1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2020 Linaro Limited
4 *
5 * Author: Daniel Lezcano <daniel.lezcano@linaro.org>
6 *
7 * The powercap based Dynamic Thermal Power Management framework
8 * provides to the userspace a consistent API to set the power limit
9 * on some devices.
10 *
11 * DTPM defines the functions to create a tree of constraints. Each
12 * parent node is a virtual description of the aggregation of the
13 * children. It propagates the constraints set at its level to its
14 * children and collect the children power information. The leaves of
15 * the tree are the real devices which have the ability to get their
16 * current power consumption and set their power limit.
17 */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/dtpm.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/powercap.h>
24 #include <linux/slab.h>
25 #include <linux/mutex.h>
26
27 #define DTPM_POWER_LIMIT_FLAG 0
28
29 static const char *constraint_name[] = {
30 "Instantaneous",
31 };
32
33 static DEFINE_MUTEX(dtpm_lock);
34 static struct powercap_control_type *pct;
35 static struct dtpm *root;
36
get_time_window_us(struct powercap_zone * pcz,int cid,u64 * window)37 static int get_time_window_us(struct powercap_zone *pcz, int cid, u64 *window)
38 {
39 return -ENOSYS;
40 }
41
set_time_window_us(struct powercap_zone * pcz,int cid,u64 window)42 static int set_time_window_us(struct powercap_zone *pcz, int cid, u64 window)
43 {
44 return -ENOSYS;
45 }
46
get_max_power_range_uw(struct powercap_zone * pcz,u64 * max_power_uw)47 static int get_max_power_range_uw(struct powercap_zone *pcz, u64 *max_power_uw)
48 {
49 struct dtpm *dtpm = to_dtpm(pcz);
50
51 mutex_lock(&dtpm_lock);
52 *max_power_uw = dtpm->power_max - dtpm->power_min;
53 mutex_unlock(&dtpm_lock);
54
55 return 0;
56 }
57
__get_power_uw(struct dtpm * dtpm,u64 * power_uw)58 static int __get_power_uw(struct dtpm *dtpm, u64 *power_uw)
59 {
60 struct dtpm *child;
61 u64 power;
62 int ret = 0;
63
64 if (dtpm->ops) {
65 *power_uw = dtpm->ops->get_power_uw(dtpm);
66 return 0;
67 }
68
69 *power_uw = 0;
70
71 list_for_each_entry(child, &dtpm->children, sibling) {
72 ret = __get_power_uw(child, &power);
73 if (ret)
74 break;
75 *power_uw += power;
76 }
77
78 return ret;
79 }
80
get_power_uw(struct powercap_zone * pcz,u64 * power_uw)81 static int get_power_uw(struct powercap_zone *pcz, u64 *power_uw)
82 {
83 struct dtpm *dtpm = to_dtpm(pcz);
84 int ret;
85
86 mutex_lock(&dtpm_lock);
87 ret = __get_power_uw(dtpm, power_uw);
88 mutex_unlock(&dtpm_lock);
89
90 return ret;
91 }
92
__dtpm_rebalance_weight(struct dtpm * dtpm)93 static void __dtpm_rebalance_weight(struct dtpm *dtpm)
94 {
95 struct dtpm *child;
96
97 list_for_each_entry(child, &dtpm->children, sibling) {
98
99 pr_debug("Setting weight '%d' for '%s'\n",
100 child->weight, child->zone.name);
101
102 child->weight = DIV64_U64_ROUND_CLOSEST(
103 child->power_max * 1024, dtpm->power_max);
104
105 __dtpm_rebalance_weight(child);
106 }
107 }
108
__dtpm_sub_power(struct dtpm * dtpm)109 static void __dtpm_sub_power(struct dtpm *dtpm)
110 {
111 struct dtpm *parent = dtpm->parent;
112
113 while (parent) {
114 parent->power_min -= dtpm->power_min;
115 parent->power_max -= dtpm->power_max;
116 parent->power_limit -= dtpm->power_limit;
117 parent = parent->parent;
118 }
119
120 __dtpm_rebalance_weight(root);
121 }
122
__dtpm_add_power(struct dtpm * dtpm)123 static void __dtpm_add_power(struct dtpm *dtpm)
124 {
125 struct dtpm *parent = dtpm->parent;
126
127 while (parent) {
128 parent->power_min += dtpm->power_min;
129 parent->power_max += dtpm->power_max;
130 parent->power_limit += dtpm->power_limit;
131 parent = parent->parent;
132 }
133
134 __dtpm_rebalance_weight(root);
135 }
136
137 /**
138 * dtpm_update_power - Update the power on the dtpm
139 * @dtpm: a pointer to a dtpm structure to update
140 * @power_min: a u64 representing the new power_min value
141 * @power_max: a u64 representing the new power_max value
142 *
143 * Function to update the power values of the dtpm node specified in
144 * parameter. These new values will be propagated to the tree.
145 *
146 * Return: zero on success, -EINVAL if the values are inconsistent
147 */
dtpm_update_power(struct dtpm * dtpm,u64 power_min,u64 power_max)148 int dtpm_update_power(struct dtpm *dtpm, u64 power_min, u64 power_max)
149 {
150 int ret = 0;
151
152 mutex_lock(&dtpm_lock);
153
154 if (power_min == dtpm->power_min && power_max == dtpm->power_max)
155 goto unlock;
156
157 if (power_max < power_min) {
158 ret = -EINVAL;
159 goto unlock;
160 }
161
162 __dtpm_sub_power(dtpm);
163
164 dtpm->power_min = power_min;
165 dtpm->power_max = power_max;
166 if (!test_bit(DTPM_POWER_LIMIT_FLAG, &dtpm->flags))
167 dtpm->power_limit = power_max;
168
169 __dtpm_add_power(dtpm);
170
171 unlock:
172 mutex_unlock(&dtpm_lock);
173
174 return ret;
175 }
176
177 /**
178 * dtpm_release_zone - Cleanup when the node is released
179 * @pcz: a pointer to a powercap_zone structure
180 *
181 * Do some housecleaning and update the weight on the tree. The
182 * release will be denied if the node has children. This function must
183 * be called by the specific release callback of the different
184 * backends.
185 *
186 * Return: 0 on success, -EBUSY if there are children
187 */
dtpm_release_zone(struct powercap_zone * pcz)188 int dtpm_release_zone(struct powercap_zone *pcz)
189 {
190 struct dtpm *dtpm = to_dtpm(pcz);
191 struct dtpm *parent = dtpm->parent;
192
193 mutex_lock(&dtpm_lock);
194
195 if (!list_empty(&dtpm->children)) {
196 mutex_unlock(&dtpm_lock);
197 return -EBUSY;
198 }
199
200 if (parent)
201 list_del(&dtpm->sibling);
202
203 __dtpm_sub_power(dtpm);
204
205 mutex_unlock(&dtpm_lock);
206
207 if (dtpm->ops)
208 dtpm->ops->release(dtpm);
209
210 if (root == dtpm)
211 root = NULL;
212
213 kfree(dtpm);
214
215 return 0;
216 }
217
__get_power_limit_uw(struct dtpm * dtpm,int cid,u64 * power_limit)218 static int __get_power_limit_uw(struct dtpm *dtpm, int cid, u64 *power_limit)
219 {
220 *power_limit = dtpm->power_limit;
221 return 0;
222 }
223
get_power_limit_uw(struct powercap_zone * pcz,int cid,u64 * power_limit)224 static int get_power_limit_uw(struct powercap_zone *pcz,
225 int cid, u64 *power_limit)
226 {
227 struct dtpm *dtpm = to_dtpm(pcz);
228 int ret;
229
230 mutex_lock(&dtpm_lock);
231 ret = __get_power_limit_uw(dtpm, cid, power_limit);
232 mutex_unlock(&dtpm_lock);
233
234 return ret;
235 }
236
237 /*
238 * Set the power limit on the nodes, the power limit is distributed
239 * given the weight of the children.
240 *
241 * The dtpm node lock must be held when calling this function.
242 */
__set_power_limit_uw(struct dtpm * dtpm,int cid,u64 power_limit)243 static int __set_power_limit_uw(struct dtpm *dtpm, int cid, u64 power_limit)
244 {
245 struct dtpm *child;
246 int ret = 0;
247 u64 power;
248
249 /*
250 * A max power limitation means we remove the power limit,
251 * otherwise we set a constraint and flag the dtpm node.
252 */
253 if (power_limit == dtpm->power_max) {
254 clear_bit(DTPM_POWER_LIMIT_FLAG, &dtpm->flags);
255 } else {
256 set_bit(DTPM_POWER_LIMIT_FLAG, &dtpm->flags);
257 }
258
259 pr_debug("Setting power limit for '%s': %llu uW\n",
260 dtpm->zone.name, power_limit);
261
262 /*
263 * Only leaves of the dtpm tree has ops to get/set the power
264 */
265 if (dtpm->ops) {
266 dtpm->power_limit = dtpm->ops->set_power_uw(dtpm, power_limit);
267 } else {
268 dtpm->power_limit = 0;
269
270 list_for_each_entry(child, &dtpm->children, sibling) {
271
272 /*
273 * Integer division rounding will inevitably
274 * lead to a different min or max value when
275 * set several times. In order to restore the
276 * initial value, we force the child's min or
277 * max power every time if the constraint is
278 * at the boundaries.
279 */
280 if (power_limit == dtpm->power_max) {
281 power = child->power_max;
282 } else if (power_limit == dtpm->power_min) {
283 power = child->power_min;
284 } else {
285 power = DIV_ROUND_CLOSEST_ULL(
286 power_limit * child->weight, 1024);
287 }
288
289 pr_debug("Setting power limit for '%s': %llu uW\n",
290 child->zone.name, power);
291
292 ret = __set_power_limit_uw(child, cid, power);
293 if (!ret)
294 ret = __get_power_limit_uw(child, cid, &power);
295
296 if (ret)
297 break;
298
299 dtpm->power_limit += power;
300 }
301 }
302
303 return ret;
304 }
305
set_power_limit_uw(struct powercap_zone * pcz,int cid,u64 power_limit)306 static int set_power_limit_uw(struct powercap_zone *pcz,
307 int cid, u64 power_limit)
308 {
309 struct dtpm *dtpm = to_dtpm(pcz);
310 int ret;
311
312 mutex_lock(&dtpm_lock);
313
314 /*
315 * Don't allow values outside of the power range previously
316 * set when initializing the power numbers.
317 */
318 power_limit = clamp_val(power_limit, dtpm->power_min, dtpm->power_max);
319
320 ret = __set_power_limit_uw(dtpm, cid, power_limit);
321
322 pr_debug("%s: power limit: %llu uW, power max: %llu uW\n",
323 dtpm->zone.name, dtpm->power_limit, dtpm->power_max);
324
325 mutex_unlock(&dtpm_lock);
326
327 return ret;
328 }
329
get_constraint_name(struct powercap_zone * pcz,int cid)330 static const char *get_constraint_name(struct powercap_zone *pcz, int cid)
331 {
332 return constraint_name[cid];
333 }
334
get_max_power_uw(struct powercap_zone * pcz,int id,u64 * max_power)335 static int get_max_power_uw(struct powercap_zone *pcz, int id, u64 *max_power)
336 {
337 struct dtpm *dtpm = to_dtpm(pcz);
338
339 mutex_lock(&dtpm_lock);
340 *max_power = dtpm->power_max;
341 mutex_unlock(&dtpm_lock);
342
343 return 0;
344 }
345
346 static struct powercap_zone_constraint_ops constraint_ops = {
347 .set_power_limit_uw = set_power_limit_uw,
348 .get_power_limit_uw = get_power_limit_uw,
349 .set_time_window_us = set_time_window_us,
350 .get_time_window_us = get_time_window_us,
351 .get_max_power_uw = get_max_power_uw,
352 .get_name = get_constraint_name,
353 };
354
355 static struct powercap_zone_ops zone_ops = {
356 .get_max_power_range_uw = get_max_power_range_uw,
357 .get_power_uw = get_power_uw,
358 .release = dtpm_release_zone,
359 };
360
361 /**
362 * dtpm_alloc - Allocate and initialize a dtpm struct
363 * @name: a string specifying the name of the node
364 *
365 * Return: a struct dtpm pointer, NULL in case of error
366 */
dtpm_alloc(struct dtpm_ops * ops)367 struct dtpm *dtpm_alloc(struct dtpm_ops *ops)
368 {
369 struct dtpm *dtpm;
370
371 dtpm = kzalloc(sizeof(*dtpm), GFP_KERNEL);
372 if (dtpm) {
373 INIT_LIST_HEAD(&dtpm->children);
374 INIT_LIST_HEAD(&dtpm->sibling);
375 dtpm->weight = 1024;
376 dtpm->ops = ops;
377 }
378
379 return dtpm;
380 }
381
382 /**
383 * dtpm_unregister - Unregister a dtpm node from the hierarchy tree
384 * @dtpm: a pointer to a dtpm structure corresponding to the node to be removed
385 *
386 * Call the underlying powercap unregister function. That will call
387 * the release callback of the powercap zone.
388 */
dtpm_unregister(struct dtpm * dtpm)389 void dtpm_unregister(struct dtpm *dtpm)
390 {
391 powercap_unregister_zone(pct, &dtpm->zone);
392
393 pr_info("Unregistered dtpm node '%s'\n", dtpm->zone.name);
394 }
395
396 /**
397 * dtpm_register - Register a dtpm node in the hierarchy tree
398 * @name: a string specifying the name of the node
399 * @dtpm: a pointer to a dtpm structure corresponding to the new node
400 * @parent: a pointer to a dtpm structure corresponding to the parent node
401 *
402 * Create a dtpm node in the tree. If no parent is specified, the node
403 * is the root node of the hierarchy. If the root node already exists,
404 * then the registration will fail. The powercap controller must be
405 * initialized before calling this function.
406 *
407 * The dtpm structure must be initialized with the power numbers
408 * before calling this function.
409 *
410 * Return: zero on success, a negative value in case of error:
411 * -EAGAIN: the function is called before the framework is initialized.
412 * -EBUSY: the root node is already inserted
413 * -EINVAL: * there is no root node yet and @parent is specified
414 * * no all ops are defined
415 * * parent have ops which are reserved for leaves
416 * Other negative values are reported back from the powercap framework
417 */
dtpm_register(const char * name,struct dtpm * dtpm,struct dtpm * parent)418 int dtpm_register(const char *name, struct dtpm *dtpm, struct dtpm *parent)
419 {
420 struct powercap_zone *pcz;
421
422 if (!pct)
423 return -EAGAIN;
424
425 if (root && !parent)
426 return -EBUSY;
427
428 if (!root && parent)
429 return -EINVAL;
430
431 if (parent && parent->ops)
432 return -EINVAL;
433
434 if (!dtpm)
435 return -EINVAL;
436
437 if (dtpm->ops && !(dtpm->ops->set_power_uw &&
438 dtpm->ops->get_power_uw &&
439 dtpm->ops->release))
440 return -EINVAL;
441
442 pcz = powercap_register_zone(&dtpm->zone, pct, name,
443 parent ? &parent->zone : NULL,
444 &zone_ops, MAX_DTPM_CONSTRAINTS,
445 &constraint_ops);
446 if (IS_ERR(pcz))
447 return PTR_ERR(pcz);
448
449 mutex_lock(&dtpm_lock);
450
451 if (parent) {
452 list_add_tail(&dtpm->sibling, &parent->children);
453 dtpm->parent = parent;
454 } else {
455 root = dtpm;
456 }
457
458 __dtpm_add_power(dtpm);
459
460 pr_info("Registered dtpm node '%s' / %llu-%llu uW, \n",
461 dtpm->zone.name, dtpm->power_min, dtpm->power_max);
462
463 mutex_unlock(&dtpm_lock);
464
465 return 0;
466 }
467
dtpm_init(void)468 static int __init dtpm_init(void)
469 {
470 struct dtpm_descr **dtpm_descr;
471
472 pct = powercap_register_control_type(NULL, "dtpm", NULL);
473 if (IS_ERR(pct)) {
474 pr_err("Failed to register control type\n");
475 return PTR_ERR(pct);
476 }
477
478 for_each_dtpm_table(dtpm_descr)
479 (*dtpm_descr)->init(*dtpm_descr);
480
481 return 0;
482 }
483 late_initcall(dtpm_init);
484