• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Procedures for creating, accessing and interpreting the device tree.
4  *
5  * Paul Mackerras	August 1996.
6  * Copyright (C) 1996-2005 Paul Mackerras.
7  *
8  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9  *    {engebret|bergner}@us.ibm.com
10  *
11  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12  *
13  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14  *  Grant Likely.
15  */
16 
17 #define pr_fmt(fmt)	"OF: " fmt
18 
19 #include <linux/bitmap.h>
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/proc_fs.h>
31 
32 #include "of_private.h"
33 
34 LIST_HEAD(aliases_lookup);
35 
36 struct device_node *of_root;
37 EXPORT_SYMBOL(of_root);
38 struct device_node *of_chosen;
39 struct device_node *of_aliases;
40 struct device_node *of_stdout;
41 static const char *of_stdout_options;
42 
43 struct kset *of_kset;
44 
45 /*
46  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
47  * This mutex must be held whenever modifications are being made to the
48  * device tree. The of_{attach,detach}_node() and
49  * of_{add,remove,update}_property() helpers make sure this happens.
50  */
51 DEFINE_MUTEX(of_mutex);
52 
53 /* use when traversing tree through the child, sibling,
54  * or parent members of struct device_node.
55  */
56 DEFINE_RAW_SPINLOCK(devtree_lock);
57 
of_node_name_eq(const struct device_node * np,const char * name)58 bool of_node_name_eq(const struct device_node *np, const char *name)
59 {
60 	const char *node_name;
61 	size_t len;
62 
63 	if (!np)
64 		return false;
65 
66 	node_name = kbasename(np->full_name);
67 	len = strchrnul(node_name, '@') - node_name;
68 
69 	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
70 }
71 EXPORT_SYMBOL(of_node_name_eq);
72 
of_node_name_prefix(const struct device_node * np,const char * prefix)73 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
74 {
75 	if (!np)
76 		return false;
77 
78 	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
79 }
80 EXPORT_SYMBOL(of_node_name_prefix);
81 
__of_node_is_type(const struct device_node * np,const char * type)82 static bool __of_node_is_type(const struct device_node *np, const char *type)
83 {
84 	const char *match = __of_get_property(np, "device_type", NULL);
85 
86 	return np && match && type && !strcmp(match, type);
87 }
88 
of_bus_n_addr_cells(struct device_node * np)89 int of_bus_n_addr_cells(struct device_node *np)
90 {
91 	u32 cells;
92 
93 	for (; np; np = np->parent)
94 		if (!of_property_read_u32(np, "#address-cells", &cells))
95 			return cells;
96 
97 	/* No #address-cells property for the root node */
98 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
99 }
100 
of_n_addr_cells(struct device_node * np)101 int of_n_addr_cells(struct device_node *np)
102 {
103 	if (np->parent)
104 		np = np->parent;
105 
106 	return of_bus_n_addr_cells(np);
107 }
108 EXPORT_SYMBOL(of_n_addr_cells);
109 
of_bus_n_size_cells(struct device_node * np)110 int of_bus_n_size_cells(struct device_node *np)
111 {
112 	u32 cells;
113 
114 	for (; np; np = np->parent)
115 		if (!of_property_read_u32(np, "#size-cells", &cells))
116 			return cells;
117 
118 	/* No #size-cells property for the root node */
119 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
120 }
121 
of_n_size_cells(struct device_node * np)122 int of_n_size_cells(struct device_node *np)
123 {
124 	if (np->parent)
125 		np = np->parent;
126 
127 	return of_bus_n_size_cells(np);
128 }
129 EXPORT_SYMBOL(of_n_size_cells);
130 
131 #ifdef CONFIG_NUMA
of_node_to_nid(struct device_node * np)132 int __weak of_node_to_nid(struct device_node *np)
133 {
134 	return NUMA_NO_NODE;
135 }
136 #endif
137 
138 #define OF_PHANDLE_CACHE_BITS	7
139 #define OF_PHANDLE_CACHE_SZ	BIT(OF_PHANDLE_CACHE_BITS)
140 
141 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
142 
of_phandle_cache_hash(phandle handle)143 static u32 of_phandle_cache_hash(phandle handle)
144 {
145 	return hash_32(handle, OF_PHANDLE_CACHE_BITS);
146 }
147 
148 /*
149  * Caller must hold devtree_lock.
150  */
__of_phandle_cache_inv_entry(phandle handle)151 void __of_phandle_cache_inv_entry(phandle handle)
152 {
153 	u32 handle_hash;
154 	struct device_node *np;
155 
156 	if (!handle)
157 		return;
158 
159 	handle_hash = of_phandle_cache_hash(handle);
160 
161 	np = phandle_cache[handle_hash];
162 	if (np && handle == np->phandle)
163 		phandle_cache[handle_hash] = NULL;
164 }
165 
of_core_init(void)166 void __init of_core_init(void)
167 {
168 	struct device_node *np;
169 
170 
171 	/* Create the kset, and register existing nodes */
172 	mutex_lock(&of_mutex);
173 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
174 	if (!of_kset) {
175 		mutex_unlock(&of_mutex);
176 		pr_err("failed to register existing nodes\n");
177 		return;
178 	}
179 	for_each_of_allnodes(np) {
180 		__of_attach_node_sysfs(np);
181 		if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
182 			phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
183 	}
184 	mutex_unlock(&of_mutex);
185 
186 	/* Symlink in /proc as required by userspace ABI */
187 	if (of_root)
188 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
189 }
190 
__of_find_property(const struct device_node * np,const char * name,int * lenp)191 static struct property *__of_find_property(const struct device_node *np,
192 					   const char *name, int *lenp)
193 {
194 	struct property *pp;
195 
196 	if (!np)
197 		return NULL;
198 
199 	for (pp = np->properties; pp; pp = pp->next) {
200 		if (of_prop_cmp(pp->name, name) == 0) {
201 			if (lenp)
202 				*lenp = pp->length;
203 			break;
204 		}
205 	}
206 
207 	return pp;
208 }
209 
of_find_property(const struct device_node * np,const char * name,int * lenp)210 struct property *of_find_property(const struct device_node *np,
211 				  const char *name,
212 				  int *lenp)
213 {
214 	struct property *pp;
215 	unsigned long flags;
216 
217 	raw_spin_lock_irqsave(&devtree_lock, flags);
218 	pp = __of_find_property(np, name, lenp);
219 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
220 
221 	return pp;
222 }
223 EXPORT_SYMBOL(of_find_property);
224 
__of_find_all_nodes(struct device_node * prev)225 struct device_node *__of_find_all_nodes(struct device_node *prev)
226 {
227 	struct device_node *np;
228 	if (!prev) {
229 		np = of_root;
230 	} else if (prev->child) {
231 		np = prev->child;
232 	} else {
233 		/* Walk back up looking for a sibling, or the end of the structure */
234 		np = prev;
235 		while (np->parent && !np->sibling)
236 			np = np->parent;
237 		np = np->sibling; /* Might be null at the end of the tree */
238 	}
239 	return np;
240 }
241 
242 /**
243  * of_find_all_nodes - Get next node in global list
244  * @prev:	Previous node or NULL to start iteration
245  *		of_node_put() will be called on it
246  *
247  * Return: A node pointer with refcount incremented, use
248  * of_node_put() on it when done.
249  */
of_find_all_nodes(struct device_node * prev)250 struct device_node *of_find_all_nodes(struct device_node *prev)
251 {
252 	struct device_node *np;
253 	unsigned long flags;
254 
255 	raw_spin_lock_irqsave(&devtree_lock, flags);
256 	np = __of_find_all_nodes(prev);
257 	of_node_get(np);
258 	of_node_put(prev);
259 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
260 	return np;
261 }
262 EXPORT_SYMBOL(of_find_all_nodes);
263 
264 /*
265  * Find a property with a given name for a given node
266  * and return the value.
267  */
__of_get_property(const struct device_node * np,const char * name,int * lenp)268 const void *__of_get_property(const struct device_node *np,
269 			      const char *name, int *lenp)
270 {
271 	struct property *pp = __of_find_property(np, name, lenp);
272 
273 	return pp ? pp->value : NULL;
274 }
275 
276 /*
277  * Find a property with a given name for a given node
278  * and return the value.
279  */
of_get_property(const struct device_node * np,const char * name,int * lenp)280 const void *of_get_property(const struct device_node *np, const char *name,
281 			    int *lenp)
282 {
283 	struct property *pp = of_find_property(np, name, lenp);
284 
285 	return pp ? pp->value : NULL;
286 }
287 EXPORT_SYMBOL(of_get_property);
288 
289 /*
290  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
291  *
292  * @cpu: logical cpu index of a core/thread
293  * @phys_id: physical identifier of a core/thread
294  *
295  * CPU logical to physical index mapping is architecture specific.
296  * However this __weak function provides a default match of physical
297  * id to logical cpu index. phys_id provided here is usually values read
298  * from the device tree which must match the hardware internal registers.
299  *
300  * Returns true if the physical identifier and the logical cpu index
301  * correspond to the same core/thread, false otherwise.
302  */
arch_match_cpu_phys_id(int cpu,u64 phys_id)303 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
304 {
305 	return (u32)phys_id == cpu;
306 }
307 
308 /*
309  * Checks if the given "prop_name" property holds the physical id of the
310  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
311  * NULL, local thread number within the core is returned in it.
312  */
__of_find_n_match_cpu_property(struct device_node * cpun,const char * prop_name,int cpu,unsigned int * thread)313 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
314 			const char *prop_name, int cpu, unsigned int *thread)
315 {
316 	const __be32 *cell;
317 	int ac, prop_len, tid;
318 	u64 hwid;
319 
320 	ac = of_n_addr_cells(cpun);
321 	cell = of_get_property(cpun, prop_name, &prop_len);
322 	if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
323 		return true;
324 	if (!cell || !ac)
325 		return false;
326 	prop_len /= sizeof(*cell) * ac;
327 	for (tid = 0; tid < prop_len; tid++) {
328 		hwid = of_read_number(cell, ac);
329 		if (arch_match_cpu_phys_id(cpu, hwid)) {
330 			if (thread)
331 				*thread = tid;
332 			return true;
333 		}
334 		cell += ac;
335 	}
336 	return false;
337 }
338 
339 /*
340  * arch_find_n_match_cpu_physical_id - See if the given device node is
341  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
342  * else false.  If 'thread' is non-NULL, the local thread number within the
343  * core is returned in it.
344  */
arch_find_n_match_cpu_physical_id(struct device_node * cpun,int cpu,unsigned int * thread)345 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
346 					      int cpu, unsigned int *thread)
347 {
348 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
349 	 * for thread ids on PowerPC. If it doesn't exist fallback to
350 	 * standard "reg" property.
351 	 */
352 	if (IS_ENABLED(CONFIG_PPC) &&
353 	    __of_find_n_match_cpu_property(cpun,
354 					   "ibm,ppc-interrupt-server#s",
355 					   cpu, thread))
356 		return true;
357 
358 	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
359 }
360 
361 /**
362  * of_get_cpu_node - Get device node associated with the given logical CPU
363  *
364  * @cpu: CPU number(logical index) for which device node is required
365  * @thread: if not NULL, local thread number within the physical core is
366  *          returned
367  *
368  * The main purpose of this function is to retrieve the device node for the
369  * given logical CPU index. It should be used to initialize the of_node in
370  * cpu device. Once of_node in cpu device is populated, all the further
371  * references can use that instead.
372  *
373  * CPU logical to physical index mapping is architecture specific and is built
374  * before booting secondary cores. This function uses arch_match_cpu_phys_id
375  * which can be overridden by architecture specific implementation.
376  *
377  * Return: A node pointer for the logical cpu with refcount incremented, use
378  * of_node_put() on it when done. Returns NULL if not found.
379  */
of_get_cpu_node(int cpu,unsigned int * thread)380 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
381 {
382 	struct device_node *cpun;
383 
384 	for_each_of_cpu_node(cpun) {
385 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
386 			return cpun;
387 	}
388 	return NULL;
389 }
390 EXPORT_SYMBOL(of_get_cpu_node);
391 
392 /**
393  * of_cpu_node_to_id: Get the logical CPU number for a given device_node
394  *
395  * @cpu_node: Pointer to the device_node for CPU.
396  *
397  * Return: The logical CPU number of the given CPU device_node or -ENODEV if the
398  * CPU is not found.
399  */
of_cpu_node_to_id(struct device_node * cpu_node)400 int of_cpu_node_to_id(struct device_node *cpu_node)
401 {
402 	int cpu;
403 	bool found = false;
404 	struct device_node *np;
405 
406 	for_each_possible_cpu(cpu) {
407 		np = of_cpu_device_node_get(cpu);
408 		found = (cpu_node == np);
409 		of_node_put(np);
410 		if (found)
411 			return cpu;
412 	}
413 
414 	return -ENODEV;
415 }
416 EXPORT_SYMBOL(of_cpu_node_to_id);
417 
418 /**
419  * of_get_cpu_state_node - Get CPU's idle state node at the given index
420  *
421  * @cpu_node: The device node for the CPU
422  * @index: The index in the list of the idle states
423  *
424  * Two generic methods can be used to describe a CPU's idle states, either via
425  * a flattened description through the "cpu-idle-states" binding or via the
426  * hierarchical layout, using the "power-domains" and the "domain-idle-states"
427  * bindings. This function check for both and returns the idle state node for
428  * the requested index.
429  *
430  * Return: An idle state node if found at @index. The refcount is incremented
431  * for it, so call of_node_put() on it when done. Returns NULL if not found.
432  */
of_get_cpu_state_node(struct device_node * cpu_node,int index)433 struct device_node *of_get_cpu_state_node(struct device_node *cpu_node,
434 					  int index)
435 {
436 	struct of_phandle_args args;
437 	int err;
438 
439 	err = of_parse_phandle_with_args(cpu_node, "power-domains",
440 					"#power-domain-cells", 0, &args);
441 	if (!err) {
442 		struct device_node *state_node =
443 			of_parse_phandle(args.np, "domain-idle-states", index);
444 
445 		of_node_put(args.np);
446 		if (state_node)
447 			return state_node;
448 	}
449 
450 	return of_parse_phandle(cpu_node, "cpu-idle-states", index);
451 }
452 EXPORT_SYMBOL(of_get_cpu_state_node);
453 
454 /**
455  * __of_device_is_compatible() - Check if the node matches given constraints
456  * @device: pointer to node
457  * @compat: required compatible string, NULL or "" for any match
458  * @type: required device_type value, NULL or "" for any match
459  * @name: required node name, NULL or "" for any match
460  *
461  * Checks if the given @compat, @type and @name strings match the
462  * properties of the given @device. A constraints can be skipped by
463  * passing NULL or an empty string as the constraint.
464  *
465  * Returns 0 for no match, and a positive integer on match. The return
466  * value is a relative score with larger values indicating better
467  * matches. The score is weighted for the most specific compatible value
468  * to get the highest score. Matching type is next, followed by matching
469  * name. Practically speaking, this results in the following priority
470  * order for matches:
471  *
472  * 1. specific compatible && type && name
473  * 2. specific compatible && type
474  * 3. specific compatible && name
475  * 4. specific compatible
476  * 5. general compatible && type && name
477  * 6. general compatible && type
478  * 7. general compatible && name
479  * 8. general compatible
480  * 9. type && name
481  * 10. type
482  * 11. name
483  */
__of_device_is_compatible(const struct device_node * device,const char * compat,const char * type,const char * name)484 static int __of_device_is_compatible(const struct device_node *device,
485 				     const char *compat, const char *type, const char *name)
486 {
487 	struct property *prop;
488 	const char *cp;
489 	int index = 0, score = 0;
490 
491 	/* Compatible match has highest priority */
492 	if (compat && compat[0]) {
493 		prop = __of_find_property(device, "compatible", NULL);
494 		for (cp = of_prop_next_string(prop, NULL); cp;
495 		     cp = of_prop_next_string(prop, cp), index++) {
496 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
497 				score = INT_MAX/2 - (index << 2);
498 				break;
499 			}
500 		}
501 		if (!score)
502 			return 0;
503 	}
504 
505 	/* Matching type is better than matching name */
506 	if (type && type[0]) {
507 		if (!__of_node_is_type(device, type))
508 			return 0;
509 		score += 2;
510 	}
511 
512 	/* Matching name is a bit better than not */
513 	if (name && name[0]) {
514 		if (!of_node_name_eq(device, name))
515 			return 0;
516 		score++;
517 	}
518 
519 	return score;
520 }
521 
522 /** Checks if the given "compat" string matches one of the strings in
523  * the device's "compatible" property
524  */
of_device_is_compatible(const struct device_node * device,const char * compat)525 int of_device_is_compatible(const struct device_node *device,
526 		const char *compat)
527 {
528 	unsigned long flags;
529 	int res;
530 
531 	raw_spin_lock_irqsave(&devtree_lock, flags);
532 	res = __of_device_is_compatible(device, compat, NULL, NULL);
533 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
534 	return res;
535 }
536 EXPORT_SYMBOL(of_device_is_compatible);
537 
538 /** Checks if the device is compatible with any of the entries in
539  *  a NULL terminated array of strings. Returns the best match
540  *  score or 0.
541  */
of_device_compatible_match(struct device_node * device,const char * const * compat)542 int of_device_compatible_match(struct device_node *device,
543 			       const char *const *compat)
544 {
545 	unsigned int tmp, score = 0;
546 
547 	if (!compat)
548 		return 0;
549 
550 	while (*compat) {
551 		tmp = of_device_is_compatible(device, *compat);
552 		if (tmp > score)
553 			score = tmp;
554 		compat++;
555 	}
556 
557 	return score;
558 }
559 
560 /**
561  * of_machine_is_compatible - Test root of device tree for a given compatible value
562  * @compat: compatible string to look for in root node's compatible property.
563  *
564  * Return: A positive integer if the root node has the given value in its
565  * compatible property.
566  */
of_machine_is_compatible(const char * compat)567 int of_machine_is_compatible(const char *compat)
568 {
569 	struct device_node *root;
570 	int rc = 0;
571 
572 	root = of_find_node_by_path("/");
573 	if (root) {
574 		rc = of_device_is_compatible(root, compat);
575 		of_node_put(root);
576 	}
577 	return rc;
578 }
579 EXPORT_SYMBOL(of_machine_is_compatible);
580 
581 /**
582  *  __of_device_is_available - check if a device is available for use
583  *
584  *  @device: Node to check for availability, with locks already held
585  *
586  *  Return: True if the status property is absent or set to "okay" or "ok",
587  *  false otherwise
588  */
__of_device_is_available(const struct device_node * device)589 static bool __of_device_is_available(const struct device_node *device)
590 {
591 	const char *status;
592 	int statlen;
593 
594 	if (!device)
595 		return false;
596 
597 	status = __of_get_property(device, "status", &statlen);
598 	if (status == NULL)
599 		return true;
600 
601 	if (statlen > 0) {
602 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
603 			return true;
604 	}
605 
606 	return false;
607 }
608 
609 /**
610  *  of_device_is_available - check if a device is available for use
611  *
612  *  @device: Node to check for availability
613  *
614  *  Return: True if the status property is absent or set to "okay" or "ok",
615  *  false otherwise
616  */
of_device_is_available(const struct device_node * device)617 bool of_device_is_available(const struct device_node *device)
618 {
619 	unsigned long flags;
620 	bool res;
621 
622 	raw_spin_lock_irqsave(&devtree_lock, flags);
623 	res = __of_device_is_available(device);
624 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
625 	return res;
626 
627 }
628 EXPORT_SYMBOL(of_device_is_available);
629 
630 /**
631  *  __of_device_is_fail - check if a device has status "fail" or "fail-..."
632  *
633  *  @device: Node to check status for, with locks already held
634  *
635  *  Return: True if the status property is set to "fail" or "fail-..." (for any
636  *  error code suffix), false otherwise
637  */
__of_device_is_fail(const struct device_node * device)638 static bool __of_device_is_fail(const struct device_node *device)
639 {
640 	const char *status;
641 
642 	if (!device)
643 		return false;
644 
645 	status = __of_get_property(device, "status", NULL);
646 	if (status == NULL)
647 		return false;
648 
649 	return !strcmp(status, "fail") || !strncmp(status, "fail-", 5);
650 }
651 
652 /**
653  *  of_device_is_big_endian - check if a device has BE registers
654  *
655  *  @device: Node to check for endianness
656  *
657  *  Return: True if the device has a "big-endian" property, or if the kernel
658  *  was compiled for BE *and* the device has a "native-endian" property.
659  *  Returns false otherwise.
660  *
661  *  Callers would nominally use ioread32be/iowrite32be if
662  *  of_device_is_big_endian() == true, or readl/writel otherwise.
663  */
of_device_is_big_endian(const struct device_node * device)664 bool of_device_is_big_endian(const struct device_node *device)
665 {
666 	if (of_property_read_bool(device, "big-endian"))
667 		return true;
668 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
669 	    of_property_read_bool(device, "native-endian"))
670 		return true;
671 	return false;
672 }
673 EXPORT_SYMBOL(of_device_is_big_endian);
674 
675 /**
676  * of_get_parent - Get a node's parent if any
677  * @node:	Node to get parent
678  *
679  * Return: A node pointer with refcount incremented, use
680  * of_node_put() on it when done.
681  */
of_get_parent(const struct device_node * node)682 struct device_node *of_get_parent(const struct device_node *node)
683 {
684 	struct device_node *np;
685 	unsigned long flags;
686 
687 	if (!node)
688 		return NULL;
689 
690 	raw_spin_lock_irqsave(&devtree_lock, flags);
691 	np = of_node_get(node->parent);
692 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
693 	return np;
694 }
695 EXPORT_SYMBOL(of_get_parent);
696 
697 /**
698  * of_get_next_parent - Iterate to a node's parent
699  * @node:	Node to get parent of
700  *
701  * This is like of_get_parent() except that it drops the
702  * refcount on the passed node, making it suitable for iterating
703  * through a node's parents.
704  *
705  * Return: A node pointer with refcount incremented, use
706  * of_node_put() on it when done.
707  */
of_get_next_parent(struct device_node * node)708 struct device_node *of_get_next_parent(struct device_node *node)
709 {
710 	struct device_node *parent;
711 	unsigned long flags;
712 
713 	if (!node)
714 		return NULL;
715 
716 	raw_spin_lock_irqsave(&devtree_lock, flags);
717 	parent = of_node_get(node->parent);
718 	of_node_put(node);
719 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
720 	return parent;
721 }
722 EXPORT_SYMBOL(of_get_next_parent);
723 
__of_get_next_child(const struct device_node * node,struct device_node * prev)724 static struct device_node *__of_get_next_child(const struct device_node *node,
725 						struct device_node *prev)
726 {
727 	struct device_node *next;
728 
729 	if (!node)
730 		return NULL;
731 
732 	next = prev ? prev->sibling : node->child;
733 	for (; next; next = next->sibling)
734 		if (of_node_get(next))
735 			break;
736 	of_node_put(prev);
737 	return next;
738 }
739 #define __for_each_child_of_node(parent, child) \
740 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
741 	     child = __of_get_next_child(parent, child))
742 
743 /**
744  * of_get_next_child - Iterate a node childs
745  * @node:	parent node
746  * @prev:	previous child of the parent node, or NULL to get first
747  *
748  * Return: A node pointer with refcount incremented, use of_node_put() on
749  * it when done. Returns NULL when prev is the last child. Decrements the
750  * refcount of prev.
751  */
of_get_next_child(const struct device_node * node,struct device_node * prev)752 struct device_node *of_get_next_child(const struct device_node *node,
753 	struct device_node *prev)
754 {
755 	struct device_node *next;
756 	unsigned long flags;
757 
758 	raw_spin_lock_irqsave(&devtree_lock, flags);
759 	next = __of_get_next_child(node, prev);
760 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
761 	return next;
762 }
763 EXPORT_SYMBOL(of_get_next_child);
764 
765 /**
766  * of_get_next_available_child - Find the next available child node
767  * @node:	parent node
768  * @prev:	previous child of the parent node, or NULL to get first
769  *
770  * This function is like of_get_next_child(), except that it
771  * automatically skips any disabled nodes (i.e. status = "disabled").
772  */
of_get_next_available_child(const struct device_node * node,struct device_node * prev)773 struct device_node *of_get_next_available_child(const struct device_node *node,
774 	struct device_node *prev)
775 {
776 	struct device_node *next;
777 	unsigned long flags;
778 
779 	if (!node)
780 		return NULL;
781 
782 	raw_spin_lock_irqsave(&devtree_lock, flags);
783 	next = prev ? prev->sibling : node->child;
784 	for (; next; next = next->sibling) {
785 		if (!__of_device_is_available(next))
786 			continue;
787 		if (of_node_get(next))
788 			break;
789 	}
790 	of_node_put(prev);
791 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
792 	return next;
793 }
794 EXPORT_SYMBOL(of_get_next_available_child);
795 
796 /**
797  * of_get_next_cpu_node - Iterate on cpu nodes
798  * @prev:	previous child of the /cpus node, or NULL to get first
799  *
800  * Unusable CPUs (those with the status property set to "fail" or "fail-...")
801  * will be skipped.
802  *
803  * Return: A cpu node pointer with refcount incremented, use of_node_put()
804  * on it when done. Returns NULL when prev is the last child. Decrements
805  * the refcount of prev.
806  */
of_get_next_cpu_node(struct device_node * prev)807 struct device_node *of_get_next_cpu_node(struct device_node *prev)
808 {
809 	struct device_node *next = NULL;
810 	unsigned long flags;
811 	struct device_node *node;
812 
813 	if (!prev)
814 		node = of_find_node_by_path("/cpus");
815 
816 	raw_spin_lock_irqsave(&devtree_lock, flags);
817 	if (prev)
818 		next = prev->sibling;
819 	else if (node) {
820 		next = node->child;
821 		of_node_put(node);
822 	}
823 	for (; next; next = next->sibling) {
824 		if (__of_device_is_fail(next))
825 			continue;
826 		if (!(of_node_name_eq(next, "cpu") ||
827 		      __of_node_is_type(next, "cpu")))
828 			continue;
829 		if (of_node_get(next))
830 			break;
831 	}
832 	of_node_put(prev);
833 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
834 	return next;
835 }
836 EXPORT_SYMBOL(of_get_next_cpu_node);
837 
838 /**
839  * of_get_compatible_child - Find compatible child node
840  * @parent:	parent node
841  * @compatible:	compatible string
842  *
843  * Lookup child node whose compatible property contains the given compatible
844  * string.
845  *
846  * Return: a node pointer with refcount incremented, use of_node_put() on it
847  * when done; or NULL if not found.
848  */
of_get_compatible_child(const struct device_node * parent,const char * compatible)849 struct device_node *of_get_compatible_child(const struct device_node *parent,
850 				const char *compatible)
851 {
852 	struct device_node *child;
853 
854 	for_each_child_of_node(parent, child) {
855 		if (of_device_is_compatible(child, compatible))
856 			break;
857 	}
858 
859 	return child;
860 }
861 EXPORT_SYMBOL(of_get_compatible_child);
862 
863 /**
864  * of_get_child_by_name - Find the child node by name for a given parent
865  * @node:	parent node
866  * @name:	child name to look for.
867  *
868  * This function looks for child node for given matching name
869  *
870  * Return: A node pointer if found, with refcount incremented, use
871  * of_node_put() on it when done.
872  * Returns NULL if node is not found.
873  */
of_get_child_by_name(const struct device_node * node,const char * name)874 struct device_node *of_get_child_by_name(const struct device_node *node,
875 				const char *name)
876 {
877 	struct device_node *child;
878 
879 	for_each_child_of_node(node, child)
880 		if (of_node_name_eq(child, name))
881 			break;
882 	return child;
883 }
884 EXPORT_SYMBOL(of_get_child_by_name);
885 
__of_find_node_by_path(struct device_node * parent,const char * path)886 struct device_node *__of_find_node_by_path(struct device_node *parent,
887 						const char *path)
888 {
889 	struct device_node *child;
890 	int len;
891 
892 	len = strcspn(path, "/:");
893 	if (!len)
894 		return NULL;
895 
896 	__for_each_child_of_node(parent, child) {
897 		const char *name = kbasename(child->full_name);
898 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
899 			return child;
900 	}
901 	return NULL;
902 }
903 
__of_find_node_by_full_path(struct device_node * node,const char * path)904 struct device_node *__of_find_node_by_full_path(struct device_node *node,
905 						const char *path)
906 {
907 	const char *separator = strchr(path, ':');
908 
909 	while (node && *path == '/') {
910 		struct device_node *tmp = node;
911 
912 		path++; /* Increment past '/' delimiter */
913 		node = __of_find_node_by_path(node, path);
914 		of_node_put(tmp);
915 		path = strchrnul(path, '/');
916 		if (separator && separator < path)
917 			break;
918 	}
919 	return node;
920 }
921 
922 /**
923  * of_find_node_opts_by_path - Find a node matching a full OF path
924  * @path: Either the full path to match, or if the path does not
925  *       start with '/', the name of a property of the /aliases
926  *       node (an alias).  In the case of an alias, the node
927  *       matching the alias' value will be returned.
928  * @opts: Address of a pointer into which to store the start of
929  *       an options string appended to the end of the path with
930  *       a ':' separator.
931  *
932  * Valid paths:
933  *  * /foo/bar	Full path
934  *  * foo	Valid alias
935  *  * foo/bar	Valid alias + relative path
936  *
937  * Return: A node pointer with refcount incremented, use
938  * of_node_put() on it when done.
939  */
of_find_node_opts_by_path(const char * path,const char ** opts)940 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
941 {
942 	struct device_node *np = NULL;
943 	struct property *pp;
944 	unsigned long flags;
945 	const char *separator = strchr(path, ':');
946 
947 	if (opts)
948 		*opts = separator ? separator + 1 : NULL;
949 
950 	if (strcmp(path, "/") == 0)
951 		return of_node_get(of_root);
952 
953 	/* The path could begin with an alias */
954 	if (*path != '/') {
955 		int len;
956 		const char *p = separator;
957 
958 		if (!p)
959 			p = strchrnul(path, '/');
960 		len = p - path;
961 
962 		/* of_aliases must not be NULL */
963 		if (!of_aliases)
964 			return NULL;
965 
966 		for_each_property_of_node(of_aliases, pp) {
967 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
968 				np = of_find_node_by_path(pp->value);
969 				break;
970 			}
971 		}
972 		if (!np)
973 			return NULL;
974 		path = p;
975 	}
976 
977 	/* Step down the tree matching path components */
978 	raw_spin_lock_irqsave(&devtree_lock, flags);
979 	if (!np)
980 		np = of_node_get(of_root);
981 	np = __of_find_node_by_full_path(np, path);
982 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
983 	return np;
984 }
985 EXPORT_SYMBOL(of_find_node_opts_by_path);
986 
987 /**
988  * of_find_node_by_name - Find a node by its "name" property
989  * @from:	The node to start searching from or NULL; the node
990  *		you pass will not be searched, only the next one
991  *		will. Typically, you pass what the previous call
992  *		returned. of_node_put() will be called on @from.
993  * @name:	The name string to match against
994  *
995  * Return: A node pointer with refcount incremented, use
996  * of_node_put() on it when done.
997  */
of_find_node_by_name(struct device_node * from,const char * name)998 struct device_node *of_find_node_by_name(struct device_node *from,
999 	const char *name)
1000 {
1001 	struct device_node *np;
1002 	unsigned long flags;
1003 
1004 	raw_spin_lock_irqsave(&devtree_lock, flags);
1005 	for_each_of_allnodes_from(from, np)
1006 		if (of_node_name_eq(np, name) && of_node_get(np))
1007 			break;
1008 	of_node_put(from);
1009 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1010 	return np;
1011 }
1012 EXPORT_SYMBOL(of_find_node_by_name);
1013 
1014 /**
1015  * of_find_node_by_type - Find a node by its "device_type" property
1016  * @from:	The node to start searching from, or NULL to start searching
1017  *		the entire device tree. The node you pass will not be
1018  *		searched, only the next one will; typically, you pass
1019  *		what the previous call returned. of_node_put() will be
1020  *		called on from for you.
1021  * @type:	The type string to match against
1022  *
1023  * Return: A node pointer with refcount incremented, use
1024  * of_node_put() on it when done.
1025  */
of_find_node_by_type(struct device_node * from,const char * type)1026 struct device_node *of_find_node_by_type(struct device_node *from,
1027 	const char *type)
1028 {
1029 	struct device_node *np;
1030 	unsigned long flags;
1031 
1032 	raw_spin_lock_irqsave(&devtree_lock, flags);
1033 	for_each_of_allnodes_from(from, np)
1034 		if (__of_node_is_type(np, type) && of_node_get(np))
1035 			break;
1036 	of_node_put(from);
1037 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1038 	return np;
1039 }
1040 EXPORT_SYMBOL(of_find_node_by_type);
1041 
1042 /**
1043  * of_find_compatible_node - Find a node based on type and one of the
1044  *                                tokens in its "compatible" property
1045  * @from:	The node to start searching from or NULL, the node
1046  *		you pass will not be searched, only the next one
1047  *		will; typically, you pass what the previous call
1048  *		returned. of_node_put() will be called on it
1049  * @type:	The type string to match "device_type" or NULL to ignore
1050  * @compatible:	The string to match to one of the tokens in the device
1051  *		"compatible" list.
1052  *
1053  * Return: A node pointer with refcount incremented, use
1054  * of_node_put() on it when done.
1055  */
of_find_compatible_node(struct device_node * from,const char * type,const char * compatible)1056 struct device_node *of_find_compatible_node(struct device_node *from,
1057 	const char *type, const char *compatible)
1058 {
1059 	struct device_node *np;
1060 	unsigned long flags;
1061 
1062 	raw_spin_lock_irqsave(&devtree_lock, flags);
1063 	for_each_of_allnodes_from(from, np)
1064 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
1065 		    of_node_get(np))
1066 			break;
1067 	of_node_put(from);
1068 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1069 	return np;
1070 }
1071 EXPORT_SYMBOL(of_find_compatible_node);
1072 
1073 /**
1074  * of_find_node_with_property - Find a node which has a property with
1075  *                              the given name.
1076  * @from:	The node to start searching from or NULL, the node
1077  *		you pass will not be searched, only the next one
1078  *		will; typically, you pass what the previous call
1079  *		returned. of_node_put() will be called on it
1080  * @prop_name:	The name of the property to look for.
1081  *
1082  * Return: A node pointer with refcount incremented, use
1083  * of_node_put() on it when done.
1084  */
of_find_node_with_property(struct device_node * from,const char * prop_name)1085 struct device_node *of_find_node_with_property(struct device_node *from,
1086 	const char *prop_name)
1087 {
1088 	struct device_node *np;
1089 	struct property *pp;
1090 	unsigned long flags;
1091 
1092 	raw_spin_lock_irqsave(&devtree_lock, flags);
1093 	for_each_of_allnodes_from(from, np) {
1094 		for (pp = np->properties; pp; pp = pp->next) {
1095 			if (of_prop_cmp(pp->name, prop_name) == 0) {
1096 				of_node_get(np);
1097 				goto out;
1098 			}
1099 		}
1100 	}
1101 out:
1102 	of_node_put(from);
1103 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1104 	return np;
1105 }
1106 EXPORT_SYMBOL(of_find_node_with_property);
1107 
1108 static
__of_match_node(const struct of_device_id * matches,const struct device_node * node)1109 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1110 					   const struct device_node *node)
1111 {
1112 	const struct of_device_id *best_match = NULL;
1113 	int score, best_score = 0;
1114 
1115 	if (!matches)
1116 		return NULL;
1117 
1118 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1119 		score = __of_device_is_compatible(node, matches->compatible,
1120 						  matches->type, matches->name);
1121 		if (score > best_score) {
1122 			best_match = matches;
1123 			best_score = score;
1124 		}
1125 	}
1126 
1127 	return best_match;
1128 }
1129 
1130 /**
1131  * of_match_node - Tell if a device_node has a matching of_match structure
1132  * @matches:	array of of device match structures to search in
1133  * @node:	the of device structure to match against
1134  *
1135  * Low level utility function used by device matching.
1136  */
of_match_node(const struct of_device_id * matches,const struct device_node * node)1137 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1138 					 const struct device_node *node)
1139 {
1140 	const struct of_device_id *match;
1141 	unsigned long flags;
1142 
1143 	raw_spin_lock_irqsave(&devtree_lock, flags);
1144 	match = __of_match_node(matches, node);
1145 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1146 	return match;
1147 }
1148 EXPORT_SYMBOL(of_match_node);
1149 
1150 /**
1151  * of_find_matching_node_and_match - Find a node based on an of_device_id
1152  *				     match table.
1153  * @from:	The node to start searching from or NULL, the node
1154  *		you pass will not be searched, only the next one
1155  *		will; typically, you pass what the previous call
1156  *		returned. of_node_put() will be called on it
1157  * @matches:	array of of device match structures to search in
1158  * @match:	Updated to point at the matches entry which matched
1159  *
1160  * Return: A node pointer with refcount incremented, use
1161  * of_node_put() on it when done.
1162  */
of_find_matching_node_and_match(struct device_node * from,const struct of_device_id * matches,const struct of_device_id ** match)1163 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1164 					const struct of_device_id *matches,
1165 					const struct of_device_id **match)
1166 {
1167 	struct device_node *np;
1168 	const struct of_device_id *m;
1169 	unsigned long flags;
1170 
1171 	if (match)
1172 		*match = NULL;
1173 
1174 	raw_spin_lock_irqsave(&devtree_lock, flags);
1175 	for_each_of_allnodes_from(from, np) {
1176 		m = __of_match_node(matches, np);
1177 		if (m && of_node_get(np)) {
1178 			if (match)
1179 				*match = m;
1180 			break;
1181 		}
1182 	}
1183 	of_node_put(from);
1184 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1185 	return np;
1186 }
1187 EXPORT_SYMBOL(of_find_matching_node_and_match);
1188 
1189 /**
1190  * of_modalias_node - Lookup appropriate modalias for a device node
1191  * @node:	pointer to a device tree node
1192  * @modalias:	Pointer to buffer that modalias value will be copied into
1193  * @len:	Length of modalias value
1194  *
1195  * Based on the value of the compatible property, this routine will attempt
1196  * to choose an appropriate modalias value for a particular device tree node.
1197  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1198  * from the first entry in the compatible list property.
1199  *
1200  * Return: This routine returns 0 on success, <0 on failure.
1201  */
of_modalias_node(struct device_node * node,char * modalias,int len)1202 int of_modalias_node(struct device_node *node, char *modalias, int len)
1203 {
1204 	const char *compatible, *p;
1205 	int cplen;
1206 
1207 	compatible = of_get_property(node, "compatible", &cplen);
1208 	if (!compatible || strlen(compatible) > cplen)
1209 		return -ENODEV;
1210 	p = strchr(compatible, ',');
1211 	strlcpy(modalias, p ? p + 1 : compatible, len);
1212 	return 0;
1213 }
1214 EXPORT_SYMBOL_GPL(of_modalias_node);
1215 
1216 /**
1217  * of_find_node_by_phandle - Find a node given a phandle
1218  * @handle:	phandle of the node to find
1219  *
1220  * Return: A node pointer with refcount incremented, use
1221  * of_node_put() on it when done.
1222  */
of_find_node_by_phandle(phandle handle)1223 struct device_node *of_find_node_by_phandle(phandle handle)
1224 {
1225 	struct device_node *np = NULL;
1226 	unsigned long flags;
1227 	u32 handle_hash;
1228 
1229 	if (!handle)
1230 		return NULL;
1231 
1232 	handle_hash = of_phandle_cache_hash(handle);
1233 
1234 	raw_spin_lock_irqsave(&devtree_lock, flags);
1235 
1236 	if (phandle_cache[handle_hash] &&
1237 	    handle == phandle_cache[handle_hash]->phandle)
1238 		np = phandle_cache[handle_hash];
1239 
1240 	if (!np) {
1241 		for_each_of_allnodes(np)
1242 			if (np->phandle == handle &&
1243 			    !of_node_check_flag(np, OF_DETACHED)) {
1244 				phandle_cache[handle_hash] = np;
1245 				break;
1246 			}
1247 	}
1248 
1249 	of_node_get(np);
1250 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1251 	return np;
1252 }
1253 EXPORT_SYMBOL(of_find_node_by_phandle);
1254 
of_print_phandle_args(const char * msg,const struct of_phandle_args * args)1255 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1256 {
1257 	int i;
1258 	printk("%s %pOF", msg, args->np);
1259 	for (i = 0; i < args->args_count; i++) {
1260 		const char delim = i ? ',' : ':';
1261 
1262 		pr_cont("%c%08x", delim, args->args[i]);
1263 	}
1264 	pr_cont("\n");
1265 }
1266 
of_phandle_iterator_init(struct of_phandle_iterator * it,const struct device_node * np,const char * list_name,const char * cells_name,int cell_count)1267 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1268 		const struct device_node *np,
1269 		const char *list_name,
1270 		const char *cells_name,
1271 		int cell_count)
1272 {
1273 	const __be32 *list;
1274 	int size;
1275 
1276 	memset(it, 0, sizeof(*it));
1277 
1278 	/*
1279 	 * one of cell_count or cells_name must be provided to determine the
1280 	 * argument length.
1281 	 */
1282 	if (cell_count < 0 && !cells_name)
1283 		return -EINVAL;
1284 
1285 	list = of_get_property(np, list_name, &size);
1286 	if (!list)
1287 		return -ENOENT;
1288 
1289 	it->cells_name = cells_name;
1290 	it->cell_count = cell_count;
1291 	it->parent = np;
1292 	it->list_end = list + size / sizeof(*list);
1293 	it->phandle_end = list;
1294 	it->cur = list;
1295 
1296 	return 0;
1297 }
1298 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1299 
of_phandle_iterator_next(struct of_phandle_iterator * it)1300 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1301 {
1302 	uint32_t count = 0;
1303 
1304 	if (it->node) {
1305 		of_node_put(it->node);
1306 		it->node = NULL;
1307 	}
1308 
1309 	if (!it->cur || it->phandle_end >= it->list_end)
1310 		return -ENOENT;
1311 
1312 	it->cur = it->phandle_end;
1313 
1314 	/* If phandle is 0, then it is an empty entry with no arguments. */
1315 	it->phandle = be32_to_cpup(it->cur++);
1316 
1317 	if (it->phandle) {
1318 
1319 		/*
1320 		 * Find the provider node and parse the #*-cells property to
1321 		 * determine the argument length.
1322 		 */
1323 		it->node = of_find_node_by_phandle(it->phandle);
1324 
1325 		if (it->cells_name) {
1326 			if (!it->node) {
1327 				pr_err("%pOF: could not find phandle\n",
1328 				       it->parent);
1329 				goto err;
1330 			}
1331 
1332 			if (of_property_read_u32(it->node, it->cells_name,
1333 						 &count)) {
1334 				/*
1335 				 * If both cell_count and cells_name is given,
1336 				 * fall back to cell_count in absence
1337 				 * of the cells_name property
1338 				 */
1339 				if (it->cell_count >= 0) {
1340 					count = it->cell_count;
1341 				} else {
1342 					pr_err("%pOF: could not get %s for %pOF\n",
1343 					       it->parent,
1344 					       it->cells_name,
1345 					       it->node);
1346 					goto err;
1347 				}
1348 			}
1349 		} else {
1350 			count = it->cell_count;
1351 		}
1352 
1353 		/*
1354 		 * Make sure that the arguments actually fit in the remaining
1355 		 * property data length
1356 		 */
1357 		if (it->cur + count > it->list_end) {
1358 			if (it->cells_name)
1359 				pr_err("%pOF: %s = %d found %td\n",
1360 					it->parent, it->cells_name,
1361 					count, it->list_end - it->cur);
1362 			else
1363 				pr_err("%pOF: phandle %s needs %d, found %td\n",
1364 					it->parent, of_node_full_name(it->node),
1365 					count, it->list_end - it->cur);
1366 			goto err;
1367 		}
1368 	}
1369 
1370 	it->phandle_end = it->cur + count;
1371 	it->cur_count = count;
1372 
1373 	return 0;
1374 
1375 err:
1376 	if (it->node) {
1377 		of_node_put(it->node);
1378 		it->node = NULL;
1379 	}
1380 
1381 	return -EINVAL;
1382 }
1383 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1384 
of_phandle_iterator_args(struct of_phandle_iterator * it,uint32_t * args,int size)1385 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1386 			     uint32_t *args,
1387 			     int size)
1388 {
1389 	int i, count;
1390 
1391 	count = it->cur_count;
1392 
1393 	if (WARN_ON(size < count))
1394 		count = size;
1395 
1396 	for (i = 0; i < count; i++)
1397 		args[i] = be32_to_cpup(it->cur++);
1398 
1399 	return count;
1400 }
1401 
__of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int cell_count,int index,struct of_phandle_args * out_args)1402 static int __of_parse_phandle_with_args(const struct device_node *np,
1403 					const char *list_name,
1404 					const char *cells_name,
1405 					int cell_count, int index,
1406 					struct of_phandle_args *out_args)
1407 {
1408 	struct of_phandle_iterator it;
1409 	int rc, cur_index = 0;
1410 
1411 	/* Loop over the phandles until all the requested entry is found */
1412 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1413 		/*
1414 		 * All of the error cases bail out of the loop, so at
1415 		 * this point, the parsing is successful. If the requested
1416 		 * index matches, then fill the out_args structure and return,
1417 		 * or return -ENOENT for an empty entry.
1418 		 */
1419 		rc = -ENOENT;
1420 		if (cur_index == index) {
1421 			if (!it.phandle)
1422 				goto err;
1423 
1424 			if (out_args) {
1425 				int c;
1426 
1427 				c = of_phandle_iterator_args(&it,
1428 							     out_args->args,
1429 							     MAX_PHANDLE_ARGS);
1430 				out_args->np = it.node;
1431 				out_args->args_count = c;
1432 			} else {
1433 				of_node_put(it.node);
1434 			}
1435 
1436 			/* Found it! return success */
1437 			return 0;
1438 		}
1439 
1440 		cur_index++;
1441 	}
1442 
1443 	/*
1444 	 * Unlock node before returning result; will be one of:
1445 	 * -ENOENT : index is for empty phandle
1446 	 * -EINVAL : parsing error on data
1447 	 */
1448 
1449  err:
1450 	of_node_put(it.node);
1451 	return rc;
1452 }
1453 
1454 /**
1455  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1456  * @np: Pointer to device node holding phandle property
1457  * @phandle_name: Name of property holding a phandle value
1458  * @index: For properties holding a table of phandles, this is the index into
1459  *         the table
1460  *
1461  * Return: The device_node pointer with refcount incremented.  Use
1462  * of_node_put() on it when done.
1463  */
of_parse_phandle(const struct device_node * np,const char * phandle_name,int index)1464 struct device_node *of_parse_phandle(const struct device_node *np,
1465 				     const char *phandle_name, int index)
1466 {
1467 	struct of_phandle_args args;
1468 
1469 	if (index < 0)
1470 		return NULL;
1471 
1472 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1473 					 index, &args))
1474 		return NULL;
1475 
1476 	return args.np;
1477 }
1478 EXPORT_SYMBOL(of_parse_phandle);
1479 
1480 /**
1481  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1482  * @np:		pointer to a device tree node containing a list
1483  * @list_name:	property name that contains a list
1484  * @cells_name:	property name that specifies phandles' arguments count
1485  * @index:	index of a phandle to parse out
1486  * @out_args:	optional pointer to output arguments structure (will be filled)
1487  *
1488  * This function is useful to parse lists of phandles and their arguments.
1489  * Returns 0 on success and fills out_args, on error returns appropriate
1490  * errno value.
1491  *
1492  * Caller is responsible to call of_node_put() on the returned out_args->np
1493  * pointer.
1494  *
1495  * Example::
1496  *
1497  *  phandle1: node1 {
1498  *	#list-cells = <2>;
1499  *  };
1500  *
1501  *  phandle2: node2 {
1502  *	#list-cells = <1>;
1503  *  };
1504  *
1505  *  node3 {
1506  *	list = <&phandle1 1 2 &phandle2 3>;
1507  *  };
1508  *
1509  * To get a device_node of the ``node2`` node you may call this:
1510  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1511  */
of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int index,struct of_phandle_args * out_args)1512 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1513 				const char *cells_name, int index,
1514 				struct of_phandle_args *out_args)
1515 {
1516 	int cell_count = -1;
1517 
1518 	if (index < 0)
1519 		return -EINVAL;
1520 
1521 	/* If cells_name is NULL we assume a cell count of 0 */
1522 	if (!cells_name)
1523 		cell_count = 0;
1524 
1525 	return __of_parse_phandle_with_args(np, list_name, cells_name,
1526 					    cell_count, index, out_args);
1527 }
1528 EXPORT_SYMBOL(of_parse_phandle_with_args);
1529 
1530 /**
1531  * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1532  * @np:		pointer to a device tree node containing a list
1533  * @list_name:	property name that contains a list
1534  * @stem_name:	stem of property names that specify phandles' arguments count
1535  * @index:	index of a phandle to parse out
1536  * @out_args:	optional pointer to output arguments structure (will be filled)
1537  *
1538  * This function is useful to parse lists of phandles and their arguments.
1539  * Returns 0 on success and fills out_args, on error returns appropriate errno
1540  * value. The difference between this function and of_parse_phandle_with_args()
1541  * is that this API remaps a phandle if the node the phandle points to has
1542  * a <@stem_name>-map property.
1543  *
1544  * Caller is responsible to call of_node_put() on the returned out_args->np
1545  * pointer.
1546  *
1547  * Example::
1548  *
1549  *  phandle1: node1 {
1550  *  	#list-cells = <2>;
1551  *  };
1552  *
1553  *  phandle2: node2 {
1554  *  	#list-cells = <1>;
1555  *  };
1556  *
1557  *  phandle3: node3 {
1558  *  	#list-cells = <1>;
1559  *  	list-map = <0 &phandle2 3>,
1560  *  		   <1 &phandle2 2>,
1561  *  		   <2 &phandle1 5 1>;
1562  *  	list-map-mask = <0x3>;
1563  *  };
1564  *
1565  *  node4 {
1566  *  	list = <&phandle1 1 2 &phandle3 0>;
1567  *  };
1568  *
1569  * To get a device_node of the ``node2`` node you may call this:
1570  * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1571  */
of_parse_phandle_with_args_map(const struct device_node * np,const char * list_name,const char * stem_name,int index,struct of_phandle_args * out_args)1572 int of_parse_phandle_with_args_map(const struct device_node *np,
1573 				   const char *list_name,
1574 				   const char *stem_name,
1575 				   int index, struct of_phandle_args *out_args)
1576 {
1577 	char *cells_name, *map_name = NULL, *mask_name = NULL;
1578 	char *pass_name = NULL;
1579 	struct device_node *cur, *new = NULL;
1580 	const __be32 *map, *mask, *pass;
1581 	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1582 	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1583 	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1584 	const __be32 *match_array = initial_match_array;
1585 	int i, ret, map_len, match;
1586 	u32 list_size, new_size;
1587 
1588 	if (index < 0)
1589 		return -EINVAL;
1590 
1591 	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1592 	if (!cells_name)
1593 		return -ENOMEM;
1594 
1595 	ret = -ENOMEM;
1596 	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1597 	if (!map_name)
1598 		goto free;
1599 
1600 	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1601 	if (!mask_name)
1602 		goto free;
1603 
1604 	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1605 	if (!pass_name)
1606 		goto free;
1607 
1608 	ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1609 					   out_args);
1610 	if (ret)
1611 		goto free;
1612 
1613 	/* Get the #<list>-cells property */
1614 	cur = out_args->np;
1615 	ret = of_property_read_u32(cur, cells_name, &list_size);
1616 	if (ret < 0)
1617 		goto put;
1618 
1619 	/* Precalculate the match array - this simplifies match loop */
1620 	for (i = 0; i < list_size; i++)
1621 		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1622 
1623 	ret = -EINVAL;
1624 	while (cur) {
1625 		/* Get the <list>-map property */
1626 		map = of_get_property(cur, map_name, &map_len);
1627 		if (!map) {
1628 			ret = 0;
1629 			goto free;
1630 		}
1631 		map_len /= sizeof(u32);
1632 
1633 		/* Get the <list>-map-mask property (optional) */
1634 		mask = of_get_property(cur, mask_name, NULL);
1635 		if (!mask)
1636 			mask = dummy_mask;
1637 		/* Iterate through <list>-map property */
1638 		match = 0;
1639 		while (map_len > (list_size + 1) && !match) {
1640 			/* Compare specifiers */
1641 			match = 1;
1642 			for (i = 0; i < list_size; i++, map_len--)
1643 				match &= !((match_array[i] ^ *map++) & mask[i]);
1644 
1645 			of_node_put(new);
1646 			new = of_find_node_by_phandle(be32_to_cpup(map));
1647 			map++;
1648 			map_len--;
1649 
1650 			/* Check if not found */
1651 			if (!new)
1652 				goto put;
1653 
1654 			if (!of_device_is_available(new))
1655 				match = 0;
1656 
1657 			ret = of_property_read_u32(new, cells_name, &new_size);
1658 			if (ret)
1659 				goto put;
1660 
1661 			/* Check for malformed properties */
1662 			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1663 				goto put;
1664 			if (map_len < new_size)
1665 				goto put;
1666 
1667 			/* Move forward by new node's #<list>-cells amount */
1668 			map += new_size;
1669 			map_len -= new_size;
1670 		}
1671 		if (!match)
1672 			goto put;
1673 
1674 		/* Get the <list>-map-pass-thru property (optional) */
1675 		pass = of_get_property(cur, pass_name, NULL);
1676 		if (!pass)
1677 			pass = dummy_pass;
1678 
1679 		/*
1680 		 * Successfully parsed a <list>-map translation; copy new
1681 		 * specifier into the out_args structure, keeping the
1682 		 * bits specified in <list>-map-pass-thru.
1683 		 */
1684 		match_array = map - new_size;
1685 		for (i = 0; i < new_size; i++) {
1686 			__be32 val = *(map - new_size + i);
1687 
1688 			if (i < list_size) {
1689 				val &= ~pass[i];
1690 				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1691 			}
1692 
1693 			out_args->args[i] = be32_to_cpu(val);
1694 		}
1695 		out_args->args_count = list_size = new_size;
1696 		/* Iterate again with new provider */
1697 		out_args->np = new;
1698 		of_node_put(cur);
1699 		cur = new;
1700 		new = NULL;
1701 	}
1702 put:
1703 	of_node_put(cur);
1704 	of_node_put(new);
1705 free:
1706 	kfree(mask_name);
1707 	kfree(map_name);
1708 	kfree(cells_name);
1709 	kfree(pass_name);
1710 
1711 	return ret;
1712 }
1713 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1714 
1715 /**
1716  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1717  * @np:		pointer to a device tree node containing a list
1718  * @list_name:	property name that contains a list
1719  * @cell_count: number of argument cells following the phandle
1720  * @index:	index of a phandle to parse out
1721  * @out_args:	optional pointer to output arguments structure (will be filled)
1722  *
1723  * This function is useful to parse lists of phandles and their arguments.
1724  * Returns 0 on success and fills out_args, on error returns appropriate
1725  * errno value.
1726  *
1727  * Caller is responsible to call of_node_put() on the returned out_args->np
1728  * pointer.
1729  *
1730  * Example::
1731  *
1732  *  phandle1: node1 {
1733  *  };
1734  *
1735  *  phandle2: node2 {
1736  *  };
1737  *
1738  *  node3 {
1739  *  	list = <&phandle1 0 2 &phandle2 2 3>;
1740  *  };
1741  *
1742  * To get a device_node of the ``node2`` node you may call this:
1743  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1744  */
of_parse_phandle_with_fixed_args(const struct device_node * np,const char * list_name,int cell_count,int index,struct of_phandle_args * out_args)1745 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1746 				const char *list_name, int cell_count,
1747 				int index, struct of_phandle_args *out_args)
1748 {
1749 	if (index < 0)
1750 		return -EINVAL;
1751 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1752 					   index, out_args);
1753 }
1754 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1755 
1756 /**
1757  * of_count_phandle_with_args() - Find the number of phandles references in a property
1758  * @np:		pointer to a device tree node containing a list
1759  * @list_name:	property name that contains a list
1760  * @cells_name:	property name that specifies phandles' arguments count
1761  *
1762  * Return: The number of phandle + argument tuples within a property. It
1763  * is a typical pattern to encode a list of phandle and variable
1764  * arguments into a single property. The number of arguments is encoded
1765  * by a property in the phandle-target node. For example, a gpios
1766  * property would contain a list of GPIO specifies consisting of a
1767  * phandle and 1 or more arguments. The number of arguments are
1768  * determined by the #gpio-cells property in the node pointed to by the
1769  * phandle.
1770  */
of_count_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name)1771 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1772 				const char *cells_name)
1773 {
1774 	struct of_phandle_iterator it;
1775 	int rc, cur_index = 0;
1776 
1777 	/*
1778 	 * If cells_name is NULL we assume a cell count of 0. This makes
1779 	 * counting the phandles trivial as each 32bit word in the list is a
1780 	 * phandle and no arguments are to consider. So we don't iterate through
1781 	 * the list but just use the length to determine the phandle count.
1782 	 */
1783 	if (!cells_name) {
1784 		const __be32 *list;
1785 		int size;
1786 
1787 		list = of_get_property(np, list_name, &size);
1788 		if (!list)
1789 			return -ENOENT;
1790 
1791 		return size / sizeof(*list);
1792 	}
1793 
1794 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1795 	if (rc)
1796 		return rc;
1797 
1798 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1799 		cur_index += 1;
1800 
1801 	if (rc != -ENOENT)
1802 		return rc;
1803 
1804 	return cur_index;
1805 }
1806 EXPORT_SYMBOL(of_count_phandle_with_args);
1807 
1808 /**
1809  * __of_add_property - Add a property to a node without lock operations
1810  * @np:		Caller's Device Node
1811  * @prob:	Property to add
1812  */
__of_add_property(struct device_node * np,struct property * prop)1813 int __of_add_property(struct device_node *np, struct property *prop)
1814 {
1815 	struct property **next;
1816 
1817 	prop->next = NULL;
1818 	next = &np->properties;
1819 	while (*next) {
1820 		if (strcmp(prop->name, (*next)->name) == 0)
1821 			/* duplicate ! don't insert it */
1822 			return -EEXIST;
1823 
1824 		next = &(*next)->next;
1825 	}
1826 	*next = prop;
1827 
1828 	return 0;
1829 }
1830 
1831 /**
1832  * of_add_property - Add a property to a node
1833  * @np:		Caller's Device Node
1834  * @prob:	Property to add
1835  */
of_add_property(struct device_node * np,struct property * prop)1836 int of_add_property(struct device_node *np, struct property *prop)
1837 {
1838 	unsigned long flags;
1839 	int rc;
1840 
1841 	mutex_lock(&of_mutex);
1842 
1843 	raw_spin_lock_irqsave(&devtree_lock, flags);
1844 	rc = __of_add_property(np, prop);
1845 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1846 
1847 	if (!rc)
1848 		__of_add_property_sysfs(np, prop);
1849 
1850 	mutex_unlock(&of_mutex);
1851 
1852 	if (!rc)
1853 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1854 
1855 	return rc;
1856 }
1857 EXPORT_SYMBOL_GPL(of_add_property);
1858 
__of_remove_property(struct device_node * np,struct property * prop)1859 int __of_remove_property(struct device_node *np, struct property *prop)
1860 {
1861 	struct property **next;
1862 
1863 	for (next = &np->properties; *next; next = &(*next)->next) {
1864 		if (*next == prop)
1865 			break;
1866 	}
1867 	if (*next == NULL)
1868 		return -ENODEV;
1869 
1870 	/* found the node */
1871 	*next = prop->next;
1872 	prop->next = np->deadprops;
1873 	np->deadprops = prop;
1874 
1875 	return 0;
1876 }
1877 
1878 /**
1879  * of_remove_property - Remove a property from a node.
1880  * @np:		Caller's Device Node
1881  * @prob:	Property to remove
1882  *
1883  * Note that we don't actually remove it, since we have given out
1884  * who-knows-how-many pointers to the data using get-property.
1885  * Instead we just move the property to the "dead properties"
1886  * list, so it won't be found any more.
1887  */
of_remove_property(struct device_node * np,struct property * prop)1888 int of_remove_property(struct device_node *np, struct property *prop)
1889 {
1890 	unsigned long flags;
1891 	int rc;
1892 
1893 	if (!prop)
1894 		return -ENODEV;
1895 
1896 	mutex_lock(&of_mutex);
1897 
1898 	raw_spin_lock_irqsave(&devtree_lock, flags);
1899 	rc = __of_remove_property(np, prop);
1900 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1901 
1902 	if (!rc)
1903 		__of_remove_property_sysfs(np, prop);
1904 
1905 	mutex_unlock(&of_mutex);
1906 
1907 	if (!rc)
1908 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1909 
1910 	return rc;
1911 }
1912 EXPORT_SYMBOL_GPL(of_remove_property);
1913 
__of_update_property(struct device_node * np,struct property * newprop,struct property ** oldpropp)1914 int __of_update_property(struct device_node *np, struct property *newprop,
1915 		struct property **oldpropp)
1916 {
1917 	struct property **next, *oldprop;
1918 
1919 	for (next = &np->properties; *next; next = &(*next)->next) {
1920 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1921 			break;
1922 	}
1923 	*oldpropp = oldprop = *next;
1924 
1925 	if (oldprop) {
1926 		/* replace the node */
1927 		newprop->next = oldprop->next;
1928 		*next = newprop;
1929 		oldprop->next = np->deadprops;
1930 		np->deadprops = oldprop;
1931 	} else {
1932 		/* new node */
1933 		newprop->next = NULL;
1934 		*next = newprop;
1935 	}
1936 
1937 	return 0;
1938 }
1939 
1940 /*
1941  * of_update_property - Update a property in a node, if the property does
1942  * not exist, add it.
1943  *
1944  * Note that we don't actually remove it, since we have given out
1945  * who-knows-how-many pointers to the data using get-property.
1946  * Instead we just move the property to the "dead properties" list,
1947  * and add the new property to the property list
1948  */
of_update_property(struct device_node * np,struct property * newprop)1949 int of_update_property(struct device_node *np, struct property *newprop)
1950 {
1951 	struct property *oldprop;
1952 	unsigned long flags;
1953 	int rc;
1954 
1955 	if (!newprop->name)
1956 		return -EINVAL;
1957 
1958 	mutex_lock(&of_mutex);
1959 
1960 	raw_spin_lock_irqsave(&devtree_lock, flags);
1961 	rc = __of_update_property(np, newprop, &oldprop);
1962 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1963 
1964 	if (!rc)
1965 		__of_update_property_sysfs(np, newprop, oldprop);
1966 
1967 	mutex_unlock(&of_mutex);
1968 
1969 	if (!rc)
1970 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1971 
1972 	return rc;
1973 }
1974 
of_alias_add(struct alias_prop * ap,struct device_node * np,int id,const char * stem,int stem_len)1975 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1976 			 int id, const char *stem, int stem_len)
1977 {
1978 	ap->np = np;
1979 	ap->id = id;
1980 	strncpy(ap->stem, stem, stem_len);
1981 	ap->stem[stem_len] = 0;
1982 	list_add_tail(&ap->link, &aliases_lookup);
1983 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1984 		 ap->alias, ap->stem, ap->id, np);
1985 }
1986 
1987 /**
1988  * of_alias_scan - Scan all properties of the 'aliases' node
1989  * @dt_alloc:	An allocator that provides a virtual address to memory
1990  *		for storing the resulting tree
1991  *
1992  * The function scans all the properties of the 'aliases' node and populates
1993  * the global lookup table with the properties.  It returns the
1994  * number of alias properties found, or an error code in case of failure.
1995  */
of_alias_scan(void * (* dt_alloc)(u64 size,u64 align))1996 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1997 {
1998 	struct property *pp;
1999 
2000 	of_aliases = of_find_node_by_path("/aliases");
2001 	of_chosen = of_find_node_by_path("/chosen");
2002 	if (of_chosen == NULL)
2003 		of_chosen = of_find_node_by_path("/chosen@0");
2004 
2005 	if (of_chosen) {
2006 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
2007 		const char *name = NULL;
2008 
2009 		if (of_property_read_string(of_chosen, "stdout-path", &name))
2010 			of_property_read_string(of_chosen, "linux,stdout-path",
2011 						&name);
2012 		if (IS_ENABLED(CONFIG_PPC) && !name)
2013 			of_property_read_string(of_aliases, "stdout", &name);
2014 		if (name)
2015 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
2016 	}
2017 
2018 	if (!of_aliases)
2019 		return;
2020 
2021 	for_each_property_of_node(of_aliases, pp) {
2022 		const char *start = pp->name;
2023 		const char *end = start + strlen(start);
2024 		struct device_node *np;
2025 		struct alias_prop *ap;
2026 		int id, len;
2027 
2028 		/* Skip those we do not want to proceed */
2029 		if (!strcmp(pp->name, "name") ||
2030 		    !strcmp(pp->name, "phandle") ||
2031 		    !strcmp(pp->name, "linux,phandle"))
2032 			continue;
2033 
2034 		np = of_find_node_by_path(pp->value);
2035 		if (!np)
2036 			continue;
2037 
2038 		/* walk the alias backwards to extract the id and work out
2039 		 * the 'stem' string */
2040 		while (isdigit(*(end-1)) && end > start)
2041 			end--;
2042 		len = end - start;
2043 
2044 		if (kstrtoint(end, 10, &id) < 0)
2045 			continue;
2046 
2047 		/* Allocate an alias_prop with enough space for the stem */
2048 		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2049 		if (!ap)
2050 			continue;
2051 		memset(ap, 0, sizeof(*ap) + len + 1);
2052 		ap->alias = start;
2053 		of_alias_add(ap, np, id, start, len);
2054 	}
2055 }
2056 
2057 /**
2058  * of_alias_get_id - Get alias id for the given device_node
2059  * @np:		Pointer to the given device_node
2060  * @stem:	Alias stem of the given device_node
2061  *
2062  * The function travels the lookup table to get the alias id for the given
2063  * device_node and alias stem.
2064  *
2065  * Return: The alias id if found.
2066  */
of_alias_get_id(struct device_node * np,const char * stem)2067 int of_alias_get_id(struct device_node *np, const char *stem)
2068 {
2069 	struct alias_prop *app;
2070 	int id = -ENODEV;
2071 
2072 	mutex_lock(&of_mutex);
2073 	list_for_each_entry(app, &aliases_lookup, link) {
2074 		if (strcmp(app->stem, stem) != 0)
2075 			continue;
2076 
2077 		if (np == app->np) {
2078 			id = app->id;
2079 			break;
2080 		}
2081 	}
2082 	mutex_unlock(&of_mutex);
2083 
2084 	return id;
2085 }
2086 EXPORT_SYMBOL_GPL(of_alias_get_id);
2087 
2088 /**
2089  * of_alias_get_alias_list - Get alias list for the given device driver
2090  * @matches:	Array of OF device match structures to search in
2091  * @stem:	Alias stem of the given device_node
2092  * @bitmap:	Bitmap field pointer
2093  * @nbits:	Maximum number of alias IDs which can be recorded in bitmap
2094  *
2095  * The function travels the lookup table to record alias ids for the given
2096  * device match structures and alias stem.
2097  *
2098  * Return:	0 or -ENOSYS when !CONFIG_OF or
2099  *		-EOVERFLOW if alias ID is greater then allocated nbits
2100  */
of_alias_get_alias_list(const struct of_device_id * matches,const char * stem,unsigned long * bitmap,unsigned int nbits)2101 int of_alias_get_alias_list(const struct of_device_id *matches,
2102 			     const char *stem, unsigned long *bitmap,
2103 			     unsigned int nbits)
2104 {
2105 	struct alias_prop *app;
2106 	int ret = 0;
2107 
2108 	/* Zero bitmap field to make sure that all the time it is clean */
2109 	bitmap_zero(bitmap, nbits);
2110 
2111 	mutex_lock(&of_mutex);
2112 	pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2113 	list_for_each_entry(app, &aliases_lookup, link) {
2114 		pr_debug("%s: stem: %s, id: %d\n",
2115 			 __func__, app->stem, app->id);
2116 
2117 		if (strcmp(app->stem, stem) != 0) {
2118 			pr_debug("%s: stem comparison didn't pass %s\n",
2119 				 __func__, app->stem);
2120 			continue;
2121 		}
2122 
2123 		if (of_match_node(matches, app->np)) {
2124 			pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2125 
2126 			if (app->id >= nbits) {
2127 				pr_warn("%s: ID %d >= than bitmap field %d\n",
2128 					__func__, app->id, nbits);
2129 				ret = -EOVERFLOW;
2130 			} else {
2131 				set_bit(app->id, bitmap);
2132 			}
2133 		}
2134 	}
2135 	mutex_unlock(&of_mutex);
2136 
2137 	return ret;
2138 }
2139 EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2140 
2141 /**
2142  * of_alias_get_highest_id - Get highest alias id for the given stem
2143  * @stem:	Alias stem to be examined
2144  *
2145  * The function travels the lookup table to get the highest alias id for the
2146  * given alias stem.  It returns the alias id if found.
2147  */
of_alias_get_highest_id(const char * stem)2148 int of_alias_get_highest_id(const char *stem)
2149 {
2150 	struct alias_prop *app;
2151 	int id = -ENODEV;
2152 
2153 	mutex_lock(&of_mutex);
2154 	list_for_each_entry(app, &aliases_lookup, link) {
2155 		if (strcmp(app->stem, stem) != 0)
2156 			continue;
2157 
2158 		if (app->id > id)
2159 			id = app->id;
2160 	}
2161 	mutex_unlock(&of_mutex);
2162 
2163 	return id;
2164 }
2165 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2166 
2167 /**
2168  * of_console_check() - Test and setup console for DT setup
2169  * @dn: Pointer to device node
2170  * @name: Name to use for preferred console without index. ex. "ttyS"
2171  * @index: Index to use for preferred console.
2172  *
2173  * Check if the given device node matches the stdout-path property in the
2174  * /chosen node. If it does then register it as the preferred console.
2175  *
2176  * Return: TRUE if console successfully setup. Otherwise return FALSE.
2177  */
of_console_check(struct device_node * dn,char * name,int index)2178 bool of_console_check(struct device_node *dn, char *name, int index)
2179 {
2180 	if (!dn || dn != of_stdout || console_set_on_cmdline)
2181 		return false;
2182 
2183 	/*
2184 	 * XXX: cast `options' to char pointer to suppress complication
2185 	 * warnings: printk, UART and console drivers expect char pointer.
2186 	 */
2187 	return !add_preferred_console(name, index, (char *)of_stdout_options);
2188 }
2189 EXPORT_SYMBOL_GPL(of_console_check);
2190 
2191 /**
2192  * of_find_next_cache_node - Find a node's subsidiary cache
2193  * @np:	node of type "cpu" or "cache"
2194  *
2195  * Return: A node pointer with refcount incremented, use
2196  * of_node_put() on it when done.  Caller should hold a reference
2197  * to np.
2198  */
of_find_next_cache_node(const struct device_node * np)2199 struct device_node *of_find_next_cache_node(const struct device_node *np)
2200 {
2201 	struct device_node *child, *cache_node;
2202 
2203 	cache_node = of_parse_phandle(np, "l2-cache", 0);
2204 	if (!cache_node)
2205 		cache_node = of_parse_phandle(np, "next-level-cache", 0);
2206 
2207 	if (cache_node)
2208 		return cache_node;
2209 
2210 	/* OF on pmac has nodes instead of properties named "l2-cache"
2211 	 * beneath CPU nodes.
2212 	 */
2213 	if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2214 		for_each_child_of_node(np, child)
2215 			if (of_node_is_type(child, "cache"))
2216 				return child;
2217 
2218 	return NULL;
2219 }
2220 
2221 /**
2222  * of_find_last_cache_level - Find the level at which the last cache is
2223  * 		present for the given logical cpu
2224  *
2225  * @cpu: cpu number(logical index) for which the last cache level is needed
2226  *
2227  * Return: The the level at which the last cache is present. It is exactly
2228  * same as  the total number of cache levels for the given logical cpu.
2229  */
of_find_last_cache_level(unsigned int cpu)2230 int of_find_last_cache_level(unsigned int cpu)
2231 {
2232 	u32 cache_level = 0;
2233 	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2234 
2235 	while (np) {
2236 		prev = np;
2237 		of_node_put(np);
2238 		np = of_find_next_cache_node(np);
2239 	}
2240 
2241 	of_property_read_u32(prev, "cache-level", &cache_level);
2242 
2243 	return cache_level;
2244 }
2245 
2246 /**
2247  * of_map_id - Translate an ID through a downstream mapping.
2248  * @np: root complex device node.
2249  * @id: device ID to map.
2250  * @map_name: property name of the map to use.
2251  * @map_mask_name: optional property name of the mask to use.
2252  * @target: optional pointer to a target device node.
2253  * @id_out: optional pointer to receive the translated ID.
2254  *
2255  * Given a device ID, look up the appropriate implementation-defined
2256  * platform ID and/or the target device which receives transactions on that
2257  * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2258  * @id_out may be NULL if only the other is required. If @target points to
2259  * a non-NULL device node pointer, only entries targeting that node will be
2260  * matched; if it points to a NULL value, it will receive the device node of
2261  * the first matching target phandle, with a reference held.
2262  *
2263  * Return: 0 on success or a standard error code on failure.
2264  */
of_map_id(struct device_node * np,u32 id,const char * map_name,const char * map_mask_name,struct device_node ** target,u32 * id_out)2265 int of_map_id(struct device_node *np, u32 id,
2266 	       const char *map_name, const char *map_mask_name,
2267 	       struct device_node **target, u32 *id_out)
2268 {
2269 	u32 map_mask, masked_id;
2270 	int map_len;
2271 	const __be32 *map = NULL;
2272 
2273 	if (!np || !map_name || (!target && !id_out))
2274 		return -EINVAL;
2275 
2276 	map = of_get_property(np, map_name, &map_len);
2277 	if (!map) {
2278 		if (target)
2279 			return -ENODEV;
2280 		/* Otherwise, no map implies no translation */
2281 		*id_out = id;
2282 		return 0;
2283 	}
2284 
2285 	if (!map_len || map_len % (4 * sizeof(*map))) {
2286 		pr_err("%pOF: Error: Bad %s length: %d\n", np,
2287 			map_name, map_len);
2288 		return -EINVAL;
2289 	}
2290 
2291 	/* The default is to select all bits. */
2292 	map_mask = 0xffffffff;
2293 
2294 	/*
2295 	 * Can be overridden by "{iommu,msi}-map-mask" property.
2296 	 * If of_property_read_u32() fails, the default is used.
2297 	 */
2298 	if (map_mask_name)
2299 		of_property_read_u32(np, map_mask_name, &map_mask);
2300 
2301 	masked_id = map_mask & id;
2302 	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2303 		struct device_node *phandle_node;
2304 		u32 id_base = be32_to_cpup(map + 0);
2305 		u32 phandle = be32_to_cpup(map + 1);
2306 		u32 out_base = be32_to_cpup(map + 2);
2307 		u32 id_len = be32_to_cpup(map + 3);
2308 
2309 		if (id_base & ~map_mask) {
2310 			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2311 				np, map_name, map_name,
2312 				map_mask, id_base);
2313 			return -EFAULT;
2314 		}
2315 
2316 		if (masked_id < id_base || masked_id >= id_base + id_len)
2317 			continue;
2318 
2319 		phandle_node = of_find_node_by_phandle(phandle);
2320 		if (!phandle_node)
2321 			return -ENODEV;
2322 
2323 		if (target) {
2324 			if (*target)
2325 				of_node_put(phandle_node);
2326 			else
2327 				*target = phandle_node;
2328 
2329 			if (*target != phandle_node)
2330 				continue;
2331 		}
2332 
2333 		if (id_out)
2334 			*id_out = masked_id - id_base + out_base;
2335 
2336 		pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2337 			np, map_name, map_mask, id_base, out_base,
2338 			id_len, id, masked_id - id_base + out_base);
2339 		return 0;
2340 	}
2341 
2342 	pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2343 		id, target && *target ? *target : NULL);
2344 
2345 	/* Bypasses translation */
2346 	if (id_out)
2347 		*id_out = id;
2348 	return 0;
2349 }
2350 EXPORT_SYMBOL_GPL(of_map_id);
2351