx_ring_size = dma_tx_num;
1203 	ret = alloc_init_skbufs(priv);
1204 	if (ret) {
1205 		netdev_err(dev, "DMA descriptors initialization failed\n");
1206 		goto alloc_skbuf_error;
1207 	}
1208 
1209 
1210 	/* Register RX interrupt */
1211 	ret = request_irq(priv->rx_irq, altera_isr, IRQF_SHARED,
1212 			  dev->name, dev);
1213 	if (ret) {
1214 		netdev_err(dev, "Unable to register RX interrupt %d\n",
1215 			   priv->rx_irq);
1216 		goto init_error;
1217 	}
1218 
1219 	/* Register TX interrupt */
1220 	ret = request_irq(priv->tx_irq, altera_isr, IRQF_SHARED,
1221 			  dev->name, dev);
1222 	if (ret) {
1223 		netdev_err(dev, "Unable to register TX interrupt %d\n",
1224 			   priv->tx_irq);
1225 		goto tx_request_irq_error;
1226 	}
1227 
1228 	/* Enable DMA interrupts */
1229 	spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
1230 	priv->dmaops->enable_rxirq(priv);
1231 	priv->dmaops->enable_txirq(priv);
1232 
1233 	/* Setup RX descriptor chain */
1234 	for (i = 0; i < priv->rx_ring_size; i++)
1235 		priv->dmaops->add_rx_desc(priv, &priv->rx_ring[i]);
1236 
1237 	spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
1238 
1239 	if (dev->phydev)
1240 		phy_start(dev->phydev);
1241 
1242 	napi_enable(&priv->napi);
1243 	netif_start_queue(dev);
1244 
1245 	priv->dmaops->start_rxdma(priv);
1246 
1247 	/* Start MAC Rx/Tx */
1248 	spin_lock(&priv->mac_cfg_lock);
1249 	tse_set_mac(priv, true);
1250 	spin_unlock(&priv->mac_cfg_lock);
1251 
1252 	return 0;
1253 
1254 tx_request_irq_error:
1255 	free_irq(priv->rx_irq, dev);
1256 init_error:
1257 	free_skbufs(dev);
1258 alloc_skbuf_error:
1259 phy_error:
1260 	return ret;
1261 }
1262 
1263 /* Stop TSE MAC interface and put the device in an inactive state
1264  */
tse_shutdown(struct net_device * dev)1265 static int tse_shutdown(struct net_device *dev)
1266 {
1267 	struct altera_tse_private *priv = netdev_priv(dev);
1268 	int ret;
1269 	unsigned long int flags;
1270 
1271 	/* Stop the PHY */
1272 	if (dev->phydev)
1273 		phy_stop(dev->phydev);
1274 
1275 	netif_stop_queue(dev);
1276 	napi_disable(&priv->napi);
1277 
1278 	/* Disable DMA interrupts */
1279 	spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
1280 	priv->dmaops->disable_rxirq(priv);
1281 	priv->dmaops->disable_txirq(priv);
1282 	spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
1283 
1284 	/* Free the IRQ lines */
1285 	free_irq(priv->rx_irq, dev);
1286 	free_irq(priv->tx_irq, dev);
1287 
1288 	/* disable and reset the MAC, empties fifo */
1289 	spin_lock(&priv->mac_cfg_lock);
1290 	spin_lock(&priv->tx_lock);
1291 
1292 	ret = reset_mac(priv);
1293 	/* Note that reset_mac will fail if the clocks are gated by the PHY
1294 	 * due to the PHY being put into isolation or power down mode.
1295 	 * This is not an error if reset fails due to no clock.
1296 	 */
1297 	if (ret)
1298 		netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
1299 	priv->dmaops->reset_dma(priv);
1300 	free_skbufs(dev);
1301 
1302 	spin_unlock(&priv->tx_lock);
1303 	spin_unlock(&priv->mac_cfg_lock);
1304 
1305 	priv->dmaops->uninit_dma(priv);
1306 
1307 	return 0;
1308 }
1309 
1310 static struct net_device_ops altera_tse_netdev_ops = {
1311 	.ndo_open		= tse_open,
1312 	.ndo_stop		= tse_shutdown,
1313 	.ndo_start_xmit		= tse_start_xmit,
1314 	.ndo_set_mac_address	= eth_mac_addr,
1315 	.ndo_set_rx_mode	= tse_set_rx_mode,
1316 	.ndo_change_mtu		= tse_change_mtu,
1317 	.ndo_validate_addr	= eth_validate_addr,
1318 };
1319 
request_and_map(struct platform_device * pdev,const char * name,struct resource ** res,void __iomem ** ptr)1320 static int request_and_map(struct platform_device *pdev, const char *name,
1321 			   struct resource **res, void __iomem **ptr)
1322 {
1323 	struct resource *region;
1324 	struct device *device = &pdev->dev;
1325 
1326 	*res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name);
1327 	if (*res == NULL) {
1328 		dev_err(device, "resource %s not defined\n", name);
1329 		return -ENODEV;
1330 	}
1331 
1332 	region = devm_request_mem_region(device, (*res)->start,
1333 					 resource_size(*res), dev_name(device));
1334 	if (region == NULL) {
1335 		dev_err(device, "unable to request %s\n", name);
1336 		return -EBUSY;
1337 	}
1338 
1339 	*ptr = devm_ioremap(device, region->start,
1340 				    resource_size(region));
1341 	if (*ptr == NULL) {
1342 		dev_err(device, "ioremap of %s failed!", name);
1343 		return -ENOMEM;
1344 	}
1345 
1346 	return 0;
1347 }
1348 
1349 /* Probe Altera TSE MAC device
1350  */
altera_tse_probe(struct platform_device * pdev)1351 static int altera_tse_probe(struct platform_device *pdev)
1352 {
1353 	struct net_device *ndev;
1354 	int ret = -ENODEV;
1355 	struct resource *control_port;
1356 	struct resource *dma_res;
1357 	struct altera_tse_private *priv;
1358 	const unsigned char *macaddr;
1359 	void __iomem *descmap;
1360 	const struct of_device_id *of_id = NULL;
1361 
1362 	ndev = alloc_etherdev(sizeof(struct altera_tse_private));
1363 	if (!ndev) {
1364 		dev_err(&pdev->dev, "Could not allocate network device\n");
1365 		return -ENODEV;
1366 	}
1367 
1368 	SET_NETDEV_DEV(ndev, &pdev->dev);
1369 
1370 	priv = netdev_priv(ndev);
1371 	priv->device = &pdev->dev;
1372 	priv->dev = ndev;
1373 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
1374 
1375 	of_id = of_match_device(altera_tse_ids, &pdev->dev);
1376 
1377 	if (of_id)
1378 		priv->dmaops = (struct altera_dmaops *)of_id->data;
1379 
1380 
1381 	if (priv->dmaops &&
1382 	    priv->dmaops->altera_dtype == ALTERA_DTYPE_SGDMA) {
1383 		/* Get the mapped address to the SGDMA descriptor memory */
1384 		ret = request_and_map(pdev, "s1", &dma_res, &descmap);
1385 		if (ret)
1386 			goto err_free_netdev;
1387 
1388 		/* Start of that memory is for transmit descriptors */
1389 		priv->tx_dma_desc = descmap;
1390 
1391 		/* First half is for tx descriptors, other half for tx */
1392 		priv->txdescmem = resource_size(dma_res)/2;
1393 
1394 		priv->txdescmem_busaddr = (dma_addr_t)dma_res->start;
1395 
1396 		priv->rx_dma_desc = (void __iomem *)((uintptr_t)(descmap +
1397 						     priv->txdescmem));
1398 		priv->rxdescmem = resource_size(dma_res)/2;
1399 		priv->rxdescmem_busaddr = dma_res->start;
1400 		priv->rxdescmem_busaddr += priv->txdescmem;
1401 
1402 		if (upper_32_bits(priv->rxdescmem_busaddr)) {
1403 			dev_dbg(priv->device,
1404 				"SGDMA bus addresses greater than 32-bits\n");
1405 			ret = -EINVAL;
1406 			goto err_free_netdev;
1407 		}
1408 		if (upper_32_bits(priv->txdescmem_busaddr)) {
1409 			dev_dbg(priv->device,
1410 				"SGDMA bus addresses greater than 32-bits\n");
1411 			ret = -EINVAL;
1412 			goto err_free_netdev;
1413 		}
1414 	} else if (priv->dmaops &&
1415 		   priv->dmaops->altera_dtype == ALTERA_DTYPE_MSGDMA) {
1416 		ret = request_and_map(pdev, "rx_resp", &dma_res,
1417 				      &priv->rx_dma_resp);
1418 		if (ret)
1419 			goto err_free_netdev;
1420 
1421 		ret = request_and_map(pdev, "tx_desc", &dma_res,
1422 				      &priv->tx_dma_desc);
1423 		if (ret)
1424 			goto err_free_netdev;
1425 
1426 		priv->txdescmem = resource_size(dma_res);
1427 		priv->txdescmem_busaddr = dma_res->start;
1428 
1429 		ret = request_and_map(pdev, "rx_desc", &dma_res,
1430 				      &priv->rx_dma_desc);
1431 		if (ret)
1432 			goto err_free_netdev;
1433 
1434 		priv->rxdescmem = resource_size(dma_res);
1435 		priv->rxdescmem_busaddr = dma_res->start;
1436 
1437 	} else {
1438 		ret = -ENODEV;
1439 		goto err_free_netdev;
1440 	}
1441 
1442 	if (!dma_set_mask(priv->device, DMA_BIT_MASK(priv->dmaops->dmamask))) {
1443 		dma_set_coherent_mask(priv->device,
1444 				      DMA_BIT_MASK(priv->dmaops->dmamask));
1445 	} else if (!dma_set_mask(priv->device, DMA_BIT_MASK(32))) {
1446 		dma_set_coherent_mask(priv->device, DMA_BIT_MASK(32));
1447 	} else {
1448 		ret = -EIO;
1449 		goto err_free_netdev;
1450 	}
1451 
1452 	/* MAC address space */
1453 	ret = request_and_map(pdev, "control_port", &control_port,
1454 			      (void __iomem **)&priv->mac_dev);
1455 	if (ret)
1456 		goto err_free_netdev;
1457 
1458 	/* xSGDMA Rx Dispatcher address space */
1459 	ret = request_and_map(pdev, "rx_csr", &dma_res,
1460 			      &priv->rx_dma_csr);
1461 	if (ret)
1462 		goto err_free_netdev;
1463 
1464 
1465 	/* xSGDMA Tx Dispatcher address space */
1466 	ret = request_and_map(pdev, "tx_csr", &dma_res,
1467 			      &priv->tx_dma_csr);
1468 	if (ret)
1469 		goto err_free_netdev;
1470 
1471 
1472 	/* Rx IRQ */
1473 	priv->rx_irq = platform_get_irq_byname(pdev, "rx_irq");
1474 	if (priv->rx_irq == -ENXIO) {
1475 		dev_err(&pdev->dev, "cannot obtain Rx IRQ\n");
1476 		ret = -ENXIO;
1477 		goto err_free_netdev;
1478 	}
1479 
1480 	/* Tx IRQ */
1481 	priv->tx_irq = platform_get_irq_byname(pdev, "tx_irq");
1482 	if (priv->tx_irq == -ENXIO) {
1483 		dev_err(&pdev->dev, "cannot obtain Tx IRQ\n");
1484 		ret = -ENXIO;
1485 		goto err_free_netdev;
1486 	}
1487 
1488 	/* get FIFO depths from device tree */
1489 	if (of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1490 				 &priv->rx_fifo_depth)) {
1491 		dev_err(&pdev->dev, "cannot obtain rx-fifo-depth\n");
1492 		ret = -ENXIO;
1493 		goto err_free_netdev;
1494 	}
1495 
1496 	if (of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth",
1497 				 &priv->tx_fifo_depth)) {
1498 		dev_err(&pdev->dev, "cannot obtain tx-fifo-depth\n");
1499 		ret = -ENXIO;
1500 		goto err_free_netdev;
1501 	}
1502 
1503 	/* get hash filter settings for this instance */
1504 	priv->hash_filter =
1505 		of_property_read_bool(pdev->dev.of_node,
1506 				      "altr,has-hash-multicast-filter");
1507 
1508 	/* Set hash filter to not set for now until the
1509 	 * multicast filter receive issue is debugged
1510 	 */
1511 	priv->hash_filter = 0;
1512 
1513 	/* get supplemental address settings for this instance */
1514 	priv->added_unicast =
1515 		of_property_read_bool(pdev->dev.of_node,
1516 				      "altr,has-supplementary-unicast");
1517 
1518 	priv->dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
1519 	/* Max MTU is 1500, ETH_DATA_LEN */
1520 	priv->dev->max_mtu = ETH_DATA_LEN;
1521 
1522 	/* Get the max mtu from the device tree. Note that the
1523 	 * "max-frame-size" parameter is actually max mtu. Definition
1524 	 * in the ePAPR v1.1 spec and usage differ, so go with usage.
1525 	 */
1526 	of_property_read_u32(pdev->dev.of_node, "max-frame-size",
1527 			     &priv->dev->max_mtu);
1528 
1529 	/* The DMA buffer size already accounts for an alignment bias
1530 	 * to avoid unaligned access exceptions for the NIOS processor,
1531 	 */
1532 	priv->rx_dma_buf_sz = ALTERA_RXDMABUFFER_SIZE;
1533 
1534 	/* get default MAC address from device tree */
1535 	macaddr = of_get_mac_address(pdev->dev.of_node);
1536 	if (!IS_ERR(macaddr))
1537 		ether_addr_copy(ndev->dev_addr, macaddr);
1538 	else
1539 		eth_hw_addr_random(ndev);
1540 
1541 	/* get phy addr and create mdio */
1542 	ret = altera_tse_phy_get_addr_mdio_create(ndev);
1543 
1544 	if (ret)
1545 		goto err_free_netdev;
1546 
1547 	/* initialize netdev */
1548 	ndev->mem_start = control_port->start;
1549 	ndev->mem_end = control_port->end;
1550 	ndev->netdev_ops = &altera_tse_netdev_ops;
1551 	altera_tse_set_ethtool_ops(ndev);
1552 
1553 	altera_tse_netdev_ops.ndo_set_rx_mode = tse_set_rx_mode;
1554 
1555 	if (priv->hash_filter)
1556 		altera_tse_netdev_ops.ndo_set_rx_mode =
1557 			tse_set_rx_mode_hashfilter;
1558 
1559 	/* Scatter/gather IO is not supported,
1560 	 * so it is turned off
1561 	 */
1562 	ndev->hw_features &= ~NETIF_F_SG;
1563 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
1564 
1565 	/* VLAN offloading of tagging, stripping and filtering is not
1566 	 * supported by hardware, but driver will accommodate the
1567 	 * extra 4-byte VLAN tag for processing by upper layers
1568 	 */
1569 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1570 
1571 	/* setup NAPI interface */
1572 	netif_napi_add(ndev, &priv->napi, tse_poll, NAPI_POLL_WEIGHT);
1573 
1574 	spin_lock_init(&priv->mac_cfg_lock);
1575 	spin_lock_init(&priv->tx_lock);
1576 	spin_lock_init(&priv->rxdma_irq_lock);
1577 
1578 	netif_carrier_off(ndev);
1579 	ret = register_netdev(ndev);
1580 	if (ret) {
1581 		dev_err(&pdev->dev, "failed to register TSE net device\n");
1582 		goto err_register_netdev;
1583 	}
1584 
1585 	platform_set_drvdata(pdev, ndev);
1586 
1587 	priv->revision = ioread32(&priv->mac_dev->megacore_revision);
1588 
1589 	if (netif_msg_probe(priv))
1590 		dev_info(&pdev->dev, "Altera TSE MAC version %d.%d at 0x%08lx irq %d/%d\n",
1591 			 (priv->revision >> 8) & 0xff,
1592 			 priv->revision & 0xff,
1593 			 (unsigned long) control_port->start, priv->rx_irq,
1594 			 priv->tx_irq);
1595 
1596 	ret = init_phy(ndev);
1597 	if (ret != 0) {
1598 		netdev_err(ndev, "Cannot attach to PHY (error: %d)\n", ret);
1599 		goto err_init_phy;
1600 	}
1601 	return 0;
1602 
1603 err_init_phy:
1604 	unregister_netdev(ndev);
1605 err_register_netdev:
1606 	netif_napi_del(&priv->napi);
1607 	altera_tse_mdio_destroy(ndev);
1608 err_free_netdev:
1609 	free_netdev(ndev);
1610 	return ret;
1611 }
1612 
1613 /* Remove Altera TSE MAC device
1614  */
altera_tse_remove(struct platform_device * pdev)1615 static int altera_tse_remove(struct platform_device *pdev)
1616 {
1617 	struct net_device *ndev = platform_get_drvdata(pdev);
1618 	struct altera_tse_private *priv = netdev_priv(ndev);
1619 
1620 	if (ndev->phydev) {
1621 		phy_disconnect(ndev->phydev);
1622 
1623 		if (of_phy_is_fixed_link(priv->device->of_node))
1624 			of_phy_deregister_fixed_link(priv->device->of_node);
1625 	}
1626 
1627 	platform_set_drvdata(pdev, NULL);
1628 	altera_tse_mdio_destroy(ndev);
1629 	unregister_netdev(ndev);
1630 	free_netdev(ndev);
1631 
1632 	return 0;
1633 }
1634 
1635 static const struct altera_dmaops altera_dtype_sgdma = {
1636 	.altera_dtype = ALTERA_DTYPE_SGDMA,
1637 	.dmamask = 32,
1638 	.reset_dma = sgdma_reset,
1639 	.enable_txirq = sgdma_enable_txirq,
1640 	.enable_rxirq = sgdma_enable_rxirq,
1641 	.disable_txirq = sgdma_disable_txirq,
1642 	.disable_rxirq = sgdma_disable_rxirq,
1643 	.clear_txirq = sgdma_clear_txirq,
1644 	.clear_rxirq = sgdma_clear_rxirq,
1645 	.tx_buffer = sgdma_tx_buffer,
1646 	.tx_completions = sgdma_tx_completions,
1647 	.add_rx_desc = sgdma_add_rx_desc,
1648 	.get_rx_status = sgdma_rx_status,
1649 	.init_dma = sgdma_initialize,
1650 	.uninit_dma = sgdma_uninitialize,
1651 	.start_rxdma = sgdma_start_rxdma,
1652 };
1653 
1654 static const struct altera_dmaops altera_dtype_msgdma = {
1655 	.altera_dtype = ALTERA_DTYPE_MSGDMA,
1656 	.dmamask = 64,
1657 	.reset_dma = msgdma_reset,
1658 	.enable_txirq = msgdma_enable_txirq,
1659 	.enable_rxirq = msgdma_enable_rxirq,
1660 	.disable_txirq = msgdma_disable_txirq,
1661 	.disable_rxirq = msgdma_disable_rxirq,
1662 	.clear_txirq = msgdma_clear_txirq,
1663 	.clear_rxirq = msgdma_clear_rxirq,
1664 	.tx_buffer = msgdma_tx_buffer,
1665 	.tx_completions = msgdma_tx_completions,
1666 	.add_rx_desc = msgdma_add_rx_desc,
1667 	.get_rx_status = msgdma_rx_status,
1668 	.init_dma = msgdma_initialize,
1669 	.uninit_dma = msgdma_uninitialize,
1670 	.start_rxdma = msgdma_start_rxdma,
1671 };
1672 
1673 static const struct of_device_id altera_tse_ids[] = {
1674 	{ .compatible = "altr,tse-msgdma-1.0", .data = &altera_dtype_msgdma, },
1675 	{ .compatible = "altr,tse-1.0", .data = &altera_dtype_sgdma, },
1676 	{ .compatible = "ALTR,tse-1.0", .data = &altera_dtype_sgdma, },
1677 	{},
1678 };
1679 MODULE_DEVICE_TABLE(of, altera_tse_ids);
1680 
1681 static struct platform_driver altera_tse_driver = {
1682 	.probe		= altera_tse_probe,
1683 	.remove		= altera_tse_remove,
1684 	.suspend	= NULL,
1685 	.resume		= NULL,
1686 	.driver		= {
1687 		.name	= ALTERA_TSE_RESOURCE_NAME,
1688 		.of_match_table = altera_tse_ids,
1689 	},
1690 };
1691 
1692 module_platform_driver(altera_tse_driver);
1693 
1694 MODULE_AUTHOR("Altera Corporation");
1695 MODULE_DESCRIPTION("Altera Triple Speed Ethernet MAC driver");
1696 MODULE_LICENSE("GPL v2");
1697