• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * phy-zynqmp.c - PHY driver for Xilinx ZynqMP GT.
4  *
5  * Copyright (C) 2018-2020 Xilinx Inc.
6  *
7  * Author: Anurag Kumar Vulisha <anuragku@xilinx.com>
8  * Author: Subbaraya Sundeep <sundeep.lkml@gmail.com>
9  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
10  *
11  * This driver is tested for USB, SATA and Display Port currently.
12  * Other controllers PCIe and SGMII should also work but that is
13  * experimental as of now.
14  */
15 
16 #include <linux/clk.h>
17 #include <linux/delay.h>
18 #include <linux/io.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/phy/phy.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25 
26 #include <dt-bindings/phy/phy.h>
27 
28 /*
29  * Lane Registers
30  */
31 
32 /* TX De-emphasis parameters */
33 #define L0_TX_ANA_TM_18			0x0048
34 #define L0_TX_ANA_TM_118		0x01d8
35 #define L0_TX_ANA_TM_118_FORCE_17_0	BIT(0)
36 
37 /* DN Resistor calibration code parameters */
38 #define L0_TXPMA_ST_3			0x0b0c
39 #define L0_DN_CALIB_CODE		0x3f
40 
41 /* PMA control parameters */
42 #define L0_TXPMD_TM_45			0x0cb4
43 #define L0_TXPMD_TM_48			0x0cc0
44 #define L0_TXPMD_TM_45_OVER_DP_MAIN	BIT(0)
45 #define L0_TXPMD_TM_45_ENABLE_DP_MAIN	BIT(1)
46 #define L0_TXPMD_TM_45_OVER_DP_POST1	BIT(2)
47 #define L0_TXPMD_TM_45_ENABLE_DP_POST1	BIT(3)
48 #define L0_TXPMD_TM_45_OVER_DP_POST2	BIT(4)
49 #define L0_TXPMD_TM_45_ENABLE_DP_POST2	BIT(5)
50 
51 /* PCS control parameters */
52 #define L0_TM_DIG_6			0x106c
53 #define L0_TM_DIS_DESCRAMBLE_DECODER	0x0f
54 #define L0_TX_DIG_61			0x00f4
55 #define L0_TM_DISABLE_SCRAMBLE_ENCODER	0x0f
56 
57 /* PLL Test Mode register parameters */
58 #define L0_TM_PLL_DIG_37		0x2094
59 #define L0_TM_COARSE_CODE_LIMIT		0x10
60 
61 /* PLL SSC step size offsets */
62 #define L0_PLL_SS_STEPS_0_LSB		0x2368
63 #define L0_PLL_SS_STEPS_1_MSB		0x236c
64 #define L0_PLL_SS_STEP_SIZE_0_LSB	0x2370
65 #define L0_PLL_SS_STEP_SIZE_1		0x2374
66 #define L0_PLL_SS_STEP_SIZE_2		0x2378
67 #define L0_PLL_SS_STEP_SIZE_3_MSB	0x237c
68 #define L0_PLL_STATUS_READ_1		0x23e4
69 
70 /* SSC step size parameters */
71 #define STEP_SIZE_0_MASK		0xff
72 #define STEP_SIZE_1_MASK		0xff
73 #define STEP_SIZE_2_MASK		0xff
74 #define STEP_SIZE_3_MASK		0x3
75 #define STEP_SIZE_SHIFT			8
76 #define FORCE_STEP_SIZE			0x10
77 #define FORCE_STEPS			0x20
78 #define STEPS_0_MASK			0xff
79 #define STEPS_1_MASK			0x07
80 
81 /* Reference clock selection parameters */
82 #define L0_Ln_REF_CLK_SEL(n)		(0x2860 + (n) * 4)
83 #define L0_REF_CLK_SEL_MASK		0x8f
84 
85 /* Calibration digital logic parameters */
86 #define L3_TM_CALIB_DIG19		0xec4c
87 #define L3_CALIB_DONE_STATUS		0xef14
88 #define L3_TM_CALIB_DIG18		0xec48
89 #define L3_TM_CALIB_DIG19_NSW		0x07
90 #define L3_TM_CALIB_DIG18_NSW		0xe0
91 #define L3_TM_OVERRIDE_NSW_CODE         0x20
92 #define L3_CALIB_DONE			0x02
93 #define L3_NSW_SHIFT			5
94 #define L3_NSW_PIPE_SHIFT		4
95 #define L3_NSW_CALIB_SHIFT		3
96 
97 #define PHY_REG_OFFSET			0x4000
98 
99 /*
100  * Global Registers
101  */
102 
103 /* Refclk selection parameters */
104 #define PLL_REF_SEL(n)			(0x10000 + (n) * 4)
105 #define PLL_FREQ_MASK			0x1f
106 #define PLL_STATUS_LOCKED		0x10
107 
108 /* Inter Connect Matrix parameters */
109 #define ICM_CFG0			0x10010
110 #define ICM_CFG1			0x10014
111 #define ICM_CFG0_L0_MASK		0x07
112 #define ICM_CFG0_L1_MASK		0x70
113 #define ICM_CFG1_L2_MASK		0x07
114 #define ICM_CFG2_L3_MASK		0x70
115 #define ICM_CFG_SHIFT			4
116 
117 /* Inter Connect Matrix allowed protocols */
118 #define ICM_PROTOCOL_PD			0x0
119 #define ICM_PROTOCOL_PCIE		0x1
120 #define ICM_PROTOCOL_SATA		0x2
121 #define ICM_PROTOCOL_USB		0x3
122 #define ICM_PROTOCOL_DP			0x4
123 #define ICM_PROTOCOL_SGMII		0x5
124 
125 /* Test Mode common reset control  parameters */
126 #define TM_CMN_RST			0x10018
127 #define TM_CMN_RST_EN			0x1
128 #define TM_CMN_RST_SET			0x2
129 #define TM_CMN_RST_MASK			0x3
130 
131 /* Bus width parameters */
132 #define TX_PROT_BUS_WIDTH		0x10040
133 #define RX_PROT_BUS_WIDTH		0x10044
134 #define PROT_BUS_WIDTH_10		0x0
135 #define PROT_BUS_WIDTH_20		0x1
136 #define PROT_BUS_WIDTH_40		0x2
137 #define PROT_BUS_WIDTH_SHIFT(n)		((n) * 2)
138 #define PROT_BUS_WIDTH_MASK(n)		GENMASK((n) * 2 + 1, (n) * 2)
139 
140 /* Number of GT lanes */
141 #define NUM_LANES			4
142 
143 /* SIOU SATA control register */
144 #define SATA_CONTROL_OFFSET		0x0100
145 
146 /* Total number of controllers */
147 #define CONTROLLERS_PER_LANE		5
148 
149 /* Protocol Type parameters */
150 #define XPSGTR_TYPE_USB0		0  /* USB controller 0 */
151 #define XPSGTR_TYPE_USB1		1  /* USB controller 1 */
152 #define XPSGTR_TYPE_SATA_0		2  /* SATA controller lane 0 */
153 #define XPSGTR_TYPE_SATA_1		3  /* SATA controller lane 1 */
154 #define XPSGTR_TYPE_PCIE_0		4  /* PCIe controller lane 0 */
155 #define XPSGTR_TYPE_PCIE_1		5  /* PCIe controller lane 1 */
156 #define XPSGTR_TYPE_PCIE_2		6  /* PCIe controller lane 2 */
157 #define XPSGTR_TYPE_PCIE_3		7  /* PCIe controller lane 3 */
158 #define XPSGTR_TYPE_DP_0		8  /* Display Port controller lane 0 */
159 #define XPSGTR_TYPE_DP_1		9  /* Display Port controller lane 1 */
160 #define XPSGTR_TYPE_SGMII0		10 /* Ethernet SGMII controller 0 */
161 #define XPSGTR_TYPE_SGMII1		11 /* Ethernet SGMII controller 1 */
162 #define XPSGTR_TYPE_SGMII2		12 /* Ethernet SGMII controller 2 */
163 #define XPSGTR_TYPE_SGMII3		13 /* Ethernet SGMII controller 3 */
164 
165 /* Timeout values */
166 #define TIMEOUT_US			1000
167 
168 struct xpsgtr_dev;
169 
170 /**
171  * struct xpsgtr_ssc - structure to hold SSC settings for a lane
172  * @refclk_rate: PLL reference clock frequency
173  * @pll_ref_clk: value to be written to register for corresponding ref clk rate
174  * @steps: number of steps of SSC (Spread Spectrum Clock)
175  * @step_size: step size of each step
176  */
177 struct xpsgtr_ssc {
178 	u32 refclk_rate;
179 	u8  pll_ref_clk;
180 	u32 steps;
181 	u32 step_size;
182 };
183 
184 /**
185  * struct xpsgtr_phy - representation of a lane
186  * @phy: pointer to the kernel PHY device
187  * @type: controller which uses this lane
188  * @lane: lane number
189  * @protocol: protocol in which the lane operates
190  * @skip_phy_init: skip phy_init() if true
191  * @dev: pointer to the xpsgtr_dev instance
192  * @refclk: reference clock index
193  */
194 struct xpsgtr_phy {
195 	struct phy *phy;
196 	u8 type;
197 	u8 lane;
198 	u8 protocol;
199 	bool skip_phy_init;
200 	struct xpsgtr_dev *dev;
201 	unsigned int refclk;
202 };
203 
204 /**
205  * struct xpsgtr_dev - representation of a ZynMP GT device
206  * @dev: pointer to device
207  * @serdes: serdes base address
208  * @siou: siou base address
209  * @gtr_mutex: mutex for locking
210  * @phys: PHY lanes
211  * @refclk_sscs: spread spectrum settings for the reference clocks
212  * @tx_term_fix: fix for GT issue
213  * @saved_icm_cfg0: stored value of ICM CFG0 register
214  * @saved_icm_cfg1: stored value of ICM CFG1 register
215  */
216 struct xpsgtr_dev {
217 	struct device *dev;
218 	void __iomem *serdes;
219 	void __iomem *siou;
220 	struct mutex gtr_mutex; /* mutex for locking */
221 	struct xpsgtr_phy phys[NUM_LANES];
222 	const struct xpsgtr_ssc *refclk_sscs[NUM_LANES];
223 	bool tx_term_fix;
224 	unsigned int saved_icm_cfg0;
225 	unsigned int saved_icm_cfg1;
226 };
227 
228 /*
229  * Configuration Data
230  */
231 
232 /* lookup table to hold all settings needed for a ref clock frequency */
233 static const struct xpsgtr_ssc ssc_lookup[] = {
234 	{  19200000, 0x05,  608, 264020 },
235 	{  20000000, 0x06,  634, 243454 },
236 	{  24000000, 0x07,  760, 168973 },
237 	{  26000000, 0x08,  824, 143860 },
238 	{  27000000, 0x09,  856,  86551 },
239 	{  38400000, 0x0a, 1218,  65896 },
240 	{  40000000, 0x0b,  634, 243454 },
241 	{  52000000, 0x0c,  824, 143860 },
242 	{ 100000000, 0x0d, 1058,  87533 },
243 	{ 108000000, 0x0e,  856,  86551 },
244 	{ 125000000, 0x0f,  992, 119497 },
245 	{ 135000000, 0x10, 1070,  55393 },
246 	{ 150000000, 0x11,  792, 187091 }
247 };
248 
249 /*
250  * I/O Accessors
251  */
252 
xpsgtr_read(struct xpsgtr_dev * gtr_dev,u32 reg)253 static inline u32 xpsgtr_read(struct xpsgtr_dev *gtr_dev, u32 reg)
254 {
255 	return readl(gtr_dev->serdes + reg);
256 }
257 
xpsgtr_write(struct xpsgtr_dev * gtr_dev,u32 reg,u32 value)258 static inline void xpsgtr_write(struct xpsgtr_dev *gtr_dev, u32 reg, u32 value)
259 {
260 	writel(value, gtr_dev->serdes + reg);
261 }
262 
xpsgtr_clr_set(struct xpsgtr_dev * gtr_dev,u32 reg,u32 clr,u32 set)263 static inline void xpsgtr_clr_set(struct xpsgtr_dev *gtr_dev, u32 reg,
264 				  u32 clr, u32 set)
265 {
266 	u32 value = xpsgtr_read(gtr_dev, reg);
267 
268 	value &= ~clr;
269 	value |= set;
270 	xpsgtr_write(gtr_dev, reg, value);
271 }
272 
xpsgtr_read_phy(struct xpsgtr_phy * gtr_phy,u32 reg)273 static inline u32 xpsgtr_read_phy(struct xpsgtr_phy *gtr_phy, u32 reg)
274 {
275 	void __iomem *addr = gtr_phy->dev->serdes
276 			   + gtr_phy->lane * PHY_REG_OFFSET + reg;
277 
278 	return readl(addr);
279 }
280 
xpsgtr_write_phy(struct xpsgtr_phy * gtr_phy,u32 reg,u32 value)281 static inline void xpsgtr_write_phy(struct xpsgtr_phy *gtr_phy,
282 				    u32 reg, u32 value)
283 {
284 	void __iomem *addr = gtr_phy->dev->serdes
285 			   + gtr_phy->lane * PHY_REG_OFFSET + reg;
286 
287 	writel(value, addr);
288 }
289 
xpsgtr_clr_set_phy(struct xpsgtr_phy * gtr_phy,u32 reg,u32 clr,u32 set)290 static inline void xpsgtr_clr_set_phy(struct xpsgtr_phy *gtr_phy,
291 				      u32 reg, u32 clr, u32 set)
292 {
293 	void __iomem *addr = gtr_phy->dev->serdes
294 			   + gtr_phy->lane * PHY_REG_OFFSET + reg;
295 
296 	writel((readl(addr) & ~clr) | set, addr);
297 }
298 
299 /*
300  * Hardware Configuration
301  */
302 
303 /* Wait for the PLL to lock (with a timeout). */
xpsgtr_wait_pll_lock(struct phy * phy)304 static int xpsgtr_wait_pll_lock(struct phy *phy)
305 {
306 	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
307 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
308 	unsigned int timeout = TIMEOUT_US;
309 	int ret;
310 
311 	dev_dbg(gtr_dev->dev, "Waiting for PLL lock\n");
312 
313 	while (1) {
314 		u32 reg = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1);
315 
316 		if ((reg & PLL_STATUS_LOCKED) == PLL_STATUS_LOCKED) {
317 			ret = 0;
318 			break;
319 		}
320 
321 		if (--timeout == 0) {
322 			ret = -ETIMEDOUT;
323 			break;
324 		}
325 
326 		udelay(1);
327 	}
328 
329 	if (ret == -ETIMEDOUT)
330 		dev_err(gtr_dev->dev,
331 			"lane %u (type %u, protocol %u): PLL lock timeout\n",
332 			gtr_phy->lane, gtr_phy->type, gtr_phy->protocol);
333 
334 	return ret;
335 }
336 
337 /* Configure PLL and spread-sprectrum clock. */
xpsgtr_configure_pll(struct xpsgtr_phy * gtr_phy)338 static void xpsgtr_configure_pll(struct xpsgtr_phy *gtr_phy)
339 {
340 	const struct xpsgtr_ssc *ssc;
341 	u32 step_size;
342 
343 	ssc = gtr_phy->dev->refclk_sscs[gtr_phy->refclk];
344 	step_size = ssc->step_size;
345 
346 	xpsgtr_clr_set(gtr_phy->dev, PLL_REF_SEL(gtr_phy->lane),
347 		       PLL_FREQ_MASK, ssc->pll_ref_clk);
348 
349 	/* Enable lane clock sharing, if required */
350 	if (gtr_phy->refclk != gtr_phy->lane) {
351 		/* Lane3 Ref Clock Selection Register */
352 		xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane),
353 			       L0_REF_CLK_SEL_MASK, 1 << gtr_phy->refclk);
354 	}
355 
356 	/* SSC step size [7:0] */
357 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_0_LSB,
358 			   STEP_SIZE_0_MASK, step_size & STEP_SIZE_0_MASK);
359 
360 	/* SSC step size [15:8] */
361 	step_size >>= STEP_SIZE_SHIFT;
362 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_1,
363 			   STEP_SIZE_1_MASK, step_size & STEP_SIZE_1_MASK);
364 
365 	/* SSC step size [23:16] */
366 	step_size >>= STEP_SIZE_SHIFT;
367 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_2,
368 			   STEP_SIZE_2_MASK, step_size & STEP_SIZE_2_MASK);
369 
370 	/* SSC steps [7:0] */
371 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_0_LSB,
372 			   STEPS_0_MASK, ssc->steps & STEPS_0_MASK);
373 
374 	/* SSC steps [10:8] */
375 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_1_MSB,
376 			   STEPS_1_MASK,
377 			   (ssc->steps >> STEP_SIZE_SHIFT) & STEPS_1_MASK);
378 
379 	/* SSC step size [24:25] */
380 	step_size >>= STEP_SIZE_SHIFT;
381 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_3_MSB,
382 			   STEP_SIZE_3_MASK, (step_size & STEP_SIZE_3_MASK) |
383 			   FORCE_STEP_SIZE | FORCE_STEPS);
384 }
385 
386 /* Configure the lane protocol. */
xpsgtr_lane_set_protocol(struct xpsgtr_phy * gtr_phy)387 static void xpsgtr_lane_set_protocol(struct xpsgtr_phy *gtr_phy)
388 {
389 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
390 	u8 protocol = gtr_phy->protocol;
391 
392 	switch (gtr_phy->lane) {
393 	case 0:
394 		xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L0_MASK, protocol);
395 		break;
396 	case 1:
397 		xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L1_MASK,
398 			       protocol << ICM_CFG_SHIFT);
399 		break;
400 	case 2:
401 		xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L0_MASK, protocol);
402 		break;
403 	case 3:
404 		xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L1_MASK,
405 			       protocol << ICM_CFG_SHIFT);
406 		break;
407 	default:
408 		/* We already checked 0 <= lane <= 3 */
409 		break;
410 	}
411 }
412 
413 /* Bypass (de)scrambler and 8b/10b decoder and encoder. */
xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy * gtr_phy)414 static void xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy *gtr_phy)
415 {
416 	xpsgtr_write_phy(gtr_phy, L0_TM_DIG_6, L0_TM_DIS_DESCRAMBLE_DECODER);
417 	xpsgtr_write_phy(gtr_phy, L0_TX_DIG_61, L0_TM_DISABLE_SCRAMBLE_ENCODER);
418 }
419 
420 /* DP-specific initialization. */
xpsgtr_phy_init_dp(struct xpsgtr_phy * gtr_phy)421 static void xpsgtr_phy_init_dp(struct xpsgtr_phy *gtr_phy)
422 {
423 	xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_45,
424 			 L0_TXPMD_TM_45_OVER_DP_MAIN |
425 			 L0_TXPMD_TM_45_ENABLE_DP_MAIN |
426 			 L0_TXPMD_TM_45_OVER_DP_POST1 |
427 			 L0_TXPMD_TM_45_OVER_DP_POST2 |
428 			 L0_TXPMD_TM_45_ENABLE_DP_POST2);
429 	xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_118,
430 			 L0_TX_ANA_TM_118_FORCE_17_0);
431 }
432 
433 /* SATA-specific initialization. */
xpsgtr_phy_init_sata(struct xpsgtr_phy * gtr_phy)434 static void xpsgtr_phy_init_sata(struct xpsgtr_phy *gtr_phy)
435 {
436 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
437 
438 	xpsgtr_bypass_scrambler_8b10b(gtr_phy);
439 
440 	writel(gtr_phy->lane, gtr_dev->siou + SATA_CONTROL_OFFSET);
441 }
442 
443 /* SGMII-specific initialization. */
xpsgtr_phy_init_sgmii(struct xpsgtr_phy * gtr_phy)444 static void xpsgtr_phy_init_sgmii(struct xpsgtr_phy *gtr_phy)
445 {
446 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
447 	u32 mask = PROT_BUS_WIDTH_MASK(gtr_phy->lane);
448 	u32 val = PROT_BUS_WIDTH_10 << PROT_BUS_WIDTH_SHIFT(gtr_phy->lane);
449 
450 	/* Set SGMII protocol TX and RX bus width to 10 bits. */
451 	xpsgtr_clr_set(gtr_dev, TX_PROT_BUS_WIDTH, mask, val);
452 	xpsgtr_clr_set(gtr_dev, RX_PROT_BUS_WIDTH, mask, val);
453 
454 	xpsgtr_bypass_scrambler_8b10b(gtr_phy);
455 }
456 
457 /* Configure TX de-emphasis and margining for DP. */
xpsgtr_phy_configure_dp(struct xpsgtr_phy * gtr_phy,unsigned int pre,unsigned int voltage)458 static void xpsgtr_phy_configure_dp(struct xpsgtr_phy *gtr_phy, unsigned int pre,
459 				    unsigned int voltage)
460 {
461 	static const u8 voltage_swing[4][4] = {
462 		{ 0x2a, 0x27, 0x24, 0x20 },
463 		{ 0x27, 0x23, 0x20, 0xff },
464 		{ 0x24, 0x20, 0xff, 0xff },
465 		{ 0xff, 0xff, 0xff, 0xff }
466 	};
467 	static const u8 pre_emphasis[4][4] = {
468 		{ 0x02, 0x02, 0x02, 0x02 },
469 		{ 0x01, 0x01, 0x01, 0xff },
470 		{ 0x00, 0x00, 0xff, 0xff },
471 		{ 0xff, 0xff, 0xff, 0xff }
472 	};
473 
474 	xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_48, voltage_swing[pre][voltage]);
475 	xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_18, pre_emphasis[pre][voltage]);
476 }
477 
478 /*
479  * PHY Operations
480  */
481 
xpsgtr_phy_init_required(struct xpsgtr_phy * gtr_phy)482 static bool xpsgtr_phy_init_required(struct xpsgtr_phy *gtr_phy)
483 {
484 	/*
485 	 * As USB may save the snapshot of the states during hibernation, doing
486 	 * phy_init() will put the USB controller into reset, resulting in the
487 	 * losing of the saved snapshot. So try to avoid phy_init() for USB
488 	 * except when gtr_phy->skip_phy_init is false (this happens when FPD is
489 	 * shutdown during suspend or when gt lane is changed from current one)
490 	 */
491 	if (gtr_phy->protocol == ICM_PROTOCOL_USB && gtr_phy->skip_phy_init)
492 		return false;
493 	else
494 		return true;
495 }
496 
497 /*
498  * There is a functional issue in the GT. The TX termination resistance can be
499  * out of spec due to a issue in the calibration logic. This is the workaround
500  * to fix it, required for XCZU9EG silicon.
501  */
xpsgtr_phy_tx_term_fix(struct xpsgtr_phy * gtr_phy)502 static int xpsgtr_phy_tx_term_fix(struct xpsgtr_phy *gtr_phy)
503 {
504 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
505 	u32 timeout = TIMEOUT_US;
506 	u32 nsw;
507 
508 	/* Enabling Test Mode control for CMN Rest */
509 	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
510 
511 	/* Set Test Mode reset */
512 	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);
513 
514 	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18, 0x00);
515 	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, L3_TM_OVERRIDE_NSW_CODE);
516 
517 	/*
518 	 * As a part of work around sequence for PMOS calibration fix,
519 	 * we need to configure any lane ICM_CFG to valid protocol. This
520 	 * will deassert the CMN_Resetn signal.
521 	 */
522 	xpsgtr_lane_set_protocol(gtr_phy);
523 
524 	/* Clear Test Mode reset */
525 	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
526 
527 	dev_dbg(gtr_dev->dev, "calibrating...\n");
528 
529 	do {
530 		u32 reg = xpsgtr_read(gtr_dev, L3_CALIB_DONE_STATUS);
531 
532 		if ((reg & L3_CALIB_DONE) == L3_CALIB_DONE)
533 			break;
534 
535 		if (!--timeout) {
536 			dev_err(gtr_dev->dev, "calibration time out\n");
537 			return -ETIMEDOUT;
538 		}
539 
540 		udelay(1);
541 	} while (timeout > 0);
542 
543 	dev_dbg(gtr_dev->dev, "calibration done\n");
544 
545 	/* Reading NMOS Register Code */
546 	nsw = xpsgtr_read(gtr_dev, L0_TXPMA_ST_3) & L0_DN_CALIB_CODE;
547 
548 	/* Set Test Mode reset */
549 	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);
550 
551 	/* Writing NMOS register values back [5:3] */
552 	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, nsw >> L3_NSW_CALIB_SHIFT);
553 
554 	/* Writing NMOS register value [2:0] */
555 	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18,
556 		     ((nsw & L3_TM_CALIB_DIG19_NSW) << L3_NSW_SHIFT) |
557 		     (1 << L3_NSW_PIPE_SHIFT));
558 
559 	/* Clear Test Mode reset */
560 	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
561 
562 	return 0;
563 }
564 
xpsgtr_phy_init(struct phy * phy)565 static int xpsgtr_phy_init(struct phy *phy)
566 {
567 	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
568 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
569 	int ret = 0;
570 
571 	mutex_lock(&gtr_dev->gtr_mutex);
572 
573 	/* Skip initialization if not required. */
574 	if (!xpsgtr_phy_init_required(gtr_phy))
575 		goto out;
576 
577 	if (gtr_dev->tx_term_fix) {
578 		ret = xpsgtr_phy_tx_term_fix(gtr_phy);
579 		if (ret < 0)
580 			goto out;
581 
582 		gtr_dev->tx_term_fix = false;
583 	}
584 
585 	/* Enable coarse code saturation limiting logic. */
586 	xpsgtr_write_phy(gtr_phy, L0_TM_PLL_DIG_37, L0_TM_COARSE_CODE_LIMIT);
587 
588 	/*
589 	 * Configure the PLL, the lane protocol, and perform protocol-specific
590 	 * initialization.
591 	 */
592 	xpsgtr_configure_pll(gtr_phy);
593 	xpsgtr_lane_set_protocol(gtr_phy);
594 
595 	switch (gtr_phy->protocol) {
596 	case ICM_PROTOCOL_DP:
597 		xpsgtr_phy_init_dp(gtr_phy);
598 		break;
599 
600 	case ICM_PROTOCOL_SATA:
601 		xpsgtr_phy_init_sata(gtr_phy);
602 		break;
603 
604 	case ICM_PROTOCOL_SGMII:
605 		xpsgtr_phy_init_sgmii(gtr_phy);
606 		break;
607 	}
608 
609 out:
610 	mutex_unlock(&gtr_dev->gtr_mutex);
611 	return ret;
612 }
613 
xpsgtr_phy_exit(struct phy * phy)614 static int xpsgtr_phy_exit(struct phy *phy)
615 {
616 	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
617 
618 	gtr_phy->skip_phy_init = false;
619 
620 	return 0;
621 }
622 
xpsgtr_phy_power_on(struct phy * phy)623 static int xpsgtr_phy_power_on(struct phy *phy)
624 {
625 	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
626 	int ret = 0;
627 
628 	/*
629 	 * Wait for the PLL to lock. For DP, only wait on DP0 to avoid
630 	 * cumulating waits for both lanes. The user is expected to initialize
631 	 * lane 0 last.
632 	 */
633 	if (gtr_phy->protocol != ICM_PROTOCOL_DP ||
634 	    gtr_phy->type == XPSGTR_TYPE_DP_0)
635 		ret = xpsgtr_wait_pll_lock(phy);
636 
637 	return ret;
638 }
639 
xpsgtr_phy_configure(struct phy * phy,union phy_configure_opts * opts)640 static int xpsgtr_phy_configure(struct phy *phy, union phy_configure_opts *opts)
641 {
642 	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
643 
644 	if (gtr_phy->protocol != ICM_PROTOCOL_DP)
645 		return 0;
646 
647 	xpsgtr_phy_configure_dp(gtr_phy, opts->dp.pre[0], opts->dp.voltage[0]);
648 
649 	return 0;
650 }
651 
652 static const struct phy_ops xpsgtr_phyops = {
653 	.init		= xpsgtr_phy_init,
654 	.exit		= xpsgtr_phy_exit,
655 	.power_on	= xpsgtr_phy_power_on,
656 	.configure	= xpsgtr_phy_configure,
657 	.owner		= THIS_MODULE,
658 };
659 
660 /*
661  * OF Xlate Support
662  */
663 
664 /* Set the lane type and protocol based on the PHY type and instance number. */
xpsgtr_set_lane_type(struct xpsgtr_phy * gtr_phy,u8 phy_type,unsigned int phy_instance)665 static int xpsgtr_set_lane_type(struct xpsgtr_phy *gtr_phy, u8 phy_type,
666 				unsigned int phy_instance)
667 {
668 	unsigned int num_phy_types;
669 	const int *phy_types;
670 
671 	switch (phy_type) {
672 	case PHY_TYPE_SATA: {
673 		static const int types[] = {
674 			XPSGTR_TYPE_SATA_0,
675 			XPSGTR_TYPE_SATA_1,
676 		};
677 
678 		phy_types = types;
679 		num_phy_types = ARRAY_SIZE(types);
680 		gtr_phy->protocol = ICM_PROTOCOL_SATA;
681 		break;
682 	}
683 	case PHY_TYPE_USB3: {
684 		static const int types[] = {
685 			XPSGTR_TYPE_USB0,
686 			XPSGTR_TYPE_USB1,
687 		};
688 
689 		phy_types = types;
690 		num_phy_types = ARRAY_SIZE(types);
691 		gtr_phy->protocol = ICM_PROTOCOL_USB;
692 		break;
693 	}
694 	case PHY_TYPE_DP: {
695 		static const int types[] = {
696 			XPSGTR_TYPE_DP_0,
697 			XPSGTR_TYPE_DP_1,
698 		};
699 
700 		phy_types = types;
701 		num_phy_types = ARRAY_SIZE(types);
702 		gtr_phy->protocol = ICM_PROTOCOL_DP;
703 		break;
704 	}
705 	case PHY_TYPE_PCIE: {
706 		static const int types[] = {
707 			XPSGTR_TYPE_PCIE_0,
708 			XPSGTR_TYPE_PCIE_1,
709 			XPSGTR_TYPE_PCIE_2,
710 			XPSGTR_TYPE_PCIE_3,
711 		};
712 
713 		phy_types = types;
714 		num_phy_types = ARRAY_SIZE(types);
715 		gtr_phy->protocol = ICM_PROTOCOL_PCIE;
716 		break;
717 	}
718 	case PHY_TYPE_SGMII: {
719 		static const int types[] = {
720 			XPSGTR_TYPE_SGMII0,
721 			XPSGTR_TYPE_SGMII1,
722 			XPSGTR_TYPE_SGMII2,
723 			XPSGTR_TYPE_SGMII3,
724 		};
725 
726 		phy_types = types;
727 		num_phy_types = ARRAY_SIZE(types);
728 		gtr_phy->protocol = ICM_PROTOCOL_SGMII;
729 		break;
730 	}
731 	default:
732 		return -EINVAL;
733 	}
734 
735 	if (phy_instance >= num_phy_types)
736 		return -EINVAL;
737 
738 	gtr_phy->type = phy_types[phy_instance];
739 	return 0;
740 }
741 
742 /*
743  * Valid combinations of controllers and lanes (Interconnect Matrix).
744  */
745 static const unsigned int icm_matrix[NUM_LANES][CONTROLLERS_PER_LANE] = {
746 	{ XPSGTR_TYPE_PCIE_0, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
747 		XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII0 },
748 	{ XPSGTR_TYPE_PCIE_1, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB0,
749 		XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII1 },
750 	{ XPSGTR_TYPE_PCIE_2, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
751 		XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII2 },
752 	{ XPSGTR_TYPE_PCIE_3, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB1,
753 		XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII3 }
754 };
755 
756 /* Translate OF phandle and args to PHY instance. */
xpsgtr_xlate(struct device * dev,struct of_phandle_args * args)757 static struct phy *xpsgtr_xlate(struct device *dev,
758 				struct of_phandle_args *args)
759 {
760 	struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
761 	struct xpsgtr_phy *gtr_phy;
762 	unsigned int phy_instance;
763 	unsigned int phy_lane;
764 	unsigned int phy_type;
765 	unsigned int refclk;
766 	unsigned int i;
767 	int ret;
768 
769 	if (args->args_count != 4) {
770 		dev_err(dev, "Invalid number of cells in 'phy' property\n");
771 		return ERR_PTR(-EINVAL);
772 	}
773 
774 	/*
775 	 * Get the PHY parameters from the OF arguments and derive the lane
776 	 * type.
777 	 */
778 	phy_lane = args->args[0];
779 	if (phy_lane >= ARRAY_SIZE(gtr_dev->phys)) {
780 		dev_err(dev, "Invalid lane number %u\n", phy_lane);
781 		return ERR_PTR(-ENODEV);
782 	}
783 
784 	gtr_phy = &gtr_dev->phys[phy_lane];
785 	phy_type = args->args[1];
786 	phy_instance = args->args[2];
787 
788 	ret = xpsgtr_set_lane_type(gtr_phy, phy_type, phy_instance);
789 	if (ret < 0) {
790 		dev_err(gtr_dev->dev, "Invalid PHY type and/or instance\n");
791 		return ERR_PTR(ret);
792 	}
793 
794 	refclk = args->args[3];
795 	if (refclk >= ARRAY_SIZE(gtr_dev->refclk_sscs) ||
796 	    !gtr_dev->refclk_sscs[refclk]) {
797 		dev_err(dev, "Invalid reference clock number %u\n", refclk);
798 		return ERR_PTR(-EINVAL);
799 	}
800 
801 	gtr_phy->refclk = refclk;
802 
803 	/*
804 	 * Ensure that the Interconnect Matrix is obeyed, i.e a given lane type
805 	 * is allowed to operate on the lane.
806 	 */
807 	for (i = 0; i < CONTROLLERS_PER_LANE; i++) {
808 		if (icm_matrix[phy_lane][i] == gtr_phy->type)
809 			return gtr_phy->phy;
810 	}
811 
812 	return ERR_PTR(-EINVAL);
813 }
814 
815 /*
816  * Power Management
817  */
818 
xpsgtr_suspend(struct device * dev)819 static int __maybe_unused xpsgtr_suspend(struct device *dev)
820 {
821 	struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
822 
823 	/* Save the snapshot ICM_CFG registers. */
824 	gtr_dev->saved_icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
825 	gtr_dev->saved_icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);
826 
827 	return 0;
828 }
829 
xpsgtr_resume(struct device * dev)830 static int __maybe_unused xpsgtr_resume(struct device *dev)
831 {
832 	struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
833 	unsigned int icm_cfg0, icm_cfg1;
834 	unsigned int i;
835 	bool skip_phy_init;
836 
837 	icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
838 	icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);
839 
840 	/* Return if no GT lanes got configured before suspend. */
841 	if (!gtr_dev->saved_icm_cfg0 && !gtr_dev->saved_icm_cfg1)
842 		return 0;
843 
844 	/* Check if the ICM configurations changed after suspend. */
845 	if (icm_cfg0 == gtr_dev->saved_icm_cfg0 &&
846 	    icm_cfg1 == gtr_dev->saved_icm_cfg1)
847 		skip_phy_init = true;
848 	else
849 		skip_phy_init = false;
850 
851 	/* Update the skip_phy_init for all gtr_phy instances. */
852 	for (i = 0; i < ARRAY_SIZE(gtr_dev->phys); i++)
853 		gtr_dev->phys[i].skip_phy_init = skip_phy_init;
854 
855 	return 0;
856 }
857 
858 static const struct dev_pm_ops xpsgtr_pm_ops = {
859 	SET_SYSTEM_SLEEP_PM_OPS(xpsgtr_suspend, xpsgtr_resume)
860 };
861 
862 /*
863  * Probe & Platform Driver
864  */
865 
xpsgtr_get_ref_clocks(struct xpsgtr_dev * gtr_dev)866 static int xpsgtr_get_ref_clocks(struct xpsgtr_dev *gtr_dev)
867 {
868 	unsigned int refclk;
869 
870 	for (refclk = 0; refclk < ARRAY_SIZE(gtr_dev->refclk_sscs); ++refclk) {
871 		unsigned long rate;
872 		unsigned int i;
873 		struct clk *clk;
874 		char name[8];
875 
876 		snprintf(name, sizeof(name), "ref%u", refclk);
877 		clk = devm_clk_get_optional(gtr_dev->dev, name);
878 		if (IS_ERR(clk)) {
879 			if (PTR_ERR(clk) != -EPROBE_DEFER)
880 				dev_err(gtr_dev->dev,
881 					"Failed to get reference clock %u: %ld\n",
882 					refclk, PTR_ERR(clk));
883 			return PTR_ERR(clk);
884 		}
885 
886 		if (!clk)
887 			continue;
888 
889 		/*
890 		 * Get the spread spectrum (SSC) settings for the reference
891 		 * clock rate.
892 		 */
893 		rate = clk_get_rate(clk);
894 
895 		for (i = 0 ; i < ARRAY_SIZE(ssc_lookup); i++) {
896 			if (rate == ssc_lookup[i].refclk_rate) {
897 				gtr_dev->refclk_sscs[refclk] = &ssc_lookup[i];
898 				break;
899 			}
900 		}
901 
902 		if (i == ARRAY_SIZE(ssc_lookup)) {
903 			dev_err(gtr_dev->dev,
904 				"Invalid rate %lu for reference clock %u\n",
905 				rate, refclk);
906 			return -EINVAL;
907 		}
908 	}
909 
910 	return 0;
911 }
912 
xpsgtr_probe(struct platform_device * pdev)913 static int xpsgtr_probe(struct platform_device *pdev)
914 {
915 	struct device_node *np = pdev->dev.of_node;
916 	struct xpsgtr_dev *gtr_dev;
917 	struct phy_provider *provider;
918 	unsigned int port;
919 	int ret;
920 
921 	gtr_dev = devm_kzalloc(&pdev->dev, sizeof(*gtr_dev), GFP_KERNEL);
922 	if (!gtr_dev)
923 		return -ENOMEM;
924 
925 	gtr_dev->dev = &pdev->dev;
926 	platform_set_drvdata(pdev, gtr_dev);
927 
928 	mutex_init(&gtr_dev->gtr_mutex);
929 
930 	if (of_device_is_compatible(np, "xlnx,zynqmp-psgtr"))
931 		gtr_dev->tx_term_fix =
932 			of_property_read_bool(np, "xlnx,tx-termination-fix");
933 
934 	/* Acquire resources. */
935 	gtr_dev->serdes = devm_platform_ioremap_resource_byname(pdev, "serdes");
936 	if (IS_ERR(gtr_dev->serdes))
937 		return PTR_ERR(gtr_dev->serdes);
938 
939 	gtr_dev->siou = devm_platform_ioremap_resource_byname(pdev, "siou");
940 	if (IS_ERR(gtr_dev->siou))
941 		return PTR_ERR(gtr_dev->siou);
942 
943 	ret = xpsgtr_get_ref_clocks(gtr_dev);
944 	if (ret)
945 		return ret;
946 
947 	/* Create PHYs. */
948 	for (port = 0; port < ARRAY_SIZE(gtr_dev->phys); ++port) {
949 		struct xpsgtr_phy *gtr_phy = &gtr_dev->phys[port];
950 		struct phy *phy;
951 
952 		gtr_phy->lane = port;
953 		gtr_phy->dev = gtr_dev;
954 
955 		phy = devm_phy_create(&pdev->dev, np, &xpsgtr_phyops);
956 		if (IS_ERR(phy)) {
957 			dev_err(&pdev->dev, "failed to create PHY\n");
958 			return PTR_ERR(phy);
959 		}
960 
961 		gtr_phy->phy = phy;
962 		phy_set_drvdata(phy, gtr_phy);
963 	}
964 
965 	/* Register the PHY provider. */
966 	provider = devm_of_phy_provider_register(&pdev->dev, xpsgtr_xlate);
967 	if (IS_ERR(provider)) {
968 		dev_err(&pdev->dev, "registering provider failed\n");
969 		return PTR_ERR(provider);
970 	}
971 	return 0;
972 }
973 
974 static const struct of_device_id xpsgtr_of_match[] = {
975 	{ .compatible = "xlnx,zynqmp-psgtr", },
976 	{ .compatible = "xlnx,zynqmp-psgtr-v1.1", },
977 	{},
978 };
979 MODULE_DEVICE_TABLE(of, xpsgtr_of_match);
980 
981 static struct platform_driver xpsgtr_driver = {
982 	.probe = xpsgtr_probe,
983 	.driver = {
984 		.name = "xilinx-psgtr",
985 		.of_match_table	= xpsgtr_of_match,
986 		.pm =  &xpsgtr_pm_ops,
987 	},
988 };
989 
990 module_platform_driver(xpsgtr_driver);
991 
992 MODULE_AUTHOR("Xilinx Inc.");
993 MODULE_LICENSE("GPL v2");
994 MODULE_DESCRIPTION("Xilinx ZynqMP High speed Gigabit Transceiver");
995