1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Universal power supply monitor class
4 *
5 * Copyright © 2007 Anton Vorontsov <cbou@mail.ru>
6 * Copyright © 2004 Szabolcs Gyurko
7 * Copyright © 2003 Ian Molton <spyro@f2s.com>
8 *
9 * Modified: 2004, Oct Szabolcs Gyurko
10 */
11
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/device.h>
18 #include <linux/notifier.h>
19 #include <linux/err.h>
20 #include <linux/of.h>
21 #include <linux/power_supply.h>
22 #include <linux/property.h>
23 #include <linux/thermal.h>
24 #include "power_supply.h"
25
26 /* exported for the APM Power driver, APM emulation */
27 struct class *power_supply_class;
28 EXPORT_SYMBOL_GPL(power_supply_class);
29
30 ATOMIC_NOTIFIER_HEAD(power_supply_notifier);
31 EXPORT_SYMBOL_GPL(power_supply_notifier);
32
33 static struct device_type power_supply_dev_type;
34
35 struct match_device_node_array_param {
36 struct device_node *parent_of_node;
37 struct power_supply **psy;
38 ssize_t psy_size;
39 ssize_t psy_count;
40 };
41
42 #define POWER_SUPPLY_DEFERRED_REGISTER_TIME msecs_to_jiffies(10)
43
__power_supply_is_supplied_by(struct power_supply * supplier,struct power_supply * supply)44 static bool __power_supply_is_supplied_by(struct power_supply *supplier,
45 struct power_supply *supply)
46 {
47 int i;
48
49 if (!supply->supplied_from && !supplier->supplied_to)
50 return false;
51
52 /* Support both supplied_to and supplied_from modes */
53 if (supply->supplied_from) {
54 if (!supplier->desc->name)
55 return false;
56 for (i = 0; i < supply->num_supplies; i++)
57 if (!strcmp(supplier->desc->name, supply->supplied_from[i]))
58 return true;
59 } else {
60 if (!supply->desc->name)
61 return false;
62 for (i = 0; i < supplier->num_supplicants; i++)
63 if (!strcmp(supplier->supplied_to[i], supply->desc->name))
64 return true;
65 }
66
67 return false;
68 }
69
__power_supply_changed_work(struct device * dev,void * data)70 static int __power_supply_changed_work(struct device *dev, void *data)
71 {
72 struct power_supply *psy = data;
73 struct power_supply *pst = dev_get_drvdata(dev);
74
75 if (__power_supply_is_supplied_by(psy, pst)) {
76 if (pst->desc->external_power_changed)
77 pst->desc->external_power_changed(pst);
78 }
79
80 return 0;
81 }
82
power_supply_changed_work(struct work_struct * work)83 static void power_supply_changed_work(struct work_struct *work)
84 {
85 unsigned long flags;
86 struct power_supply *psy = container_of(work, struct power_supply,
87 changed_work);
88
89 dev_dbg(&psy->dev, "%s\n", __func__);
90
91 spin_lock_irqsave(&psy->changed_lock, flags);
92 /*
93 * Check 'changed' here to avoid issues due to race between
94 * power_supply_changed() and this routine. In worst case
95 * power_supply_changed() can be called again just before we take above
96 * lock. During the first call of this routine we will mark 'changed' as
97 * false and it will stay false for the next call as well.
98 */
99 if (likely(psy->changed)) {
100 psy->changed = false;
101 spin_unlock_irqrestore(&psy->changed_lock, flags);
102 class_for_each_device(power_supply_class, NULL, psy,
103 __power_supply_changed_work);
104 power_supply_update_leds(psy);
105 atomic_notifier_call_chain(&power_supply_notifier,
106 PSY_EVENT_PROP_CHANGED, psy);
107 kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE);
108 spin_lock_irqsave(&psy->changed_lock, flags);
109 }
110
111 /*
112 * Hold the wakeup_source until all events are processed.
113 * power_supply_changed() might have called again and have set 'changed'
114 * to true.
115 */
116 if (likely(!psy->changed))
117 pm_relax(&psy->dev);
118 spin_unlock_irqrestore(&psy->changed_lock, flags);
119 }
120
power_supply_changed(struct power_supply * psy)121 void power_supply_changed(struct power_supply *psy)
122 {
123 unsigned long flags;
124
125 dev_dbg(&psy->dev, "%s\n", __func__);
126
127 spin_lock_irqsave(&psy->changed_lock, flags);
128 psy->changed = true;
129 pm_stay_awake(&psy->dev);
130 spin_unlock_irqrestore(&psy->changed_lock, flags);
131 schedule_work(&psy->changed_work);
132 }
133 EXPORT_SYMBOL_GPL(power_supply_changed);
134
135 static int psy_register_cooler(struct power_supply *psy);
136 /*
137 * Notify that power supply was registered after parent finished the probing.
138 *
139 * Often power supply is registered from driver's probe function. However
140 * calling power_supply_changed() directly from power_supply_register()
141 * would lead to execution of get_property() function provided by the driver
142 * too early - before the probe ends.
143 * Also, registering cooling device from the probe will execute the
144 * get_property() function. So register the cooling device after the probe.
145 *
146 * Avoid that by waiting on parent's mutex.
147 */
power_supply_deferred_register_work(struct work_struct * work)148 static void power_supply_deferred_register_work(struct work_struct *work)
149 {
150 struct power_supply *psy = container_of(work, struct power_supply,
151 deferred_register_work.work);
152
153 if (psy->dev.parent) {
154 while (!mutex_trylock(&psy->dev.parent->mutex)) {
155 if (psy->removing)
156 return;
157 msleep(10);
158 }
159 }
160
161 power_supply_changed(psy);
162 psy_register_cooler(psy);
163
164 if (psy->dev.parent)
165 mutex_unlock(&psy->dev.parent->mutex);
166 }
167
168 #ifdef CONFIG_OF
__power_supply_populate_supplied_from(struct device * dev,void * data)169 static int __power_supply_populate_supplied_from(struct device *dev,
170 void *data)
171 {
172 struct power_supply *psy = data;
173 struct power_supply *epsy = dev_get_drvdata(dev);
174 struct device_node *np;
175 int i = 0;
176
177 do {
178 np = of_parse_phandle(psy->of_node, "power-supplies", i++);
179 if (!np)
180 break;
181
182 if (np == epsy->of_node) {
183 dev_info(&psy->dev, "%s: Found supply : %s\n",
184 psy->desc->name, epsy->desc->name);
185 psy->supplied_from[i-1] = (char *)epsy->desc->name;
186 psy->num_supplies++;
187 of_node_put(np);
188 break;
189 }
190 of_node_put(np);
191 } while (np);
192
193 return 0;
194 }
195
power_supply_populate_supplied_from(struct power_supply * psy)196 static int power_supply_populate_supplied_from(struct power_supply *psy)
197 {
198 int error;
199
200 error = class_for_each_device(power_supply_class, NULL, psy,
201 __power_supply_populate_supplied_from);
202
203 dev_dbg(&psy->dev, "%s %d\n", __func__, error);
204
205 return error;
206 }
207
__power_supply_find_supply_from_node(struct device * dev,void * data)208 static int __power_supply_find_supply_from_node(struct device *dev,
209 void *data)
210 {
211 struct device_node *np = data;
212 struct power_supply *epsy = dev_get_drvdata(dev);
213
214 /* returning non-zero breaks out of class_for_each_device loop */
215 if (epsy->of_node == np)
216 return 1;
217
218 return 0;
219 }
220
power_supply_find_supply_from_node(struct device_node * supply_node)221 static int power_supply_find_supply_from_node(struct device_node *supply_node)
222 {
223 int error;
224
225 /*
226 * class_for_each_device() either returns its own errors or values
227 * returned by __power_supply_find_supply_from_node().
228 *
229 * __power_supply_find_supply_from_node() will return 0 (no match)
230 * or 1 (match).
231 *
232 * We return 0 if class_for_each_device() returned 1, -EPROBE_DEFER if
233 * it returned 0, or error as returned by it.
234 */
235 error = class_for_each_device(power_supply_class, NULL, supply_node,
236 __power_supply_find_supply_from_node);
237
238 return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER;
239 }
240
power_supply_check_supplies(struct power_supply * psy)241 static int power_supply_check_supplies(struct power_supply *psy)
242 {
243 struct device_node *np;
244 int cnt = 0;
245
246 /* If there is already a list honor it */
247 if (psy->supplied_from && psy->num_supplies > 0)
248 return 0;
249
250 /* No device node found, nothing to do */
251 if (!psy->of_node)
252 return 0;
253
254 do {
255 int ret;
256
257 np = of_parse_phandle(psy->of_node, "power-supplies", cnt++);
258 if (!np)
259 break;
260
261 ret = power_supply_find_supply_from_node(np);
262 of_node_put(np);
263
264 if (ret) {
265 dev_dbg(&psy->dev, "Failed to find supply!\n");
266 return ret;
267 }
268 } while (np);
269
270 /* Missing valid "power-supplies" entries */
271 if (cnt == 1)
272 return 0;
273
274 /* All supplies found, allocate char ** array for filling */
275 psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(psy->supplied_from),
276 GFP_KERNEL);
277 if (!psy->supplied_from)
278 return -ENOMEM;
279
280 *psy->supplied_from = devm_kcalloc(&psy->dev,
281 cnt - 1, sizeof(char *),
282 GFP_KERNEL);
283 if (!*psy->supplied_from)
284 return -ENOMEM;
285
286 return power_supply_populate_supplied_from(psy);
287 }
288 #else
power_supply_check_supplies(struct power_supply * psy)289 static int power_supply_check_supplies(struct power_supply *psy)
290 {
291 int nval, ret;
292
293 if (!psy->dev.parent)
294 return 0;
295
296 nval = device_property_read_string_array(psy->dev.parent,
297 "supplied-from", NULL, 0);
298 if (nval <= 0)
299 return 0;
300
301 psy->supplied_from = devm_kmalloc_array(&psy->dev, nval,
302 sizeof(char *), GFP_KERNEL);
303 if (!psy->supplied_from)
304 return -ENOMEM;
305
306 ret = device_property_read_string_array(psy->dev.parent,
307 "supplied-from", (const char **)psy->supplied_from, nval);
308 if (ret < 0)
309 return ret;
310
311 psy->num_supplies = nval;
312
313 return 0;
314 }
315 #endif
316
317 struct psy_am_i_supplied_data {
318 struct power_supply *psy;
319 unsigned int count;
320 };
321
__power_supply_am_i_supplied(struct device * dev,void * _data)322 static int __power_supply_am_i_supplied(struct device *dev, void *_data)
323 {
324 union power_supply_propval ret = {0,};
325 struct power_supply *epsy = dev_get_drvdata(dev);
326 struct psy_am_i_supplied_data *data = _data;
327
328 if (__power_supply_is_supplied_by(epsy, data->psy)) {
329 data->count++;
330 if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE,
331 &ret))
332 return ret.intval;
333 }
334
335 return 0;
336 }
337
power_supply_am_i_supplied(struct power_supply * psy)338 int power_supply_am_i_supplied(struct power_supply *psy)
339 {
340 struct psy_am_i_supplied_data data = { psy, 0 };
341 int error;
342
343 error = class_for_each_device(power_supply_class, NULL, &data,
344 __power_supply_am_i_supplied);
345
346 dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error);
347
348 if (data.count == 0)
349 return -ENODEV;
350
351 return error;
352 }
353 EXPORT_SYMBOL_GPL(power_supply_am_i_supplied);
354
__power_supply_is_system_supplied(struct device * dev,void * data)355 static int __power_supply_is_system_supplied(struct device *dev, void *data)
356 {
357 union power_supply_propval ret = {0,};
358 struct power_supply *psy = dev_get_drvdata(dev);
359 unsigned int *count = data;
360
361 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_SCOPE, &ret))
362 if (ret.intval == POWER_SUPPLY_SCOPE_DEVICE)
363 return 0;
364
365 (*count)++;
366 if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY)
367 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE,
368 &ret))
369 return ret.intval;
370
371 return 0;
372 }
373
power_supply_is_system_supplied(void)374 int power_supply_is_system_supplied(void)
375 {
376 int error;
377 unsigned int count = 0;
378
379 error = class_for_each_device(power_supply_class, NULL, &count,
380 __power_supply_is_system_supplied);
381
382 /*
383 * If no system scope power class device was found at all, most probably we
384 * are running on a desktop system, so assume we are on mains power.
385 */
386 if (count == 0)
387 return 1;
388
389 return error;
390 }
391 EXPORT_SYMBOL_GPL(power_supply_is_system_supplied);
392
393 struct psy_get_supplier_prop_data {
394 struct power_supply *psy;
395 enum power_supply_property psp;
396 union power_supply_propval *val;
397 };
398
__power_supply_get_supplier_property(struct device * dev,void * _data)399 static int __power_supply_get_supplier_property(struct device *dev, void *_data)
400 {
401 struct power_supply *epsy = dev_get_drvdata(dev);
402 struct psy_get_supplier_prop_data *data = _data;
403
404 if (__power_supply_is_supplied_by(epsy, data->psy))
405 if (!epsy->desc->get_property(epsy, data->psp, data->val))
406 return 1; /* Success */
407
408 return 0; /* Continue iterating */
409 }
410
power_supply_get_property_from_supplier(struct power_supply * psy,enum power_supply_property psp,union power_supply_propval * val)411 int power_supply_get_property_from_supplier(struct power_supply *psy,
412 enum power_supply_property psp,
413 union power_supply_propval *val)
414 {
415 struct psy_get_supplier_prop_data data = {
416 .psy = psy,
417 .psp = psp,
418 .val = val,
419 };
420 int ret;
421
422 /*
423 * This function is not intended for use with a supply with multiple
424 * suppliers, we simply pick the first supply to report the psp.
425 */
426 ret = class_for_each_device(power_supply_class, NULL, &data,
427 __power_supply_get_supplier_property);
428 if (ret < 0)
429 return ret;
430 if (ret == 0)
431 return -ENODEV;
432
433 return 0;
434 }
435 EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier);
436
power_supply_set_battery_charged(struct power_supply * psy)437 int power_supply_set_battery_charged(struct power_supply *psy)
438 {
439 if (atomic_read(&psy->use_cnt) >= 0 &&
440 psy->desc->type == POWER_SUPPLY_TYPE_BATTERY &&
441 psy->desc->set_charged) {
442 psy->desc->set_charged(psy);
443 return 0;
444 }
445
446 return -EINVAL;
447 }
448 EXPORT_SYMBOL_GPL(power_supply_set_battery_charged);
449
power_supply_match_device_by_name(struct device * dev,const void * data)450 static int power_supply_match_device_by_name(struct device *dev, const void *data)
451 {
452 const char *name = data;
453 struct power_supply *psy = dev_get_drvdata(dev);
454
455 return strcmp(psy->desc->name, name) == 0;
456 }
457
458 /**
459 * power_supply_get_by_name() - Search for a power supply and returns its ref
460 * @name: Power supply name to fetch
461 *
462 * If power supply was found, it increases reference count for the
463 * internal power supply's device. The user should power_supply_put()
464 * after usage.
465 *
466 * Return: On success returns a reference to a power supply with
467 * matching name equals to @name, a NULL otherwise.
468 */
power_supply_get_by_name(const char * name)469 struct power_supply *power_supply_get_by_name(const char *name)
470 {
471 struct power_supply *psy = NULL;
472 struct device *dev = class_find_device(power_supply_class, NULL, name,
473 power_supply_match_device_by_name);
474
475 if (dev) {
476 psy = dev_get_drvdata(dev);
477 atomic_inc(&psy->use_cnt);
478 }
479
480 return psy;
481 }
482 EXPORT_SYMBOL_GPL(power_supply_get_by_name);
483
484 /**
485 * power_supply_put() - Drop reference obtained with power_supply_get_by_name
486 * @psy: Reference to put
487 *
488 * The reference to power supply should be put before unregistering
489 * the power supply.
490 */
power_supply_put(struct power_supply * psy)491 void power_supply_put(struct power_supply *psy)
492 {
493 might_sleep();
494
495 atomic_dec(&psy->use_cnt);
496 put_device(&psy->dev);
497 }
498 EXPORT_SYMBOL_GPL(power_supply_put);
499
500 #ifdef CONFIG_OF
power_supply_match_device_node(struct device * dev,const void * data)501 static int power_supply_match_device_node(struct device *dev, const void *data)
502 {
503 return dev->parent && dev->parent->of_node == data;
504 }
505
506 /**
507 * power_supply_get_by_phandle() - Search for a power supply and returns its ref
508 * @np: Pointer to device node holding phandle property
509 * @property: Name of property holding a power supply name
510 *
511 * If power supply was found, it increases reference count for the
512 * internal power supply's device. The user should power_supply_put()
513 * after usage.
514 *
515 * Return: On success returns a reference to a power supply with
516 * matching name equals to value under @property, NULL or ERR_PTR otherwise.
517 */
power_supply_get_by_phandle(struct device_node * np,const char * property)518 struct power_supply *power_supply_get_by_phandle(struct device_node *np,
519 const char *property)
520 {
521 struct device_node *power_supply_np;
522 struct power_supply *psy = NULL;
523 struct device *dev;
524
525 power_supply_np = of_parse_phandle(np, property, 0);
526 if (!power_supply_np)
527 return ERR_PTR(-ENODEV);
528
529 dev = class_find_device(power_supply_class, NULL, power_supply_np,
530 power_supply_match_device_node);
531
532 of_node_put(power_supply_np);
533
534 if (dev) {
535 psy = dev_get_drvdata(dev);
536 atomic_inc(&psy->use_cnt);
537 }
538
539 return psy;
540 }
541 EXPORT_SYMBOL_GPL(power_supply_get_by_phandle);
542
power_supply_match_device_node_array(struct device * dev,void * data)543 static int power_supply_match_device_node_array(struct device *dev,
544 void *data)
545 {
546 struct match_device_node_array_param *param =
547 (struct match_device_node_array_param *)data;
548 struct power_supply **psy = param->psy;
549 ssize_t size = param->psy_size;
550 ssize_t *count = ¶m->psy_count;
551
552 if (!dev->parent || dev->parent->of_node != param->parent_of_node)
553 return 0;
554
555 if (*count >= size)
556 return -EOVERFLOW;
557
558 psy[*count] = dev_get_drvdata(dev);
559 atomic_inc(&psy[*count]->use_cnt);
560 (*count)++;
561
562 return 0;
563 }
564
565 /**
566 * power_supply_get_by_phandle_array() - Similar to
567 * power_supply_get_by_phandle but returns an array of power supply
568 * objects which are associated with the phandle.
569 * @np: Pointer to device node holding phandle property.
570 * @property: Name of property holding a power supply name.
571 * @psy: Array of power_supply pointers provided by the client which is
572 * filled by power_supply_get_by_phandle_array.
573 * @size: size of power_supply pointer array.
574 *
575 * If power supply was found, it increases reference count for the
576 * internal power supply's device. The user should power_supply_put()
577 * after usage.
578 *
579 * Return: On success returns the number of power supply objects filled
580 * in the @psy array.
581 * -EOVERFLOW when size of @psy array is not suffice.
582 * -EINVAL when @psy is NULL or @size is 0.
583 * -ENODEV when matching device_node is not found.
584 */
power_supply_get_by_phandle_array(struct device_node * np,const char * property,struct power_supply ** psy,ssize_t size)585 int power_supply_get_by_phandle_array(struct device_node *np,
586 const char *property,
587 struct power_supply **psy,
588 ssize_t size)
589 {
590 struct device_node *power_supply_np;
591 int ret;
592 struct match_device_node_array_param param;
593
594 if (!psy || !size)
595 return -EINVAL;
596
597 power_supply_np = of_parse_phandle(np, property, 0);
598 if (!power_supply_np)
599 return -ENODEV;
600
601 param.parent_of_node = power_supply_np;
602 param.psy = psy;
603 param.psy_size = size;
604 param.psy_count = 0;
605 ret = class_for_each_device(power_supply_class, NULL, ¶m,
606 power_supply_match_device_node_array);
607
608 of_node_put(power_supply_np);
609
610 return param.psy_count;
611 }
612 EXPORT_SYMBOL_GPL(power_supply_get_by_phandle_array);
613
devm_power_supply_put(struct device * dev,void * res)614 static void devm_power_supply_put(struct device *dev, void *res)
615 {
616 struct power_supply **psy = res;
617
618 power_supply_put(*psy);
619 }
620
621 /**
622 * devm_power_supply_get_by_phandle() - Resource managed version of
623 * power_supply_get_by_phandle()
624 * @dev: Pointer to device holding phandle property
625 * @property: Name of property holding a power supply phandle
626 *
627 * Return: On success returns a reference to a power supply with
628 * matching name equals to value under @property, NULL or ERR_PTR otherwise.
629 */
devm_power_supply_get_by_phandle(struct device * dev,const char * property)630 struct power_supply *devm_power_supply_get_by_phandle(struct device *dev,
631 const char *property)
632 {
633 struct power_supply **ptr, *psy;
634
635 if (!dev->of_node)
636 return ERR_PTR(-ENODEV);
637
638 ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL);
639 if (!ptr)
640 return ERR_PTR(-ENOMEM);
641
642 psy = power_supply_get_by_phandle(dev->of_node, property);
643 if (IS_ERR_OR_NULL(psy)) {
644 devres_free(ptr);
645 } else {
646 *ptr = psy;
647 devres_add(dev, ptr);
648 }
649 return psy;
650 }
651 EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle);
652 #endif /* CONFIG_OF */
653
power_supply_get_battery_info(struct power_supply * psy,struct power_supply_battery_info * info)654 int power_supply_get_battery_info(struct power_supply *psy,
655 struct power_supply_battery_info *info)
656 {
657 struct power_supply_resistance_temp_table *resist_table;
658 struct device_node *battery_np;
659 const char *value;
660 int err, len, index;
661 const __be32 *list;
662
663 info->energy_full_design_uwh = -EINVAL;
664 info->charge_full_design_uah = -EINVAL;
665 info->voltage_min_design_uv = -EINVAL;
666 info->voltage_max_design_uv = -EINVAL;
667 info->precharge_current_ua = -EINVAL;
668 info->charge_term_current_ua = -EINVAL;
669 info->constant_charge_current_max_ua = -EINVAL;
670 info->constant_charge_voltage_max_uv = -EINVAL;
671 info->temp_ambient_alert_min = INT_MIN;
672 info->temp_ambient_alert_max = INT_MAX;
673 info->temp_alert_min = INT_MIN;
674 info->temp_alert_max = INT_MAX;
675 info->temp_min = INT_MIN;
676 info->temp_max = INT_MAX;
677 info->factory_internal_resistance_uohm = -EINVAL;
678 info->resist_table = NULL;
679
680 for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) {
681 info->ocv_table[index] = NULL;
682 info->ocv_temp[index] = -EINVAL;
683 info->ocv_table_size[index] = -EINVAL;
684 }
685
686 if (!psy->of_node) {
687 dev_warn(&psy->dev, "%s currently only supports devicetree\n",
688 __func__);
689 return -ENXIO;
690 }
691
692 battery_np = of_parse_phandle(psy->of_node, "monitored-battery", 0);
693 if (!battery_np)
694 return -ENODEV;
695
696 err = of_property_read_string(battery_np, "compatible", &value);
697 if (err)
698 goto out_put_node;
699
700 if (strcmp("simple-battery", value)) {
701 err = -ENODEV;
702 goto out_put_node;
703 }
704
705 /* The property and field names below must correspond to elements
706 * in enum power_supply_property. For reasoning, see
707 * Documentation/power/power_supply_class.rst.
708 */
709
710 of_property_read_u32(battery_np, "energy-full-design-microwatt-hours",
711 &info->energy_full_design_uwh);
712 of_property_read_u32(battery_np, "charge-full-design-microamp-hours",
713 &info->charge_full_design_uah);
714 of_property_read_u32(battery_np, "voltage-min-design-microvolt",
715 &info->voltage_min_design_uv);
716 of_property_read_u32(battery_np, "voltage-max-design-microvolt",
717 &info->voltage_max_design_uv);
718 of_property_read_u32(battery_np, "trickle-charge-current-microamp",
719 &info->tricklecharge_current_ua);
720 of_property_read_u32(battery_np, "precharge-current-microamp",
721 &info->precharge_current_ua);
722 of_property_read_u32(battery_np, "precharge-upper-limit-microvolt",
723 &info->precharge_voltage_max_uv);
724 of_property_read_u32(battery_np, "charge-term-current-microamp",
725 &info->charge_term_current_ua);
726 of_property_read_u32(battery_np, "re-charge-voltage-microvolt",
727 &info->charge_restart_voltage_uv);
728 of_property_read_u32(battery_np, "over-voltage-threshold-microvolt",
729 &info->overvoltage_limit_uv);
730 of_property_read_u32(battery_np, "constant-charge-current-max-microamp",
731 &info->constant_charge_current_max_ua);
732 of_property_read_u32(battery_np, "constant-charge-voltage-max-microvolt",
733 &info->constant_charge_voltage_max_uv);
734 of_property_read_u32(battery_np, "factory-internal-resistance-micro-ohms",
735 &info->factory_internal_resistance_uohm);
736
737 of_property_read_u32_index(battery_np, "ambient-celsius",
738 0, &info->temp_ambient_alert_min);
739 of_property_read_u32_index(battery_np, "ambient-celsius",
740 1, &info->temp_ambient_alert_max);
741 of_property_read_u32_index(battery_np, "alert-celsius",
742 0, &info->temp_alert_min);
743 of_property_read_u32_index(battery_np, "alert-celsius",
744 1, &info->temp_alert_max);
745 of_property_read_u32_index(battery_np, "operating-range-celsius",
746 0, &info->temp_min);
747 of_property_read_u32_index(battery_np, "operating-range-celsius",
748 1, &info->temp_max);
749
750 len = of_property_count_u32_elems(battery_np, "ocv-capacity-celsius");
751 if (len < 0 && len != -EINVAL) {
752 err = len;
753 goto out_put_node;
754 } else if (len > POWER_SUPPLY_OCV_TEMP_MAX) {
755 dev_err(&psy->dev, "Too many temperature values\n");
756 err = -EINVAL;
757 goto out_put_node;
758 } else if (len > 0) {
759 of_property_read_u32_array(battery_np, "ocv-capacity-celsius",
760 info->ocv_temp, len);
761 }
762
763 for (index = 0; index < len; index++) {
764 struct power_supply_battery_ocv_table *table;
765 char *propname;
766 int i, tab_len, size;
767
768 propname = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d", index);
769 if (!propname) {
770 power_supply_put_battery_info(psy, info);
771 err = -ENOMEM;
772 goto out_put_node;
773 }
774 list = of_get_property(battery_np, propname, &size);
775 if (!list || !size) {
776 dev_err(&psy->dev, "failed to get %s\n", propname);
777 kfree(propname);
778 power_supply_put_battery_info(psy, info);
779 err = -EINVAL;
780 goto out_put_node;
781 }
782
783 kfree(propname);
784 tab_len = size / (2 * sizeof(__be32));
785 info->ocv_table_size[index] = tab_len;
786
787 table = info->ocv_table[index] =
788 devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL);
789 if (!info->ocv_table[index]) {
790 power_supply_put_battery_info(psy, info);
791 err = -ENOMEM;
792 goto out_put_node;
793 }
794
795 for (i = 0; i < tab_len; i++) {
796 table[i].ocv = be32_to_cpu(*list);
797 list++;
798 table[i].capacity = be32_to_cpu(*list);
799 list++;
800 }
801 }
802
803 list = of_get_property(battery_np, "resistance-temp-table", &len);
804 if (!list || !len)
805 goto out_put_node;
806
807 info->resist_table_size = len / (2 * sizeof(__be32));
808 resist_table = info->resist_table = devm_kcalloc(&psy->dev,
809 info->resist_table_size,
810 sizeof(*resist_table),
811 GFP_KERNEL);
812 if (!info->resist_table) {
813 power_supply_put_battery_info(psy, info);
814 err = -ENOMEM;
815 goto out_put_node;
816 }
817
818 for (index = 0; index < info->resist_table_size; index++) {
819 resist_table[index].temp = be32_to_cpu(*list++);
820 resist_table[index].resistance = be32_to_cpu(*list++);
821 }
822
823 out_put_node:
824 of_node_put(battery_np);
825 return err;
826 }
827 EXPORT_SYMBOL_GPL(power_supply_get_battery_info);
828
power_supply_put_battery_info(struct power_supply * psy,struct power_supply_battery_info * info)829 void power_supply_put_battery_info(struct power_supply *psy,
830 struct power_supply_battery_info *info)
831 {
832 int i;
833
834 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
835 if (info->ocv_table[i])
836 devm_kfree(&psy->dev, info->ocv_table[i]);
837 }
838
839 if (info->resist_table)
840 devm_kfree(&psy->dev, info->resist_table);
841 }
842 EXPORT_SYMBOL_GPL(power_supply_put_battery_info);
843
844 /**
845 * power_supply_temp2resist_simple() - find the battery internal resistance
846 * percent
847 * @table: Pointer to battery resistance temperature table
848 * @table_len: The table length
849 * @temp: Current temperature
850 *
851 * This helper function is used to look up battery internal resistance percent
852 * according to current temperature value from the resistance temperature table,
853 * and the table must be ordered descending. Then the actual battery internal
854 * resistance = the ideal battery internal resistance * percent / 100.
855 *
856 * Return: the battery internal resistance percent
857 */
power_supply_temp2resist_simple(struct power_supply_resistance_temp_table * table,int table_len,int temp)858 int power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table,
859 int table_len, int temp)
860 {
861 int i, resist;
862
863 for (i = 0; i < table_len; i++)
864 if (temp > table[i].temp)
865 break;
866
867 if (i > 0 && i < table_len) {
868 int tmp;
869
870 tmp = (table[i - 1].resistance - table[i].resistance) *
871 (temp - table[i].temp);
872 tmp /= table[i - 1].temp - table[i].temp;
873 resist = tmp + table[i].resistance;
874 } else if (i == 0) {
875 resist = table[0].resistance;
876 } else {
877 resist = table[table_len - 1].resistance;
878 }
879
880 return resist;
881 }
882 EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple);
883
884 /**
885 * power_supply_ocv2cap_simple() - find the battery capacity
886 * @table: Pointer to battery OCV lookup table
887 * @table_len: OCV table length
888 * @ocv: Current OCV value
889 *
890 * This helper function is used to look up battery capacity according to
891 * current OCV value from one OCV table, and the OCV table must be ordered
892 * descending.
893 *
894 * Return: the battery capacity.
895 */
power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table * table,int table_len,int ocv)896 int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table,
897 int table_len, int ocv)
898 {
899 int i, cap, tmp;
900
901 for (i = 0; i < table_len; i++)
902 if (ocv > table[i].ocv)
903 break;
904
905 if (i > 0 && i < table_len) {
906 tmp = (table[i - 1].capacity - table[i].capacity) *
907 (ocv - table[i].ocv);
908 tmp /= table[i - 1].ocv - table[i].ocv;
909 cap = tmp + table[i].capacity;
910 } else if (i == 0) {
911 cap = table[0].capacity;
912 } else {
913 cap = table[table_len - 1].capacity;
914 }
915
916 return cap;
917 }
918 EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple);
919
920 struct power_supply_battery_ocv_table *
power_supply_find_ocv2cap_table(struct power_supply_battery_info * info,int temp,int * table_len)921 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
922 int temp, int *table_len)
923 {
924 int best_temp_diff = INT_MAX, temp_diff;
925 u8 i, best_index = 0;
926
927 if (!info->ocv_table[0])
928 return NULL;
929
930 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
931 /* Out of capacity tables */
932 if (!info->ocv_table[i])
933 break;
934
935 temp_diff = abs(info->ocv_temp[i] - temp);
936
937 if (temp_diff < best_temp_diff) {
938 best_temp_diff = temp_diff;
939 best_index = i;
940 }
941 }
942
943 *table_len = info->ocv_table_size[best_index];
944 return info->ocv_table[best_index];
945 }
946 EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table);
947
power_supply_batinfo_ocv2cap(struct power_supply_battery_info * info,int ocv,int temp)948 int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
949 int ocv, int temp)
950 {
951 struct power_supply_battery_ocv_table *table;
952 int table_len;
953
954 table = power_supply_find_ocv2cap_table(info, temp, &table_len);
955 if (!table)
956 return -EINVAL;
957
958 return power_supply_ocv2cap_simple(table, table_len, ocv);
959 }
960 EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap);
961
power_supply_get_property(struct power_supply * psy,enum power_supply_property psp,union power_supply_propval * val)962 int power_supply_get_property(struct power_supply *psy,
963 enum power_supply_property psp,
964 union power_supply_propval *val)
965 {
966 if (atomic_read(&psy->use_cnt) <= 0) {
967 if (!psy->initialized)
968 return -EAGAIN;
969 return -ENODEV;
970 }
971
972 return psy->desc->get_property(psy, psp, val);
973 }
974 EXPORT_SYMBOL_GPL(power_supply_get_property);
975
power_supply_set_property(struct power_supply * psy,enum power_supply_property psp,const union power_supply_propval * val)976 int power_supply_set_property(struct power_supply *psy,
977 enum power_supply_property psp,
978 const union power_supply_propval *val)
979 {
980 if (atomic_read(&psy->use_cnt) <= 0 || !psy->desc->set_property)
981 return -ENODEV;
982
983 return psy->desc->set_property(psy, psp, val);
984 }
985 EXPORT_SYMBOL_GPL(power_supply_set_property);
986
power_supply_property_is_writeable(struct power_supply * psy,enum power_supply_property psp)987 int power_supply_property_is_writeable(struct power_supply *psy,
988 enum power_supply_property psp)
989 {
990 if (atomic_read(&psy->use_cnt) <= 0 ||
991 !psy->desc->property_is_writeable)
992 return -ENODEV;
993
994 return psy->desc->property_is_writeable(psy, psp);
995 }
996 EXPORT_SYMBOL_GPL(power_supply_property_is_writeable);
997
power_supply_external_power_changed(struct power_supply * psy)998 void power_supply_external_power_changed(struct power_supply *psy)
999 {
1000 if (atomic_read(&psy->use_cnt) <= 0 ||
1001 !psy->desc->external_power_changed)
1002 return;
1003
1004 psy->desc->external_power_changed(psy);
1005 }
1006 EXPORT_SYMBOL_GPL(power_supply_external_power_changed);
1007
power_supply_powers(struct power_supply * psy,struct device * dev)1008 int power_supply_powers(struct power_supply *psy, struct device *dev)
1009 {
1010 return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers");
1011 }
1012 EXPORT_SYMBOL_GPL(power_supply_powers);
1013
power_supply_dev_release(struct device * dev)1014 static void power_supply_dev_release(struct device *dev)
1015 {
1016 struct power_supply *psy = to_power_supply(dev);
1017 dev_dbg(dev, "%s\n", __func__);
1018 kfree(psy);
1019 }
1020
power_supply_reg_notifier(struct notifier_block * nb)1021 int power_supply_reg_notifier(struct notifier_block *nb)
1022 {
1023 return atomic_notifier_chain_register(&power_supply_notifier, nb);
1024 }
1025 EXPORT_SYMBOL_GPL(power_supply_reg_notifier);
1026
power_supply_unreg_notifier(struct notifier_block * nb)1027 void power_supply_unreg_notifier(struct notifier_block *nb)
1028 {
1029 atomic_notifier_chain_unregister(&power_supply_notifier, nb);
1030 }
1031 EXPORT_SYMBOL_GPL(power_supply_unreg_notifier);
1032
1033 #ifdef CONFIG_THERMAL
power_supply_read_temp(struct thermal_zone_device * tzd,int * temp)1034 static int power_supply_read_temp(struct thermal_zone_device *tzd,
1035 int *temp)
1036 {
1037 struct power_supply *psy;
1038 union power_supply_propval val;
1039 int ret;
1040
1041 WARN_ON(tzd == NULL);
1042 psy = tzd->devdata;
1043 ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val);
1044 if (ret)
1045 return ret;
1046
1047 /* Convert tenths of degree Celsius to milli degree Celsius. */
1048 *temp = val.intval * 100;
1049
1050 return ret;
1051 }
1052
1053 static struct thermal_zone_device_ops psy_tzd_ops = {
1054 .get_temp = power_supply_read_temp,
1055 };
1056
psy_register_thermal(struct power_supply * psy)1057 static int psy_register_thermal(struct power_supply *psy)
1058 {
1059 int i, ret;
1060
1061 if (psy->desc->no_thermal)
1062 return 0;
1063
1064 /* Register battery zone device psy reports temperature */
1065 for (i = 0; i < psy->desc->num_properties; i++) {
1066 if (psy->desc->properties[i] == POWER_SUPPLY_PROP_TEMP) {
1067 psy->tzd = thermal_zone_device_register(psy->desc->name,
1068 0, 0, psy, &psy_tzd_ops, NULL, 0, 0);
1069 if (IS_ERR(psy->tzd))
1070 return PTR_ERR(psy->tzd);
1071 ret = thermal_zone_device_enable(psy->tzd);
1072 if (ret)
1073 thermal_zone_device_unregister(psy->tzd);
1074 return ret;
1075 }
1076 }
1077 return 0;
1078 }
1079
psy_unregister_thermal(struct power_supply * psy)1080 static void psy_unregister_thermal(struct power_supply *psy)
1081 {
1082 if (IS_ERR_OR_NULL(psy->tzd))
1083 return;
1084 thermal_zone_device_unregister(psy->tzd);
1085 }
1086
1087 /* thermal cooling device callbacks */
ps_get_max_charge_cntl_limit(struct thermal_cooling_device * tcd,unsigned long * state)1088 static int ps_get_max_charge_cntl_limit(struct thermal_cooling_device *tcd,
1089 unsigned long *state)
1090 {
1091 struct power_supply *psy;
1092 union power_supply_propval val;
1093 int ret;
1094
1095 psy = tcd->devdata;
1096 ret = power_supply_get_property(psy,
1097 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX, &val);
1098 if (ret)
1099 return ret;
1100
1101 *state = val.intval;
1102
1103 return ret;
1104 }
1105
ps_get_cur_charge_cntl_limit(struct thermal_cooling_device * tcd,unsigned long * state)1106 static int ps_get_cur_charge_cntl_limit(struct thermal_cooling_device *tcd,
1107 unsigned long *state)
1108 {
1109 struct power_supply *psy;
1110 union power_supply_propval val;
1111 int ret;
1112
1113 psy = tcd->devdata;
1114 ret = power_supply_get_property(psy,
1115 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, &val);
1116 if (ret)
1117 return ret;
1118
1119 *state = val.intval;
1120
1121 return ret;
1122 }
1123
ps_set_cur_charge_cntl_limit(struct thermal_cooling_device * tcd,unsigned long state)1124 static int ps_set_cur_charge_cntl_limit(struct thermal_cooling_device *tcd,
1125 unsigned long state)
1126 {
1127 struct power_supply *psy;
1128 union power_supply_propval val;
1129 int ret;
1130
1131 psy = tcd->devdata;
1132 val.intval = state;
1133 ret = psy->desc->set_property(psy,
1134 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, &val);
1135
1136 return ret;
1137 }
1138
1139 static const struct thermal_cooling_device_ops psy_tcd_ops = {
1140 .get_max_state = ps_get_max_charge_cntl_limit,
1141 .get_cur_state = ps_get_cur_charge_cntl_limit,
1142 .set_cur_state = ps_set_cur_charge_cntl_limit,
1143 };
1144
psy_register_cooler(struct power_supply * psy)1145 static int psy_register_cooler(struct power_supply *psy)
1146 {
1147 int i;
1148
1149 /* Register for cooling device if psy can control charging */
1150 for (i = 0; i < psy->desc->num_properties; i++) {
1151 if (psy->desc->properties[i] ==
1152 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT) {
1153 if (psy->dev.parent)
1154 psy->tcd = thermal_of_cooling_device_register(
1155 dev_of_node(psy->dev.parent),
1156 (char *)psy->desc->name,
1157 psy, &psy_tcd_ops);
1158 else
1159 psy->tcd = thermal_cooling_device_register(
1160 (char *)psy->desc->name,
1161 psy, &psy_tcd_ops);
1162 return PTR_ERR_OR_ZERO(psy->tcd);
1163 }
1164 }
1165 return 0;
1166 }
1167
psy_unregister_cooler(struct power_supply * psy)1168 static void psy_unregister_cooler(struct power_supply *psy)
1169 {
1170 if (IS_ERR_OR_NULL(psy->tcd))
1171 return;
1172 thermal_cooling_device_unregister(psy->tcd);
1173 }
1174 #else
psy_register_thermal(struct power_supply * psy)1175 static int psy_register_thermal(struct power_supply *psy)
1176 {
1177 return 0;
1178 }
1179
psy_unregister_thermal(struct power_supply * psy)1180 static void psy_unregister_thermal(struct power_supply *psy)
1181 {
1182 }
1183
psy_register_cooler(struct power_supply * psy)1184 static int psy_register_cooler(struct power_supply *psy)
1185 {
1186 return 0;
1187 }
1188
psy_unregister_cooler(struct power_supply * psy)1189 static void psy_unregister_cooler(struct power_supply *psy)
1190 {
1191 }
1192 #endif
1193
1194 static struct power_supply *__must_check
__power_supply_register(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg,bool ws)1195 __power_supply_register(struct device *parent,
1196 const struct power_supply_desc *desc,
1197 const struct power_supply_config *cfg,
1198 bool ws)
1199 {
1200 struct device *dev;
1201 struct power_supply *psy;
1202 int i, rc;
1203
1204 if (!parent)
1205 pr_warn("%s: Expected proper parent device for '%s'\n",
1206 __func__, desc->name);
1207
1208 if (!desc || !desc->name || !desc->properties || !desc->num_properties)
1209 return ERR_PTR(-EINVAL);
1210
1211 for (i = 0; i < desc->num_properties; ++i) {
1212 if ((desc->properties[i] == POWER_SUPPLY_PROP_USB_TYPE) &&
1213 (!desc->usb_types || !desc->num_usb_types))
1214 return ERR_PTR(-EINVAL);
1215 }
1216
1217 psy = kzalloc(sizeof(*psy), GFP_KERNEL);
1218 if (!psy)
1219 return ERR_PTR(-ENOMEM);
1220
1221 dev = &psy->dev;
1222
1223 device_initialize(dev);
1224
1225 dev->class = power_supply_class;
1226 dev->type = &power_supply_dev_type;
1227 dev->parent = parent;
1228 dev->release = power_supply_dev_release;
1229 dev_set_drvdata(dev, psy);
1230 psy->desc = desc;
1231 if (cfg) {
1232 dev->groups = cfg->attr_grp;
1233 psy->drv_data = cfg->drv_data;
1234 psy->of_node =
1235 cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node;
1236 psy->supplied_to = cfg->supplied_to;
1237 psy->num_supplicants = cfg->num_supplicants;
1238 }
1239
1240 rc = dev_set_name(dev, "%s", desc->name);
1241 if (rc)
1242 goto dev_set_name_failed;
1243
1244 INIT_WORK(&psy->changed_work, power_supply_changed_work);
1245 INIT_DELAYED_WORK(&psy->deferred_register_work,
1246 power_supply_deferred_register_work);
1247
1248 rc = power_supply_check_supplies(psy);
1249 if (rc) {
1250 dev_info(dev, "Not all required supplies found, defer probe\n");
1251 goto check_supplies_failed;
1252 }
1253
1254 spin_lock_init(&psy->changed_lock);
1255 rc = device_add(dev);
1256 if (rc)
1257 goto device_add_failed;
1258
1259 rc = device_init_wakeup(dev, ws);
1260 if (rc)
1261 goto wakeup_init_failed;
1262
1263 rc = psy_register_thermal(psy);
1264 if (rc)
1265 goto register_thermal_failed;
1266
1267 rc = power_supply_create_triggers(psy);
1268 if (rc)
1269 goto create_triggers_failed;
1270
1271 rc = power_supply_add_hwmon_sysfs(psy);
1272 if (rc)
1273 goto add_hwmon_sysfs_failed;
1274
1275 /*
1276 * Update use_cnt after any uevents (most notably from device_add()).
1277 * We are here still during driver's probe but
1278 * the power_supply_uevent() calls back driver's get_property
1279 * method so:
1280 * 1. Driver did not assigned the returned struct power_supply,
1281 * 2. Driver could not finish initialization (anything in its probe
1282 * after calling power_supply_register()).
1283 */
1284 atomic_inc(&psy->use_cnt);
1285 psy->initialized = true;
1286
1287 queue_delayed_work(system_power_efficient_wq,
1288 &psy->deferred_register_work,
1289 POWER_SUPPLY_DEFERRED_REGISTER_TIME);
1290
1291 return psy;
1292
1293 add_hwmon_sysfs_failed:
1294 power_supply_remove_triggers(psy);
1295 create_triggers_failed:
1296 psy_unregister_thermal(psy);
1297 register_thermal_failed:
1298 wakeup_init_failed:
1299 device_del(dev);
1300 device_add_failed:
1301 check_supplies_failed:
1302 dev_set_name_failed:
1303 put_device(dev);
1304 return ERR_PTR(rc);
1305 }
1306
1307 /**
1308 * power_supply_register() - Register new power supply
1309 * @parent: Device to be a parent of power supply's device, usually
1310 * the device which probe function calls this
1311 * @desc: Description of power supply, must be valid through whole
1312 * lifetime of this power supply
1313 * @cfg: Run-time specific configuration accessed during registering,
1314 * may be NULL
1315 *
1316 * Return: A pointer to newly allocated power_supply on success
1317 * or ERR_PTR otherwise.
1318 * Use power_supply_unregister() on returned power_supply pointer to release
1319 * resources.
1320 */
power_supply_register(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1321 struct power_supply *__must_check power_supply_register(struct device *parent,
1322 const struct power_supply_desc *desc,
1323 const struct power_supply_config *cfg)
1324 {
1325 return __power_supply_register(parent, desc, cfg, true);
1326 }
1327 EXPORT_SYMBOL_GPL(power_supply_register);
1328
1329 /**
1330 * power_supply_register_no_ws() - Register new non-waking-source power supply
1331 * @parent: Device to be a parent of power supply's device, usually
1332 * the device which probe function calls this
1333 * @desc: Description of power supply, must be valid through whole
1334 * lifetime of this power supply
1335 * @cfg: Run-time specific configuration accessed during registering,
1336 * may be NULL
1337 *
1338 * Return: A pointer to newly allocated power_supply on success
1339 * or ERR_PTR otherwise.
1340 * Use power_supply_unregister() on returned power_supply pointer to release
1341 * resources.
1342 */
1343 struct power_supply *__must_check
power_supply_register_no_ws(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1344 power_supply_register_no_ws(struct device *parent,
1345 const struct power_supply_desc *desc,
1346 const struct power_supply_config *cfg)
1347 {
1348 return __power_supply_register(parent, desc, cfg, false);
1349 }
1350 EXPORT_SYMBOL_GPL(power_supply_register_no_ws);
1351
devm_power_supply_release(struct device * dev,void * res)1352 static void devm_power_supply_release(struct device *dev, void *res)
1353 {
1354 struct power_supply **psy = res;
1355
1356 power_supply_unregister(*psy);
1357 }
1358
1359 /**
1360 * devm_power_supply_register() - Register managed power supply
1361 * @parent: Device to be a parent of power supply's device, usually
1362 * the device which probe function calls this
1363 * @desc: Description of power supply, must be valid through whole
1364 * lifetime of this power supply
1365 * @cfg: Run-time specific configuration accessed during registering,
1366 * may be NULL
1367 *
1368 * Return: A pointer to newly allocated power_supply on success
1369 * or ERR_PTR otherwise.
1370 * The returned power_supply pointer will be automatically unregistered
1371 * on driver detach.
1372 */
1373 struct power_supply *__must_check
devm_power_supply_register(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1374 devm_power_supply_register(struct device *parent,
1375 const struct power_supply_desc *desc,
1376 const struct power_supply_config *cfg)
1377 {
1378 struct power_supply **ptr, *psy;
1379
1380 ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1381
1382 if (!ptr)
1383 return ERR_PTR(-ENOMEM);
1384 psy = __power_supply_register(parent, desc, cfg, true);
1385 if (IS_ERR(psy)) {
1386 devres_free(ptr);
1387 } else {
1388 *ptr = psy;
1389 devres_add(parent, ptr);
1390 }
1391 return psy;
1392 }
1393 EXPORT_SYMBOL_GPL(devm_power_supply_register);
1394
1395 /**
1396 * devm_power_supply_register_no_ws() - Register managed non-waking-source power supply
1397 * @parent: Device to be a parent of power supply's device, usually
1398 * the device which probe function calls this
1399 * @desc: Description of power supply, must be valid through whole
1400 * lifetime of this power supply
1401 * @cfg: Run-time specific configuration accessed during registering,
1402 * may be NULL
1403 *
1404 * Return: A pointer to newly allocated power_supply on success
1405 * or ERR_PTR otherwise.
1406 * The returned power_supply pointer will be automatically unregistered
1407 * on driver detach.
1408 */
1409 struct power_supply *__must_check
devm_power_supply_register_no_ws(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1410 devm_power_supply_register_no_ws(struct device *parent,
1411 const struct power_supply_desc *desc,
1412 const struct power_supply_config *cfg)
1413 {
1414 struct power_supply **ptr, *psy;
1415
1416 ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1417
1418 if (!ptr)
1419 return ERR_PTR(-ENOMEM);
1420 psy = __power_supply_register(parent, desc, cfg, false);
1421 if (IS_ERR(psy)) {
1422 devres_free(ptr);
1423 } else {
1424 *ptr = psy;
1425 devres_add(parent, ptr);
1426 }
1427 return psy;
1428 }
1429 EXPORT_SYMBOL_GPL(devm_power_supply_register_no_ws);
1430
1431 /**
1432 * power_supply_unregister() - Remove this power supply from system
1433 * @psy: Pointer to power supply to unregister
1434 *
1435 * Remove this power supply from the system. The resources of power supply
1436 * will be freed here or on last power_supply_put() call.
1437 */
power_supply_unregister(struct power_supply * psy)1438 void power_supply_unregister(struct power_supply *psy)
1439 {
1440 WARN_ON(atomic_dec_return(&psy->use_cnt));
1441 psy->removing = true;
1442 cancel_work_sync(&psy->changed_work);
1443 cancel_delayed_work_sync(&psy->deferred_register_work);
1444 sysfs_remove_link(&psy->dev.kobj, "powers");
1445 power_supply_remove_hwmon_sysfs(psy);
1446 power_supply_remove_triggers(psy);
1447 psy_unregister_cooler(psy);
1448 psy_unregister_thermal(psy);
1449 device_init_wakeup(&psy->dev, false);
1450 device_unregister(&psy->dev);
1451 }
1452 EXPORT_SYMBOL_GPL(power_supply_unregister);
1453
power_supply_get_drvdata(struct power_supply * psy)1454 void *power_supply_get_drvdata(struct power_supply *psy)
1455 {
1456 return psy->drv_data;
1457 }
1458 EXPORT_SYMBOL_GPL(power_supply_get_drvdata);
1459
power_supply_class_init(void)1460 static int __init power_supply_class_init(void)
1461 {
1462 power_supply_class = class_create(THIS_MODULE, "power_supply");
1463
1464 if (IS_ERR(power_supply_class))
1465 return PTR_ERR(power_supply_class);
1466
1467 power_supply_class->dev_uevent = power_supply_uevent;
1468 power_supply_init_attrs(&power_supply_dev_type);
1469
1470 return 0;
1471 }
1472
power_supply_class_exit(void)1473 static void __exit power_supply_class_exit(void)
1474 {
1475 class_destroy(power_supply_class);
1476 }
1477
1478 subsys_initcall(power_supply_class_init);
1479 module_exit(power_supply_class_exit);
1480
1481 MODULE_DESCRIPTION("Universal power supply monitor class");
1482 MODULE_AUTHOR("Ian Molton <spyro@f2s.com>, "
1483 "Szabolcs Gyurko, "
1484 "Anton Vorontsov <cbou@mail.ru>");
1485 MODULE_LICENSE("GPL");
1486