• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
4  *
5  * Copyright (c) 1995-2000 Advanced System Products, Inc.
6  * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
7  * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
8  * Copyright (c) 2014 Hannes Reinecke <hare@suse.de>
9  * All Rights Reserved.
10  */
11 
12 /*
13  * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
14  * changed its name to ConnectCom Solutions, Inc.
15  * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
16  */
17 
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/kernel.h>
21 #include <linux/types.h>
22 #include <linux/ioport.h>
23 #include <linux/interrupt.h>
24 #include <linux/delay.h>
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 #include <linux/proc_fs.h>
28 #include <linux/init.h>
29 #include <linux/blkdev.h>
30 #include <linux/isa.h>
31 #include <linux/eisa.h>
32 #include <linux/pci.h>
33 #include <linux/spinlock.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/firmware.h>
36 #include <linux/dmapool.h>
37 
38 #include <asm/io.h>
39 #include <asm/dma.h>
40 
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_device.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_host.h>
46 
47 #define DRV_NAME "advansys"
48 #define ASC_VERSION "3.5"	/* AdvanSys Driver Version */
49 
50 /* FIXME:
51  *
52  *  1. Use scsi_transport_spi
53  *  2. advansys_info is not safe against multiple simultaneous callers
54  *  3. Add module_param to override ISA/VLB ioport array
55  */
56 
57 /* Enable driver /proc statistics. */
58 #define ADVANSYS_STATS
59 
60 /* Enable driver tracing. */
61 #undef ADVANSYS_DEBUG
62 
63 typedef unsigned char uchar;
64 
65 #define isodd_word(val)   ((((uint)val) & (uint)0x0001) != 0)
66 
67 #define PCI_VENDOR_ID_ASP		0x10cd
68 #define PCI_DEVICE_ID_ASP_1200A		0x1100
69 #define PCI_DEVICE_ID_ASP_ABP940	0x1200
70 #define PCI_DEVICE_ID_ASP_ABP940U	0x1300
71 #define PCI_DEVICE_ID_ASP_ABP940UW	0x2300
72 #define PCI_DEVICE_ID_38C0800_REV1	0x2500
73 #define PCI_DEVICE_ID_38C1600_REV1	0x2700
74 
75 #define PortAddr                 unsigned int	/* port address size  */
76 #define inp(port)                inb(port)
77 #define outp(port, byte)         outb((byte), (port))
78 
79 #define inpw(port)               inw(port)
80 #define outpw(port, word)        outw((word), (port))
81 
82 #define ASC_MAX_SG_QUEUE    7
83 #define ASC_MAX_SG_LIST     255
84 
85 #define ASC_CS_TYPE  unsigned short
86 
87 #define ASC_IS_ISA          (0x0001)
88 #define ASC_IS_ISAPNP       (0x0081)
89 #define ASC_IS_EISA         (0x0002)
90 #define ASC_IS_PCI          (0x0004)
91 #define ASC_IS_PCI_ULTRA    (0x0104)
92 #define ASC_IS_PCMCIA       (0x0008)
93 #define ASC_IS_MCA          (0x0020)
94 #define ASC_IS_VL           (0x0040)
95 #define ASC_IS_WIDESCSI_16  (0x0100)
96 #define ASC_IS_WIDESCSI_32  (0x0200)
97 #define ASC_IS_BIG_ENDIAN   (0x8000)
98 
99 #define ASC_CHIP_MIN_VER_VL      (0x01)
100 #define ASC_CHIP_MAX_VER_VL      (0x07)
101 #define ASC_CHIP_MIN_VER_PCI     (0x09)
102 #define ASC_CHIP_MAX_VER_PCI     (0x0F)
103 #define ASC_CHIP_VER_PCI_BIT     (0x08)
104 #define ASC_CHIP_MIN_VER_ISA     (0x11)
105 #define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
106 #define ASC_CHIP_MAX_VER_ISA     (0x27)
107 #define ASC_CHIP_VER_ISA_BIT     (0x30)
108 #define ASC_CHIP_VER_ISAPNP_BIT  (0x20)
109 #define ASC_CHIP_VER_ASYN_BUG    (0x21)
110 #define ASC_CHIP_VER_PCI             0x08
111 #define ASC_CHIP_VER_PCI_ULTRA_3150  (ASC_CHIP_VER_PCI | 0x02)
112 #define ASC_CHIP_VER_PCI_ULTRA_3050  (ASC_CHIP_VER_PCI | 0x03)
113 #define ASC_CHIP_MIN_VER_EISA (0x41)
114 #define ASC_CHIP_MAX_VER_EISA (0x47)
115 #define ASC_CHIP_VER_EISA_BIT (0x40)
116 #define ASC_CHIP_LATEST_VER_EISA   ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
117 #define ASC_MAX_VL_DMA_COUNT    (0x07FFFFFFL)
118 #define ASC_MAX_PCI_DMA_COUNT   (0xFFFFFFFFL)
119 #define ASC_MAX_ISA_DMA_COUNT   (0x00FFFFFFL)
120 
121 #define ASC_SCSI_ID_BITS  3
122 #define ASC_SCSI_TIX_TYPE     uchar
123 #define ASC_ALL_DEVICE_BIT_SET  0xFF
124 #define ASC_SCSI_BIT_ID_TYPE  uchar
125 #define ASC_MAX_TID       7
126 #define ASC_MAX_LUN       7
127 #define ASC_SCSI_WIDTH_BIT_SET  0xFF
128 #define ASC_MAX_SENSE_LEN   32
129 #define ASC_MIN_SENSE_LEN   14
130 #define ASC_SCSI_RESET_HOLD_TIME_US  60
131 
132 /*
133  * Narrow boards only support 12-byte commands, while wide boards
134  * extend to 16-byte commands.
135  */
136 #define ASC_MAX_CDB_LEN     12
137 #define ADV_MAX_CDB_LEN     16
138 
139 #define MS_SDTR_LEN    0x03
140 #define MS_WDTR_LEN    0x02
141 
142 #define ASC_SG_LIST_PER_Q   7
143 #define QS_FREE        0x00
144 #define QS_READY       0x01
145 #define QS_DISC1       0x02
146 #define QS_DISC2       0x04
147 #define QS_BUSY        0x08
148 #define QS_ABORTED     0x40
149 #define QS_DONE        0x80
150 #define QC_NO_CALLBACK   0x01
151 #define QC_SG_SWAP_QUEUE 0x02
152 #define QC_SG_HEAD       0x04
153 #define QC_DATA_IN       0x08
154 #define QC_DATA_OUT      0x10
155 #define QC_URGENT        0x20
156 #define QC_MSG_OUT       0x40
157 #define QC_REQ_SENSE     0x80
158 #define QCSG_SG_XFER_LIST  0x02
159 #define QCSG_SG_XFER_MORE  0x04
160 #define QCSG_SG_XFER_END   0x08
161 #define QD_IN_PROGRESS       0x00
162 #define QD_NO_ERROR          0x01
163 #define QD_ABORTED_BY_HOST   0x02
164 #define QD_WITH_ERROR        0x04
165 #define QD_INVALID_REQUEST   0x80
166 #define QD_INVALID_HOST_NUM  0x81
167 #define QD_INVALID_DEVICE    0x82
168 #define QD_ERR_INTERNAL      0xFF
169 #define QHSTA_NO_ERROR               0x00
170 #define QHSTA_M_SEL_TIMEOUT          0x11
171 #define QHSTA_M_DATA_OVER_RUN        0x12
172 #define QHSTA_M_DATA_UNDER_RUN       0x12
173 #define QHSTA_M_UNEXPECTED_BUS_FREE  0x13
174 #define QHSTA_M_BAD_BUS_PHASE_SEQ    0x14
175 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
176 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET  0x22
177 #define QHSTA_D_HOST_ABORT_FAILED       0x23
178 #define QHSTA_D_EXE_SCSI_Q_FAILED       0x24
179 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
180 #define QHSTA_D_ASPI_NO_BUF_POOL        0x26
181 #define QHSTA_M_WTM_TIMEOUT         0x41
182 #define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
183 #define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
184 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
185 #define QHSTA_M_TARGET_STATUS_BUSY  0x45
186 #define QHSTA_M_BAD_TAG_CODE        0x46
187 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY  0x47
188 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
189 #define QHSTA_D_LRAM_CMP_ERROR        0x81
190 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
191 #define ASC_FLAG_SCSIQ_REQ        0x01
192 #define ASC_FLAG_BIOS_SCSIQ_REQ   0x02
193 #define ASC_FLAG_BIOS_ASYNC_IO    0x04
194 #define ASC_FLAG_SRB_LINEAR_ADDR  0x08
195 #define ASC_FLAG_WIN16            0x10
196 #define ASC_FLAG_WIN32            0x20
197 #define ASC_FLAG_ISA_OVER_16MB    0x40
198 #define ASC_FLAG_DOS_VM_CALLBACK  0x80
199 #define ASC_TAG_FLAG_EXTRA_BYTES               0x10
200 #define ASC_TAG_FLAG_DISABLE_DISCONNECT        0x04
201 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX  0x08
202 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
203 #define ASC_SCSIQ_CPY_BEG              4
204 #define ASC_SCSIQ_SGHD_CPY_BEG         2
205 #define ASC_SCSIQ_B_FWD                0
206 #define ASC_SCSIQ_B_BWD                1
207 #define ASC_SCSIQ_B_STATUS             2
208 #define ASC_SCSIQ_B_QNO                3
209 #define ASC_SCSIQ_B_CNTL               4
210 #define ASC_SCSIQ_B_SG_QUEUE_CNT       5
211 #define ASC_SCSIQ_D_DATA_ADDR          8
212 #define ASC_SCSIQ_D_DATA_CNT          12
213 #define ASC_SCSIQ_B_SENSE_LEN         20
214 #define ASC_SCSIQ_DONE_INFO_BEG       22
215 #define ASC_SCSIQ_D_SRBPTR            22
216 #define ASC_SCSIQ_B_TARGET_IX         26
217 #define ASC_SCSIQ_B_CDB_LEN           28
218 #define ASC_SCSIQ_B_TAG_CODE          29
219 #define ASC_SCSIQ_W_VM_ID             30
220 #define ASC_SCSIQ_DONE_STATUS         32
221 #define ASC_SCSIQ_HOST_STATUS         33
222 #define ASC_SCSIQ_SCSI_STATUS         34
223 #define ASC_SCSIQ_CDB_BEG             36
224 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
225 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT  60
226 #define ASC_SCSIQ_B_FIRST_SG_WK_QP    48
227 #define ASC_SCSIQ_B_SG_WK_QP          49
228 #define ASC_SCSIQ_B_SG_WK_IX          50
229 #define ASC_SCSIQ_W_ALT_DC1           52
230 #define ASC_SCSIQ_B_LIST_CNT          6
231 #define ASC_SCSIQ_B_CUR_LIST_CNT      7
232 #define ASC_SGQ_B_SG_CNTL             4
233 #define ASC_SGQ_B_SG_HEAD_QP          5
234 #define ASC_SGQ_B_SG_LIST_CNT         6
235 #define ASC_SGQ_B_SG_CUR_LIST_CNT     7
236 #define ASC_SGQ_LIST_BEG              8
237 #define ASC_DEF_SCSI1_QNG    4
238 #define ASC_MAX_SCSI1_QNG    4
239 #define ASC_DEF_SCSI2_QNG    16
240 #define ASC_MAX_SCSI2_QNG    32
241 #define ASC_TAG_CODE_MASK    0x23
242 #define ASC_STOP_REQ_RISC_STOP      0x01
243 #define ASC_STOP_ACK_RISC_STOP      0x03
244 #define ASC_STOP_CLEAN_UP_BUSY_Q    0x10
245 #define ASC_STOP_CLEAN_UP_DISC_Q    0x20
246 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40
247 #define ASC_TIDLUN_TO_IX(tid, lun)  (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
248 #define ASC_TID_TO_TARGET_ID(tid)   (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
249 #define ASC_TIX_TO_TARGET_ID(tix)   (0x01 << ((tix) & ASC_MAX_TID))
250 #define ASC_TIX_TO_TID(tix)         ((tix) & ASC_MAX_TID)
251 #define ASC_TID_TO_TIX(tid)         ((tid) & ASC_MAX_TID)
252 #define ASC_TIX_TO_LUN(tix)         (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
253 #define ASC_QNO_TO_QADDR(q_no)      ((ASC_QADR_BEG)+((int)(q_no) << 6))
254 
255 typedef struct asc_scsiq_1 {
256 	uchar status;
257 	uchar q_no;
258 	uchar cntl;
259 	uchar sg_queue_cnt;
260 	uchar target_id;
261 	uchar target_lun;
262 	__le32 data_addr;
263 	__le32 data_cnt;
264 	__le32 sense_addr;
265 	uchar sense_len;
266 	uchar extra_bytes;
267 } ASC_SCSIQ_1;
268 
269 typedef struct asc_scsiq_2 {
270 	u32 srb_tag;
271 	uchar target_ix;
272 	uchar flag;
273 	uchar cdb_len;
274 	uchar tag_code;
275 	ushort vm_id;
276 } ASC_SCSIQ_2;
277 
278 typedef struct asc_scsiq_3 {
279 	uchar done_stat;
280 	uchar host_stat;
281 	uchar scsi_stat;
282 	uchar scsi_msg;
283 } ASC_SCSIQ_3;
284 
285 typedef struct asc_scsiq_4 {
286 	uchar cdb[ASC_MAX_CDB_LEN];
287 	uchar y_first_sg_list_qp;
288 	uchar y_working_sg_qp;
289 	uchar y_working_sg_ix;
290 	uchar y_res;
291 	ushort x_req_count;
292 	ushort x_reconnect_rtn;
293 	__le32 x_saved_data_addr;
294 	__le32 x_saved_data_cnt;
295 } ASC_SCSIQ_4;
296 
297 typedef struct asc_q_done_info {
298 	ASC_SCSIQ_2 d2;
299 	ASC_SCSIQ_3 d3;
300 	uchar q_status;
301 	uchar q_no;
302 	uchar cntl;
303 	uchar sense_len;
304 	uchar extra_bytes;
305 	uchar res;
306 	u32 remain_bytes;
307 } ASC_QDONE_INFO;
308 
309 typedef struct asc_sg_list {
310 	__le32 addr;
311 	__le32 bytes;
312 } ASC_SG_LIST;
313 
314 typedef struct asc_sg_head {
315 	ushort entry_cnt;
316 	ushort queue_cnt;
317 	ushort entry_to_copy;
318 	ushort res;
319 	ASC_SG_LIST sg_list[];
320 } ASC_SG_HEAD;
321 
322 typedef struct asc_scsi_q {
323 	ASC_SCSIQ_1 q1;
324 	ASC_SCSIQ_2 q2;
325 	uchar *cdbptr;
326 	ASC_SG_HEAD *sg_head;
327 	ushort remain_sg_entry_cnt;
328 	ushort next_sg_index;
329 } ASC_SCSI_Q;
330 
331 typedef struct asc_scsi_bios_req_q {
332 	ASC_SCSIQ_1 r1;
333 	ASC_SCSIQ_2 r2;
334 	uchar *cdbptr;
335 	ASC_SG_HEAD *sg_head;
336 	uchar *sense_ptr;
337 	ASC_SCSIQ_3 r3;
338 	uchar cdb[ASC_MAX_CDB_LEN];
339 	uchar sense[ASC_MIN_SENSE_LEN];
340 } ASC_SCSI_BIOS_REQ_Q;
341 
342 typedef struct asc_risc_q {
343 	uchar fwd;
344 	uchar bwd;
345 	ASC_SCSIQ_1 i1;
346 	ASC_SCSIQ_2 i2;
347 	ASC_SCSIQ_3 i3;
348 	ASC_SCSIQ_4 i4;
349 } ASC_RISC_Q;
350 
351 typedef struct asc_sg_list_q {
352 	uchar seq_no;
353 	uchar q_no;
354 	uchar cntl;
355 	uchar sg_head_qp;
356 	uchar sg_list_cnt;
357 	uchar sg_cur_list_cnt;
358 } ASC_SG_LIST_Q;
359 
360 typedef struct asc_risc_sg_list_q {
361 	uchar fwd;
362 	uchar bwd;
363 	ASC_SG_LIST_Q sg;
364 	ASC_SG_LIST sg_list[7];
365 } ASC_RISC_SG_LIST_Q;
366 
367 #define ASCQ_ERR_Q_STATUS             0x0D
368 #define ASCQ_ERR_CUR_QNG              0x17
369 #define ASCQ_ERR_SG_Q_LINKS           0x18
370 #define ASCQ_ERR_ISR_RE_ENTRY         0x1A
371 #define ASCQ_ERR_CRITICAL_RE_ENTRY    0x1B
372 #define ASCQ_ERR_ISR_ON_CRITICAL      0x1C
373 
374 /*
375  * Warning code values are set in ASC_DVC_VAR  'warn_code'.
376  */
377 #define ASC_WARN_NO_ERROR             0x0000
378 #define ASC_WARN_IO_PORT_ROTATE       0x0001
379 #define ASC_WARN_EEPROM_CHKSUM        0x0002
380 #define ASC_WARN_IRQ_MODIFIED         0x0004
381 #define ASC_WARN_AUTO_CONFIG          0x0008
382 #define ASC_WARN_CMD_QNG_CONFLICT     0x0010
383 #define ASC_WARN_EEPROM_RECOVER       0x0020
384 #define ASC_WARN_CFG_MSW_RECOVER      0x0040
385 
386 /*
387  * Error code values are set in {ASC/ADV}_DVC_VAR  'err_code'.
388  */
389 #define ASC_IERR_NO_CARRIER		0x0001	/* No more carrier memory */
390 #define ASC_IERR_MCODE_CHKSUM		0x0002	/* micro code check sum error */
391 #define ASC_IERR_SET_PC_ADDR		0x0004
392 #define ASC_IERR_START_STOP_CHIP	0x0008	/* start/stop chip failed */
393 #define ASC_IERR_ILLEGAL_CONNECTION	0x0010	/* Illegal cable connection */
394 #define ASC_IERR_SINGLE_END_DEVICE	0x0020	/* SE device on DIFF bus */
395 #define ASC_IERR_REVERSED_CABLE		0x0040	/* Narrow flat cable reversed */
396 #define ASC_IERR_SET_SCSI_ID		0x0080	/* set SCSI ID failed */
397 #define ASC_IERR_HVD_DEVICE		0x0100	/* HVD device on LVD port */
398 #define ASC_IERR_BAD_SIGNATURE		0x0200	/* signature not found */
399 #define ASC_IERR_NO_BUS_TYPE		0x0400
400 #define ASC_IERR_BIST_PRE_TEST		0x0800	/* BIST pre-test error */
401 #define ASC_IERR_BIST_RAM_TEST		0x1000	/* BIST RAM test error */
402 #define ASC_IERR_BAD_CHIPTYPE		0x2000	/* Invalid chip_type setting */
403 
404 #define ASC_DEF_MAX_TOTAL_QNG   (0xF0)
405 #define ASC_MIN_TAG_Q_PER_DVC   (0x04)
406 #define ASC_MIN_FREE_Q        (0x02)
407 #define ASC_MIN_TOTAL_QNG     ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
408 #define ASC_MAX_TOTAL_QNG 240
409 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
410 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG   8
411 #define ASC_MAX_PCI_INRAM_TOTAL_QNG  20
412 #define ASC_MAX_INRAM_TAG_QNG   16
413 #define ASC_IOADR_GAP   0x10
414 #define ASC_SYN_MAX_OFFSET         0x0F
415 #define ASC_DEF_SDTR_OFFSET        0x0F
416 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX  0x02
417 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
418 
419 /* The narrow chip only supports a limited selection of transfer rates.
420  * These are encoded in the range 0..7 or 0..15 depending whether the chip
421  * is Ultra-capable or not.  These tables let us convert from one to the other.
422  */
423 static const unsigned char asc_syn_xfer_period[8] = {
424 	25, 30, 35, 40, 50, 60, 70, 85
425 };
426 
427 static const unsigned char asc_syn_ultra_xfer_period[16] = {
428 	12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
429 };
430 
431 typedef struct ext_msg {
432 	uchar msg_type;
433 	uchar msg_len;
434 	uchar msg_req;
435 	union {
436 		struct {
437 			uchar sdtr_xfer_period;
438 			uchar sdtr_req_ack_offset;
439 		} sdtr;
440 		struct {
441 			uchar wdtr_width;
442 		} wdtr;
443 		struct {
444 			uchar mdp_b3;
445 			uchar mdp_b2;
446 			uchar mdp_b1;
447 			uchar mdp_b0;
448 		} mdp;
449 	} u_ext_msg;
450 	uchar res;
451 } EXT_MSG;
452 
453 #define xfer_period     u_ext_msg.sdtr.sdtr_xfer_period
454 #define req_ack_offset  u_ext_msg.sdtr.sdtr_req_ack_offset
455 #define wdtr_width      u_ext_msg.wdtr.wdtr_width
456 #define mdp_b3          u_ext_msg.mdp_b3
457 #define mdp_b2          u_ext_msg.mdp_b2
458 #define mdp_b1          u_ext_msg.mdp_b1
459 #define mdp_b0          u_ext_msg.mdp_b0
460 
461 typedef struct asc_dvc_cfg {
462 	ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
463 	ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
464 	ASC_SCSI_BIT_ID_TYPE disc_enable;
465 	ASC_SCSI_BIT_ID_TYPE sdtr_enable;
466 	uchar chip_scsi_id;
467 	uchar isa_dma_speed;
468 	uchar isa_dma_channel;
469 	uchar chip_version;
470 	ushort mcode_date;
471 	ushort mcode_version;
472 	uchar max_tag_qng[ASC_MAX_TID + 1];
473 	uchar sdtr_period_offset[ASC_MAX_TID + 1];
474 	uchar adapter_info[6];
475 } ASC_DVC_CFG;
476 
477 #define ASC_DEF_DVC_CNTL       0xFFFF
478 #define ASC_DEF_CHIP_SCSI_ID   7
479 #define ASC_DEF_ISA_DMA_SPEED  4
480 #define ASC_INIT_STATE_BEG_GET_CFG   0x0001
481 #define ASC_INIT_STATE_END_GET_CFG   0x0002
482 #define ASC_INIT_STATE_BEG_SET_CFG   0x0004
483 #define ASC_INIT_STATE_END_SET_CFG   0x0008
484 #define ASC_INIT_STATE_BEG_LOAD_MC   0x0010
485 #define ASC_INIT_STATE_END_LOAD_MC   0x0020
486 #define ASC_INIT_STATE_BEG_INQUIRY   0x0040
487 #define ASC_INIT_STATE_END_INQUIRY   0x0080
488 #define ASC_INIT_RESET_SCSI_DONE     0x0100
489 #define ASC_INIT_STATE_WITHOUT_EEP   0x8000
490 #define ASC_BUG_FIX_IF_NOT_DWB       0x0001
491 #define ASC_BUG_FIX_ASYN_USE_SYN     0x0002
492 #define ASC_MIN_TAGGED_CMD  7
493 #define ASC_MAX_SCSI_RESET_WAIT      30
494 #define ASC_OVERRUN_BSIZE		64
495 
496 struct asc_dvc_var;		/* Forward Declaration. */
497 
498 typedef struct asc_dvc_var {
499 	PortAddr iop_base;
500 	ushort err_code;
501 	ushort dvc_cntl;
502 	ushort bug_fix_cntl;
503 	ushort bus_type;
504 	ASC_SCSI_BIT_ID_TYPE init_sdtr;
505 	ASC_SCSI_BIT_ID_TYPE sdtr_done;
506 	ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
507 	ASC_SCSI_BIT_ID_TYPE unit_not_ready;
508 	ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
509 	ASC_SCSI_BIT_ID_TYPE start_motor;
510 	uchar *overrun_buf;
511 	dma_addr_t overrun_dma;
512 	uchar scsi_reset_wait;
513 	uchar chip_no;
514 	bool is_in_int;
515 	uchar max_total_qng;
516 	uchar cur_total_qng;
517 	uchar in_critical_cnt;
518 	uchar last_q_shortage;
519 	ushort init_state;
520 	uchar cur_dvc_qng[ASC_MAX_TID + 1];
521 	uchar max_dvc_qng[ASC_MAX_TID + 1];
522 	ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
523 	ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
524 	const uchar *sdtr_period_tbl;
525 	ASC_DVC_CFG *cfg;
526 	ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
527 	char redo_scam;
528 	ushort res2;
529 	uchar dos_int13_table[ASC_MAX_TID + 1];
530 	unsigned int max_dma_count;
531 	ASC_SCSI_BIT_ID_TYPE no_scam;
532 	ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
533 	uchar min_sdtr_index;
534 	uchar max_sdtr_index;
535 	struct asc_board *drv_ptr;
536 	unsigned int uc_break;
537 } ASC_DVC_VAR;
538 
539 typedef struct asc_dvc_inq_info {
540 	uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
541 } ASC_DVC_INQ_INFO;
542 
543 typedef struct asc_cap_info {
544 	u32 lba;
545 	u32 blk_size;
546 } ASC_CAP_INFO;
547 
548 typedef struct asc_cap_info_array {
549 	ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
550 } ASC_CAP_INFO_ARRAY;
551 
552 #define ASC_MCNTL_NO_SEL_TIMEOUT  (ushort)0x0001
553 #define ASC_MCNTL_NULL_TARGET     (ushort)0x0002
554 #define ASC_CNTL_INITIATOR         (ushort)0x0001
555 #define ASC_CNTL_BIOS_GT_1GB       (ushort)0x0002
556 #define ASC_CNTL_BIOS_GT_2_DISK    (ushort)0x0004
557 #define ASC_CNTL_BIOS_REMOVABLE    (ushort)0x0008
558 #define ASC_CNTL_NO_SCAM           (ushort)0x0010
559 #define ASC_CNTL_INT_MULTI_Q       (ushort)0x0080
560 #define ASC_CNTL_NO_LUN_SUPPORT    (ushort)0x0040
561 #define ASC_CNTL_NO_VERIFY_COPY    (ushort)0x0100
562 #define ASC_CNTL_RESET_SCSI        (ushort)0x0200
563 #define ASC_CNTL_INIT_INQUIRY      (ushort)0x0400
564 #define ASC_CNTL_INIT_VERBOSE      (ushort)0x0800
565 #define ASC_CNTL_SCSI_PARITY       (ushort)0x1000
566 #define ASC_CNTL_BURST_MODE        (ushort)0x2000
567 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
568 #define ASC_EEP_DVC_CFG_BEG_VL    2
569 #define ASC_EEP_MAX_DVC_ADDR_VL   15
570 #define ASC_EEP_DVC_CFG_BEG      32
571 #define ASC_EEP_MAX_DVC_ADDR     45
572 #define ASC_EEP_MAX_RETRY        20
573 
574 /*
575  * These macros keep the chip SCSI id and ISA DMA speed
576  * bitfields in board order. C bitfields aren't portable
577  * between big and little-endian platforms so they are
578  * not used.
579  */
580 
581 #define ASC_EEP_GET_CHIP_ID(cfg)    ((cfg)->id_speed & 0x0f)
582 #define ASC_EEP_GET_DMA_SPD(cfg)    (((cfg)->id_speed & 0xf0) >> 4)
583 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \
584    ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
585 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \
586    ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
587 
588 typedef struct asceep_config {
589 	ushort cfg_lsw;
590 	ushort cfg_msw;
591 	uchar init_sdtr;
592 	uchar disc_enable;
593 	uchar use_cmd_qng;
594 	uchar start_motor;
595 	uchar max_total_qng;
596 	uchar max_tag_qng;
597 	uchar bios_scan;
598 	uchar power_up_wait;
599 	uchar no_scam;
600 	uchar id_speed;		/* low order 4 bits is chip scsi id */
601 	/* high order 4 bits is isa dma speed */
602 	uchar dos_int13_table[ASC_MAX_TID + 1];
603 	uchar adapter_info[6];
604 	ushort cntl;
605 	ushort chksum;
606 } ASCEEP_CONFIG;
607 
608 #define ASC_EEP_CMD_READ          0x80
609 #define ASC_EEP_CMD_WRITE         0x40
610 #define ASC_EEP_CMD_WRITE_ABLE    0x30
611 #define ASC_EEP_CMD_WRITE_DISABLE 0x00
612 #define ASCV_MSGOUT_BEG         0x0000
613 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
614 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
615 #define ASCV_BREAK_SAVED_CODE   (ushort)0x0006
616 #define ASCV_MSGIN_BEG          (ASCV_MSGOUT_BEG+8)
617 #define ASCV_MSGIN_SDTR_PERIOD  (ASCV_MSGIN_BEG+3)
618 #define ASCV_MSGIN_SDTR_OFFSET  (ASCV_MSGIN_BEG+4)
619 #define ASCV_SDTR_DATA_BEG      (ASCV_MSGIN_BEG+8)
620 #define ASCV_SDTR_DONE_BEG      (ASCV_SDTR_DATA_BEG+8)
621 #define ASCV_MAX_DVC_QNG_BEG    (ushort)0x0020
622 #define ASCV_BREAK_ADDR           (ushort)0x0028
623 #define ASCV_BREAK_NOTIFY_COUNT   (ushort)0x002A
624 #define ASCV_BREAK_CONTROL        (ushort)0x002C
625 #define ASCV_BREAK_HIT_COUNT      (ushort)0x002E
626 
627 #define ASCV_ASCDVC_ERR_CODE_W  (ushort)0x0030
628 #define ASCV_MCODE_CHKSUM_W   (ushort)0x0032
629 #define ASCV_MCODE_SIZE_W     (ushort)0x0034
630 #define ASCV_STOP_CODE_B      (ushort)0x0036
631 #define ASCV_DVC_ERR_CODE_B   (ushort)0x0037
632 #define ASCV_OVERRUN_PADDR_D  (ushort)0x0038
633 #define ASCV_OVERRUN_BSIZE_D  (ushort)0x003C
634 #define ASCV_HALTCODE_W       (ushort)0x0040
635 #define ASCV_CHKSUM_W         (ushort)0x0042
636 #define ASCV_MC_DATE_W        (ushort)0x0044
637 #define ASCV_MC_VER_W         (ushort)0x0046
638 #define ASCV_NEXTRDY_B        (ushort)0x0048
639 #define ASCV_DONENEXT_B       (ushort)0x0049
640 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
641 #define ASCV_SCSIBUSY_B       (ushort)0x004B
642 #define ASCV_Q_DONE_IN_PROGRESS_B  (ushort)0x004C
643 #define ASCV_CURCDB_B         (ushort)0x004D
644 #define ASCV_RCLUN_B          (ushort)0x004E
645 #define ASCV_BUSY_QHEAD_B     (ushort)0x004F
646 #define ASCV_DISC1_QHEAD_B    (ushort)0x0050
647 #define ASCV_DISC_ENABLE_B    (ushort)0x0052
648 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
649 #define ASCV_HOSTSCSI_ID_B    (ushort)0x0055
650 #define ASCV_MCODE_CNTL_B     (ushort)0x0056
651 #define ASCV_NULL_TARGET_B    (ushort)0x0057
652 #define ASCV_FREE_Q_HEAD_W    (ushort)0x0058
653 #define ASCV_DONE_Q_TAIL_W    (ushort)0x005A
654 #define ASCV_FREE_Q_HEAD_B    (ushort)(ASCV_FREE_Q_HEAD_W+1)
655 #define ASCV_DONE_Q_TAIL_B    (ushort)(ASCV_DONE_Q_TAIL_W+1)
656 #define ASCV_HOST_FLAG_B      (ushort)0x005D
657 #define ASCV_TOTAL_READY_Q_B  (ushort)0x0064
658 #define ASCV_VER_SERIAL_B     (ushort)0x0065
659 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066
660 #define ASCV_WTM_FLAG_B       (ushort)0x0068
661 #define ASCV_RISC_FLAG_B      (ushort)0x006A
662 #define ASCV_REQ_SG_LIST_QP   (ushort)0x006B
663 #define ASC_HOST_FLAG_IN_ISR        0x01
664 #define ASC_HOST_FLAG_ACK_INT       0x02
665 #define ASC_RISC_FLAG_GEN_INT      0x01
666 #define ASC_RISC_FLAG_REQ_SG_LIST  0x02
667 #define IOP_CTRL         (0x0F)
668 #define IOP_STATUS       (0x0E)
669 #define IOP_INT_ACK      IOP_STATUS
670 #define IOP_REG_IFC      (0x0D)
671 #define IOP_SYN_OFFSET    (0x0B)
672 #define IOP_EXTRA_CONTROL (0x0D)
673 #define IOP_REG_PC        (0x0C)
674 #define IOP_RAM_ADDR      (0x0A)
675 #define IOP_RAM_DATA      (0x08)
676 #define IOP_EEP_DATA      (0x06)
677 #define IOP_EEP_CMD       (0x07)
678 #define IOP_VERSION       (0x03)
679 #define IOP_CONFIG_HIGH   (0x04)
680 #define IOP_CONFIG_LOW    (0x02)
681 #define IOP_SIG_BYTE      (0x01)
682 #define IOP_SIG_WORD      (0x00)
683 #define IOP_REG_DC1      (0x0E)
684 #define IOP_REG_DC0      (0x0C)
685 #define IOP_REG_SB       (0x0B)
686 #define IOP_REG_DA1      (0x0A)
687 #define IOP_REG_DA0      (0x08)
688 #define IOP_REG_SC       (0x09)
689 #define IOP_DMA_SPEED    (0x07)
690 #define IOP_REG_FLAG     (0x07)
691 #define IOP_FIFO_H       (0x06)
692 #define IOP_FIFO_L       (0x04)
693 #define IOP_REG_ID       (0x05)
694 #define IOP_REG_QP       (0x03)
695 #define IOP_REG_IH       (0x02)
696 #define IOP_REG_IX       (0x01)
697 #define IOP_REG_AX       (0x00)
698 #define IFC_REG_LOCK      (0x00)
699 #define IFC_REG_UNLOCK    (0x09)
700 #define IFC_WR_EN_FILTER  (0x10)
701 #define IFC_RD_NO_EEPROM  (0x10)
702 #define IFC_SLEW_RATE     (0x20)
703 #define IFC_ACT_NEG       (0x40)
704 #define IFC_INP_FILTER    (0x80)
705 #define IFC_INIT_DEFAULT  (IFC_ACT_NEG | IFC_REG_UNLOCK)
706 #define SC_SEL   (uchar)(0x80)
707 #define SC_BSY   (uchar)(0x40)
708 #define SC_ACK   (uchar)(0x20)
709 #define SC_REQ   (uchar)(0x10)
710 #define SC_ATN   (uchar)(0x08)
711 #define SC_IO    (uchar)(0x04)
712 #define SC_CD    (uchar)(0x02)
713 #define SC_MSG   (uchar)(0x01)
714 #define SEC_SCSI_CTL         (uchar)(0x80)
715 #define SEC_ACTIVE_NEGATE    (uchar)(0x40)
716 #define SEC_SLEW_RATE        (uchar)(0x20)
717 #define SEC_ENABLE_FILTER    (uchar)(0x10)
718 #define ASC_HALT_EXTMSG_IN     (ushort)0x8000
719 #define ASC_HALT_CHK_CONDITION (ushort)0x8100
720 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
721 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX  (ushort)0x8300
722 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX   (ushort)0x8400
723 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000
724 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
725 #define ASC_MAX_QNO        0xF8
726 #define ASC_DATA_SEC_BEG   (ushort)0x0080
727 #define ASC_DATA_SEC_END   (ushort)0x0080
728 #define ASC_CODE_SEC_BEG   (ushort)0x0080
729 #define ASC_CODE_SEC_END   (ushort)0x0080
730 #define ASC_QADR_BEG       (0x4000)
731 #define ASC_QADR_USED      (ushort)(ASC_MAX_QNO * 64)
732 #define ASC_QADR_END       (ushort)0x7FFF
733 #define ASC_QLAST_ADR      (ushort)0x7FC0
734 #define ASC_QBLK_SIZE      0x40
735 #define ASC_BIOS_DATA_QBEG 0xF8
736 #define ASC_MIN_ACTIVE_QNO 0x01
737 #define ASC_QLINK_END      0xFF
738 #define ASC_EEPROM_WORDS   0x10
739 #define ASC_MAX_MGS_LEN    0x10
740 #define ASC_BIOS_ADDR_DEF  0xDC00
741 #define ASC_BIOS_SIZE      0x3800
742 #define ASC_BIOS_RAM_OFF   0x3800
743 #define ASC_BIOS_RAM_SIZE  0x800
744 #define ASC_BIOS_MIN_ADDR  0xC000
745 #define ASC_BIOS_MAX_ADDR  0xEC00
746 #define ASC_BIOS_BANK_SIZE 0x0400
747 #define ASC_MCODE_START_ADDR  0x0080
748 #define ASC_CFG0_HOST_INT_ON    0x0020
749 #define ASC_CFG0_BIOS_ON        0x0040
750 #define ASC_CFG0_VERA_BURST_ON  0x0080
751 #define ASC_CFG0_SCSI_PARITY_ON 0x0800
752 #define ASC_CFG1_SCSI_TARGET_ON 0x0080
753 #define ASC_CFG1_LRAM_8BITS_ON  0x0800
754 #define ASC_CFG_MSW_CLR_MASK    0x3080
755 #define CSW_TEST1             (ASC_CS_TYPE)0x8000
756 #define CSW_AUTO_CONFIG       (ASC_CS_TYPE)0x4000
757 #define CSW_RESERVED1         (ASC_CS_TYPE)0x2000
758 #define CSW_IRQ_WRITTEN       (ASC_CS_TYPE)0x1000
759 #define CSW_33MHZ_SELECTED    (ASC_CS_TYPE)0x0800
760 #define CSW_TEST2             (ASC_CS_TYPE)0x0400
761 #define CSW_TEST3             (ASC_CS_TYPE)0x0200
762 #define CSW_RESERVED2         (ASC_CS_TYPE)0x0100
763 #define CSW_DMA_DONE          (ASC_CS_TYPE)0x0080
764 #define CSW_FIFO_RDY          (ASC_CS_TYPE)0x0040
765 #define CSW_EEP_READ_DONE     (ASC_CS_TYPE)0x0020
766 #define CSW_HALTED            (ASC_CS_TYPE)0x0010
767 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
768 #define CSW_PARITY_ERR        (ASC_CS_TYPE)0x0004
769 #define CSW_SCSI_RESET_LATCH  (ASC_CS_TYPE)0x0002
770 #define CSW_INT_PENDING       (ASC_CS_TYPE)0x0001
771 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
772 #define CIW_INT_ACK      (ASC_CS_TYPE)0x0100
773 #define CIW_TEST1        (ASC_CS_TYPE)0x0200
774 #define CIW_TEST2        (ASC_CS_TYPE)0x0400
775 #define CIW_SEL_33MHZ    (ASC_CS_TYPE)0x0800
776 #define CIW_IRQ_ACT      (ASC_CS_TYPE)0x1000
777 #define CC_CHIP_RESET   (uchar)0x80
778 #define CC_SCSI_RESET   (uchar)0x40
779 #define CC_HALT         (uchar)0x20
780 #define CC_SINGLE_STEP  (uchar)0x10
781 #define CC_DMA_ABLE     (uchar)0x08
782 #define CC_TEST         (uchar)0x04
783 #define CC_BANK_ONE     (uchar)0x02
784 #define CC_DIAG         (uchar)0x01
785 #define ASC_1000_ID0W      0x04C1
786 #define ASC_1000_ID0W_FIX  0x00C1
787 #define ASC_1000_ID1B      0x25
788 #define ASC_EISA_REV_IOP_MASK  (0x0C83)
789 #define ASC_EISA_CFG_IOP_MASK  (0x0C86)
790 #define ASC_GET_EISA_SLOT(iop)  (PortAddr)((iop) & 0xF000)
791 #define INS_HALTINT        (ushort)0x6281
792 #define INS_HALT           (ushort)0x6280
793 #define INS_SINT           (ushort)0x6200
794 #define INS_RFLAG_WTM      (ushort)0x7380
795 #define ASC_MC_SAVE_CODE_WSIZE  0x500
796 #define ASC_MC_SAVE_DATA_WSIZE  0x40
797 
798 typedef struct asc_mc_saved {
799 	ushort data[ASC_MC_SAVE_DATA_WSIZE];
800 	ushort code[ASC_MC_SAVE_CODE_WSIZE];
801 } ASC_MC_SAVED;
802 
803 #define AscGetQDoneInProgress(port)         AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
804 #define AscPutQDoneInProgress(port, val)    AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
805 #define AscGetVarFreeQHead(port)            AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
806 #define AscGetVarDoneQTail(port)            AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
807 #define AscPutVarFreeQHead(port, val)       AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
808 #define AscPutVarDoneQTail(port, val)       AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
809 #define AscGetRiscVarFreeQHead(port)        AscReadLramByte((port), ASCV_NEXTRDY_B)
810 #define AscGetRiscVarDoneQTail(port)        AscReadLramByte((port), ASCV_DONENEXT_B)
811 #define AscPutRiscVarFreeQHead(port, val)   AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
812 #define AscPutRiscVarDoneQTail(port, val)   AscWriteLramByte((port), ASCV_DONENEXT_B, val)
813 #define AscPutMCodeSDTRDoneAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
814 #define AscGetMCodeSDTRDoneAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
815 #define AscPutMCodeInitSDTRAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
816 #define AscGetMCodeInitSDTRAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
817 #define AscGetChipSignatureByte(port)     (uchar)inp((port)+IOP_SIG_BYTE)
818 #define AscGetChipSignatureWord(port)     (ushort)inpw((port)+IOP_SIG_WORD)
819 #define AscGetChipVerNo(port)             (uchar)inp((port)+IOP_VERSION)
820 #define AscGetChipCfgLsw(port)            (ushort)inpw((port)+IOP_CONFIG_LOW)
821 #define AscGetChipCfgMsw(port)            (ushort)inpw((port)+IOP_CONFIG_HIGH)
822 #define AscSetChipCfgLsw(port, data)      outpw((port)+IOP_CONFIG_LOW, data)
823 #define AscSetChipCfgMsw(port, data)      outpw((port)+IOP_CONFIG_HIGH, data)
824 #define AscGetChipEEPCmd(port)            (uchar)inp((port)+IOP_EEP_CMD)
825 #define AscSetChipEEPCmd(port, data)      outp((port)+IOP_EEP_CMD, data)
826 #define AscGetChipEEPData(port)           (ushort)inpw((port)+IOP_EEP_DATA)
827 #define AscSetChipEEPData(port, data)     outpw((port)+IOP_EEP_DATA, data)
828 #define AscGetChipLramAddr(port)          (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
829 #define AscSetChipLramAddr(port, addr)    outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
830 #define AscGetChipLramData(port)          (ushort)inpw((port)+IOP_RAM_DATA)
831 #define AscSetChipLramData(port, data)    outpw((port)+IOP_RAM_DATA, data)
832 #define AscGetChipIFC(port)               (uchar)inp((port)+IOP_REG_IFC)
833 #define AscSetChipIFC(port, data)          outp((port)+IOP_REG_IFC, data)
834 #define AscGetChipStatus(port)            (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
835 #define AscSetChipStatus(port, cs_val)    outpw((port)+IOP_STATUS, cs_val)
836 #define AscGetChipControl(port)           (uchar)inp((port)+IOP_CTRL)
837 #define AscSetChipControl(port, cc_val)   outp((port)+IOP_CTRL, cc_val)
838 #define AscGetChipSyn(port)               (uchar)inp((port)+IOP_SYN_OFFSET)
839 #define AscSetChipSyn(port, data)         outp((port)+IOP_SYN_OFFSET, data)
840 #define AscSetPCAddr(port, data)          outpw((port)+IOP_REG_PC, data)
841 #define AscGetPCAddr(port)                (ushort)inpw((port)+IOP_REG_PC)
842 #define AscIsIntPending(port)             (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
843 #define AscGetChipScsiID(port)            ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
844 #define AscGetExtraControl(port)          (uchar)inp((port)+IOP_EXTRA_CONTROL)
845 #define AscSetExtraControl(port, data)    outp((port)+IOP_EXTRA_CONTROL, data)
846 #define AscReadChipAX(port)               (ushort)inpw((port)+IOP_REG_AX)
847 #define AscWriteChipAX(port, data)        outpw((port)+IOP_REG_AX, data)
848 #define AscReadChipIX(port)               (uchar)inp((port)+IOP_REG_IX)
849 #define AscWriteChipIX(port, data)        outp((port)+IOP_REG_IX, data)
850 #define AscReadChipIH(port)               (ushort)inpw((port)+IOP_REG_IH)
851 #define AscWriteChipIH(port, data)        outpw((port)+IOP_REG_IH, data)
852 #define AscReadChipQP(port)               (uchar)inp((port)+IOP_REG_QP)
853 #define AscWriteChipQP(port, data)        outp((port)+IOP_REG_QP, data)
854 #define AscReadChipFIFO_L(port)           (ushort)inpw((port)+IOP_REG_FIFO_L)
855 #define AscWriteChipFIFO_L(port, data)    outpw((port)+IOP_REG_FIFO_L, data)
856 #define AscReadChipFIFO_H(port)           (ushort)inpw((port)+IOP_REG_FIFO_H)
857 #define AscWriteChipFIFO_H(port, data)    outpw((port)+IOP_REG_FIFO_H, data)
858 #define AscReadChipDmaSpeed(port)         (uchar)inp((port)+IOP_DMA_SPEED)
859 #define AscWriteChipDmaSpeed(port, data)  outp((port)+IOP_DMA_SPEED, data)
860 #define AscReadChipDA0(port)              (ushort)inpw((port)+IOP_REG_DA0)
861 #define AscWriteChipDA0(port)             outpw((port)+IOP_REG_DA0, data)
862 #define AscReadChipDA1(port)              (ushort)inpw((port)+IOP_REG_DA1)
863 #define AscWriteChipDA1(port)             outpw((port)+IOP_REG_DA1, data)
864 #define AscReadChipDC0(port)              (ushort)inpw((port)+IOP_REG_DC0)
865 #define AscWriteChipDC0(port)             outpw((port)+IOP_REG_DC0, data)
866 #define AscReadChipDC1(port)              (ushort)inpw((port)+IOP_REG_DC1)
867 #define AscWriteChipDC1(port)             outpw((port)+IOP_REG_DC1, data)
868 #define AscReadChipDvcID(port)            (uchar)inp((port)+IOP_REG_ID)
869 #define AscWriteChipDvcID(port, data)     outp((port)+IOP_REG_ID, data)
870 
871 #define AdvPortAddr  void __iomem *	/* Virtual memory address size */
872 
873 /*
874  * Define Adv Library required memory access macros.
875  */
876 #define ADV_MEM_READB(addr) readb(addr)
877 #define ADV_MEM_READW(addr) readw(addr)
878 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
879 #define ADV_MEM_WRITEW(addr, word) writew(word, addr)
880 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
881 
882 /*
883  * Define total number of simultaneous maximum element scatter-gather
884  * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
885  * maximum number of outstanding commands per wide host adapter. Each
886  * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
887  * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
888  * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
889  * structures or 255 scatter-gather elements.
890  */
891 #define ADV_TOT_SG_BLOCK        ASC_DEF_MAX_HOST_QNG
892 
893 /*
894  * Define maximum number of scatter-gather elements per request.
895  */
896 #define ADV_MAX_SG_LIST         255
897 #define NO_OF_SG_PER_BLOCK              15
898 
899 #define ADV_EEP_DVC_CFG_BEGIN           (0x00)
900 #define ADV_EEP_DVC_CFG_END             (0x15)
901 #define ADV_EEP_DVC_CTL_BEGIN           (0x16)	/* location of OEM name */
902 #define ADV_EEP_MAX_WORD_ADDR           (0x1E)
903 
904 #define ADV_EEP_DELAY_MS                100
905 
906 #define ADV_EEPROM_BIG_ENDIAN          0x8000	/* EEPROM Bit 15 */
907 #define ADV_EEPROM_BIOS_ENABLE         0x4000	/* EEPROM Bit 14 */
908 /*
909  * For the ASC3550 Bit 13 is Termination Polarity control bit.
910  * For later ICs Bit 13 controls whether the CIS (Card Information
911  * Service Section) is loaded from EEPROM.
912  */
913 #define ADV_EEPROM_TERM_POL            0x2000	/* EEPROM Bit 13 */
914 #define ADV_EEPROM_CIS_LD              0x2000	/* EEPROM Bit 13 */
915 /*
916  * ASC38C1600 Bit 11
917  *
918  * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
919  * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
920  * Function 0 will specify INT B.
921  *
922  * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
923  * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
924  * Function 1 will specify INT A.
925  */
926 #define ADV_EEPROM_INTAB               0x0800	/* EEPROM Bit 11 */
927 
928 typedef struct adveep_3550_config {
929 	/* Word Offset, Description */
930 
931 	ushort cfg_lsw;		/* 00 power up initialization */
932 	/*  bit 13 set - Term Polarity Control */
933 	/*  bit 14 set - BIOS Enable */
934 	/*  bit 15 set - Big Endian Mode */
935 	ushort cfg_msw;		/* 01 unused      */
936 	ushort disc_enable;	/* 02 disconnect enable */
937 	ushort wdtr_able;	/* 03 Wide DTR able */
938 	ushort sdtr_able;	/* 04 Synchronous DTR able */
939 	ushort start_motor;	/* 05 send start up motor */
940 	ushort tagqng_able;	/* 06 tag queuing able */
941 	ushort bios_scan;	/* 07 BIOS device control */
942 	ushort scam_tolerant;	/* 08 no scam */
943 
944 	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
945 	uchar bios_boot_delay;	/*    power up wait */
946 
947 	uchar scsi_reset_delay;	/* 10 reset delay */
948 	uchar bios_id_lun;	/*    first boot device scsi id & lun */
949 	/*    high nibble is lun */
950 	/*    low nibble is scsi id */
951 
952 	uchar termination;	/* 11 0 - automatic */
953 	/*    1 - low off / high off */
954 	/*    2 - low off / high on */
955 	/*    3 - low on  / high on */
956 	/*    There is no low on  / high off */
957 
958 	uchar reserved1;	/*    reserved byte (not used) */
959 
960 	ushort bios_ctrl;	/* 12 BIOS control bits */
961 	/*  bit 0  BIOS don't act as initiator. */
962 	/*  bit 1  BIOS > 1 GB support */
963 	/*  bit 2  BIOS > 2 Disk Support */
964 	/*  bit 3  BIOS don't support removables */
965 	/*  bit 4  BIOS support bootable CD */
966 	/*  bit 5  BIOS scan enabled */
967 	/*  bit 6  BIOS support multiple LUNs */
968 	/*  bit 7  BIOS display of message */
969 	/*  bit 8  SCAM disabled */
970 	/*  bit 9  Reset SCSI bus during init. */
971 	/*  bit 10 */
972 	/*  bit 11 No verbose initialization. */
973 	/*  bit 12 SCSI parity enabled */
974 	/*  bit 13 */
975 	/*  bit 14 */
976 	/*  bit 15 */
977 	ushort ultra_able;	/* 13 ULTRA speed able */
978 	ushort reserved2;	/* 14 reserved */
979 	uchar max_host_qng;	/* 15 maximum host queuing */
980 	uchar max_dvc_qng;	/*    maximum per device queuing */
981 	ushort dvc_cntl;	/* 16 control bit for driver */
982 	ushort bug_fix;		/* 17 control bit for bug fix */
983 	ushort serial_number_word1;	/* 18 Board serial number word 1 */
984 	ushort serial_number_word2;	/* 19 Board serial number word 2 */
985 	ushort serial_number_word3;	/* 20 Board serial number word 3 */
986 	ushort check_sum;	/* 21 EEP check sum */
987 	uchar oem_name[16];	/* 22 OEM name */
988 	ushort dvc_err_code;	/* 30 last device driver error code */
989 	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
990 	ushort adv_err_addr;	/* 32 last uc error address */
991 	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
992 	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
993 	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
994 	ushort num_of_err;	/* 36 number of error */
995 } ADVEEP_3550_CONFIG;
996 
997 typedef struct adveep_38C0800_config {
998 	/* Word Offset, Description */
999 
1000 	ushort cfg_lsw;		/* 00 power up initialization */
1001 	/*  bit 13 set - Load CIS */
1002 	/*  bit 14 set - BIOS Enable */
1003 	/*  bit 15 set - Big Endian Mode */
1004 	ushort cfg_msw;		/* 01 unused      */
1005 	ushort disc_enable;	/* 02 disconnect enable */
1006 	ushort wdtr_able;	/* 03 Wide DTR able */
1007 	ushort sdtr_speed1;	/* 04 SDTR Speed TID 0-3 */
1008 	ushort start_motor;	/* 05 send start up motor */
1009 	ushort tagqng_able;	/* 06 tag queuing able */
1010 	ushort bios_scan;	/* 07 BIOS device control */
1011 	ushort scam_tolerant;	/* 08 no scam */
1012 
1013 	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
1014 	uchar bios_boot_delay;	/*    power up wait */
1015 
1016 	uchar scsi_reset_delay;	/* 10 reset delay */
1017 	uchar bios_id_lun;	/*    first boot device scsi id & lun */
1018 	/*    high nibble is lun */
1019 	/*    low nibble is scsi id */
1020 
1021 	uchar termination_se;	/* 11 0 - automatic */
1022 	/*    1 - low off / high off */
1023 	/*    2 - low off / high on */
1024 	/*    3 - low on  / high on */
1025 	/*    There is no low on  / high off */
1026 
1027 	uchar termination_lvd;	/* 11 0 - automatic */
1028 	/*    1 - low off / high off */
1029 	/*    2 - low off / high on */
1030 	/*    3 - low on  / high on */
1031 	/*    There is no low on  / high off */
1032 
1033 	ushort bios_ctrl;	/* 12 BIOS control bits */
1034 	/*  bit 0  BIOS don't act as initiator. */
1035 	/*  bit 1  BIOS > 1 GB support */
1036 	/*  bit 2  BIOS > 2 Disk Support */
1037 	/*  bit 3  BIOS don't support removables */
1038 	/*  bit 4  BIOS support bootable CD */
1039 	/*  bit 5  BIOS scan enabled */
1040 	/*  bit 6  BIOS support multiple LUNs */
1041 	/*  bit 7  BIOS display of message */
1042 	/*  bit 8  SCAM disabled */
1043 	/*  bit 9  Reset SCSI bus during init. */
1044 	/*  bit 10 */
1045 	/*  bit 11 No verbose initialization. */
1046 	/*  bit 12 SCSI parity enabled */
1047 	/*  bit 13 */
1048 	/*  bit 14 */
1049 	/*  bit 15 */
1050 	ushort sdtr_speed2;	/* 13 SDTR speed TID 4-7 */
1051 	ushort sdtr_speed3;	/* 14 SDTR speed TID 8-11 */
1052 	uchar max_host_qng;	/* 15 maximum host queueing */
1053 	uchar max_dvc_qng;	/*    maximum per device queuing */
1054 	ushort dvc_cntl;	/* 16 control bit for driver */
1055 	ushort sdtr_speed4;	/* 17 SDTR speed 4 TID 12-15 */
1056 	ushort serial_number_word1;	/* 18 Board serial number word 1 */
1057 	ushort serial_number_word2;	/* 19 Board serial number word 2 */
1058 	ushort serial_number_word3;	/* 20 Board serial number word 3 */
1059 	ushort check_sum;	/* 21 EEP check sum */
1060 	uchar oem_name[16];	/* 22 OEM name */
1061 	ushort dvc_err_code;	/* 30 last device driver error code */
1062 	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
1063 	ushort adv_err_addr;	/* 32 last uc error address */
1064 	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
1065 	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
1066 	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
1067 	ushort reserved36;	/* 36 reserved */
1068 	ushort reserved37;	/* 37 reserved */
1069 	ushort reserved38;	/* 38 reserved */
1070 	ushort reserved39;	/* 39 reserved */
1071 	ushort reserved40;	/* 40 reserved */
1072 	ushort reserved41;	/* 41 reserved */
1073 	ushort reserved42;	/* 42 reserved */
1074 	ushort reserved43;	/* 43 reserved */
1075 	ushort reserved44;	/* 44 reserved */
1076 	ushort reserved45;	/* 45 reserved */
1077 	ushort reserved46;	/* 46 reserved */
1078 	ushort reserved47;	/* 47 reserved */
1079 	ushort reserved48;	/* 48 reserved */
1080 	ushort reserved49;	/* 49 reserved */
1081 	ushort reserved50;	/* 50 reserved */
1082 	ushort reserved51;	/* 51 reserved */
1083 	ushort reserved52;	/* 52 reserved */
1084 	ushort reserved53;	/* 53 reserved */
1085 	ushort reserved54;	/* 54 reserved */
1086 	ushort reserved55;	/* 55 reserved */
1087 	ushort cisptr_lsw;	/* 56 CIS PTR LSW */
1088 	ushort cisprt_msw;	/* 57 CIS PTR MSW */
1089 	ushort subsysvid;	/* 58 SubSystem Vendor ID */
1090 	ushort subsysid;	/* 59 SubSystem ID */
1091 	ushort reserved60;	/* 60 reserved */
1092 	ushort reserved61;	/* 61 reserved */
1093 	ushort reserved62;	/* 62 reserved */
1094 	ushort reserved63;	/* 63 reserved */
1095 } ADVEEP_38C0800_CONFIG;
1096 
1097 typedef struct adveep_38C1600_config {
1098 	/* Word Offset, Description */
1099 
1100 	ushort cfg_lsw;		/* 00 power up initialization */
1101 	/*  bit 11 set - Func. 0 INTB, Func. 1 INTA */
1102 	/*       clear - Func. 0 INTA, Func. 1 INTB */
1103 	/*  bit 13 set - Load CIS */
1104 	/*  bit 14 set - BIOS Enable */
1105 	/*  bit 15 set - Big Endian Mode */
1106 	ushort cfg_msw;		/* 01 unused */
1107 	ushort disc_enable;	/* 02 disconnect enable */
1108 	ushort wdtr_able;	/* 03 Wide DTR able */
1109 	ushort sdtr_speed1;	/* 04 SDTR Speed TID 0-3 */
1110 	ushort start_motor;	/* 05 send start up motor */
1111 	ushort tagqng_able;	/* 06 tag queuing able */
1112 	ushort bios_scan;	/* 07 BIOS device control */
1113 	ushort scam_tolerant;	/* 08 no scam */
1114 
1115 	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
1116 	uchar bios_boot_delay;	/*    power up wait */
1117 
1118 	uchar scsi_reset_delay;	/* 10 reset delay */
1119 	uchar bios_id_lun;	/*    first boot device scsi id & lun */
1120 	/*    high nibble is lun */
1121 	/*    low nibble is scsi id */
1122 
1123 	uchar termination_se;	/* 11 0 - automatic */
1124 	/*    1 - low off / high off */
1125 	/*    2 - low off / high on */
1126 	/*    3 - low on  / high on */
1127 	/*    There is no low on  / high off */
1128 
1129 	uchar termination_lvd;	/* 11 0 - automatic */
1130 	/*    1 - low off / high off */
1131 	/*    2 - low off / high on */
1132 	/*    3 - low on  / high on */
1133 	/*    There is no low on  / high off */
1134 
1135 	ushort bios_ctrl;	/* 12 BIOS control bits */
1136 	/*  bit 0  BIOS don't act as initiator. */
1137 	/*  bit 1  BIOS > 1 GB support */
1138 	/*  bit 2  BIOS > 2 Disk Support */
1139 	/*  bit 3  BIOS don't support removables */
1140 	/*  bit 4  BIOS support bootable CD */
1141 	/*  bit 5  BIOS scan enabled */
1142 	/*  bit 6  BIOS support multiple LUNs */
1143 	/*  bit 7  BIOS display of message */
1144 	/*  bit 8  SCAM disabled */
1145 	/*  bit 9  Reset SCSI bus during init. */
1146 	/*  bit 10 Basic Integrity Checking disabled */
1147 	/*  bit 11 No verbose initialization. */
1148 	/*  bit 12 SCSI parity enabled */
1149 	/*  bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1150 	/*  bit 14 */
1151 	/*  bit 15 */
1152 	ushort sdtr_speed2;	/* 13 SDTR speed TID 4-7 */
1153 	ushort sdtr_speed3;	/* 14 SDTR speed TID 8-11 */
1154 	uchar max_host_qng;	/* 15 maximum host queueing */
1155 	uchar max_dvc_qng;	/*    maximum per device queuing */
1156 	ushort dvc_cntl;	/* 16 control bit for driver */
1157 	ushort sdtr_speed4;	/* 17 SDTR speed 4 TID 12-15 */
1158 	ushort serial_number_word1;	/* 18 Board serial number word 1 */
1159 	ushort serial_number_word2;	/* 19 Board serial number word 2 */
1160 	ushort serial_number_word3;	/* 20 Board serial number word 3 */
1161 	ushort check_sum;	/* 21 EEP check sum */
1162 	uchar oem_name[16];	/* 22 OEM name */
1163 	ushort dvc_err_code;	/* 30 last device driver error code */
1164 	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
1165 	ushort adv_err_addr;	/* 32 last uc error address */
1166 	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
1167 	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
1168 	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
1169 	ushort reserved36;	/* 36 reserved */
1170 	ushort reserved37;	/* 37 reserved */
1171 	ushort reserved38;	/* 38 reserved */
1172 	ushort reserved39;	/* 39 reserved */
1173 	ushort reserved40;	/* 40 reserved */
1174 	ushort reserved41;	/* 41 reserved */
1175 	ushort reserved42;	/* 42 reserved */
1176 	ushort reserved43;	/* 43 reserved */
1177 	ushort reserved44;	/* 44 reserved */
1178 	ushort reserved45;	/* 45 reserved */
1179 	ushort reserved46;	/* 46 reserved */
1180 	ushort reserved47;	/* 47 reserved */
1181 	ushort reserved48;	/* 48 reserved */
1182 	ushort reserved49;	/* 49 reserved */
1183 	ushort reserved50;	/* 50 reserved */
1184 	ushort reserved51;	/* 51 reserved */
1185 	ushort reserved52;	/* 52 reserved */
1186 	ushort reserved53;	/* 53 reserved */
1187 	ushort reserved54;	/* 54 reserved */
1188 	ushort reserved55;	/* 55 reserved */
1189 	ushort cisptr_lsw;	/* 56 CIS PTR LSW */
1190 	ushort cisprt_msw;	/* 57 CIS PTR MSW */
1191 	ushort subsysvid;	/* 58 SubSystem Vendor ID */
1192 	ushort subsysid;	/* 59 SubSystem ID */
1193 	ushort reserved60;	/* 60 reserved */
1194 	ushort reserved61;	/* 61 reserved */
1195 	ushort reserved62;	/* 62 reserved */
1196 	ushort reserved63;	/* 63 reserved */
1197 } ADVEEP_38C1600_CONFIG;
1198 
1199 /*
1200  * EEPROM Commands
1201  */
1202 #define ASC_EEP_CMD_DONE             0x0200
1203 
1204 /* bios_ctrl */
1205 #define BIOS_CTRL_BIOS               0x0001
1206 #define BIOS_CTRL_EXTENDED_XLAT      0x0002
1207 #define BIOS_CTRL_GT_2_DISK          0x0004
1208 #define BIOS_CTRL_BIOS_REMOVABLE     0x0008
1209 #define BIOS_CTRL_BOOTABLE_CD        0x0010
1210 #define BIOS_CTRL_MULTIPLE_LUN       0x0040
1211 #define BIOS_CTRL_DISPLAY_MSG        0x0080
1212 #define BIOS_CTRL_NO_SCAM            0x0100
1213 #define BIOS_CTRL_RESET_SCSI_BUS     0x0200
1214 #define BIOS_CTRL_INIT_VERBOSE       0x0800
1215 #define BIOS_CTRL_SCSI_PARITY        0x1000
1216 #define BIOS_CTRL_AIPP_DIS           0x2000
1217 
1218 #define ADV_3550_MEMSIZE   0x2000	/* 8 KB Internal Memory */
1219 
1220 #define ADV_38C0800_MEMSIZE  0x4000	/* 16 KB Internal Memory */
1221 
1222 /*
1223  * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1224  * a special 16K Adv Library and Microcode version. After the issue is
1225  * resolved, should restore 32K support.
1226  *
1227  * #define ADV_38C1600_MEMSIZE  0x8000L   * 32 KB Internal Memory *
1228  */
1229 #define ADV_38C1600_MEMSIZE  0x4000	/* 16 KB Internal Memory */
1230 
1231 /*
1232  * Byte I/O register address from base of 'iop_base'.
1233  */
1234 #define IOPB_INTR_STATUS_REG    0x00
1235 #define IOPB_CHIP_ID_1          0x01
1236 #define IOPB_INTR_ENABLES       0x02
1237 #define IOPB_CHIP_TYPE_REV      0x03
1238 #define IOPB_RES_ADDR_4         0x04
1239 #define IOPB_RES_ADDR_5         0x05
1240 #define IOPB_RAM_DATA           0x06
1241 #define IOPB_RES_ADDR_7         0x07
1242 #define IOPB_FLAG_REG           0x08
1243 #define IOPB_RES_ADDR_9         0x09
1244 #define IOPB_RISC_CSR           0x0A
1245 #define IOPB_RES_ADDR_B         0x0B
1246 #define IOPB_RES_ADDR_C         0x0C
1247 #define IOPB_RES_ADDR_D         0x0D
1248 #define IOPB_SOFT_OVER_WR       0x0E
1249 #define IOPB_RES_ADDR_F         0x0F
1250 #define IOPB_MEM_CFG            0x10
1251 #define IOPB_RES_ADDR_11        0x11
1252 #define IOPB_GPIO_DATA          0x12
1253 #define IOPB_RES_ADDR_13        0x13
1254 #define IOPB_FLASH_PAGE         0x14
1255 #define IOPB_RES_ADDR_15        0x15
1256 #define IOPB_GPIO_CNTL          0x16
1257 #define IOPB_RES_ADDR_17        0x17
1258 #define IOPB_FLASH_DATA         0x18
1259 #define IOPB_RES_ADDR_19        0x19
1260 #define IOPB_RES_ADDR_1A        0x1A
1261 #define IOPB_RES_ADDR_1B        0x1B
1262 #define IOPB_RES_ADDR_1C        0x1C
1263 #define IOPB_RES_ADDR_1D        0x1D
1264 #define IOPB_RES_ADDR_1E        0x1E
1265 #define IOPB_RES_ADDR_1F        0x1F
1266 #define IOPB_DMA_CFG0           0x20
1267 #define IOPB_DMA_CFG1           0x21
1268 #define IOPB_TICKLE             0x22
1269 #define IOPB_DMA_REG_WR         0x23
1270 #define IOPB_SDMA_STATUS        0x24
1271 #define IOPB_SCSI_BYTE_CNT      0x25
1272 #define IOPB_HOST_BYTE_CNT      0x26
1273 #define IOPB_BYTE_LEFT_TO_XFER  0x27
1274 #define IOPB_BYTE_TO_XFER_0     0x28
1275 #define IOPB_BYTE_TO_XFER_1     0x29
1276 #define IOPB_BYTE_TO_XFER_2     0x2A
1277 #define IOPB_BYTE_TO_XFER_3     0x2B
1278 #define IOPB_ACC_GRP            0x2C
1279 #define IOPB_RES_ADDR_2D        0x2D
1280 #define IOPB_DEV_ID             0x2E
1281 #define IOPB_RES_ADDR_2F        0x2F
1282 #define IOPB_SCSI_DATA          0x30
1283 #define IOPB_RES_ADDR_31        0x31
1284 #define IOPB_RES_ADDR_32        0x32
1285 #define IOPB_SCSI_DATA_HSHK     0x33
1286 #define IOPB_SCSI_CTRL          0x34
1287 #define IOPB_RES_ADDR_35        0x35
1288 #define IOPB_RES_ADDR_36        0x36
1289 #define IOPB_RES_ADDR_37        0x37
1290 #define IOPB_RAM_BIST           0x38
1291 #define IOPB_PLL_TEST           0x39
1292 #define IOPB_PCI_INT_CFG        0x3A
1293 #define IOPB_RES_ADDR_3B        0x3B
1294 #define IOPB_RFIFO_CNT          0x3C
1295 #define IOPB_RES_ADDR_3D        0x3D
1296 #define IOPB_RES_ADDR_3E        0x3E
1297 #define IOPB_RES_ADDR_3F        0x3F
1298 
1299 /*
1300  * Word I/O register address from base of 'iop_base'.
1301  */
1302 #define IOPW_CHIP_ID_0          0x00	/* CID0  */
1303 #define IOPW_CTRL_REG           0x02	/* CC    */
1304 #define IOPW_RAM_ADDR           0x04	/* LA    */
1305 #define IOPW_RAM_DATA           0x06	/* LD    */
1306 #define IOPW_RES_ADDR_08        0x08
1307 #define IOPW_RISC_CSR           0x0A	/* CSR   */
1308 #define IOPW_SCSI_CFG0          0x0C	/* CFG0  */
1309 #define IOPW_SCSI_CFG1          0x0E	/* CFG1  */
1310 #define IOPW_RES_ADDR_10        0x10
1311 #define IOPW_SEL_MASK           0x12	/* SM    */
1312 #define IOPW_RES_ADDR_14        0x14
1313 #define IOPW_FLASH_ADDR         0x16	/* FA    */
1314 #define IOPW_RES_ADDR_18        0x18
1315 #define IOPW_EE_CMD             0x1A	/* EC    */
1316 #define IOPW_EE_DATA            0x1C	/* ED    */
1317 #define IOPW_SFIFO_CNT          0x1E	/* SFC   */
1318 #define IOPW_RES_ADDR_20        0x20
1319 #define IOPW_Q_BASE             0x22	/* QB    */
1320 #define IOPW_QP                 0x24	/* QP    */
1321 #define IOPW_IX                 0x26	/* IX    */
1322 #define IOPW_SP                 0x28	/* SP    */
1323 #define IOPW_PC                 0x2A	/* PC    */
1324 #define IOPW_RES_ADDR_2C        0x2C
1325 #define IOPW_RES_ADDR_2E        0x2E
1326 #define IOPW_SCSI_DATA          0x30	/* SD    */
1327 #define IOPW_SCSI_DATA_HSHK     0x32	/* SDH   */
1328 #define IOPW_SCSI_CTRL          0x34	/* SC    */
1329 #define IOPW_HSHK_CFG           0x36	/* HCFG  */
1330 #define IOPW_SXFR_STATUS        0x36	/* SXS   */
1331 #define IOPW_SXFR_CNTL          0x38	/* SXL   */
1332 #define IOPW_SXFR_CNTH          0x3A	/* SXH   */
1333 #define IOPW_RES_ADDR_3C        0x3C
1334 #define IOPW_RFIFO_DATA         0x3E	/* RFD   */
1335 
1336 /*
1337  * Doubleword I/O register address from base of 'iop_base'.
1338  */
1339 #define IOPDW_RES_ADDR_0         0x00
1340 #define IOPDW_RAM_DATA           0x04
1341 #define IOPDW_RES_ADDR_8         0x08
1342 #define IOPDW_RES_ADDR_C         0x0C
1343 #define IOPDW_RES_ADDR_10        0x10
1344 #define IOPDW_COMMA              0x14
1345 #define IOPDW_COMMB              0x18
1346 #define IOPDW_RES_ADDR_1C        0x1C
1347 #define IOPDW_SDMA_ADDR0         0x20
1348 #define IOPDW_SDMA_ADDR1         0x24
1349 #define IOPDW_SDMA_COUNT         0x28
1350 #define IOPDW_SDMA_ERROR         0x2C
1351 #define IOPDW_RDMA_ADDR0         0x30
1352 #define IOPDW_RDMA_ADDR1         0x34
1353 #define IOPDW_RDMA_COUNT         0x38
1354 #define IOPDW_RDMA_ERROR         0x3C
1355 
1356 #define ADV_CHIP_ID_BYTE         0x25
1357 #define ADV_CHIP_ID_WORD         0x04C1
1358 
1359 #define ADV_INTR_ENABLE_HOST_INTR                   0x01
1360 #define ADV_INTR_ENABLE_SEL_INTR                    0x02
1361 #define ADV_INTR_ENABLE_DPR_INTR                    0x04
1362 #define ADV_INTR_ENABLE_RTA_INTR                    0x08
1363 #define ADV_INTR_ENABLE_RMA_INTR                    0x10
1364 #define ADV_INTR_ENABLE_RST_INTR                    0x20
1365 #define ADV_INTR_ENABLE_DPE_INTR                    0x40
1366 #define ADV_INTR_ENABLE_GLOBAL_INTR                 0x80
1367 
1368 #define ADV_INTR_STATUS_INTRA            0x01
1369 #define ADV_INTR_STATUS_INTRB            0x02
1370 #define ADV_INTR_STATUS_INTRC            0x04
1371 
1372 #define ADV_RISC_CSR_STOP           (0x0000)
1373 #define ADV_RISC_TEST_COND          (0x2000)
1374 #define ADV_RISC_CSR_RUN            (0x4000)
1375 #define ADV_RISC_CSR_SINGLE_STEP    (0x8000)
1376 
1377 #define ADV_CTRL_REG_HOST_INTR      0x0100
1378 #define ADV_CTRL_REG_SEL_INTR       0x0200
1379 #define ADV_CTRL_REG_DPR_INTR       0x0400
1380 #define ADV_CTRL_REG_RTA_INTR       0x0800
1381 #define ADV_CTRL_REG_RMA_INTR       0x1000
1382 #define ADV_CTRL_REG_RES_BIT14      0x2000
1383 #define ADV_CTRL_REG_DPE_INTR       0x4000
1384 #define ADV_CTRL_REG_POWER_DONE     0x8000
1385 #define ADV_CTRL_REG_ANY_INTR       0xFF00
1386 
1387 #define ADV_CTRL_REG_CMD_RESET             0x00C6
1388 #define ADV_CTRL_REG_CMD_WR_IO_REG         0x00C5
1389 #define ADV_CTRL_REG_CMD_RD_IO_REG         0x00C4
1390 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE  0x00C3
1391 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE  0x00C2
1392 
1393 #define ADV_TICKLE_NOP                      0x00
1394 #define ADV_TICKLE_A                        0x01
1395 #define ADV_TICKLE_B                        0x02
1396 #define ADV_TICKLE_C                        0x03
1397 
1398 #define AdvIsIntPending(port) \
1399     (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1400 
1401 /*
1402  * SCSI_CFG0 Register bit definitions
1403  */
1404 #define TIMER_MODEAB    0xC000	/* Watchdog, Second, and Select. Timer Ctrl. */
1405 #define PARITY_EN       0x2000	/* Enable SCSI Parity Error detection */
1406 #define EVEN_PARITY     0x1000	/* Select Even Parity */
1407 #define WD_LONG         0x0800	/* Watchdog Interval, 1: 57 min, 0: 13 sec */
1408 #define QUEUE_128       0x0400	/* Queue Size, 1: 128 byte, 0: 64 byte */
1409 #define PRIM_MODE       0x0100	/* Primitive SCSI mode */
1410 #define SCAM_EN         0x0080	/* Enable SCAM selection */
1411 #define SEL_TMO_LONG    0x0040	/* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1412 #define CFRM_ID         0x0020	/* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1413 #define OUR_ID_EN       0x0010	/* Enable OUR_ID bits */
1414 #define OUR_ID          0x000F	/* SCSI ID */
1415 
1416 /*
1417  * SCSI_CFG1 Register bit definitions
1418  */
1419 #define BIG_ENDIAN      0x8000	/* Enable Big Endian Mode MIO:15, EEP:15 */
1420 #define TERM_POL        0x2000	/* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1421 #define SLEW_RATE       0x1000	/* SCSI output buffer slew rate */
1422 #define FILTER_SEL      0x0C00	/* Filter Period Selection */
1423 #define  FLTR_DISABLE    0x0000	/* Input Filtering Disabled */
1424 #define  FLTR_11_TO_20NS 0x0800	/* Input Filtering 11ns to 20ns */
1425 #define  FLTR_21_TO_39NS 0x0C00	/* Input Filtering 21ns to 39ns */
1426 #define ACTIVE_DBL      0x0200	/* Disable Active Negation */
1427 #define DIFF_MODE       0x0100	/* SCSI differential Mode (Read-Only) */
1428 #define DIFF_SENSE      0x0080	/* 1: No SE cables, 0: SE cable (Read-Only) */
1429 #define TERM_CTL_SEL    0x0040	/* Enable TERM_CTL_H and TERM_CTL_L */
1430 #define TERM_CTL        0x0030	/* External SCSI Termination Bits */
1431 #define  TERM_CTL_H      0x0020	/* Enable External SCSI Upper Termination */
1432 #define  TERM_CTL_L      0x0010	/* Enable External SCSI Lower Termination */
1433 #define CABLE_DETECT    0x000F	/* External SCSI Cable Connection Status */
1434 
1435 /*
1436  * Addendum for ASC-38C0800 Chip
1437  *
1438  * The ASC-38C1600 Chip uses the same definitions except that the
1439  * bus mode override bits [12:10] have been moved to byte register
1440  * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1441  * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1442  * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1443  * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1444  * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1445  */
1446 #define DIS_TERM_DRV    0x4000	/* 1: Read c_det[3:0], 0: cannot read */
1447 #define HVD_LVD_SE      0x1C00	/* Device Detect Bits */
1448 #define  HVD             0x1000	/* HVD Device Detect */
1449 #define  LVD             0x0800	/* LVD Device Detect */
1450 #define  SE              0x0400	/* SE Device Detect */
1451 #define TERM_LVD        0x00C0	/* LVD Termination Bits */
1452 #define  TERM_LVD_HI     0x0080	/* Enable LVD Upper Termination */
1453 #define  TERM_LVD_LO     0x0040	/* Enable LVD Lower Termination */
1454 #define TERM_SE         0x0030	/* SE Termination Bits */
1455 #define  TERM_SE_HI      0x0020	/* Enable SE Upper Termination */
1456 #define  TERM_SE_LO      0x0010	/* Enable SE Lower Termination */
1457 #define C_DET_LVD       0x000C	/* LVD Cable Detect Bits */
1458 #define  C_DET3          0x0008	/* Cable Detect for LVD External Wide */
1459 #define  C_DET2          0x0004	/* Cable Detect for LVD Internal Wide */
1460 #define C_DET_SE        0x0003	/* SE Cable Detect Bits */
1461 #define  C_DET1          0x0002	/* Cable Detect for SE Internal Wide */
1462 #define  C_DET0          0x0001	/* Cable Detect for SE Internal Narrow */
1463 
1464 #define CABLE_ILLEGAL_A 0x7
1465     /* x 0 0 0  | on  on | Illegal (all 3 connectors are used) */
1466 
1467 #define CABLE_ILLEGAL_B 0xB
1468     /* 0 x 0 0  | on  on | Illegal (all 3 connectors are used) */
1469 
1470 /*
1471  * MEM_CFG Register bit definitions
1472  */
1473 #define BIOS_EN         0x40	/* BIOS Enable MIO:14,EEP:14 */
1474 #define FAST_EE_CLK     0x20	/* Diagnostic Bit */
1475 #define RAM_SZ          0x1C	/* Specify size of RAM to RISC */
1476 #define  RAM_SZ_2KB      0x00	/* 2 KB */
1477 #define  RAM_SZ_4KB      0x04	/* 4 KB */
1478 #define  RAM_SZ_8KB      0x08	/* 8 KB */
1479 #define  RAM_SZ_16KB     0x0C	/* 16 KB */
1480 #define  RAM_SZ_32KB     0x10	/* 32 KB */
1481 #define  RAM_SZ_64KB     0x14	/* 64 KB */
1482 
1483 /*
1484  * DMA_CFG0 Register bit definitions
1485  *
1486  * This register is only accessible to the host.
1487  */
1488 #define BC_THRESH_ENB   0x80	/* PCI DMA Start Conditions */
1489 #define FIFO_THRESH     0x70	/* PCI DMA FIFO Threshold */
1490 #define  FIFO_THRESH_16B  0x00	/* 16 bytes */
1491 #define  FIFO_THRESH_32B  0x20	/* 32 bytes */
1492 #define  FIFO_THRESH_48B  0x30	/* 48 bytes */
1493 #define  FIFO_THRESH_64B  0x40	/* 64 bytes */
1494 #define  FIFO_THRESH_80B  0x50	/* 80 bytes (default) */
1495 #define  FIFO_THRESH_96B  0x60	/* 96 bytes */
1496 #define  FIFO_THRESH_112B 0x70	/* 112 bytes */
1497 #define START_CTL       0x0C	/* DMA start conditions */
1498 #define  START_CTL_TH    0x00	/* Wait threshold level (default) */
1499 #define  START_CTL_ID    0x04	/* Wait SDMA/SBUS idle */
1500 #define  START_CTL_THID  0x08	/* Wait threshold and SDMA/SBUS idle */
1501 #define  START_CTL_EMFU  0x0C	/* Wait SDMA FIFO empty/full */
1502 #define READ_CMD        0x03	/* Memory Read Method */
1503 #define  READ_CMD_MR     0x00	/* Memory Read */
1504 #define  READ_CMD_MRL    0x02	/* Memory Read Long */
1505 #define  READ_CMD_MRM    0x03	/* Memory Read Multiple (default) */
1506 
1507 /*
1508  * ASC-38C0800 RAM BIST Register bit definitions
1509  */
1510 #define RAM_TEST_MODE         0x80
1511 #define PRE_TEST_MODE         0x40
1512 #define NORMAL_MODE           0x00
1513 #define RAM_TEST_DONE         0x10
1514 #define RAM_TEST_STATUS       0x0F
1515 #define  RAM_TEST_HOST_ERROR   0x08
1516 #define  RAM_TEST_INTRAM_ERROR 0x04
1517 #define  RAM_TEST_RISC_ERROR   0x02
1518 #define  RAM_TEST_SCSI_ERROR   0x01
1519 #define  RAM_TEST_SUCCESS      0x00
1520 #define PRE_TEST_VALUE        0x05
1521 #define NORMAL_VALUE          0x00
1522 
1523 /*
1524  * ASC38C1600 Definitions
1525  *
1526  * IOPB_PCI_INT_CFG Bit Field Definitions
1527  */
1528 
1529 #define INTAB_LD        0x80	/* Value loaded from EEPROM Bit 11. */
1530 
1531 /*
1532  * Bit 1 can be set to change the interrupt for the Function to operate in
1533  * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1534  * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1535  * mode, otherwise the operating mode is undefined.
1536  */
1537 #define TOTEMPOLE       0x02
1538 
1539 /*
1540  * Bit 0 can be used to change the Int Pin for the Function. The value is
1541  * 0 by default for both Functions with Function 0 using INT A and Function
1542  * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1543  * INT A is used.
1544  *
1545  * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1546  * value specified in the PCI Configuration Space.
1547  */
1548 #define INTAB           0x01
1549 
1550 /*
1551  * Adv Library Status Definitions
1552  */
1553 #define ADV_TRUE        1
1554 #define ADV_FALSE       0
1555 #define ADV_SUCCESS     1
1556 #define ADV_BUSY        0
1557 #define ADV_ERROR       (-1)
1558 
1559 /*
1560  * ADV_DVC_VAR 'warn_code' values
1561  */
1562 #define ASC_WARN_BUSRESET_ERROR         0x0001	/* SCSI Bus Reset error */
1563 #define ASC_WARN_EEPROM_CHKSUM          0x0002	/* EEP check sum error */
1564 #define ASC_WARN_EEPROM_TERMINATION     0x0004	/* EEP termination bad field */
1565 #define ASC_WARN_ERROR                  0xFFFF	/* ADV_ERROR return */
1566 
1567 #define ADV_MAX_TID                     15	/* max. target identifier */
1568 #define ADV_MAX_LUN                     7	/* max. logical unit number */
1569 
1570 /*
1571  * Fixed locations of microcode operating variables.
1572  */
1573 #define ASC_MC_CODE_BEGIN_ADDR          0x0028	/* microcode start address */
1574 #define ASC_MC_CODE_END_ADDR            0x002A	/* microcode end address */
1575 #define ASC_MC_CODE_CHK_SUM             0x002C	/* microcode code checksum */
1576 #define ASC_MC_VERSION_DATE             0x0038	/* microcode version */
1577 #define ASC_MC_VERSION_NUM              0x003A	/* microcode number */
1578 #define ASC_MC_BIOSMEM                  0x0040	/* BIOS RISC Memory Start */
1579 #define ASC_MC_BIOSLEN                  0x0050	/* BIOS RISC Memory Length */
1580 #define ASC_MC_BIOS_SIGNATURE           0x0058	/* BIOS Signature 0x55AA */
1581 #define ASC_MC_BIOS_VERSION             0x005A	/* BIOS Version (2 bytes) */
1582 #define ASC_MC_SDTR_SPEED1              0x0090	/* SDTR Speed for TID 0-3 */
1583 #define ASC_MC_SDTR_SPEED2              0x0092	/* SDTR Speed for TID 4-7 */
1584 #define ASC_MC_SDTR_SPEED3              0x0094	/* SDTR Speed for TID 8-11 */
1585 #define ASC_MC_SDTR_SPEED4              0x0096	/* SDTR Speed for TID 12-15 */
1586 #define ASC_MC_CHIP_TYPE                0x009A
1587 #define ASC_MC_INTRB_CODE               0x009B
1588 #define ASC_MC_WDTR_ABLE                0x009C
1589 #define ASC_MC_SDTR_ABLE                0x009E
1590 #define ASC_MC_TAGQNG_ABLE              0x00A0
1591 #define ASC_MC_DISC_ENABLE              0x00A2
1592 #define ASC_MC_IDLE_CMD_STATUS          0x00A4
1593 #define ASC_MC_IDLE_CMD                 0x00A6
1594 #define ASC_MC_IDLE_CMD_PARAMETER       0x00A8
1595 #define ASC_MC_DEFAULT_SCSI_CFG0        0x00AC
1596 #define ASC_MC_DEFAULT_SCSI_CFG1        0x00AE
1597 #define ASC_MC_DEFAULT_MEM_CFG          0x00B0
1598 #define ASC_MC_DEFAULT_SEL_MASK         0x00B2
1599 #define ASC_MC_SDTR_DONE                0x00B6
1600 #define ASC_MC_NUMBER_OF_QUEUED_CMD     0x00C0
1601 #define ASC_MC_NUMBER_OF_MAX_CMD        0x00D0
1602 #define ASC_MC_DEVICE_HSHK_CFG_TABLE    0x0100
1603 #define ASC_MC_CONTROL_FLAG             0x0122	/* Microcode control flag. */
1604 #define ASC_MC_WDTR_DONE                0x0124
1605 #define ASC_MC_CAM_MODE_MASK            0x015E	/* CAM mode TID bitmask. */
1606 #define ASC_MC_ICQ                      0x0160
1607 #define ASC_MC_IRQ                      0x0164
1608 #define ASC_MC_PPR_ABLE                 0x017A
1609 
1610 /*
1611  * BIOS LRAM variable absolute offsets.
1612  */
1613 #define BIOS_CODESEG    0x54
1614 #define BIOS_CODELEN    0x56
1615 #define BIOS_SIGNATURE  0x58
1616 #define BIOS_VERSION    0x5A
1617 
1618 /*
1619  * Microcode Control Flags
1620  *
1621  * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1622  * and handled by the microcode.
1623  */
1624 #define CONTROL_FLAG_IGNORE_PERR        0x0001	/* Ignore DMA Parity Errors */
1625 #define CONTROL_FLAG_ENABLE_AIPP        0x0002	/* Enabled AIPP checking. */
1626 
1627 /*
1628  * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1629  */
1630 #define HSHK_CFG_WIDE_XFR       0x8000
1631 #define HSHK_CFG_RATE           0x0F00
1632 #define HSHK_CFG_OFFSET         0x001F
1633 
1634 #define ASC_DEF_MAX_HOST_QNG    0xFD	/* Max. number of host commands (253) */
1635 #define ASC_DEF_MIN_HOST_QNG    0x10	/* Min. number of host commands (16) */
1636 #define ASC_DEF_MAX_DVC_QNG     0x3F	/* Max. number commands per device (63) */
1637 #define ASC_DEF_MIN_DVC_QNG     0x04	/* Min. number commands per device (4) */
1638 
1639 #define ASC_QC_DATA_CHECK  0x01	/* Require ASC_QC_DATA_OUT set or clear. */
1640 #define ASC_QC_DATA_OUT    0x02	/* Data out DMA transfer. */
1641 #define ASC_QC_START_MOTOR 0x04	/* Send auto-start motor before request. */
1642 #define ASC_QC_NO_OVERRUN  0x08	/* Don't report overrun. */
1643 #define ASC_QC_FREEZE_TIDQ 0x10	/* Freeze TID queue after request. XXX TBD */
1644 
1645 #define ASC_QSC_NO_DISC     0x01	/* Don't allow disconnect for request. */
1646 #define ASC_QSC_NO_TAGMSG   0x02	/* Don't allow tag queuing for request. */
1647 #define ASC_QSC_NO_SYNC     0x04	/* Don't use Synch. transfer on request. */
1648 #define ASC_QSC_NO_WIDE     0x08	/* Don't use Wide transfer on request. */
1649 #define ASC_QSC_REDO_DTR    0x10	/* Renegotiate WDTR/SDTR before request. */
1650 /*
1651  * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1652  * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1653  */
1654 #define ASC_QSC_HEAD_TAG    0x40	/* Use Head Tag Message (0x21). */
1655 #define ASC_QSC_ORDERED_TAG 0x80	/* Use Ordered Tag Message (0x22). */
1656 
1657 /*
1658  * All fields here are accessed by the board microcode and need to be
1659  * little-endian.
1660  */
1661 typedef struct adv_carr_t {
1662 	__le32 carr_va;	/* Carrier Virtual Address */
1663 	__le32 carr_pa;	/* Carrier Physical Address */
1664 	__le32 areq_vpa;	/* ADV_SCSI_REQ_Q Virtual or Physical Address */
1665 	/*
1666 	 * next_vpa [31:4]            Carrier Virtual or Physical Next Pointer
1667 	 *
1668 	 * next_vpa [3:1]             Reserved Bits
1669 	 * next_vpa [0]               Done Flag set in Response Queue.
1670 	 */
1671 	__le32 next_vpa;
1672 } ADV_CARR_T;
1673 
1674 /*
1675  * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1676  */
1677 #define ADV_NEXT_VPA_MASK       0xFFFFFFF0
1678 
1679 #define ADV_RQ_DONE             0x00000001
1680 #define ADV_RQ_GOOD             0x00000002
1681 #define ADV_CQ_STOPPER          0x00000000
1682 
1683 #define ADV_GET_CARRP(carrp) ((carrp) & ADV_NEXT_VPA_MASK)
1684 
1685 /*
1686  * Each carrier is 64 bytes, and we need three additional
1687  * carrier for icq, irq, and the termination carrier.
1688  */
1689 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 3)
1690 
1691 #define ADV_CARRIER_BUFSIZE \
1692 	(ADV_CARRIER_COUNT * sizeof(ADV_CARR_T))
1693 
1694 #define ADV_CHIP_ASC3550          0x01	/* Ultra-Wide IC */
1695 #define ADV_CHIP_ASC38C0800       0x02	/* Ultra2-Wide/LVD IC */
1696 #define ADV_CHIP_ASC38C1600       0x03	/* Ultra3-Wide/LVD2 IC */
1697 
1698 /*
1699  * Adapter temporary configuration structure
1700  *
1701  * This structure can be discarded after initialization. Don't add
1702  * fields here needed after initialization.
1703  *
1704  * Field naming convention:
1705  *
1706  *  *_enable indicates the field enables or disables a feature. The
1707  *  value of the field is never reset.
1708  */
1709 typedef struct adv_dvc_cfg {
1710 	ushort disc_enable;	/* enable disconnection */
1711 	uchar chip_version;	/* chip version */
1712 	uchar termination;	/* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1713 	ushort control_flag;	/* Microcode Control Flag */
1714 	ushort mcode_date;	/* Microcode date */
1715 	ushort mcode_version;	/* Microcode version */
1716 	ushort serial1;		/* EEPROM serial number word 1 */
1717 	ushort serial2;		/* EEPROM serial number word 2 */
1718 	ushort serial3;		/* EEPROM serial number word 3 */
1719 } ADV_DVC_CFG;
1720 
1721 struct adv_dvc_var;
1722 struct adv_scsi_req_q;
1723 
1724 typedef struct adv_sg_block {
1725 	uchar reserved1;
1726 	uchar reserved2;
1727 	uchar reserved3;
1728 	uchar sg_cnt;		/* Valid entries in block. */
1729 	__le32 sg_ptr;	/* Pointer to next sg block. */
1730 	struct {
1731 		__le32 sg_addr;	/* SG element address. */
1732 		__le32 sg_count;	/* SG element count. */
1733 	} sg_list[NO_OF_SG_PER_BLOCK];
1734 } ADV_SG_BLOCK;
1735 
1736 /*
1737  * ADV_SCSI_REQ_Q - microcode request structure
1738  *
1739  * All fields in this structure up to byte 60 are used by the microcode.
1740  * The microcode makes assumptions about the size and ordering of fields
1741  * in this structure. Do not change the structure definition here without
1742  * coordinating the change with the microcode.
1743  *
1744  * All fields accessed by microcode must be maintained in little_endian
1745  * order.
1746  */
1747 typedef struct adv_scsi_req_q {
1748 	uchar cntl;		/* Ucode flags and state (ASC_MC_QC_*). */
1749 	uchar target_cmd;
1750 	uchar target_id;	/* Device target identifier. */
1751 	uchar target_lun;	/* Device target logical unit number. */
1752 	__le32 data_addr;	/* Data buffer physical address. */
1753 	__le32 data_cnt;	/* Data count. Ucode sets to residual. */
1754 	__le32 sense_addr;
1755 	__le32 carr_pa;
1756 	uchar mflag;
1757 	uchar sense_len;
1758 	uchar cdb_len;		/* SCSI CDB length. Must <= 16 bytes. */
1759 	uchar scsi_cntl;
1760 	uchar done_status;	/* Completion status. */
1761 	uchar scsi_status;	/* SCSI status byte. */
1762 	uchar host_status;	/* Ucode host status. */
1763 	uchar sg_working_ix;
1764 	uchar cdb[12];		/* SCSI CDB bytes 0-11. */
1765 	__le32 sg_real_addr;	/* SG list physical address. */
1766 	__le32 scsiq_rptr;
1767 	uchar cdb16[4];		/* SCSI CDB bytes 12-15. */
1768 	__le32 scsiq_ptr;
1769 	__le32 carr_va;
1770 	/*
1771 	 * End of microcode structure - 60 bytes. The rest of the structure
1772 	 * is used by the Adv Library and ignored by the microcode.
1773 	 */
1774 	u32 srb_tag;
1775 	ADV_SG_BLOCK *sg_list_ptr;	/* SG list virtual address. */
1776 } ADV_SCSI_REQ_Q;
1777 
1778 /*
1779  * The following two structures are used to process Wide Board requests.
1780  *
1781  * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1782  * and microcode with the ADV_SCSI_REQ_Q field 'srb_tag' set to the
1783  * SCSI request tag. The adv_req_t structure 'cmndp' field in turn points
1784  * to the Mid-Level SCSI request structure.
1785  *
1786  * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1787  * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1788  * up to 255 scatter-gather elements may be used per request or
1789  * ADV_SCSI_REQ_Q.
1790  *
1791  * Both structures must be 32 byte aligned.
1792  */
1793 typedef struct adv_sgblk {
1794 	ADV_SG_BLOCK sg_block;	/* Sgblock structure. */
1795 	dma_addr_t sg_addr;	/* Physical address */
1796 	struct adv_sgblk *next_sgblkp;	/* Next scatter-gather structure. */
1797 } adv_sgblk_t;
1798 
1799 typedef struct adv_req {
1800 	ADV_SCSI_REQ_Q scsi_req_q;	/* Adv Library request structure. */
1801 	uchar align[24];	/* Request structure padding. */
1802 	struct scsi_cmnd *cmndp;	/* Mid-Level SCSI command pointer. */
1803 	dma_addr_t req_addr;
1804 	adv_sgblk_t *sgblkp;	/* Adv Library scatter-gather pointer. */
1805 } adv_req_t __aligned(32);
1806 
1807 /*
1808  * Adapter operation variable structure.
1809  *
1810  * One structure is required per host adapter.
1811  *
1812  * Field naming convention:
1813  *
1814  *  *_able indicates both whether a feature should be enabled or disabled
1815  *  and whether a device isi capable of the feature. At initialization
1816  *  this field may be set, but later if a device is found to be incapable
1817  *  of the feature, the field is cleared.
1818  */
1819 typedef struct adv_dvc_var {
1820 	AdvPortAddr iop_base;	/* I/O port address */
1821 	ushort err_code;	/* fatal error code */
1822 	ushort bios_ctrl;	/* BIOS control word, EEPROM word 12 */
1823 	ushort wdtr_able;	/* try WDTR for a device */
1824 	ushort sdtr_able;	/* try SDTR for a device */
1825 	ushort ultra_able;	/* try SDTR Ultra speed for a device */
1826 	ushort sdtr_speed1;	/* EEPROM SDTR Speed for TID 0-3   */
1827 	ushort sdtr_speed2;	/* EEPROM SDTR Speed for TID 4-7   */
1828 	ushort sdtr_speed3;	/* EEPROM SDTR Speed for TID 8-11  */
1829 	ushort sdtr_speed4;	/* EEPROM SDTR Speed for TID 12-15 */
1830 	ushort tagqng_able;	/* try tagged queuing with a device */
1831 	ushort ppr_able;	/* PPR message capable per TID bitmask. */
1832 	uchar max_dvc_qng;	/* maximum number of tagged commands per device */
1833 	ushort start_motor;	/* start motor command allowed */
1834 	uchar scsi_reset_wait;	/* delay in seconds after scsi bus reset */
1835 	uchar chip_no;		/* should be assigned by caller */
1836 	uchar max_host_qng;	/* maximum number of Q'ed command allowed */
1837 	ushort no_scam;		/* scam_tolerant of EEPROM */
1838 	struct asc_board *drv_ptr;	/* driver pointer to private structure */
1839 	uchar chip_scsi_id;	/* chip SCSI target ID */
1840 	uchar chip_type;
1841 	uchar bist_err_code;
1842 	ADV_CARR_T *carrier;
1843 	ADV_CARR_T *carr_freelist;	/* Carrier free list. */
1844 	dma_addr_t carrier_addr;
1845 	ADV_CARR_T *icq_sp;	/* Initiator command queue stopper pointer. */
1846 	ADV_CARR_T *irq_sp;	/* Initiator response queue stopper pointer. */
1847 	ushort carr_pending_cnt;	/* Count of pending carriers. */
1848 	/*
1849 	 * Note: The following fields will not be used after initialization. The
1850 	 * driver may discard the buffer after initialization is done.
1851 	 */
1852 	ADV_DVC_CFG *cfg;	/* temporary configuration structure  */
1853 } ADV_DVC_VAR;
1854 
1855 /*
1856  * Microcode idle loop commands
1857  */
1858 #define IDLE_CMD_COMPLETED           0
1859 #define IDLE_CMD_STOP_CHIP           0x0001
1860 #define IDLE_CMD_STOP_CHIP_SEND_INT  0x0002
1861 #define IDLE_CMD_SEND_INT            0x0004
1862 #define IDLE_CMD_ABORT               0x0008
1863 #define IDLE_CMD_DEVICE_RESET        0x0010
1864 #define IDLE_CMD_SCSI_RESET_START    0x0020	/* Assert SCSI Bus Reset */
1865 #define IDLE_CMD_SCSI_RESET_END      0x0040	/* Deassert SCSI Bus Reset */
1866 #define IDLE_CMD_SCSIREQ             0x0080
1867 
1868 #define IDLE_CMD_STATUS_SUCCESS      0x0001
1869 #define IDLE_CMD_STATUS_FAILURE      0x0002
1870 
1871 /*
1872  * AdvSendIdleCmd() flag definitions.
1873  */
1874 #define ADV_NOWAIT     0x01
1875 
1876 /*
1877  * Wait loop time out values.
1878  */
1879 #define SCSI_WAIT_100_MSEC           100UL	/* 100 milliseconds */
1880 #define SCSI_US_PER_MSEC             1000	/* microseconds per millisecond */
1881 #define SCSI_MAX_RETRY               10	/* retry count */
1882 
1883 #define ADV_ASYNC_RDMA_FAILURE          0x01	/* Fatal RDMA failure. */
1884 #define ADV_ASYNC_SCSI_BUS_RESET_DET    0x02	/* Detected SCSI Bus Reset. */
1885 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03	/* Carrier Ready failure. */
1886 #define ADV_RDMA_IN_CARR_AND_Q_INVALID  0x04	/* RDMAed-in data invalid. */
1887 
1888 #define ADV_HOST_SCSI_BUS_RESET      0x80	/* Host Initiated SCSI Bus Reset. */
1889 
1890 /* Read byte from a register. */
1891 #define AdvReadByteRegister(iop_base, reg_off) \
1892      (ADV_MEM_READB((iop_base) + (reg_off)))
1893 
1894 /* Write byte to a register. */
1895 #define AdvWriteByteRegister(iop_base, reg_off, byte) \
1896      (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1897 
1898 /* Read word (2 bytes) from a register. */
1899 #define AdvReadWordRegister(iop_base, reg_off) \
1900      (ADV_MEM_READW((iop_base) + (reg_off)))
1901 
1902 /* Write word (2 bytes) to a register. */
1903 #define AdvWriteWordRegister(iop_base, reg_off, word) \
1904      (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
1905 
1906 /* Write dword (4 bytes) to a register. */
1907 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \
1908      (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
1909 
1910 /* Read byte from LRAM. */
1911 #define AdvReadByteLram(iop_base, addr, byte) \
1912 do { \
1913     ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1914     (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
1915 } while (0)
1916 
1917 /* Write byte to LRAM. */
1918 #define AdvWriteByteLram(iop_base, addr, byte) \
1919     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1920      ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
1921 
1922 /* Read word (2 bytes) from LRAM. */
1923 #define AdvReadWordLram(iop_base, addr, word) \
1924 do { \
1925     ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1926     (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
1927 } while (0)
1928 
1929 /* Write word (2 bytes) to LRAM. */
1930 #define AdvWriteWordLram(iop_base, addr, word) \
1931     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1932      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1933 
1934 /* Write little-endian double word (4 bytes) to LRAM */
1935 /* Because of unspecified C language ordering don't use auto-increment. */
1936 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
1937     ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1938       ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1939                      cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
1940      (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
1941       ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1942                      cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
1943 
1944 /* Read word (2 bytes) from LRAM assuming that the address is already set. */
1945 #define AdvReadWordAutoIncLram(iop_base) \
1946      (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
1947 
1948 /* Write word (2 bytes) to LRAM assuming that the address is already set. */
1949 #define AdvWriteWordAutoIncLram(iop_base, word) \
1950      (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1951 
1952 /*
1953  * Define macro to check for Condor signature.
1954  *
1955  * Evaluate to ADV_TRUE if a Condor chip is found the specified port
1956  * address 'iop_base'. Otherwise evalue to ADV_FALSE.
1957  */
1958 #define AdvFindSignature(iop_base) \
1959     (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
1960     ADV_CHIP_ID_BYTE) && \
1961      (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
1962     ADV_CHIP_ID_WORD)) ?  ADV_TRUE : ADV_FALSE)
1963 
1964 /*
1965  * Define macro to Return the version number of the chip at 'iop_base'.
1966  *
1967  * The second parameter 'bus_type' is currently unused.
1968  */
1969 #define AdvGetChipVersion(iop_base, bus_type) \
1970     AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
1971 
1972 /*
1973  * Abort an SRB in the chip's RISC Memory. The 'srb_tag' argument must
1974  * match the ADV_SCSI_REQ_Q 'srb_tag' field.
1975  *
1976  * If the request has not yet been sent to the device it will simply be
1977  * aborted from RISC memory. If the request is disconnected it will be
1978  * aborted on reselection by sending an Abort Message to the target ID.
1979  *
1980  * Return value:
1981  *      ADV_TRUE(1) - Queue was successfully aborted.
1982  *      ADV_FALSE(0) - Queue was not found on the active queue list.
1983  */
1984 #define AdvAbortQueue(asc_dvc, srb_tag) \
1985      AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
1986 		    (ADV_DCNT) (srb_tag))
1987 
1988 /*
1989  * Send a Bus Device Reset Message to the specified target ID.
1990  *
1991  * All outstanding commands will be purged if sending the
1992  * Bus Device Reset Message is successful.
1993  *
1994  * Return Value:
1995  *      ADV_TRUE(1) - All requests on the target are purged.
1996  *      ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
1997  *                     are not purged.
1998  */
1999 #define AdvResetDevice(asc_dvc, target_id) \
2000      AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET,	\
2001 		    (ADV_DCNT) (target_id))
2002 
2003 /*
2004  * SCSI Wide Type definition.
2005  */
2006 #define ADV_SCSI_BIT_ID_TYPE   ushort
2007 
2008 /*
2009  * AdvInitScsiTarget() 'cntl_flag' options.
2010  */
2011 #define ADV_SCAN_LUN           0x01
2012 #define ADV_CAPINFO_NOLUN      0x02
2013 
2014 /*
2015  * Convert target id to target id bit mask.
2016  */
2017 #define ADV_TID_TO_TIDMASK(tid)   (0x01 << ((tid) & ADV_MAX_TID))
2018 
2019 /*
2020  * ADV_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2021  */
2022 
2023 #define QD_NO_STATUS         0x00	/* Request not completed yet. */
2024 #define QD_NO_ERROR          0x01
2025 #define QD_ABORTED_BY_HOST   0x02
2026 #define QD_WITH_ERROR        0x04
2027 
2028 #define QHSTA_NO_ERROR              0x00
2029 #define QHSTA_M_SEL_TIMEOUT         0x11
2030 #define QHSTA_M_DATA_OVER_RUN       0x12
2031 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2032 #define QHSTA_M_QUEUE_ABORTED       0x15
2033 #define QHSTA_M_SXFR_SDMA_ERR       0x16	/* SXFR_STATUS SCSI DMA Error */
2034 #define QHSTA_M_SXFR_SXFR_PERR      0x17	/* SXFR_STATUS SCSI Bus Parity Error */
2035 #define QHSTA_M_RDMA_PERR           0x18	/* RISC PCI DMA parity error */
2036 #define QHSTA_M_SXFR_OFF_UFLW       0x19	/* SXFR_STATUS Offset Underflow */
2037 #define QHSTA_M_SXFR_OFF_OFLW       0x20	/* SXFR_STATUS Offset Overflow */
2038 #define QHSTA_M_SXFR_WD_TMO         0x21	/* SXFR_STATUS Watchdog Timeout */
2039 #define QHSTA_M_SXFR_DESELECTED     0x22	/* SXFR_STATUS Deselected */
2040 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2041 #define QHSTA_M_SXFR_XFR_OFLW       0x12	/* SXFR_STATUS Transfer Overflow */
2042 #define QHSTA_M_SXFR_XFR_PH_ERR     0x24	/* SXFR_STATUS Transfer Phase Error */
2043 #define QHSTA_M_SXFR_UNKNOWN_ERROR  0x25	/* SXFR_STATUS Unknown Error */
2044 #define QHSTA_M_SCSI_BUS_RESET      0x30	/* Request aborted from SBR */
2045 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31	/* Request aborted from unsol. SBR */
2046 #define QHSTA_M_BUS_DEVICE_RESET    0x32	/* Request aborted from BDR */
2047 #define QHSTA_M_DIRECTION_ERR       0x35	/* Data Phase mismatch */
2048 #define QHSTA_M_DIRECTION_ERR_HUNG  0x36	/* Data Phase mismatch and bus hang */
2049 #define QHSTA_M_WTM_TIMEOUT         0x41
2050 #define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
2051 #define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
2052 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2053 #define QHSTA_M_INVALID_DEVICE      0x45	/* Bad target ID */
2054 #define QHSTA_M_FROZEN_TIDQ         0x46	/* TID Queue frozen. */
2055 #define QHSTA_M_SGBACKUP_ERROR      0x47	/* Scatter-Gather backup error */
2056 
2057 /* Return the address that is aligned at the next doubleword >= to 'addr'. */
2058 #define ADV_32BALIGN(addr)     (((ulong) (addr) + 0x1F) & ~0x1F)
2059 
2060 /*
2061  * Total contiguous memory needed for driver SG blocks.
2062  *
2063  * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2064  * number of scatter-gather elements the driver supports in a
2065  * single request.
2066  */
2067 
2068 #define ADV_SG_LIST_MAX_BYTE_SIZE \
2069          (sizeof(ADV_SG_BLOCK) * \
2070           ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2071 
2072 /* struct asc_board flags */
2073 #define ASC_IS_WIDE_BOARD       0x04	/* AdvanSys Wide Board */
2074 
2075 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2076 
2077 #define NO_ISA_DMA              0xff	/* No ISA DMA Channel Used */
2078 
2079 #define ASC_INFO_SIZE           128	/* advansys_info() line size */
2080 
2081 /* Asc Library return codes */
2082 #define ASC_TRUE        1
2083 #define ASC_FALSE       0
2084 #define ASC_NOERROR     1
2085 #define ASC_BUSY        0
2086 #define ASC_ERROR       (-1)
2087 
2088 /* struct scsi_cmnd function return codes */
2089 #define STATUS_BYTE(byte)   (byte)
2090 #define MSG_BYTE(byte)      ((byte) << 8)
2091 #define HOST_BYTE(byte)     ((byte) << 16)
2092 #define DRIVER_BYTE(byte)   ((byte) << 24)
2093 
2094 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2095 #ifndef ADVANSYS_STATS
2096 #define ASC_STATS_ADD(shost, counter, count)
2097 #else /* ADVANSYS_STATS */
2098 #define ASC_STATS_ADD(shost, counter, count) \
2099 	(((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2100 #endif /* ADVANSYS_STATS */
2101 
2102 /* If the result wraps when calculating tenths, return 0. */
2103 #define ASC_TENTHS(num, den) \
2104     (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2105     0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2106 
2107 /*
2108  * Display a message to the console.
2109  */
2110 #define ASC_PRINT(s) \
2111     { \
2112         printk("advansys: "); \
2113         printk(s); \
2114     }
2115 
2116 #define ASC_PRINT1(s, a1) \
2117     { \
2118         printk("advansys: "); \
2119         printk((s), (a1)); \
2120     }
2121 
2122 #define ASC_PRINT2(s, a1, a2) \
2123     { \
2124         printk("advansys: "); \
2125         printk((s), (a1), (a2)); \
2126     }
2127 
2128 #define ASC_PRINT3(s, a1, a2, a3) \
2129     { \
2130         printk("advansys: "); \
2131         printk((s), (a1), (a2), (a3)); \
2132     }
2133 
2134 #define ASC_PRINT4(s, a1, a2, a3, a4) \
2135     { \
2136         printk("advansys: "); \
2137         printk((s), (a1), (a2), (a3), (a4)); \
2138     }
2139 
2140 #ifndef ADVANSYS_DEBUG
2141 
2142 #define ASC_DBG(lvl, s...)
2143 #define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2144 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2145 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2146 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2147 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2148 #define ASC_DBG_PRT_HEX(lvl, name, start, length)
2149 #define ASC_DBG_PRT_CDB(lvl, cdb, len)
2150 #define ASC_DBG_PRT_SENSE(lvl, sense, len)
2151 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2152 
2153 #else /* ADVANSYS_DEBUG */
2154 
2155 /*
2156  * Debugging Message Levels:
2157  * 0: Errors Only
2158  * 1: High-Level Tracing
2159  * 2-N: Verbose Tracing
2160  */
2161 
2162 #define ASC_DBG(lvl, format, arg...) {					\
2163 	if (asc_dbglvl >= (lvl))					\
2164 		printk(KERN_DEBUG "%s: %s: " format, DRV_NAME,		\
2165 			__func__ , ## arg);				\
2166 }
2167 
2168 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2169     { \
2170         if (asc_dbglvl >= (lvl)) { \
2171             asc_prt_scsi_host(s); \
2172         } \
2173     }
2174 
2175 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2176     { \
2177         if (asc_dbglvl >= (lvl)) { \
2178             asc_prt_asc_scsi_q(scsiqp); \
2179         } \
2180     }
2181 
2182 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2183     { \
2184         if (asc_dbglvl >= (lvl)) { \
2185             asc_prt_asc_qdone_info(qdone); \
2186         } \
2187     }
2188 
2189 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2190     { \
2191         if (asc_dbglvl >= (lvl)) { \
2192             asc_prt_adv_scsi_req_q(scsiqp); \
2193         } \
2194     }
2195 
2196 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2197     { \
2198         if (asc_dbglvl >= (lvl)) { \
2199             asc_prt_hex((name), (start), (length)); \
2200         } \
2201     }
2202 
2203 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2204         ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2205 
2206 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2207         ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2208 
2209 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2210         ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2211 #endif /* ADVANSYS_DEBUG */
2212 
2213 #ifdef ADVANSYS_STATS
2214 
2215 /* Per board statistics structure */
2216 struct asc_stats {
2217 	/* Driver Entrypoint Statistics */
2218 	unsigned int queuecommand;	/* # calls to advansys_queuecommand() */
2219 	unsigned int reset;		/* # calls to advansys_eh_bus_reset() */
2220 	unsigned int biosparam;	/* # calls to advansys_biosparam() */
2221 	unsigned int interrupt;	/* # advansys_interrupt() calls */
2222 	unsigned int callback;	/* # calls to asc/adv_isr_callback() */
2223 	unsigned int done;		/* # calls to request's scsi_done function */
2224 	unsigned int build_error;	/* # asc/adv_build_req() ASC_ERROR returns. */
2225 	unsigned int adv_build_noreq;	/* # adv_build_req() adv_req_t alloc. fail. */
2226 	unsigned int adv_build_nosg;	/* # adv_build_req() adv_sgblk_t alloc. fail. */
2227 	/* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2228 	unsigned int exe_noerror;	/* # ASC_NOERROR returns. */
2229 	unsigned int exe_busy;	/* # ASC_BUSY returns. */
2230 	unsigned int exe_error;	/* # ASC_ERROR returns. */
2231 	unsigned int exe_unknown;	/* # unknown returns. */
2232 	/* Data Transfer Statistics */
2233 	unsigned int xfer_cnt;	/* # I/O requests received */
2234 	unsigned int xfer_elem;	/* # scatter-gather elements */
2235 	unsigned int xfer_sect;	/* # 512-byte blocks */
2236 };
2237 #endif /* ADVANSYS_STATS */
2238 
2239 /*
2240  * Structure allocated for each board.
2241  *
2242  * This structure is allocated by scsi_host_alloc() at the end
2243  * of the 'Scsi_Host' structure starting at the 'hostdata'
2244  * field. It is guaranteed to be allocated from DMA-able memory.
2245  */
2246 struct asc_board {
2247 	struct device *dev;
2248 	struct Scsi_Host *shost;
2249 	uint flags;		/* Board flags */
2250 	unsigned int irq;
2251 	union {
2252 		ASC_DVC_VAR asc_dvc_var;	/* Narrow board */
2253 		ADV_DVC_VAR adv_dvc_var;	/* Wide board */
2254 	} dvc_var;
2255 	union {
2256 		ASC_DVC_CFG asc_dvc_cfg;	/* Narrow board */
2257 		ADV_DVC_CFG adv_dvc_cfg;	/* Wide board */
2258 	} dvc_cfg;
2259 	ushort asc_n_io_port;	/* Number I/O ports. */
2260 	ADV_SCSI_BIT_ID_TYPE init_tidmask;	/* Target init./valid mask */
2261 	ushort reqcnt[ADV_MAX_TID + 1];	/* Starvation request count */
2262 	ADV_SCSI_BIT_ID_TYPE queue_full;	/* Queue full mask */
2263 	ushort queue_full_cnt[ADV_MAX_TID + 1];	/* Queue full count */
2264 	union {
2265 		ASCEEP_CONFIG asc_eep;	/* Narrow EEPROM config. */
2266 		ADVEEP_3550_CONFIG adv_3550_eep;	/* 3550 EEPROM config. */
2267 		ADVEEP_38C0800_CONFIG adv_38C0800_eep;	/* 38C0800 EEPROM config. */
2268 		ADVEEP_38C1600_CONFIG adv_38C1600_eep;	/* 38C1600 EEPROM config. */
2269 	} eep_config;
2270 	/* /proc/scsi/advansys/[0...] */
2271 #ifdef ADVANSYS_STATS
2272 	struct asc_stats asc_stats;	/* Board statistics */
2273 #endif				/* ADVANSYS_STATS */
2274 	/*
2275 	 * The following fields are used only for Narrow Boards.
2276 	 */
2277 	uchar sdtr_data[ASC_MAX_TID + 1];	/* SDTR information */
2278 	/*
2279 	 * The following fields are used only for Wide Boards.
2280 	 */
2281 	void __iomem *ioremap_addr;	/* I/O Memory remap address. */
2282 	ushort ioport;		/* I/O Port address. */
2283 	adv_req_t *adv_reqp;	/* Request structures. */
2284 	dma_addr_t adv_reqp_addr;
2285 	size_t adv_reqp_size;
2286 	struct dma_pool *adv_sgblk_pool;	/* Scatter-gather structures. */
2287 	ushort bios_signature;	/* BIOS Signature. */
2288 	ushort bios_version;	/* BIOS Version. */
2289 	ushort bios_codeseg;	/* BIOS Code Segment. */
2290 	ushort bios_codelen;	/* BIOS Code Segment Length. */
2291 };
2292 
2293 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2294 							dvc_var.asc_dvc_var)
2295 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2296 							dvc_var.adv_dvc_var)
2297 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2298 
2299 #ifdef ADVANSYS_DEBUG
2300 static int asc_dbglvl = 3;
2301 
2302 /*
2303  * asc_prt_asc_dvc_var()
2304  */
asc_prt_asc_dvc_var(ASC_DVC_VAR * h)2305 static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
2306 {
2307 	printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
2308 
2309 	printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2310 	       "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
2311 
2312 	printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
2313 		(unsigned)h->init_sdtr);
2314 
2315 	printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2316 	       "chip_no 0x%x,\n", (unsigned)h->sdtr_done,
2317 	       (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
2318 	       (unsigned)h->chip_no);
2319 
2320 	printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2321 	       "%u,\n", (unsigned)h->queue_full_or_busy,
2322 	       (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2323 
2324 	printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2325 	       "in_critical_cnt %u,\n", (unsigned)h->is_in_int,
2326 	       (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
2327 	       (unsigned)h->in_critical_cnt);
2328 
2329 	printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2330 	       "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
2331 	       (unsigned)h->init_state, (unsigned)h->no_scam,
2332 	       (unsigned)h->pci_fix_asyn_xfer);
2333 
2334 	printk(" cfg 0x%lx\n", (ulong)h->cfg);
2335 }
2336 
2337 /*
2338  * asc_prt_asc_dvc_cfg()
2339  */
asc_prt_asc_dvc_cfg(ASC_DVC_CFG * h)2340 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
2341 {
2342 	printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
2343 
2344 	printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2345 	       h->can_tagged_qng, h->cmd_qng_enabled);
2346 	printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2347 	       h->disc_enable, h->sdtr_enable);
2348 
2349 	printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
2350 		"chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed,
2351 		h->isa_dma_channel, h->chip_version);
2352 
2353 	printk(" mcode_date 0x%x, mcode_version %d\n",
2354 		h->mcode_date, h->mcode_version);
2355 }
2356 
2357 /*
2358  * asc_prt_adv_dvc_var()
2359  *
2360  * Display an ADV_DVC_VAR structure.
2361  */
asc_prt_adv_dvc_var(ADV_DVC_VAR * h)2362 static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
2363 {
2364 	printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
2365 
2366 	printk("  iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2367 	       (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
2368 
2369 	printk("  sdtr_able 0x%x, wdtr_able 0x%x\n",
2370 	       (unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
2371 
2372 	printk("  start_motor 0x%x, scsi_reset_wait 0x%x\n",
2373 	       (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2374 
2375 	printk("  max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%p\n",
2376 	       (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
2377 	       h->carr_freelist);
2378 
2379 	printk("  icq_sp 0x%p, irq_sp 0x%p\n", h->icq_sp, h->irq_sp);
2380 
2381 	printk("  no_scam 0x%x, tagqng_able 0x%x\n",
2382 	       (unsigned)h->no_scam, (unsigned)h->tagqng_able);
2383 
2384 	printk("  chip_scsi_id 0x%x, cfg 0x%lx\n",
2385 	       (unsigned)h->chip_scsi_id, (ulong)h->cfg);
2386 }
2387 
2388 /*
2389  * asc_prt_adv_dvc_cfg()
2390  *
2391  * Display an ADV_DVC_CFG structure.
2392  */
asc_prt_adv_dvc_cfg(ADV_DVC_CFG * h)2393 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
2394 {
2395 	printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
2396 
2397 	printk("  disc_enable 0x%x, termination 0x%x\n",
2398 	       h->disc_enable, h->termination);
2399 
2400 	printk("  chip_version 0x%x, mcode_date 0x%x\n",
2401 	       h->chip_version, h->mcode_date);
2402 
2403 	printk("  mcode_version 0x%x, control_flag 0x%x\n",
2404 	       h->mcode_version, h->control_flag);
2405 }
2406 
2407 /*
2408  * asc_prt_scsi_host()
2409  */
asc_prt_scsi_host(struct Scsi_Host * s)2410 static void asc_prt_scsi_host(struct Scsi_Host *s)
2411 {
2412 	struct asc_board *boardp = shost_priv(s);
2413 
2414 	printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
2415 	printk(" host_busy %d, host_no %d,\n",
2416 	       scsi_host_busy(s), s->host_no);
2417 
2418 	printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2419 	       (ulong)s->base, (ulong)s->io_port, boardp->irq);
2420 
2421 	printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2422 	       s->dma_channel, s->this_id, s->can_queue);
2423 
2424 	printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
2425 	       s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma);
2426 
2427 	if (ASC_NARROW_BOARD(boardp)) {
2428 		asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
2429 		asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
2430 	} else {
2431 		asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
2432 		asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
2433 	}
2434 }
2435 
2436 /*
2437  * asc_prt_hex()
2438  *
2439  * Print hexadecimal output in 4 byte groupings 32 bytes
2440  * or 8 double-words per line.
2441  */
asc_prt_hex(char * f,uchar * s,int l)2442 static void asc_prt_hex(char *f, uchar *s, int l)
2443 {
2444 	int i;
2445 	int j;
2446 	int k;
2447 	int m;
2448 
2449 	printk("%s: (%d bytes)\n", f, l);
2450 
2451 	for (i = 0; i < l; i += 32) {
2452 
2453 		/* Display a maximum of 8 double-words per line. */
2454 		if ((k = (l - i) / 4) >= 8) {
2455 			k = 8;
2456 			m = 0;
2457 		} else {
2458 			m = (l - i) % 4;
2459 		}
2460 
2461 		for (j = 0; j < k; j++) {
2462 			printk(" %2.2X%2.2X%2.2X%2.2X",
2463 			       (unsigned)s[i + (j * 4)],
2464 			       (unsigned)s[i + (j * 4) + 1],
2465 			       (unsigned)s[i + (j * 4) + 2],
2466 			       (unsigned)s[i + (j * 4) + 3]);
2467 		}
2468 
2469 		switch (m) {
2470 		case 0:
2471 		default:
2472 			break;
2473 		case 1:
2474 			printk(" %2.2X", (unsigned)s[i + (j * 4)]);
2475 			break;
2476 		case 2:
2477 			printk(" %2.2X%2.2X",
2478 			       (unsigned)s[i + (j * 4)],
2479 			       (unsigned)s[i + (j * 4) + 1]);
2480 			break;
2481 		case 3:
2482 			printk(" %2.2X%2.2X%2.2X",
2483 			       (unsigned)s[i + (j * 4) + 1],
2484 			       (unsigned)s[i + (j * 4) + 2],
2485 			       (unsigned)s[i + (j * 4) + 3]);
2486 			break;
2487 		}
2488 
2489 		printk("\n");
2490 	}
2491 }
2492 
2493 /*
2494  * asc_prt_asc_scsi_q()
2495  */
asc_prt_asc_scsi_q(ASC_SCSI_Q * q)2496 static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
2497 {
2498 	ASC_SG_HEAD *sgp;
2499 	int i;
2500 
2501 	printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
2502 
2503 	printk
2504 	    (" target_ix 0x%x, target_lun %u, srb_tag 0x%x, tag_code 0x%x,\n",
2505 	     q->q2.target_ix, q->q1.target_lun, q->q2.srb_tag,
2506 	     q->q2.tag_code);
2507 
2508 	printk
2509 	    (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2510 	     (ulong)le32_to_cpu(q->q1.data_addr),
2511 	     (ulong)le32_to_cpu(q->q1.data_cnt),
2512 	     (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
2513 
2514 	printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2515 	       (ulong)q->cdbptr, q->q2.cdb_len,
2516 	       (ulong)q->sg_head, q->q1.sg_queue_cnt);
2517 
2518 	if (q->sg_head) {
2519 		sgp = q->sg_head;
2520 		printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
2521 		printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
2522 		       sgp->queue_cnt);
2523 		for (i = 0; i < sgp->entry_cnt; i++) {
2524 			printk(" [%u]: addr 0x%lx, bytes %lu\n",
2525 			       i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
2526 			       (ulong)le32_to_cpu(sgp->sg_list[i].bytes));
2527 		}
2528 
2529 	}
2530 }
2531 
2532 /*
2533  * asc_prt_asc_qdone_info()
2534  */
asc_prt_asc_qdone_info(ASC_QDONE_INFO * q)2535 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
2536 {
2537 	printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
2538 	printk(" srb_tag 0x%x, target_ix %u, cdb_len %u, tag_code %u,\n",
2539 	       q->d2.srb_tag, q->d2.target_ix, q->d2.cdb_len,
2540 	       q->d2.tag_code);
2541 	printk
2542 	    (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2543 	     q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
2544 }
2545 
2546 /*
2547  * asc_prt_adv_sgblock()
2548  *
2549  * Display an ADV_SG_BLOCK structure.
2550  */
asc_prt_adv_sgblock(int sgblockno,ADV_SG_BLOCK * b)2551 static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
2552 {
2553 	int i;
2554 
2555 	printk(" ADV_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2556 	       (ulong)b, sgblockno);
2557 	printk("  sg_cnt %u, sg_ptr 0x%x\n",
2558 	       b->sg_cnt, (u32)le32_to_cpu(b->sg_ptr));
2559 	BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
2560 	if (b->sg_ptr != 0)
2561 		BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
2562 	for (i = 0; i < b->sg_cnt; i++) {
2563 		printk("  [%u]: sg_addr 0x%x, sg_count 0x%x\n",
2564 		       i, (u32)le32_to_cpu(b->sg_list[i].sg_addr),
2565 		       (u32)le32_to_cpu(b->sg_list[i].sg_count));
2566 	}
2567 }
2568 
2569 /*
2570  * asc_prt_adv_scsi_req_q()
2571  *
2572  * Display an ADV_SCSI_REQ_Q structure.
2573  */
asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q * q)2574 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
2575 {
2576 	int sg_blk_cnt;
2577 	struct adv_sg_block *sg_ptr;
2578 	adv_sgblk_t *sgblkp;
2579 
2580 	printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
2581 
2582 	printk("  target_id %u, target_lun %u, srb_tag 0x%x\n",
2583 	       q->target_id, q->target_lun, q->srb_tag);
2584 
2585 	printk("  cntl 0x%x, data_addr 0x%lx\n",
2586 	       q->cntl, (ulong)le32_to_cpu(q->data_addr));
2587 
2588 	printk("  data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2589 	       (ulong)le32_to_cpu(q->data_cnt),
2590 	       (ulong)le32_to_cpu(q->sense_addr), q->sense_len);
2591 
2592 	printk
2593 	    ("  cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2594 	     q->cdb_len, q->done_status, q->host_status, q->scsi_status);
2595 
2596 	printk("  sg_working_ix 0x%x, target_cmd %u\n",
2597 	       q->sg_working_ix, q->target_cmd);
2598 
2599 	printk("  scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2600 	       (ulong)le32_to_cpu(q->scsiq_rptr),
2601 	       (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
2602 
2603 	/* Display the request's ADV_SG_BLOCK structures. */
2604 	if (q->sg_list_ptr != NULL) {
2605 		sgblkp = container_of(q->sg_list_ptr, adv_sgblk_t, sg_block);
2606 		sg_blk_cnt = 0;
2607 		while (sgblkp) {
2608 			sg_ptr = &sgblkp->sg_block;
2609 			asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
2610 			if (sg_ptr->sg_ptr == 0) {
2611 				break;
2612 			}
2613 			sgblkp = sgblkp->next_sgblkp;
2614 			sg_blk_cnt++;
2615 		}
2616 	}
2617 }
2618 #endif /* ADVANSYS_DEBUG */
2619 
2620 /*
2621  * advansys_info()
2622  *
2623  * Return suitable for printing on the console with the argument
2624  * adapter's configuration information.
2625  *
2626  * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2627  * otherwise the static 'info' array will be overrun.
2628  */
advansys_info(struct Scsi_Host * shost)2629 static const char *advansys_info(struct Scsi_Host *shost)
2630 {
2631 	static char info[ASC_INFO_SIZE];
2632 	struct asc_board *boardp = shost_priv(shost);
2633 	ASC_DVC_VAR *asc_dvc_varp;
2634 	ADV_DVC_VAR *adv_dvc_varp;
2635 	char *busname;
2636 	char *widename = NULL;
2637 
2638 	if (ASC_NARROW_BOARD(boardp)) {
2639 		asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2640 		ASC_DBG(1, "begin\n");
2641 		if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2642 			if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) ==
2643 			    ASC_IS_ISAPNP) {
2644 				busname = "ISA PnP";
2645 			} else {
2646 				busname = "ISA";
2647 			}
2648 			sprintf(info,
2649 				"AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
2650 				ASC_VERSION, busname,
2651 				(ulong)shost->io_port,
2652 				(ulong)shost->io_port + ASC_IOADR_GAP - 1,
2653 				boardp->irq, shost->dma_channel);
2654 		} else {
2655 			if (asc_dvc_varp->bus_type & ASC_IS_VL) {
2656 				busname = "VL";
2657 			} else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
2658 				busname = "EISA";
2659 			} else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
2660 				if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
2661 				    == ASC_IS_PCI_ULTRA) {
2662 					busname = "PCI Ultra";
2663 				} else {
2664 					busname = "PCI";
2665 				}
2666 			} else {
2667 				busname = "?";
2668 				shost_printk(KERN_ERR, shost, "unknown bus "
2669 					"type %d\n", asc_dvc_varp->bus_type);
2670 			}
2671 			sprintf(info,
2672 				"AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2673 				ASC_VERSION, busname, (ulong)shost->io_port,
2674 				(ulong)shost->io_port + ASC_IOADR_GAP - 1,
2675 				boardp->irq);
2676 		}
2677 	} else {
2678 		/*
2679 		 * Wide Adapter Information
2680 		 *
2681 		 * Memory-mapped I/O is used instead of I/O space to access
2682 		 * the adapter, but display the I/O Port range. The Memory
2683 		 * I/O address is displayed through the driver /proc file.
2684 		 */
2685 		adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2686 		if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2687 			widename = "Ultra-Wide";
2688 		} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2689 			widename = "Ultra2-Wide";
2690 		} else {
2691 			widename = "Ultra3-Wide";
2692 		}
2693 		sprintf(info,
2694 			"AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2695 			ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
2696 			(ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
2697 	}
2698 	BUG_ON(strlen(info) >= ASC_INFO_SIZE);
2699 	ASC_DBG(1, "end\n");
2700 	return info;
2701 }
2702 
2703 #ifdef CONFIG_PROC_FS
2704 
2705 /*
2706  * asc_prt_board_devices()
2707  *
2708  * Print driver information for devices attached to the board.
2709  */
asc_prt_board_devices(struct seq_file * m,struct Scsi_Host * shost)2710 static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost)
2711 {
2712 	struct asc_board *boardp = shost_priv(shost);
2713 	int chip_scsi_id;
2714 	int i;
2715 
2716 	seq_printf(m,
2717 		   "\nDevice Information for AdvanSys SCSI Host %d:\n",
2718 		   shost->host_no);
2719 
2720 	if (ASC_NARROW_BOARD(boardp)) {
2721 		chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
2722 	} else {
2723 		chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
2724 	}
2725 
2726 	seq_puts(m, "Target IDs Detected:");
2727 	for (i = 0; i <= ADV_MAX_TID; i++) {
2728 		if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i))
2729 			seq_printf(m, " %X,", i);
2730 	}
2731 	seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id);
2732 }
2733 
2734 /*
2735  * Display Wide Board BIOS Information.
2736  */
asc_prt_adv_bios(struct seq_file * m,struct Scsi_Host * shost)2737 static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost)
2738 {
2739 	struct asc_board *boardp = shost_priv(shost);
2740 	ushort major, minor, letter;
2741 
2742 	seq_puts(m, "\nROM BIOS Version: ");
2743 
2744 	/*
2745 	 * If the BIOS saved a valid signature, then fill in
2746 	 * the BIOS code segment base address.
2747 	 */
2748 	if (boardp->bios_signature != 0x55AA) {
2749 		seq_puts(m, "Disabled or Pre-3.1\n"
2750 			"BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n"
2751 			"can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2752 	} else {
2753 		major = (boardp->bios_version >> 12) & 0xF;
2754 		minor = (boardp->bios_version >> 8) & 0xF;
2755 		letter = (boardp->bios_version & 0xFF);
2756 
2757 		seq_printf(m, "%d.%d%c\n",
2758 				   major, minor,
2759 				   letter >= 26 ? '?' : letter + 'A');
2760 		/*
2761 		 * Current available ROM BIOS release is 3.1I for UW
2762 		 * and 3.2I for U2W. This code doesn't differentiate
2763 		 * UW and U2W boards.
2764 		 */
2765 		if (major < 3 || (major <= 3 && minor < 1) ||
2766 		    (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
2767 			seq_puts(m, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n"
2768 				"ftp://ftp.connectcom.net/pub\n");
2769 		}
2770 	}
2771 }
2772 
2773 /*
2774  * Add serial number to information bar if signature AAh
2775  * is found in at bit 15-9 (7 bits) of word 1.
2776  *
2777  * Serial Number consists fo 12 alpha-numeric digits.
2778  *
2779  *       1 - Product type (A,B,C,D..)  Word0: 15-13 (3 bits)
2780  *       2 - MFG Location (A,B,C,D..)  Word0: 12-10 (3 bits)
2781  *     3-4 - Product ID (0-99)         Word0: 9-0 (10 bits)
2782  *       5 - Product revision (A-J)    Word0:  "         "
2783  *
2784  *           Signature                 Word1: 15-9 (7 bits)
2785  *       6 - Year (0-9)                Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
2786  *     7-8 - Week of the year (1-52)   Word1: 5-0 (6 bits)
2787  *
2788  *    9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
2789  *
2790  * Note 1: Only production cards will have a serial number.
2791  *
2792  * Note 2: Signature is most significant 7 bits (0xFE).
2793  *
2794  * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
2795  */
asc_get_eeprom_string(ushort * serialnum,uchar * cp)2796 static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
2797 {
2798 	ushort w, num;
2799 
2800 	if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
2801 		return ASC_FALSE;
2802 	} else {
2803 		/*
2804 		 * First word - 6 digits.
2805 		 */
2806 		w = serialnum[0];
2807 
2808 		/* Product type - 1st digit. */
2809 		if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
2810 			/* Product type is P=Prototype */
2811 			*cp += 0x8;
2812 		}
2813 		cp++;
2814 
2815 		/* Manufacturing location - 2nd digit. */
2816 		*cp++ = 'A' + ((w & 0x1C00) >> 10);
2817 
2818 		/* Product ID - 3rd, 4th digits. */
2819 		num = w & 0x3FF;
2820 		*cp++ = '0' + (num / 100);
2821 		num %= 100;
2822 		*cp++ = '0' + (num / 10);
2823 
2824 		/* Product revision - 5th digit. */
2825 		*cp++ = 'A' + (num % 10);
2826 
2827 		/*
2828 		 * Second word
2829 		 */
2830 		w = serialnum[1];
2831 
2832 		/*
2833 		 * Year - 6th digit.
2834 		 *
2835 		 * If bit 15 of third word is set, then the
2836 		 * last digit of the year is greater than 7.
2837 		 */
2838 		if (serialnum[2] & 0x8000) {
2839 			*cp++ = '8' + ((w & 0x1C0) >> 6);
2840 		} else {
2841 			*cp++ = '0' + ((w & 0x1C0) >> 6);
2842 		}
2843 
2844 		/* Week of year - 7th, 8th digits. */
2845 		num = w & 0x003F;
2846 		*cp++ = '0' + num / 10;
2847 		num %= 10;
2848 		*cp++ = '0' + num;
2849 
2850 		/*
2851 		 * Third word
2852 		 */
2853 		w = serialnum[2] & 0x7FFF;
2854 
2855 		/* Serial number - 9th digit. */
2856 		*cp++ = 'A' + (w / 1000);
2857 
2858 		/* 10th, 11th, 12th digits. */
2859 		num = w % 1000;
2860 		*cp++ = '0' + num / 100;
2861 		num %= 100;
2862 		*cp++ = '0' + num / 10;
2863 		num %= 10;
2864 		*cp++ = '0' + num;
2865 
2866 		*cp = '\0';	/* Null Terminate the string. */
2867 		return ASC_TRUE;
2868 	}
2869 }
2870 
2871 /*
2872  * asc_prt_asc_board_eeprom()
2873  *
2874  * Print board EEPROM configuration.
2875  */
asc_prt_asc_board_eeprom(struct seq_file * m,struct Scsi_Host * shost)2876 static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
2877 {
2878 	struct asc_board *boardp = shost_priv(shost);
2879 	ASC_DVC_VAR *asc_dvc_varp;
2880 	ASCEEP_CONFIG *ep;
2881 	int i;
2882 #ifdef CONFIG_ISA
2883 	int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
2884 #endif /* CONFIG_ISA */
2885 	uchar serialstr[13];
2886 
2887 	asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2888 	ep = &boardp->eep_config.asc_eep;
2889 
2890 	seq_printf(m,
2891 		   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2892 		   shost->host_no);
2893 
2894 	if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
2895 	    == ASC_TRUE)
2896 		seq_printf(m, " Serial Number: %s\n", serialstr);
2897 	else if (ep->adapter_info[5] == 0xBB)
2898 		seq_puts(m,
2899 			 " Default Settings Used for EEPROM-less Adapter.\n");
2900 	else
2901 		seq_puts(m, " Serial Number Signature Not Present.\n");
2902 
2903 	seq_printf(m,
2904 		   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2905 		   ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
2906 		   ep->max_tag_qng);
2907 
2908 	seq_printf(m,
2909 		   " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
2910 
2911 	seq_puts(m, " Target ID:           ");
2912 	for (i = 0; i <= ASC_MAX_TID; i++)
2913 		seq_printf(m, " %d", i);
2914 
2915 	seq_puts(m, "\n Disconnects:         ");
2916 	for (i = 0; i <= ASC_MAX_TID; i++)
2917 		seq_printf(m, " %c",
2918 			   (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2919 
2920 	seq_puts(m, "\n Command Queuing:     ");
2921 	for (i = 0; i <= ASC_MAX_TID; i++)
2922 		seq_printf(m, " %c",
2923 			   (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2924 
2925 	seq_puts(m, "\n Start Motor:         ");
2926 	for (i = 0; i <= ASC_MAX_TID; i++)
2927 		seq_printf(m, " %c",
2928 			   (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2929 
2930 	seq_puts(m, "\n Synchronous Transfer:");
2931 	for (i = 0; i <= ASC_MAX_TID; i++)
2932 		seq_printf(m, " %c",
2933 			   (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2934 	seq_putc(m, '\n');
2935 
2936 #ifdef CONFIG_ISA
2937 	if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2938 		seq_printf(m,
2939 			   " Host ISA DMA speed:   %d MB/S\n",
2940 			   isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]);
2941 	}
2942 #endif /* CONFIG_ISA */
2943 }
2944 
2945 /*
2946  * asc_prt_adv_board_eeprom()
2947  *
2948  * Print board EEPROM configuration.
2949  */
asc_prt_adv_board_eeprom(struct seq_file * m,struct Scsi_Host * shost)2950 static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
2951 {
2952 	struct asc_board *boardp = shost_priv(shost);
2953 	ADV_DVC_VAR *adv_dvc_varp;
2954 	int i;
2955 	char *termstr;
2956 	uchar serialstr[13];
2957 	ADVEEP_3550_CONFIG *ep_3550 = NULL;
2958 	ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
2959 	ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
2960 	ushort word;
2961 	ushort *wordp;
2962 	ushort sdtr_speed = 0;
2963 
2964 	adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2965 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2966 		ep_3550 = &boardp->eep_config.adv_3550_eep;
2967 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2968 		ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
2969 	} else {
2970 		ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
2971 	}
2972 
2973 	seq_printf(m,
2974 		   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2975 		   shost->host_no);
2976 
2977 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2978 		wordp = &ep_3550->serial_number_word1;
2979 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2980 		wordp = &ep_38C0800->serial_number_word1;
2981 	} else {
2982 		wordp = &ep_38C1600->serial_number_word1;
2983 	}
2984 
2985 	if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE)
2986 		seq_printf(m, " Serial Number: %s\n", serialstr);
2987 	else
2988 		seq_puts(m, " Serial Number Signature Not Present.\n");
2989 
2990 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
2991 		seq_printf(m,
2992 			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2993 			   ep_3550->adapter_scsi_id,
2994 			   ep_3550->max_host_qng, ep_3550->max_dvc_qng);
2995 	else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
2996 		seq_printf(m,
2997 			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2998 			   ep_38C0800->adapter_scsi_id,
2999 			   ep_38C0800->max_host_qng,
3000 			   ep_38C0800->max_dvc_qng);
3001 	else
3002 		seq_printf(m,
3003 			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3004 			   ep_38C1600->adapter_scsi_id,
3005 			   ep_38C1600->max_host_qng,
3006 			   ep_38C1600->max_dvc_qng);
3007 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3008 		word = ep_3550->termination;
3009 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3010 		word = ep_38C0800->termination_lvd;
3011 	} else {
3012 		word = ep_38C1600->termination_lvd;
3013 	}
3014 	switch (word) {
3015 	case 1:
3016 		termstr = "Low Off/High Off";
3017 		break;
3018 	case 2:
3019 		termstr = "Low Off/High On";
3020 		break;
3021 	case 3:
3022 		termstr = "Low On/High On";
3023 		break;
3024 	default:
3025 	case 0:
3026 		termstr = "Automatic";
3027 		break;
3028 	}
3029 
3030 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
3031 		seq_printf(m,
3032 			   " termination: %u (%s), bios_ctrl: 0x%x\n",
3033 			   ep_3550->termination, termstr,
3034 			   ep_3550->bios_ctrl);
3035 	else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
3036 		seq_printf(m,
3037 			   " termination: %u (%s), bios_ctrl: 0x%x\n",
3038 			   ep_38C0800->termination_lvd, termstr,
3039 			   ep_38C0800->bios_ctrl);
3040 	else
3041 		seq_printf(m,
3042 			   " termination: %u (%s), bios_ctrl: 0x%x\n",
3043 			   ep_38C1600->termination_lvd, termstr,
3044 			   ep_38C1600->bios_ctrl);
3045 
3046 	seq_puts(m, " Target ID:           ");
3047 	for (i = 0; i <= ADV_MAX_TID; i++)
3048 		seq_printf(m, " %X", i);
3049 	seq_putc(m, '\n');
3050 
3051 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3052 		word = ep_3550->disc_enable;
3053 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3054 		word = ep_38C0800->disc_enable;
3055 	} else {
3056 		word = ep_38C1600->disc_enable;
3057 	}
3058 	seq_puts(m, " Disconnects:         ");
3059 	for (i = 0; i <= ADV_MAX_TID; i++)
3060 		seq_printf(m, " %c",
3061 			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3062 	seq_putc(m, '\n');
3063 
3064 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3065 		word = ep_3550->tagqng_able;
3066 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3067 		word = ep_38C0800->tagqng_able;
3068 	} else {
3069 		word = ep_38C1600->tagqng_able;
3070 	}
3071 	seq_puts(m, " Command Queuing:     ");
3072 	for (i = 0; i <= ADV_MAX_TID; i++)
3073 		seq_printf(m, " %c",
3074 			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3075 	seq_putc(m, '\n');
3076 
3077 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3078 		word = ep_3550->start_motor;
3079 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3080 		word = ep_38C0800->start_motor;
3081 	} else {
3082 		word = ep_38C1600->start_motor;
3083 	}
3084 	seq_puts(m, " Start Motor:         ");
3085 	for (i = 0; i <= ADV_MAX_TID; i++)
3086 		seq_printf(m, " %c",
3087 			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3088 	seq_putc(m, '\n');
3089 
3090 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3091 		seq_puts(m, " Synchronous Transfer:");
3092 		for (i = 0; i <= ADV_MAX_TID; i++)
3093 			seq_printf(m, " %c",
3094 				   (ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
3095 				   'Y' : 'N');
3096 		seq_putc(m, '\n');
3097 	}
3098 
3099 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3100 		seq_puts(m, " Ultra Transfer:      ");
3101 		for (i = 0; i <= ADV_MAX_TID; i++)
3102 			seq_printf(m, " %c",
3103 				   (ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i))
3104 				   ? 'Y' : 'N');
3105 		seq_putc(m, '\n');
3106 	}
3107 
3108 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3109 		word = ep_3550->wdtr_able;
3110 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3111 		word = ep_38C0800->wdtr_able;
3112 	} else {
3113 		word = ep_38C1600->wdtr_able;
3114 	}
3115 	seq_puts(m, " Wide Transfer:       ");
3116 	for (i = 0; i <= ADV_MAX_TID; i++)
3117 		seq_printf(m, " %c",
3118 			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3119 	seq_putc(m, '\n');
3120 
3121 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
3122 	    adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
3123 		seq_puts(m, " Synchronous Transfer Speed (Mhz):\n  ");
3124 		for (i = 0; i <= ADV_MAX_TID; i++) {
3125 			char *speed_str;
3126 
3127 			if (i == 0) {
3128 				sdtr_speed = adv_dvc_varp->sdtr_speed1;
3129 			} else if (i == 4) {
3130 				sdtr_speed = adv_dvc_varp->sdtr_speed2;
3131 			} else if (i == 8) {
3132 				sdtr_speed = adv_dvc_varp->sdtr_speed3;
3133 			} else if (i == 12) {
3134 				sdtr_speed = adv_dvc_varp->sdtr_speed4;
3135 			}
3136 			switch (sdtr_speed & ADV_MAX_TID) {
3137 			case 0:
3138 				speed_str = "Off";
3139 				break;
3140 			case 1:
3141 				speed_str = "  5";
3142 				break;
3143 			case 2:
3144 				speed_str = " 10";
3145 				break;
3146 			case 3:
3147 				speed_str = " 20";
3148 				break;
3149 			case 4:
3150 				speed_str = " 40";
3151 				break;
3152 			case 5:
3153 				speed_str = " 80";
3154 				break;
3155 			default:
3156 				speed_str = "Unk";
3157 				break;
3158 			}
3159 			seq_printf(m, "%X:%s ", i, speed_str);
3160 			if (i == 7)
3161 				seq_puts(m, "\n  ");
3162 			sdtr_speed >>= 4;
3163 		}
3164 		seq_putc(m, '\n');
3165 	}
3166 }
3167 
3168 /*
3169  * asc_prt_driver_conf()
3170  */
asc_prt_driver_conf(struct seq_file * m,struct Scsi_Host * shost)3171 static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost)
3172 {
3173 	struct asc_board *boardp = shost_priv(shost);
3174 	int chip_scsi_id;
3175 
3176 	seq_printf(m,
3177 		"\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3178 		shost->host_no);
3179 
3180 	seq_printf(m,
3181 		   " host_busy %d, max_id %u, max_lun %llu, max_channel %u\n",
3182 		   scsi_host_busy(shost), shost->max_id,
3183 		   shost->max_lun, shost->max_channel);
3184 
3185 	seq_printf(m,
3186 		   " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3187 		   shost->unique_id, shost->can_queue, shost->this_id,
3188 		   shost->sg_tablesize, shost->cmd_per_lun);
3189 
3190 	seq_printf(m,
3191 		   " unchecked_isa_dma %d\n",
3192 		   shost->unchecked_isa_dma);
3193 
3194 	seq_printf(m,
3195 		   " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n",
3196 		   boardp->flags, shost->last_reset, jiffies,
3197 		   boardp->asc_n_io_port);
3198 
3199 	seq_printf(m, " io_port 0x%lx\n", shost->io_port);
3200 
3201 	if (ASC_NARROW_BOARD(boardp)) {
3202 		chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
3203 	} else {
3204 		chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
3205 	}
3206 }
3207 
3208 /*
3209  * asc_prt_asc_board_info()
3210  *
3211  * Print dynamic board configuration information.
3212  */
asc_prt_asc_board_info(struct seq_file * m,struct Scsi_Host * shost)3213 static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost)
3214 {
3215 	struct asc_board *boardp = shost_priv(shost);
3216 	int chip_scsi_id;
3217 	ASC_DVC_VAR *v;
3218 	ASC_DVC_CFG *c;
3219 	int i;
3220 	int renegotiate = 0;
3221 
3222 	v = &boardp->dvc_var.asc_dvc_var;
3223 	c = &boardp->dvc_cfg.asc_dvc_cfg;
3224 	chip_scsi_id = c->chip_scsi_id;
3225 
3226 	seq_printf(m,
3227 		   "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3228 		   shost->host_no);
3229 
3230 	seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3231 		   "mcode_version 0x%x, err_code %u\n",
3232 		   c->chip_version, c->mcode_date, c->mcode_version,
3233 		   v->err_code);
3234 
3235 	/* Current number of commands waiting for the host. */
3236 	seq_printf(m,
3237 		   " Total Command Pending: %d\n", v->cur_total_qng);
3238 
3239 	seq_puts(m, " Command Queuing:");
3240 	for (i = 0; i <= ASC_MAX_TID; i++) {
3241 		if ((chip_scsi_id == i) ||
3242 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3243 			continue;
3244 		}
3245 		seq_printf(m, " %X:%c",
3246 			   i,
3247 			   (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3248 	}
3249 
3250 	/* Current number of commands waiting for a device. */
3251 	seq_puts(m, "\n Command Queue Pending:");
3252 	for (i = 0; i <= ASC_MAX_TID; i++) {
3253 		if ((chip_scsi_id == i) ||
3254 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3255 			continue;
3256 		}
3257 		seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]);
3258 	}
3259 
3260 	/* Current limit on number of commands that can be sent to a device. */
3261 	seq_puts(m, "\n Command Queue Limit:");
3262 	for (i = 0; i <= ASC_MAX_TID; i++) {
3263 		if ((chip_scsi_id == i) ||
3264 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3265 			continue;
3266 		}
3267 		seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]);
3268 	}
3269 
3270 	/* Indicate whether the device has returned queue full status. */
3271 	seq_puts(m, "\n Command Queue Full:");
3272 	for (i = 0; i <= ASC_MAX_TID; i++) {
3273 		if ((chip_scsi_id == i) ||
3274 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3275 			continue;
3276 		}
3277 		if (boardp->queue_full & ADV_TID_TO_TIDMASK(i))
3278 			seq_printf(m, " %X:Y-%d",
3279 				   i, boardp->queue_full_cnt[i]);
3280 		else
3281 			seq_printf(m, " %X:N", i);
3282 	}
3283 
3284 	seq_puts(m, "\n Synchronous Transfer:");
3285 	for (i = 0; i <= ASC_MAX_TID; i++) {
3286 		if ((chip_scsi_id == i) ||
3287 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3288 			continue;
3289 		}
3290 		seq_printf(m, " %X:%c",
3291 			   i,
3292 			   (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3293 	}
3294 	seq_putc(m, '\n');
3295 
3296 	for (i = 0; i <= ASC_MAX_TID; i++) {
3297 		uchar syn_period_ix;
3298 
3299 		if ((chip_scsi_id == i) ||
3300 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3301 		    ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
3302 			continue;
3303 		}
3304 
3305 		seq_printf(m, "  %X:", i);
3306 
3307 		if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
3308 			seq_puts(m, " Asynchronous");
3309 		} else {
3310 			syn_period_ix =
3311 			    (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
3312 							   1);
3313 
3314 			seq_printf(m,
3315 				   " Transfer Period Factor: %d (%d.%d Mhz),",
3316 				   v->sdtr_period_tbl[syn_period_ix],
3317 				   250 / v->sdtr_period_tbl[syn_period_ix],
3318 				   ASC_TENTHS(250,
3319 					      v->sdtr_period_tbl[syn_period_ix]));
3320 
3321 			seq_printf(m, " REQ/ACK Offset: %d",
3322 				   boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET);
3323 		}
3324 
3325 		if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3326 			seq_puts(m, "*\n");
3327 			renegotiate = 1;
3328 		} else {
3329 			seq_putc(m, '\n');
3330 		}
3331 	}
3332 
3333 	if (renegotiate) {
3334 		seq_puts(m, " * = Re-negotiation pending before next command.\n");
3335 	}
3336 }
3337 
3338 /*
3339  * asc_prt_adv_board_info()
3340  *
3341  * Print dynamic board configuration information.
3342  */
asc_prt_adv_board_info(struct seq_file * m,struct Scsi_Host * shost)3343 static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost)
3344 {
3345 	struct asc_board *boardp = shost_priv(shost);
3346 	int i;
3347 	ADV_DVC_VAR *v;
3348 	ADV_DVC_CFG *c;
3349 	AdvPortAddr iop_base;
3350 	ushort chip_scsi_id;
3351 	ushort lramword;
3352 	uchar lrambyte;
3353 	ushort tagqng_able;
3354 	ushort sdtr_able, wdtr_able;
3355 	ushort wdtr_done, sdtr_done;
3356 	ushort period = 0;
3357 	int renegotiate = 0;
3358 
3359 	v = &boardp->dvc_var.adv_dvc_var;
3360 	c = &boardp->dvc_cfg.adv_dvc_cfg;
3361 	iop_base = v->iop_base;
3362 	chip_scsi_id = v->chip_scsi_id;
3363 
3364 	seq_printf(m,
3365 		   "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3366 		   shost->host_no);
3367 
3368 	seq_printf(m,
3369 		   " iop_base 0x%p, cable_detect: %X, err_code %u\n",
3370 		   v->iop_base,
3371 		   AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT,
3372 		   v->err_code);
3373 
3374 	seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3375 		   "mcode_version 0x%x\n", c->chip_version,
3376 		   c->mcode_date, c->mcode_version);
3377 
3378 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
3379 	seq_puts(m, " Queuing Enabled:");
3380 	for (i = 0; i <= ADV_MAX_TID; i++) {
3381 		if ((chip_scsi_id == i) ||
3382 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3383 			continue;
3384 		}
3385 
3386 		seq_printf(m, " %X:%c",
3387 			   i,
3388 			   (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3389 	}
3390 
3391 	seq_puts(m, "\n Queue Limit:");
3392 	for (i = 0; i <= ADV_MAX_TID; i++) {
3393 		if ((chip_scsi_id == i) ||
3394 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3395 			continue;
3396 		}
3397 
3398 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
3399 				lrambyte);
3400 
3401 		seq_printf(m, " %X:%d", i, lrambyte);
3402 	}
3403 
3404 	seq_puts(m, "\n Command Pending:");
3405 	for (i = 0; i <= ADV_MAX_TID; i++) {
3406 		if ((chip_scsi_id == i) ||
3407 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3408 			continue;
3409 		}
3410 
3411 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
3412 				lrambyte);
3413 
3414 		seq_printf(m, " %X:%d", i, lrambyte);
3415 	}
3416 	seq_putc(m, '\n');
3417 
3418 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
3419 	seq_puts(m, " Wide Enabled:");
3420 	for (i = 0; i <= ADV_MAX_TID; i++) {
3421 		if ((chip_scsi_id == i) ||
3422 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3423 			continue;
3424 		}
3425 
3426 		seq_printf(m, " %X:%c",
3427 			   i,
3428 			   (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3429 	}
3430 	seq_putc(m, '\n');
3431 
3432 	AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
3433 	seq_puts(m, " Transfer Bit Width:");
3434 	for (i = 0; i <= ADV_MAX_TID; i++) {
3435 		if ((chip_scsi_id == i) ||
3436 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3437 			continue;
3438 		}
3439 
3440 		AdvReadWordLram(iop_base,
3441 				ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3442 				lramword);
3443 
3444 		seq_printf(m, " %X:%d",
3445 			   i, (lramword & 0x8000) ? 16 : 8);
3446 
3447 		if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
3448 		    (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3449 			seq_putc(m, '*');
3450 			renegotiate = 1;
3451 		}
3452 	}
3453 	seq_putc(m, '\n');
3454 
3455 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
3456 	seq_puts(m, " Synchronous Enabled:");
3457 	for (i = 0; i <= ADV_MAX_TID; i++) {
3458 		if ((chip_scsi_id == i) ||
3459 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3460 			continue;
3461 		}
3462 
3463 		seq_printf(m, " %X:%c",
3464 			   i,
3465 			   (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3466 	}
3467 	seq_putc(m, '\n');
3468 
3469 	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
3470 	for (i = 0; i <= ADV_MAX_TID; i++) {
3471 
3472 		AdvReadWordLram(iop_base,
3473 				ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3474 				lramword);
3475 		lramword &= ~0x8000;
3476 
3477 		if ((chip_scsi_id == i) ||
3478 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3479 		    ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
3480 			continue;
3481 		}
3482 
3483 		seq_printf(m, "  %X:", i);
3484 
3485 		if ((lramword & 0x1F) == 0) {	/* Check for REQ/ACK Offset 0. */
3486 			seq_puts(m, " Asynchronous");
3487 		} else {
3488 			seq_puts(m, " Transfer Period Factor: ");
3489 
3490 			if ((lramword & 0x1F00) == 0x1100) {	/* 80 Mhz */
3491 				seq_puts(m, "9 (80.0 Mhz),");
3492 			} else if ((lramword & 0x1F00) == 0x1000) {	/* 40 Mhz */
3493 				seq_puts(m, "10 (40.0 Mhz),");
3494 			} else {	/* 20 Mhz or below. */
3495 
3496 				period = (((lramword >> 8) * 25) + 50) / 4;
3497 
3498 				if (period == 0) {	/* Should never happen. */
3499 					seq_printf(m, "%d (? Mhz), ", period);
3500 				} else {
3501 					seq_printf(m,
3502 						   "%d (%d.%d Mhz),",
3503 						   period, 250 / period,
3504 						   ASC_TENTHS(250, period));
3505 				}
3506 			}
3507 
3508 			seq_printf(m, " REQ/ACK Offset: %d",
3509 				   lramword & 0x1F);
3510 		}
3511 
3512 		if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3513 			seq_puts(m, "*\n");
3514 			renegotiate = 1;
3515 		} else {
3516 			seq_putc(m, '\n');
3517 		}
3518 	}
3519 
3520 	if (renegotiate) {
3521 		seq_puts(m, " * = Re-negotiation pending before next command.\n");
3522 	}
3523 }
3524 
3525 #ifdef ADVANSYS_STATS
3526 /*
3527  * asc_prt_board_stats()
3528  */
asc_prt_board_stats(struct seq_file * m,struct Scsi_Host * shost)3529 static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost)
3530 {
3531 	struct asc_board *boardp = shost_priv(shost);
3532 	struct asc_stats *s = &boardp->asc_stats;
3533 
3534 	seq_printf(m,
3535 		   "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
3536 		   shost->host_no);
3537 
3538 	seq_printf(m,
3539 		   " queuecommand %u, reset %u, biosparam %u, interrupt %u\n",
3540 		   s->queuecommand, s->reset, s->biosparam,
3541 		   s->interrupt);
3542 
3543 	seq_printf(m,
3544 		   " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n",
3545 		   s->callback, s->done, s->build_error,
3546 		   s->adv_build_noreq, s->adv_build_nosg);
3547 
3548 	seq_printf(m,
3549 		   " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n",
3550 		   s->exe_noerror, s->exe_busy, s->exe_error,
3551 		   s->exe_unknown);
3552 
3553 	/*
3554 	 * Display data transfer statistics.
3555 	 */
3556 	if (s->xfer_cnt > 0) {
3557 		seq_printf(m, " xfer_cnt %u, xfer_elem %u, ",
3558 			   s->xfer_cnt, s->xfer_elem);
3559 
3560 		seq_printf(m, "xfer_bytes %u.%01u kb\n",
3561 			   s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
3562 
3563 		/* Scatter gather transfer statistics */
3564 		seq_printf(m, " avg_num_elem %u.%01u, ",
3565 			   s->xfer_elem / s->xfer_cnt,
3566 			   ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
3567 
3568 		seq_printf(m, "avg_elem_size %u.%01u kb, ",
3569 			   (s->xfer_sect / 2) / s->xfer_elem,
3570 			   ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
3571 
3572 		seq_printf(m, "avg_xfer_size %u.%01u kb\n",
3573 			   (s->xfer_sect / 2) / s->xfer_cnt,
3574 			   ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
3575 	}
3576 }
3577 #endif /* ADVANSYS_STATS */
3578 
3579 /*
3580  * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...}
3581  *
3582  * m: seq_file to print into
3583  * shost: Scsi_Host
3584  *
3585  * Return the number of bytes read from or written to a
3586  * /proc/scsi/advansys/[0...] file.
3587  */
3588 static int
advansys_show_info(struct seq_file * m,struct Scsi_Host * shost)3589 advansys_show_info(struct seq_file *m, struct Scsi_Host *shost)
3590 {
3591 	struct asc_board *boardp = shost_priv(shost);
3592 
3593 	ASC_DBG(1, "begin\n");
3594 
3595 	/*
3596 	 * User read of /proc/scsi/advansys/[0...] file.
3597 	 */
3598 
3599 	/*
3600 	 * Get board configuration information.
3601 	 *
3602 	 * advansys_info() returns the board string from its own static buffer.
3603 	 */
3604 	/* Copy board information. */
3605 	seq_printf(m, "%s\n", (char *)advansys_info(shost));
3606 	/*
3607 	 * Display Wide Board BIOS Information.
3608 	 */
3609 	if (!ASC_NARROW_BOARD(boardp))
3610 		asc_prt_adv_bios(m, shost);
3611 
3612 	/*
3613 	 * Display driver information for each device attached to the board.
3614 	 */
3615 	asc_prt_board_devices(m, shost);
3616 
3617 	/*
3618 	 * Display EEPROM configuration for the board.
3619 	 */
3620 	if (ASC_NARROW_BOARD(boardp))
3621 		asc_prt_asc_board_eeprom(m, shost);
3622 	else
3623 		asc_prt_adv_board_eeprom(m, shost);
3624 
3625 	/*
3626 	 * Display driver configuration and information for the board.
3627 	 */
3628 	asc_prt_driver_conf(m, shost);
3629 
3630 #ifdef ADVANSYS_STATS
3631 	/*
3632 	 * Display driver statistics for the board.
3633 	 */
3634 	asc_prt_board_stats(m, shost);
3635 #endif /* ADVANSYS_STATS */
3636 
3637 	/*
3638 	 * Display Asc Library dynamic configuration information
3639 	 * for the board.
3640 	 */
3641 	if (ASC_NARROW_BOARD(boardp))
3642 		asc_prt_asc_board_info(m, shost);
3643 	else
3644 		asc_prt_adv_board_info(m, shost);
3645 	return 0;
3646 }
3647 #endif /* CONFIG_PROC_FS */
3648 
asc_scsi_done(struct scsi_cmnd * scp)3649 static void asc_scsi_done(struct scsi_cmnd *scp)
3650 {
3651 	scsi_dma_unmap(scp);
3652 	ASC_STATS(scp->device->host, done);
3653 	scp->scsi_done(scp);
3654 }
3655 
AscSetBank(PortAddr iop_base,uchar bank)3656 static void AscSetBank(PortAddr iop_base, uchar bank)
3657 {
3658 	uchar val;
3659 
3660 	val = AscGetChipControl(iop_base) &
3661 	    (~
3662 	     (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
3663 	      CC_CHIP_RESET));
3664 	if (bank == 1) {
3665 		val |= CC_BANK_ONE;
3666 	} else if (bank == 2) {
3667 		val |= CC_DIAG | CC_BANK_ONE;
3668 	} else {
3669 		val &= ~CC_BANK_ONE;
3670 	}
3671 	AscSetChipControl(iop_base, val);
3672 }
3673 
AscSetChipIH(PortAddr iop_base,ushort ins_code)3674 static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
3675 {
3676 	AscSetBank(iop_base, 1);
3677 	AscWriteChipIH(iop_base, ins_code);
3678 	AscSetBank(iop_base, 0);
3679 }
3680 
AscStartChip(PortAddr iop_base)3681 static int AscStartChip(PortAddr iop_base)
3682 {
3683 	AscSetChipControl(iop_base, 0);
3684 	if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3685 		return (0);
3686 	}
3687 	return (1);
3688 }
3689 
AscStopChip(PortAddr iop_base)3690 static bool AscStopChip(PortAddr iop_base)
3691 {
3692 	uchar cc_val;
3693 
3694 	cc_val =
3695 	    AscGetChipControl(iop_base) &
3696 	    (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
3697 	AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
3698 	AscSetChipIH(iop_base, INS_HALT);
3699 	AscSetChipIH(iop_base, INS_RFLAG_WTM);
3700 	if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
3701 		return false;
3702 	}
3703 	return true;
3704 }
3705 
AscIsChipHalted(PortAddr iop_base)3706 static bool AscIsChipHalted(PortAddr iop_base)
3707 {
3708 	if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3709 		if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
3710 			return true;
3711 		}
3712 	}
3713 	return false;
3714 }
3715 
AscResetChipAndScsiBus(ASC_DVC_VAR * asc_dvc)3716 static bool AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
3717 {
3718 	PortAddr iop_base;
3719 	int i = 10;
3720 
3721 	iop_base = asc_dvc->iop_base;
3722 	while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
3723 	       && (i-- > 0)) {
3724 		mdelay(100);
3725 	}
3726 	AscStopChip(iop_base);
3727 	AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
3728 	udelay(60);
3729 	AscSetChipIH(iop_base, INS_RFLAG_WTM);
3730 	AscSetChipIH(iop_base, INS_HALT);
3731 	AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
3732 	AscSetChipControl(iop_base, CC_HALT);
3733 	mdelay(200);
3734 	AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
3735 	AscSetChipStatus(iop_base, 0);
3736 	return (AscIsChipHalted(iop_base));
3737 }
3738 
AscFindSignature(PortAddr iop_base)3739 static int AscFindSignature(PortAddr iop_base)
3740 {
3741 	ushort sig_word;
3742 
3743 	ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
3744 		 iop_base, AscGetChipSignatureByte(iop_base));
3745 	if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
3746 		ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
3747 			 iop_base, AscGetChipSignatureWord(iop_base));
3748 		sig_word = AscGetChipSignatureWord(iop_base);
3749 		if ((sig_word == (ushort)ASC_1000_ID0W) ||
3750 		    (sig_word == (ushort)ASC_1000_ID0W_FIX)) {
3751 			return (1);
3752 		}
3753 	}
3754 	return (0);
3755 }
3756 
AscEnableInterrupt(PortAddr iop_base)3757 static void AscEnableInterrupt(PortAddr iop_base)
3758 {
3759 	ushort cfg;
3760 
3761 	cfg = AscGetChipCfgLsw(iop_base);
3762 	AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
3763 }
3764 
AscDisableInterrupt(PortAddr iop_base)3765 static void AscDisableInterrupt(PortAddr iop_base)
3766 {
3767 	ushort cfg;
3768 
3769 	cfg = AscGetChipCfgLsw(iop_base);
3770 	AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
3771 }
3772 
AscReadLramByte(PortAddr iop_base,ushort addr)3773 static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
3774 {
3775 	unsigned char byte_data;
3776 	unsigned short word_data;
3777 
3778 	if (isodd_word(addr)) {
3779 		AscSetChipLramAddr(iop_base, addr - 1);
3780 		word_data = AscGetChipLramData(iop_base);
3781 		byte_data = (word_data >> 8) & 0xFF;
3782 	} else {
3783 		AscSetChipLramAddr(iop_base, addr);
3784 		word_data = AscGetChipLramData(iop_base);
3785 		byte_data = word_data & 0xFF;
3786 	}
3787 	return byte_data;
3788 }
3789 
AscReadLramWord(PortAddr iop_base,ushort addr)3790 static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
3791 {
3792 	ushort word_data;
3793 
3794 	AscSetChipLramAddr(iop_base, addr);
3795 	word_data = AscGetChipLramData(iop_base);
3796 	return (word_data);
3797 }
3798 
3799 static void
AscMemWordSetLram(PortAddr iop_base,ushort s_addr,ushort set_wval,int words)3800 AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
3801 {
3802 	int i;
3803 
3804 	AscSetChipLramAddr(iop_base, s_addr);
3805 	for (i = 0; i < words; i++) {
3806 		AscSetChipLramData(iop_base, set_wval);
3807 	}
3808 }
3809 
AscWriteLramWord(PortAddr iop_base,ushort addr,ushort word_val)3810 static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
3811 {
3812 	AscSetChipLramAddr(iop_base, addr);
3813 	AscSetChipLramData(iop_base, word_val);
3814 }
3815 
AscWriteLramByte(PortAddr iop_base,ushort addr,uchar byte_val)3816 static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
3817 {
3818 	ushort word_data;
3819 
3820 	if (isodd_word(addr)) {
3821 		addr--;
3822 		word_data = AscReadLramWord(iop_base, addr);
3823 		word_data &= 0x00FF;
3824 		word_data |= (((ushort)byte_val << 8) & 0xFF00);
3825 	} else {
3826 		word_data = AscReadLramWord(iop_base, addr);
3827 		word_data &= 0xFF00;
3828 		word_data |= ((ushort)byte_val & 0x00FF);
3829 	}
3830 	AscWriteLramWord(iop_base, addr, word_data);
3831 }
3832 
3833 /*
3834  * Copy 2 bytes to LRAM.
3835  *
3836  * The source data is assumed to be in little-endian order in memory
3837  * and is maintained in little-endian order when written to LRAM.
3838  */
3839 static void
AscMemWordCopyPtrToLram(PortAddr iop_base,ushort s_addr,const uchar * s_buffer,int words)3840 AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
3841 			const uchar *s_buffer, int words)
3842 {
3843 	int i;
3844 
3845 	AscSetChipLramAddr(iop_base, s_addr);
3846 	for (i = 0; i < 2 * words; i += 2) {
3847 		/*
3848 		 * On a little-endian system the second argument below
3849 		 * produces a little-endian ushort which is written to
3850 		 * LRAM in little-endian order. On a big-endian system
3851 		 * the second argument produces a big-endian ushort which
3852 		 * is "transparently" byte-swapped by outpw() and written
3853 		 * in little-endian order to LRAM.
3854 		 */
3855 		outpw(iop_base + IOP_RAM_DATA,
3856 		      ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
3857 	}
3858 }
3859 
3860 /*
3861  * Copy 4 bytes to LRAM.
3862  *
3863  * The source data is assumed to be in little-endian order in memory
3864  * and is maintained in little-endian order when written to LRAM.
3865  */
3866 static void
AscMemDWordCopyPtrToLram(PortAddr iop_base,ushort s_addr,uchar * s_buffer,int dwords)3867 AscMemDWordCopyPtrToLram(PortAddr iop_base,
3868 			 ushort s_addr, uchar *s_buffer, int dwords)
3869 {
3870 	int i;
3871 
3872 	AscSetChipLramAddr(iop_base, s_addr);
3873 	for (i = 0; i < 4 * dwords; i += 4) {
3874 		outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);	/* LSW */
3875 		outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]);	/* MSW */
3876 	}
3877 }
3878 
3879 /*
3880  * Copy 2 bytes from LRAM.
3881  *
3882  * The source data is assumed to be in little-endian order in LRAM
3883  * and is maintained in little-endian order when written to memory.
3884  */
3885 static void
AscMemWordCopyPtrFromLram(PortAddr iop_base,ushort s_addr,uchar * d_buffer,int words)3886 AscMemWordCopyPtrFromLram(PortAddr iop_base,
3887 			  ushort s_addr, uchar *d_buffer, int words)
3888 {
3889 	int i;
3890 	ushort word;
3891 
3892 	AscSetChipLramAddr(iop_base, s_addr);
3893 	for (i = 0; i < 2 * words; i += 2) {
3894 		word = inpw(iop_base + IOP_RAM_DATA);
3895 		d_buffer[i] = word & 0xff;
3896 		d_buffer[i + 1] = (word >> 8) & 0xff;
3897 	}
3898 }
3899 
AscMemSumLramWord(PortAddr iop_base,ushort s_addr,int words)3900 static u32 AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
3901 {
3902 	u32 sum = 0;
3903 	int i;
3904 
3905 	for (i = 0; i < words; i++, s_addr += 2) {
3906 		sum += AscReadLramWord(iop_base, s_addr);
3907 	}
3908 	return (sum);
3909 }
3910 
AscInitLram(ASC_DVC_VAR * asc_dvc)3911 static void AscInitLram(ASC_DVC_VAR *asc_dvc)
3912 {
3913 	uchar i;
3914 	ushort s_addr;
3915 	PortAddr iop_base;
3916 
3917 	iop_base = asc_dvc->iop_base;
3918 	AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
3919 			  (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
3920 				    64) >> 1));
3921 	i = ASC_MIN_ACTIVE_QNO;
3922 	s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
3923 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3924 			 (uchar)(i + 1));
3925 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3926 			 (uchar)(asc_dvc->max_total_qng));
3927 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3928 			 (uchar)i);
3929 	i++;
3930 	s_addr += ASC_QBLK_SIZE;
3931 	for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
3932 		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3933 				 (uchar)(i + 1));
3934 		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3935 				 (uchar)(i - 1));
3936 		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3937 				 (uchar)i);
3938 	}
3939 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3940 			 (uchar)ASC_QLINK_END);
3941 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3942 			 (uchar)(asc_dvc->max_total_qng - 1));
3943 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3944 			 (uchar)asc_dvc->max_total_qng);
3945 	i++;
3946 	s_addr += ASC_QBLK_SIZE;
3947 	for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
3948 	     i++, s_addr += ASC_QBLK_SIZE) {
3949 		AscWriteLramByte(iop_base,
3950 				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
3951 		AscWriteLramByte(iop_base,
3952 				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
3953 		AscWriteLramByte(iop_base,
3954 				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
3955 	}
3956 }
3957 
3958 static u32
AscLoadMicroCode(PortAddr iop_base,ushort s_addr,const uchar * mcode_buf,ushort mcode_size)3959 AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
3960 		 const uchar *mcode_buf, ushort mcode_size)
3961 {
3962 	u32 chksum;
3963 	ushort mcode_word_size;
3964 	ushort mcode_chksum;
3965 
3966 	/* Write the microcode buffer starting at LRAM address 0. */
3967 	mcode_word_size = (ushort)(mcode_size >> 1);
3968 	AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
3969 	AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
3970 
3971 	chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
3972 	ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
3973 	mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
3974 						 (ushort)ASC_CODE_SEC_BEG,
3975 						 (ushort)((mcode_size -
3976 							   s_addr - (ushort)
3977 							   ASC_CODE_SEC_BEG) /
3978 							  2));
3979 	ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
3980 	AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
3981 	AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
3982 	return chksum;
3983 }
3984 
AscInitQLinkVar(ASC_DVC_VAR * asc_dvc)3985 static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
3986 {
3987 	PortAddr iop_base;
3988 	int i;
3989 	ushort lram_addr;
3990 
3991 	iop_base = asc_dvc->iop_base;
3992 	AscPutRiscVarFreeQHead(iop_base, 1);
3993 	AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
3994 	AscPutVarFreeQHead(iop_base, 1);
3995 	AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
3996 	AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
3997 			 (uchar)((int)asc_dvc->max_total_qng + 1));
3998 	AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
3999 			 (uchar)((int)asc_dvc->max_total_qng + 2));
4000 	AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
4001 			 asc_dvc->max_total_qng);
4002 	AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
4003 	AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
4004 	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
4005 	AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
4006 	AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
4007 	AscPutQDoneInProgress(iop_base, 0);
4008 	lram_addr = ASC_QADR_BEG;
4009 	for (i = 0; i < 32; i++, lram_addr += 2) {
4010 		AscWriteLramWord(iop_base, lram_addr, 0);
4011 	}
4012 }
4013 
AscInitMicroCodeVar(ASC_DVC_VAR * asc_dvc)4014 static int AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
4015 {
4016 	int i;
4017 	int warn_code;
4018 	PortAddr iop_base;
4019 	__le32 phy_addr;
4020 	__le32 phy_size;
4021 	struct asc_board *board = asc_dvc_to_board(asc_dvc);
4022 
4023 	iop_base = asc_dvc->iop_base;
4024 	warn_code = 0;
4025 	for (i = 0; i <= ASC_MAX_TID; i++) {
4026 		AscPutMCodeInitSDTRAtID(iop_base, i,
4027 					asc_dvc->cfg->sdtr_period_offset[i]);
4028 	}
4029 
4030 	AscInitQLinkVar(asc_dvc);
4031 	AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
4032 			 asc_dvc->cfg->disc_enable);
4033 	AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
4034 			 ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
4035 
4036 	/* Ensure overrun buffer is aligned on an 8 byte boundary. */
4037 	BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
4038 	asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
4039 					ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4040 	if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) {
4041 		warn_code = -ENOMEM;
4042 		goto err_dma_map;
4043 	}
4044 	phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
4045 	AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
4046 				 (uchar *)&phy_addr, 1);
4047 	phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
4048 	AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
4049 				 (uchar *)&phy_size, 1);
4050 
4051 	asc_dvc->cfg->mcode_date =
4052 	    AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
4053 	asc_dvc->cfg->mcode_version =
4054 	    AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
4055 
4056 	AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
4057 	if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
4058 		asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
4059 		warn_code = -EINVAL;
4060 		goto err_mcode_start;
4061 	}
4062 	if (AscStartChip(iop_base) != 1) {
4063 		asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
4064 		warn_code = -EIO;
4065 		goto err_mcode_start;
4066 	}
4067 
4068 	return warn_code;
4069 
4070 err_mcode_start:
4071 	dma_unmap_single(board->dev, asc_dvc->overrun_dma,
4072 			 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4073 err_dma_map:
4074 	asc_dvc->overrun_dma = 0;
4075 	return warn_code;
4076 }
4077 
AscInitAsc1000Driver(ASC_DVC_VAR * asc_dvc)4078 static int AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
4079 {
4080 	const struct firmware *fw;
4081 	const char fwname[] = "advansys/mcode.bin";
4082 	int err;
4083 	unsigned long chksum;
4084 	int warn_code;
4085 	PortAddr iop_base;
4086 
4087 	iop_base = asc_dvc->iop_base;
4088 	warn_code = 0;
4089 	if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
4090 	    !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
4091 		AscResetChipAndScsiBus(asc_dvc);
4092 		mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4093 	}
4094 	asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
4095 	if (asc_dvc->err_code != 0)
4096 		return ASC_ERROR;
4097 	if (!AscFindSignature(asc_dvc->iop_base)) {
4098 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
4099 		return warn_code;
4100 	}
4101 	AscDisableInterrupt(iop_base);
4102 	AscInitLram(asc_dvc);
4103 
4104 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4105 	if (err) {
4106 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4107 		       fwname, err);
4108 		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4109 		return err;
4110 	}
4111 	if (fw->size < 4) {
4112 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4113 		       fw->size, fwname);
4114 		release_firmware(fw);
4115 		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4116 		return -EINVAL;
4117 	}
4118 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4119 		 (fw->data[1] << 8) | fw->data[0];
4120 	ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
4121 	if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
4122 			     fw->size - 4) != chksum) {
4123 		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4124 		release_firmware(fw);
4125 		return warn_code;
4126 	}
4127 	release_firmware(fw);
4128 	warn_code |= AscInitMicroCodeVar(asc_dvc);
4129 	if (!asc_dvc->overrun_dma)
4130 		return warn_code;
4131 	asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
4132 	AscEnableInterrupt(iop_base);
4133 	return warn_code;
4134 }
4135 
4136 /*
4137  * Load the Microcode
4138  *
4139  * Write the microcode image to RISC memory starting at address 0.
4140  *
4141  * The microcode is stored compressed in the following format:
4142  *
4143  *  254 word (508 byte) table indexed by byte code followed
4144  *  by the following byte codes:
4145  *
4146  *    1-Byte Code:
4147  *      00: Emit word 0 in table.
4148  *      01: Emit word 1 in table.
4149  *      .
4150  *      FD: Emit word 253 in table.
4151  *
4152  *    Multi-Byte Code:
4153  *      FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4154  *      FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4155  *
4156  * Returns 0 or an error if the checksum doesn't match
4157  */
AdvLoadMicrocode(AdvPortAddr iop_base,const unsigned char * buf,int size,int memsize,int chksum)4158 static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
4159 			    int size, int memsize, int chksum)
4160 {
4161 	int i, j, end, len = 0;
4162 	u32 sum;
4163 
4164 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4165 
4166 	for (i = 253 * 2; i < size; i++) {
4167 		if (buf[i] == 0xff) {
4168 			unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
4169 			for (j = 0; j < buf[i + 1]; j++) {
4170 				AdvWriteWordAutoIncLram(iop_base, word);
4171 				len += 2;
4172 			}
4173 			i += 3;
4174 		} else if (buf[i] == 0xfe) {
4175 			unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
4176 			AdvWriteWordAutoIncLram(iop_base, word);
4177 			i += 2;
4178 			len += 2;
4179 		} else {
4180 			unsigned int off = buf[i] * 2;
4181 			unsigned short word = (buf[off + 1] << 8) | buf[off];
4182 			AdvWriteWordAutoIncLram(iop_base, word);
4183 			len += 2;
4184 		}
4185 	}
4186 
4187 	end = len;
4188 
4189 	while (len < memsize) {
4190 		AdvWriteWordAutoIncLram(iop_base, 0);
4191 		len += 2;
4192 	}
4193 
4194 	/* Verify the microcode checksum. */
4195 	sum = 0;
4196 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4197 
4198 	for (len = 0; len < end; len += 2) {
4199 		sum += AdvReadWordAutoIncLram(iop_base);
4200 	}
4201 
4202 	if (sum != chksum)
4203 		return ASC_IERR_MCODE_CHKSUM;
4204 
4205 	return 0;
4206 }
4207 
AdvBuildCarrierFreelist(struct adv_dvc_var * adv_dvc)4208 static void AdvBuildCarrierFreelist(struct adv_dvc_var *adv_dvc)
4209 {
4210 	off_t carr_offset = 0, next_offset;
4211 	dma_addr_t carr_paddr;
4212 	int carr_num = ADV_CARRIER_BUFSIZE / sizeof(ADV_CARR_T), i;
4213 
4214 	for (i = 0; i < carr_num; i++) {
4215 		carr_offset = i * sizeof(ADV_CARR_T);
4216 		/* Get physical address of the carrier 'carrp'. */
4217 		carr_paddr = adv_dvc->carrier_addr + carr_offset;
4218 
4219 		adv_dvc->carrier[i].carr_pa = cpu_to_le32(carr_paddr);
4220 		adv_dvc->carrier[i].carr_va = cpu_to_le32(carr_offset);
4221 		adv_dvc->carrier[i].areq_vpa = 0;
4222 		next_offset = carr_offset + sizeof(ADV_CARR_T);
4223 		if (i == carr_num)
4224 			next_offset = ~0;
4225 		adv_dvc->carrier[i].next_vpa = cpu_to_le32(next_offset);
4226 	}
4227 	/*
4228 	 * We cannot have a carrier with 'carr_va' of '0', as
4229 	 * a reference to this carrier would be interpreted as
4230 	 * list termination.
4231 	 * So start at carrier 1 with the freelist.
4232 	 */
4233 	adv_dvc->carr_freelist = &adv_dvc->carrier[1];
4234 }
4235 
adv_get_carrier(struct adv_dvc_var * adv_dvc,u32 offset)4236 static ADV_CARR_T *adv_get_carrier(struct adv_dvc_var *adv_dvc, u32 offset)
4237 {
4238 	int index;
4239 
4240 	BUG_ON(offset > ADV_CARRIER_BUFSIZE);
4241 
4242 	index = offset / sizeof(ADV_CARR_T);
4243 	return &adv_dvc->carrier[index];
4244 }
4245 
adv_get_next_carrier(struct adv_dvc_var * adv_dvc)4246 static ADV_CARR_T *adv_get_next_carrier(struct adv_dvc_var *adv_dvc)
4247 {
4248 	ADV_CARR_T *carrp = adv_dvc->carr_freelist;
4249 	u32 next_vpa = le32_to_cpu(carrp->next_vpa);
4250 
4251 	if (next_vpa == 0 || next_vpa == ~0) {
4252 		ASC_DBG(1, "invalid vpa offset 0x%x\n", next_vpa);
4253 		return NULL;
4254 	}
4255 
4256 	adv_dvc->carr_freelist = adv_get_carrier(adv_dvc, next_vpa);
4257 	/*
4258 	 * insert stopper carrier to terminate list
4259 	 */
4260 	carrp->next_vpa = cpu_to_le32(ADV_CQ_STOPPER);
4261 
4262 	return carrp;
4263 }
4264 
4265 /*
4266  * 'offset' is the index in the request pointer array
4267  */
adv_get_reqp(struct adv_dvc_var * adv_dvc,u32 offset)4268 static adv_req_t * adv_get_reqp(struct adv_dvc_var *adv_dvc, u32 offset)
4269 {
4270 	struct asc_board *boardp = adv_dvc->drv_ptr;
4271 
4272 	BUG_ON(offset > adv_dvc->max_host_qng);
4273 	return &boardp->adv_reqp[offset];
4274 }
4275 
4276 /*
4277  * Send an idle command to the chip and wait for completion.
4278  *
4279  * Command completion is polled for once per microsecond.
4280  *
4281  * The function can be called from anywhere including an interrupt handler.
4282  * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4283  * functions to prevent reentrancy.
4284  *
4285  * Return Values:
4286  *   ADV_TRUE - command completed successfully
4287  *   ADV_FALSE - command failed
4288  *   ADV_ERROR - command timed out
4289  */
4290 static int
AdvSendIdleCmd(ADV_DVC_VAR * asc_dvc,ushort idle_cmd,u32 idle_cmd_parameter)4291 AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
4292 	       ushort idle_cmd, u32 idle_cmd_parameter)
4293 {
4294 	int result, i, j;
4295 	AdvPortAddr iop_base;
4296 
4297 	iop_base = asc_dvc->iop_base;
4298 
4299 	/*
4300 	 * Clear the idle command status which is set by the microcode
4301 	 * to a non-zero value to indicate when the command is completed.
4302 	 * The non-zero result is one of the IDLE_CMD_STATUS_* values
4303 	 */
4304 	AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
4305 
4306 	/*
4307 	 * Write the idle command value after the idle command parameter
4308 	 * has been written to avoid a race condition. If the order is not
4309 	 * followed, the microcode may process the idle command before the
4310 	 * parameters have been written to LRAM.
4311 	 */
4312 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
4313 				cpu_to_le32(idle_cmd_parameter));
4314 	AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
4315 
4316 	/*
4317 	 * Tickle the RISC to tell it to process the idle command.
4318 	 */
4319 	AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
4320 	if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
4321 		/*
4322 		 * Clear the tickle value. In the ASC-3550 the RISC flag
4323 		 * command 'clr_tickle_b' does not work unless the host
4324 		 * value is cleared.
4325 		 */
4326 		AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
4327 	}
4328 
4329 	/* Wait for up to 100 millisecond for the idle command to timeout. */
4330 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
4331 		/* Poll once each microsecond for command completion. */
4332 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
4333 			AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
4334 					result);
4335 			if (result != 0)
4336 				return result;
4337 			udelay(1);
4338 		}
4339 	}
4340 
4341 	BUG();		/* The idle command should never timeout. */
4342 	return ADV_ERROR;
4343 }
4344 
4345 /*
4346  * Reset SCSI Bus and purge all outstanding requests.
4347  *
4348  * Return Value:
4349  *      ADV_TRUE(1) -   All requests are purged and SCSI Bus is reset.
4350  *      ADV_FALSE(0) -  Microcode command failed.
4351  *      ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
4352  *                      may be hung which requires driver recovery.
4353  */
AdvResetSB(ADV_DVC_VAR * asc_dvc)4354 static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
4355 {
4356 	int status;
4357 
4358 	/*
4359 	 * Send the SCSI Bus Reset idle start idle command which asserts
4360 	 * the SCSI Bus Reset signal.
4361 	 */
4362 	status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
4363 	if (status != ADV_TRUE) {
4364 		return status;
4365 	}
4366 
4367 	/*
4368 	 * Delay for the specified SCSI Bus Reset hold time.
4369 	 *
4370 	 * The hold time delay is done on the host because the RISC has no
4371 	 * microsecond accurate timer.
4372 	 */
4373 	udelay(ASC_SCSI_RESET_HOLD_TIME_US);
4374 
4375 	/*
4376 	 * Send the SCSI Bus Reset end idle command which de-asserts
4377 	 * the SCSI Bus Reset signal and purges any pending requests.
4378 	 */
4379 	status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
4380 	if (status != ADV_TRUE) {
4381 		return status;
4382 	}
4383 
4384 	mdelay(asc_dvc->scsi_reset_wait * 1000);	/* XXX: msleep? */
4385 
4386 	return status;
4387 }
4388 
4389 /*
4390  * Initialize the ASC-3550.
4391  *
4392  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4393  *
4394  * For a non-fatal error return a warning code. If there are no warnings
4395  * then 0 is returned.
4396  *
4397  * Needed after initialization for error recovery.
4398  */
AdvInitAsc3550Driver(ADV_DVC_VAR * asc_dvc)4399 static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
4400 {
4401 	const struct firmware *fw;
4402 	const char fwname[] = "advansys/3550.bin";
4403 	AdvPortAddr iop_base;
4404 	ushort warn_code;
4405 	int begin_addr;
4406 	int end_addr;
4407 	ushort code_sum;
4408 	int word;
4409 	int i;
4410 	int err;
4411 	unsigned long chksum;
4412 	ushort scsi_cfg1;
4413 	uchar tid;
4414 	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
4415 	ushort wdtr_able = 0, sdtr_able, tagqng_able;
4416 	uchar max_cmd[ADV_MAX_TID + 1];
4417 
4418 	/* If there is already an error, don't continue. */
4419 	if (asc_dvc->err_code != 0)
4420 		return ADV_ERROR;
4421 
4422 	/*
4423 	 * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
4424 	 */
4425 	if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
4426 		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4427 		return ADV_ERROR;
4428 	}
4429 
4430 	warn_code = 0;
4431 	iop_base = asc_dvc->iop_base;
4432 
4433 	/*
4434 	 * Save the RISC memory BIOS region before writing the microcode.
4435 	 * The BIOS may already be loaded and using its RISC LRAM region
4436 	 * so its region must be saved and restored.
4437 	 *
4438 	 * Note: This code makes the assumption, which is currently true,
4439 	 * that a chip reset does not clear RISC LRAM.
4440 	 */
4441 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4442 		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4443 				bios_mem[i]);
4444 	}
4445 
4446 	/*
4447 	 * Save current per TID negotiated values.
4448 	 */
4449 	if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
4450 		ushort bios_version, major, minor;
4451 
4452 		bios_version =
4453 		    bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
4454 		major = (bios_version >> 12) & 0xF;
4455 		minor = (bios_version >> 8) & 0xF;
4456 		if (major < 3 || (major == 3 && minor == 1)) {
4457 			/* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
4458 			AdvReadWordLram(iop_base, 0x120, wdtr_able);
4459 		} else {
4460 			AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4461 		}
4462 	}
4463 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4464 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4465 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4466 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4467 				max_cmd[tid]);
4468 	}
4469 
4470 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4471 	if (err) {
4472 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4473 		       fwname, err);
4474 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4475 		return err;
4476 	}
4477 	if (fw->size < 4) {
4478 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4479 		       fw->size, fwname);
4480 		release_firmware(fw);
4481 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4482 		return -EINVAL;
4483 	}
4484 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4485 		 (fw->data[1] << 8) | fw->data[0];
4486 	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4487 					     fw->size - 4, ADV_3550_MEMSIZE,
4488 					     chksum);
4489 	release_firmware(fw);
4490 	if (asc_dvc->err_code)
4491 		return ADV_ERROR;
4492 
4493 	/*
4494 	 * Restore the RISC memory BIOS region.
4495 	 */
4496 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4497 		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4498 				 bios_mem[i]);
4499 	}
4500 
4501 	/*
4502 	 * Calculate and write the microcode code checksum to the microcode
4503 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4504 	 */
4505 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
4506 	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
4507 	code_sum = 0;
4508 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
4509 	for (word = begin_addr; word < end_addr; word += 2) {
4510 		code_sum += AdvReadWordAutoIncLram(iop_base);
4511 	}
4512 	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
4513 
4514 	/*
4515 	 * Read and save microcode version and date.
4516 	 */
4517 	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
4518 			asc_dvc->cfg->mcode_date);
4519 	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
4520 			asc_dvc->cfg->mcode_version);
4521 
4522 	/*
4523 	 * Set the chip type to indicate the ASC3550.
4524 	 */
4525 	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
4526 
4527 	/*
4528 	 * If the PCI Configuration Command Register "Parity Error Response
4529 	 * Control" Bit was clear (0), then set the microcode variable
4530 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4531 	 * to ignore DMA parity errors.
4532 	 */
4533 	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
4534 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4535 		word |= CONTROL_FLAG_IGNORE_PERR;
4536 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4537 	}
4538 
4539 	/*
4540 	 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
4541 	 * threshold of 128 bytes. This register is only accessible to the host.
4542 	 */
4543 	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
4544 			     START_CTL_EMFU | READ_CMD_MRM);
4545 
4546 	/*
4547 	 * Microcode operating variables for WDTR, SDTR, and command tag
4548 	 * queuing will be set in slave_configure() based on what a
4549 	 * device reports it is capable of in Inquiry byte 7.
4550 	 *
4551 	 * If SCSI Bus Resets have been disabled, then directly set
4552 	 * SDTR and WDTR from the EEPROM configuration. This will allow
4553 	 * the BIOS and warm boot to work without a SCSI bus hang on
4554 	 * the Inquiry caused by host and target mismatched DTR values.
4555 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
4556 	 * be assumed to be in Asynchronous, Narrow mode.
4557 	 */
4558 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
4559 		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
4560 				 asc_dvc->wdtr_able);
4561 		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
4562 				 asc_dvc->sdtr_able);
4563 	}
4564 
4565 	/*
4566 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
4567 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
4568 	 * bitmask. These values determine the maximum SDTR speed negotiated
4569 	 * with a device.
4570 	 *
4571 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
4572 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
4573 	 * without determining here whether the device supports SDTR.
4574 	 *
4575 	 * 4-bit speed  SDTR speed name
4576 	 * ===========  ===============
4577 	 * 0000b (0x0)  SDTR disabled
4578 	 * 0001b (0x1)  5 Mhz
4579 	 * 0010b (0x2)  10 Mhz
4580 	 * 0011b (0x3)  20 Mhz (Ultra)
4581 	 * 0100b (0x4)  40 Mhz (LVD/Ultra2)
4582 	 * 0101b (0x5)  80 Mhz (LVD2/Ultra3)
4583 	 * 0110b (0x6)  Undefined
4584 	 * .
4585 	 * 1111b (0xF)  Undefined
4586 	 */
4587 	word = 0;
4588 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4589 		if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
4590 			/* Set Ultra speed for TID 'tid'. */
4591 			word |= (0x3 << (4 * (tid % 4)));
4592 		} else {
4593 			/* Set Fast speed for TID 'tid'. */
4594 			word |= (0x2 << (4 * (tid % 4)));
4595 		}
4596 		if (tid == 3) {	/* Check if done with sdtr_speed1. */
4597 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
4598 			word = 0;
4599 		} else if (tid == 7) {	/* Check if done with sdtr_speed2. */
4600 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
4601 			word = 0;
4602 		} else if (tid == 11) {	/* Check if done with sdtr_speed3. */
4603 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
4604 			word = 0;
4605 		} else if (tid == 15) {	/* Check if done with sdtr_speed4. */
4606 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
4607 			/* End of loop. */
4608 		}
4609 	}
4610 
4611 	/*
4612 	 * Set microcode operating variable for the disconnect per TID bitmask.
4613 	 */
4614 	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
4615 			 asc_dvc->cfg->disc_enable);
4616 
4617 	/*
4618 	 * Set SCSI_CFG0 Microcode Default Value.
4619 	 *
4620 	 * The microcode will set the SCSI_CFG0 register using this value
4621 	 * after it is started below.
4622 	 */
4623 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
4624 			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
4625 			 asc_dvc->chip_scsi_id);
4626 
4627 	/*
4628 	 * Determine SCSI_CFG1 Microcode Default Value.
4629 	 *
4630 	 * The microcode will set the SCSI_CFG1 register using this value
4631 	 * after it is started below.
4632 	 */
4633 
4634 	/* Read current SCSI_CFG1 Register value. */
4635 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
4636 
4637 	/*
4638 	 * If all three connectors are in use, return an error.
4639 	 */
4640 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
4641 	    (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
4642 		asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
4643 		return ADV_ERROR;
4644 	}
4645 
4646 	/*
4647 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
4648 	 * register signals will be set. Check for and return an error if
4649 	 * this condition is found.
4650 	 */
4651 	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
4652 		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
4653 		return ADV_ERROR;
4654 	}
4655 
4656 	/*
4657 	 * If this is a differential board and a single-ended device
4658 	 * is attached to one of the connectors, return an error.
4659 	 */
4660 	if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
4661 		asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
4662 		return ADV_ERROR;
4663 	}
4664 
4665 	/*
4666 	 * If automatic termination control is enabled, then set the
4667 	 * termination value based on a table listed in a_condor.h.
4668 	 *
4669 	 * If manual termination was specified with an EEPROM setting
4670 	 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
4671 	 * is ready to be 'ored' into SCSI_CFG1.
4672 	 */
4673 	if (asc_dvc->cfg->termination == 0) {
4674 		/*
4675 		 * The software always controls termination by setting TERM_CTL_SEL.
4676 		 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
4677 		 */
4678 		asc_dvc->cfg->termination |= TERM_CTL_SEL;
4679 
4680 		switch (scsi_cfg1 & CABLE_DETECT) {
4681 			/* TERM_CTL_H: on, TERM_CTL_L: on */
4682 		case 0x3:
4683 		case 0x7:
4684 		case 0xB:
4685 		case 0xD:
4686 		case 0xE:
4687 		case 0xF:
4688 			asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
4689 			break;
4690 
4691 			/* TERM_CTL_H: on, TERM_CTL_L: off */
4692 		case 0x1:
4693 		case 0x5:
4694 		case 0x9:
4695 		case 0xA:
4696 		case 0xC:
4697 			asc_dvc->cfg->termination |= TERM_CTL_H;
4698 			break;
4699 
4700 			/* TERM_CTL_H: off, TERM_CTL_L: off */
4701 		case 0x2:
4702 		case 0x6:
4703 			break;
4704 		}
4705 	}
4706 
4707 	/*
4708 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
4709 	 */
4710 	scsi_cfg1 &= ~TERM_CTL;
4711 
4712 	/*
4713 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
4714 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
4715 	 * referenced, because the hardware internally inverts
4716 	 * the Termination High and Low bits if TERM_POL is set.
4717 	 */
4718 	scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
4719 
4720 	/*
4721 	 * Set SCSI_CFG1 Microcode Default Value
4722 	 *
4723 	 * Set filter value and possibly modified termination control
4724 	 * bits in the Microcode SCSI_CFG1 Register Value.
4725 	 *
4726 	 * The microcode will set the SCSI_CFG1 register using this value
4727 	 * after it is started below.
4728 	 */
4729 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
4730 			 FLTR_DISABLE | scsi_cfg1);
4731 
4732 	/*
4733 	 * Set MEM_CFG Microcode Default Value
4734 	 *
4735 	 * The microcode will set the MEM_CFG register using this value
4736 	 * after it is started below.
4737 	 *
4738 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
4739 	 * are defined.
4740 	 *
4741 	 * ASC-3550 has 8KB internal memory.
4742 	 */
4743 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
4744 			 BIOS_EN | RAM_SZ_8KB);
4745 
4746 	/*
4747 	 * Set SEL_MASK Microcode Default Value
4748 	 *
4749 	 * The microcode will set the SEL_MASK register using this value
4750 	 * after it is started below.
4751 	 */
4752 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
4753 			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
4754 
4755 	AdvBuildCarrierFreelist(asc_dvc);
4756 
4757 	/*
4758 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
4759 	 */
4760 
4761 	asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
4762 	if (!asc_dvc->icq_sp) {
4763 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4764 		return ADV_ERROR;
4765 	}
4766 
4767 	/*
4768 	 * Set RISC ICQ physical address start value.
4769 	 */
4770 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
4771 
4772 	/*
4773 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
4774 	 */
4775 	asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
4776 	if (!asc_dvc->irq_sp) {
4777 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4778 		return ADV_ERROR;
4779 	}
4780 
4781 	/*
4782 	 * Set RISC IRQ physical address start value.
4783 	 */
4784 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
4785 	asc_dvc->carr_pending_cnt = 0;
4786 
4787 	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
4788 			     (ADV_INTR_ENABLE_HOST_INTR |
4789 			      ADV_INTR_ENABLE_GLOBAL_INTR));
4790 
4791 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
4792 	AdvWriteWordRegister(iop_base, IOPW_PC, word);
4793 
4794 	/* finally, finally, gentlemen, start your engine */
4795 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
4796 
4797 	/*
4798 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
4799 	 * Resets should be performed. The RISC has to be running
4800 	 * to issue a SCSI Bus Reset.
4801 	 */
4802 	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
4803 		/*
4804 		 * If the BIOS Signature is present in memory, restore the
4805 		 * BIOS Handshake Configuration Table and do not perform
4806 		 * a SCSI Bus Reset.
4807 		 */
4808 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
4809 		    0x55AA) {
4810 			/*
4811 			 * Restore per TID negotiated values.
4812 			 */
4813 			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4814 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4815 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
4816 					 tagqng_able);
4817 			for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4818 				AdvWriteByteLram(iop_base,
4819 						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
4820 						 max_cmd[tid]);
4821 			}
4822 		} else {
4823 			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
4824 				warn_code = ASC_WARN_BUSRESET_ERROR;
4825 			}
4826 		}
4827 	}
4828 
4829 	return warn_code;
4830 }
4831 
4832 /*
4833  * Initialize the ASC-38C0800.
4834  *
4835  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4836  *
4837  * For a non-fatal error return a warning code. If there are no warnings
4838  * then 0 is returned.
4839  *
4840  * Needed after initialization for error recovery.
4841  */
AdvInitAsc38C0800Driver(ADV_DVC_VAR * asc_dvc)4842 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
4843 {
4844 	const struct firmware *fw;
4845 	const char fwname[] = "advansys/38C0800.bin";
4846 	AdvPortAddr iop_base;
4847 	ushort warn_code;
4848 	int begin_addr;
4849 	int end_addr;
4850 	ushort code_sum;
4851 	int word;
4852 	int i;
4853 	int err;
4854 	unsigned long chksum;
4855 	ushort scsi_cfg1;
4856 	uchar byte;
4857 	uchar tid;
4858 	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
4859 	ushort wdtr_able, sdtr_able, tagqng_able;
4860 	uchar max_cmd[ADV_MAX_TID + 1];
4861 
4862 	/* If there is already an error, don't continue. */
4863 	if (asc_dvc->err_code != 0)
4864 		return ADV_ERROR;
4865 
4866 	/*
4867 	 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
4868 	 */
4869 	if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
4870 		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4871 		return ADV_ERROR;
4872 	}
4873 
4874 	warn_code = 0;
4875 	iop_base = asc_dvc->iop_base;
4876 
4877 	/*
4878 	 * Save the RISC memory BIOS region before writing the microcode.
4879 	 * The BIOS may already be loaded and using its RISC LRAM region
4880 	 * so its region must be saved and restored.
4881 	 *
4882 	 * Note: This code makes the assumption, which is currently true,
4883 	 * that a chip reset does not clear RISC LRAM.
4884 	 */
4885 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4886 		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4887 				bios_mem[i]);
4888 	}
4889 
4890 	/*
4891 	 * Save current per TID negotiated values.
4892 	 */
4893 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4894 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4895 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4896 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4897 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4898 				max_cmd[tid]);
4899 	}
4900 
4901 	/*
4902 	 * RAM BIST (RAM Built-In Self Test)
4903 	 *
4904 	 * Address : I/O base + offset 0x38h register (byte).
4905 	 * Function: Bit 7-6(RW) : RAM mode
4906 	 *                          Normal Mode   : 0x00
4907 	 *                          Pre-test Mode : 0x40
4908 	 *                          RAM Test Mode : 0x80
4909 	 *           Bit 5       : unused
4910 	 *           Bit 4(RO)   : Done bit
4911 	 *           Bit 3-0(RO) : Status
4912 	 *                          Host Error    : 0x08
4913 	 *                          Int_RAM Error : 0x04
4914 	 *                          RISC Error    : 0x02
4915 	 *                          SCSI Error    : 0x01
4916 	 *                          No Error      : 0x00
4917 	 *
4918 	 * Note: RAM BIST code should be put right here, before loading the
4919 	 * microcode and after saving the RISC memory BIOS region.
4920 	 */
4921 
4922 	/*
4923 	 * LRAM Pre-test
4924 	 *
4925 	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
4926 	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
4927 	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
4928 	 * to NORMAL_MODE, return an error too.
4929 	 */
4930 	for (i = 0; i < 2; i++) {
4931 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
4932 		mdelay(10);	/* Wait for 10ms before reading back. */
4933 		byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
4934 		if ((byte & RAM_TEST_DONE) == 0
4935 		    || (byte & 0x0F) != PRE_TEST_VALUE) {
4936 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
4937 			return ADV_ERROR;
4938 		}
4939 
4940 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
4941 		mdelay(10);	/* Wait for 10ms before reading back. */
4942 		if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
4943 		    != NORMAL_VALUE) {
4944 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
4945 			return ADV_ERROR;
4946 		}
4947 	}
4948 
4949 	/*
4950 	 * LRAM Test - It takes about 1.5 ms to run through the test.
4951 	 *
4952 	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
4953 	 * If Done bit not set or Status not 0, save register byte, set the
4954 	 * err_code, and return an error.
4955 	 */
4956 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
4957 	mdelay(10);	/* Wait for 10ms before checking status. */
4958 
4959 	byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
4960 	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
4961 		/* Get here if Done bit not set or Status not 0. */
4962 		asc_dvc->bist_err_code = byte;	/* for BIOS display message */
4963 		asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
4964 		return ADV_ERROR;
4965 	}
4966 
4967 	/* We need to reset back to normal mode after LRAM test passes. */
4968 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
4969 
4970 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4971 	if (err) {
4972 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4973 		       fwname, err);
4974 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4975 		return err;
4976 	}
4977 	if (fw->size < 4) {
4978 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4979 		       fw->size, fwname);
4980 		release_firmware(fw);
4981 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4982 		return -EINVAL;
4983 	}
4984 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4985 		 (fw->data[1] << 8) | fw->data[0];
4986 	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4987 					     fw->size - 4, ADV_38C0800_MEMSIZE,
4988 					     chksum);
4989 	release_firmware(fw);
4990 	if (asc_dvc->err_code)
4991 		return ADV_ERROR;
4992 
4993 	/*
4994 	 * Restore the RISC memory BIOS region.
4995 	 */
4996 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4997 		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4998 				 bios_mem[i]);
4999 	}
5000 
5001 	/*
5002 	 * Calculate and write the microcode code checksum to the microcode
5003 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5004 	 */
5005 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5006 	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5007 	code_sum = 0;
5008 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5009 	for (word = begin_addr; word < end_addr; word += 2) {
5010 		code_sum += AdvReadWordAutoIncLram(iop_base);
5011 	}
5012 	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5013 
5014 	/*
5015 	 * Read microcode version and date.
5016 	 */
5017 	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5018 			asc_dvc->cfg->mcode_date);
5019 	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5020 			asc_dvc->cfg->mcode_version);
5021 
5022 	/*
5023 	 * Set the chip type to indicate the ASC38C0800.
5024 	 */
5025 	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
5026 
5027 	/*
5028 	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5029 	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5030 	 * cable detection and then we are able to read C_DET[3:0].
5031 	 *
5032 	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5033 	 * Microcode Default Value' section below.
5034 	 */
5035 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5036 	AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5037 			     scsi_cfg1 | DIS_TERM_DRV);
5038 
5039 	/*
5040 	 * If the PCI Configuration Command Register "Parity Error Response
5041 	 * Control" Bit was clear (0), then set the microcode variable
5042 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5043 	 * to ignore DMA parity errors.
5044 	 */
5045 	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5046 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5047 		word |= CONTROL_FLAG_IGNORE_PERR;
5048 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5049 	}
5050 
5051 	/*
5052 	 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5053 	 * bits for the default FIFO threshold.
5054 	 *
5055 	 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5056 	 *
5057 	 * For DMA Errata #4 set the BC_THRESH_ENB bit.
5058 	 */
5059 	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5060 			     BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
5061 			     READ_CMD_MRM);
5062 
5063 	/*
5064 	 * Microcode operating variables for WDTR, SDTR, and command tag
5065 	 * queuing will be set in slave_configure() based on what a
5066 	 * device reports it is capable of in Inquiry byte 7.
5067 	 *
5068 	 * If SCSI Bus Resets have been disabled, then directly set
5069 	 * SDTR and WDTR from the EEPROM configuration. This will allow
5070 	 * the BIOS and warm boot to work without a SCSI bus hang on
5071 	 * the Inquiry caused by host and target mismatched DTR values.
5072 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
5073 	 * be assumed to be in Asynchronous, Narrow mode.
5074 	 */
5075 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5076 		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5077 				 asc_dvc->wdtr_able);
5078 		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5079 				 asc_dvc->sdtr_able);
5080 	}
5081 
5082 	/*
5083 	 * Set microcode operating variables for DISC and SDTR_SPEED1,
5084 	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5085 	 * configuration values.
5086 	 *
5087 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5088 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5089 	 * without determining here whether the device supports SDTR.
5090 	 */
5091 	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5092 			 asc_dvc->cfg->disc_enable);
5093 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5094 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5095 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5096 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5097 
5098 	/*
5099 	 * Set SCSI_CFG0 Microcode Default Value.
5100 	 *
5101 	 * The microcode will set the SCSI_CFG0 register using this value
5102 	 * after it is started below.
5103 	 */
5104 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5105 			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5106 			 asc_dvc->chip_scsi_id);
5107 
5108 	/*
5109 	 * Determine SCSI_CFG1 Microcode Default Value.
5110 	 *
5111 	 * The microcode will set the SCSI_CFG1 register using this value
5112 	 * after it is started below.
5113 	 */
5114 
5115 	/* Read current SCSI_CFG1 Register value. */
5116 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5117 
5118 	/*
5119 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
5120 	 * register signals will be set. Check for and return an error if
5121 	 * this condition is found.
5122 	 */
5123 	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5124 		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5125 		return ADV_ERROR;
5126 	}
5127 
5128 	/*
5129 	 * All kind of combinations of devices attached to one of four
5130 	 * connectors are acceptable except HVD device attached. For example,
5131 	 * LVD device can be attached to SE connector while SE device attached
5132 	 * to LVD connector.  If LVD device attached to SE connector, it only
5133 	 * runs up to Ultra speed.
5134 	 *
5135 	 * If an HVD device is attached to one of LVD connectors, return an
5136 	 * error.  However, there is no way to detect HVD device attached to
5137 	 * SE connectors.
5138 	 */
5139 	if (scsi_cfg1 & HVD) {
5140 		asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
5141 		return ADV_ERROR;
5142 	}
5143 
5144 	/*
5145 	 * If either SE or LVD automatic termination control is enabled, then
5146 	 * set the termination value based on a table listed in a_condor.h.
5147 	 *
5148 	 * If manual termination was specified with an EEPROM setting then
5149 	 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5150 	 * to be 'ored' into SCSI_CFG1.
5151 	 */
5152 	if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5153 		/* SE automatic termination control is enabled. */
5154 		switch (scsi_cfg1 & C_DET_SE) {
5155 			/* TERM_SE_HI: on, TERM_SE_LO: on */
5156 		case 0x1:
5157 		case 0x2:
5158 		case 0x3:
5159 			asc_dvc->cfg->termination |= TERM_SE;
5160 			break;
5161 
5162 			/* TERM_SE_HI: on, TERM_SE_LO: off */
5163 		case 0x0:
5164 			asc_dvc->cfg->termination |= TERM_SE_HI;
5165 			break;
5166 		}
5167 	}
5168 
5169 	if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
5170 		/* LVD automatic termination control is enabled. */
5171 		switch (scsi_cfg1 & C_DET_LVD) {
5172 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
5173 		case 0x4:
5174 		case 0x8:
5175 		case 0xC:
5176 			asc_dvc->cfg->termination |= TERM_LVD;
5177 			break;
5178 
5179 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
5180 		case 0x0:
5181 			break;
5182 		}
5183 	}
5184 
5185 	/*
5186 	 * Clear any set TERM_SE and TERM_LVD bits.
5187 	 */
5188 	scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
5189 
5190 	/*
5191 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5192 	 */
5193 	scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
5194 
5195 	/*
5196 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5197 	 * bits and set possibly modified termination control bits in the
5198 	 * Microcode SCSI_CFG1 Register Value.
5199 	 */
5200 	scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
5201 
5202 	/*
5203 	 * Set SCSI_CFG1 Microcode Default Value
5204 	 *
5205 	 * Set possibly modified termination control and reset DIS_TERM_DRV
5206 	 * bits in the Microcode SCSI_CFG1 Register Value.
5207 	 *
5208 	 * The microcode will set the SCSI_CFG1 register using this value
5209 	 * after it is started below.
5210 	 */
5211 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5212 
5213 	/*
5214 	 * Set MEM_CFG Microcode Default Value
5215 	 *
5216 	 * The microcode will set the MEM_CFG register using this value
5217 	 * after it is started below.
5218 	 *
5219 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5220 	 * are defined.
5221 	 *
5222 	 * ASC-38C0800 has 16KB internal memory.
5223 	 */
5224 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5225 			 BIOS_EN | RAM_SZ_16KB);
5226 
5227 	/*
5228 	 * Set SEL_MASK Microcode Default Value
5229 	 *
5230 	 * The microcode will set the SEL_MASK register using this value
5231 	 * after it is started below.
5232 	 */
5233 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5234 			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5235 
5236 	AdvBuildCarrierFreelist(asc_dvc);
5237 
5238 	/*
5239 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5240 	 */
5241 
5242 	asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
5243 	if (!asc_dvc->icq_sp) {
5244 		ASC_DBG(0, "Failed to get ICQ carrier\n");
5245 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5246 		return ADV_ERROR;
5247 	}
5248 
5249 	/*
5250 	 * Set RISC ICQ physical address start value.
5251 	 * carr_pa is LE, must be native before write
5252 	 */
5253 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5254 
5255 	/*
5256 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5257 	 */
5258 	asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
5259 	if (!asc_dvc->irq_sp) {
5260 		ASC_DBG(0, "Failed to get IRQ carrier\n");
5261 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5262 		return ADV_ERROR;
5263 	}
5264 
5265 	/*
5266 	 * Set RISC IRQ physical address start value.
5267 	 *
5268 	 * carr_pa is LE, must be native before write *
5269 	 */
5270 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5271 	asc_dvc->carr_pending_cnt = 0;
5272 
5273 	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5274 			     (ADV_INTR_ENABLE_HOST_INTR |
5275 			      ADV_INTR_ENABLE_GLOBAL_INTR));
5276 
5277 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5278 	AdvWriteWordRegister(iop_base, IOPW_PC, word);
5279 
5280 	/* finally, finally, gentlemen, start your engine */
5281 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5282 
5283 	/*
5284 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5285 	 * Resets should be performed. The RISC has to be running
5286 	 * to issue a SCSI Bus Reset.
5287 	 */
5288 	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5289 		/*
5290 		 * If the BIOS Signature is present in memory, restore the
5291 		 * BIOS Handshake Configuration Table and do not perform
5292 		 * a SCSI Bus Reset.
5293 		 */
5294 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5295 		    0x55AA) {
5296 			/*
5297 			 * Restore per TID negotiated values.
5298 			 */
5299 			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5300 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5301 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5302 					 tagqng_able);
5303 			for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5304 				AdvWriteByteLram(iop_base,
5305 						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5306 						 max_cmd[tid]);
5307 			}
5308 		} else {
5309 			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5310 				warn_code = ASC_WARN_BUSRESET_ERROR;
5311 			}
5312 		}
5313 	}
5314 
5315 	return warn_code;
5316 }
5317 
5318 /*
5319  * Initialize the ASC-38C1600.
5320  *
5321  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
5322  *
5323  * For a non-fatal error return a warning code. If there are no warnings
5324  * then 0 is returned.
5325  *
5326  * Needed after initialization for error recovery.
5327  */
AdvInitAsc38C1600Driver(ADV_DVC_VAR * asc_dvc)5328 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
5329 {
5330 	const struct firmware *fw;
5331 	const char fwname[] = "advansys/38C1600.bin";
5332 	AdvPortAddr iop_base;
5333 	ushort warn_code;
5334 	int begin_addr;
5335 	int end_addr;
5336 	ushort code_sum;
5337 	long word;
5338 	int i;
5339 	int err;
5340 	unsigned long chksum;
5341 	ushort scsi_cfg1;
5342 	uchar byte;
5343 	uchar tid;
5344 	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
5345 	ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
5346 	uchar max_cmd[ASC_MAX_TID + 1];
5347 
5348 	/* If there is already an error, don't continue. */
5349 	if (asc_dvc->err_code != 0) {
5350 		return ADV_ERROR;
5351 	}
5352 
5353 	/*
5354 	 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
5355 	 */
5356 	if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
5357 		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5358 		return ADV_ERROR;
5359 	}
5360 
5361 	warn_code = 0;
5362 	iop_base = asc_dvc->iop_base;
5363 
5364 	/*
5365 	 * Save the RISC memory BIOS region before writing the microcode.
5366 	 * The BIOS may already be loaded and using its RISC LRAM region
5367 	 * so its region must be saved and restored.
5368 	 *
5369 	 * Note: This code makes the assumption, which is currently true,
5370 	 * that a chip reset does not clear RISC LRAM.
5371 	 */
5372 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5373 		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5374 				bios_mem[i]);
5375 	}
5376 
5377 	/*
5378 	 * Save current per TID negotiated values.
5379 	 */
5380 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5381 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5382 	AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5383 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5384 	for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5385 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5386 				max_cmd[tid]);
5387 	}
5388 
5389 	/*
5390 	 * RAM BIST (Built-In Self Test)
5391 	 *
5392 	 * Address : I/O base + offset 0x38h register (byte).
5393 	 * Function: Bit 7-6(RW) : RAM mode
5394 	 *                          Normal Mode   : 0x00
5395 	 *                          Pre-test Mode : 0x40
5396 	 *                          RAM Test Mode : 0x80
5397 	 *           Bit 5       : unused
5398 	 *           Bit 4(RO)   : Done bit
5399 	 *           Bit 3-0(RO) : Status
5400 	 *                          Host Error    : 0x08
5401 	 *                          Int_RAM Error : 0x04
5402 	 *                          RISC Error    : 0x02
5403 	 *                          SCSI Error    : 0x01
5404 	 *                          No Error      : 0x00
5405 	 *
5406 	 * Note: RAM BIST code should be put right here, before loading the
5407 	 * microcode and after saving the RISC memory BIOS region.
5408 	 */
5409 
5410 	/*
5411 	 * LRAM Pre-test
5412 	 *
5413 	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5414 	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5415 	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5416 	 * to NORMAL_MODE, return an error too.
5417 	 */
5418 	for (i = 0; i < 2; i++) {
5419 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5420 		mdelay(10);	/* Wait for 10ms before reading back. */
5421 		byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5422 		if ((byte & RAM_TEST_DONE) == 0
5423 		    || (byte & 0x0F) != PRE_TEST_VALUE) {
5424 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5425 			return ADV_ERROR;
5426 		}
5427 
5428 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5429 		mdelay(10);	/* Wait for 10ms before reading back. */
5430 		if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5431 		    != NORMAL_VALUE) {
5432 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5433 			return ADV_ERROR;
5434 		}
5435 	}
5436 
5437 	/*
5438 	 * LRAM Test - It takes about 1.5 ms to run through the test.
5439 	 *
5440 	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5441 	 * If Done bit not set or Status not 0, save register byte, set the
5442 	 * err_code, and return an error.
5443 	 */
5444 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5445 	mdelay(10);	/* Wait for 10ms before checking status. */
5446 
5447 	byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5448 	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5449 		/* Get here if Done bit not set or Status not 0. */
5450 		asc_dvc->bist_err_code = byte;	/* for BIOS display message */
5451 		asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5452 		return ADV_ERROR;
5453 	}
5454 
5455 	/* We need to reset back to normal mode after LRAM test passes. */
5456 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5457 
5458 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5459 	if (err) {
5460 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5461 		       fwname, err);
5462 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5463 		return err;
5464 	}
5465 	if (fw->size < 4) {
5466 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5467 		       fw->size, fwname);
5468 		release_firmware(fw);
5469 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5470 		return -EINVAL;
5471 	}
5472 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5473 		 (fw->data[1] << 8) | fw->data[0];
5474 	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5475 					     fw->size - 4, ADV_38C1600_MEMSIZE,
5476 					     chksum);
5477 	release_firmware(fw);
5478 	if (asc_dvc->err_code)
5479 		return ADV_ERROR;
5480 
5481 	/*
5482 	 * Restore the RISC memory BIOS region.
5483 	 */
5484 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5485 		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5486 				 bios_mem[i]);
5487 	}
5488 
5489 	/*
5490 	 * Calculate and write the microcode code checksum to the microcode
5491 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5492 	 */
5493 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5494 	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5495 	code_sum = 0;
5496 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5497 	for (word = begin_addr; word < end_addr; word += 2) {
5498 		code_sum += AdvReadWordAutoIncLram(iop_base);
5499 	}
5500 	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5501 
5502 	/*
5503 	 * Read microcode version and date.
5504 	 */
5505 	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5506 			asc_dvc->cfg->mcode_date);
5507 	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5508 			asc_dvc->cfg->mcode_version);
5509 
5510 	/*
5511 	 * Set the chip type to indicate the ASC38C1600.
5512 	 */
5513 	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
5514 
5515 	/*
5516 	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5517 	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5518 	 * cable detection and then we are able to read C_DET[3:0].
5519 	 *
5520 	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5521 	 * Microcode Default Value' section below.
5522 	 */
5523 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5524 	AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5525 			     scsi_cfg1 | DIS_TERM_DRV);
5526 
5527 	/*
5528 	 * If the PCI Configuration Command Register "Parity Error Response
5529 	 * Control" Bit was clear (0), then set the microcode variable
5530 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5531 	 * to ignore DMA parity errors.
5532 	 */
5533 	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5534 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5535 		word |= CONTROL_FLAG_IGNORE_PERR;
5536 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5537 	}
5538 
5539 	/*
5540 	 * If the BIOS control flag AIPP (Asynchronous Information
5541 	 * Phase Protection) disable bit is not set, then set the firmware
5542 	 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
5543 	 * AIPP checking and encoding.
5544 	 */
5545 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
5546 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5547 		word |= CONTROL_FLAG_ENABLE_AIPP;
5548 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5549 	}
5550 
5551 	/*
5552 	 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
5553 	 * and START_CTL_TH [3:2].
5554 	 */
5555 	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5556 			     FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
5557 
5558 	/*
5559 	 * Microcode operating variables for WDTR, SDTR, and command tag
5560 	 * queuing will be set in slave_configure() based on what a
5561 	 * device reports it is capable of in Inquiry byte 7.
5562 	 *
5563 	 * If SCSI Bus Resets have been disabled, then directly set
5564 	 * SDTR and WDTR from the EEPROM configuration. This will allow
5565 	 * the BIOS and warm boot to work without a SCSI bus hang on
5566 	 * the Inquiry caused by host and target mismatched DTR values.
5567 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
5568 	 * be assumed to be in Asynchronous, Narrow mode.
5569 	 */
5570 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5571 		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5572 				 asc_dvc->wdtr_able);
5573 		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5574 				 asc_dvc->sdtr_able);
5575 	}
5576 
5577 	/*
5578 	 * Set microcode operating variables for DISC and SDTR_SPEED1,
5579 	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5580 	 * configuration values.
5581 	 *
5582 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5583 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5584 	 * without determining here whether the device supports SDTR.
5585 	 */
5586 	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5587 			 asc_dvc->cfg->disc_enable);
5588 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5589 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5590 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5591 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5592 
5593 	/*
5594 	 * Set SCSI_CFG0 Microcode Default Value.
5595 	 *
5596 	 * The microcode will set the SCSI_CFG0 register using this value
5597 	 * after it is started below.
5598 	 */
5599 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5600 			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5601 			 asc_dvc->chip_scsi_id);
5602 
5603 	/*
5604 	 * Calculate SCSI_CFG1 Microcode Default Value.
5605 	 *
5606 	 * The microcode will set the SCSI_CFG1 register using this value
5607 	 * after it is started below.
5608 	 *
5609 	 * Each ASC-38C1600 function has only two cable detect bits.
5610 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
5611 	 */
5612 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5613 
5614 	/*
5615 	 * If the cable is reversed all of the SCSI_CTRL register signals
5616 	 * will be set. Check for and return an error if this condition is
5617 	 * found.
5618 	 */
5619 	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5620 		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5621 		return ADV_ERROR;
5622 	}
5623 
5624 	/*
5625 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
5626 	 * can not be connected to either connector. An LVD device or SE device
5627 	 * may be connected to either connecor. If an SE device is connected,
5628 	 * then at most Ultra speed (20 Mhz) can be used on both connectors.
5629 	 *
5630 	 * If an HVD device is attached, return an error.
5631 	 */
5632 	if (scsi_cfg1 & HVD) {
5633 		asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
5634 		return ADV_ERROR;
5635 	}
5636 
5637 	/*
5638 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
5639 	 * termination because there are two connectors for each function. Each
5640 	 * function may use either LVD or SE mode. Corresponding the SE automatic
5641 	 * termination control EEPROM bits are used for each function. Each
5642 	 * function has its own EEPROM. If SE automatic control is enabled for
5643 	 * the function, then set the termination value based on a table listed
5644 	 * in a_condor.h.
5645 	 *
5646 	 * If manual termination is specified in the EEPROM for the function,
5647 	 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
5648 	 * ready to be 'ored' into SCSI_CFG1.
5649 	 */
5650 	if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5651 		struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
5652 		/* SE automatic termination control is enabled. */
5653 		switch (scsi_cfg1 & C_DET_SE) {
5654 			/* TERM_SE_HI: on, TERM_SE_LO: on */
5655 		case 0x1:
5656 		case 0x2:
5657 		case 0x3:
5658 			asc_dvc->cfg->termination |= TERM_SE;
5659 			break;
5660 
5661 		case 0x0:
5662 			if (PCI_FUNC(pdev->devfn) == 0) {
5663 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
5664 			} else {
5665 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
5666 				asc_dvc->cfg->termination |= TERM_SE_HI;
5667 			}
5668 			break;
5669 		}
5670 	}
5671 
5672 	/*
5673 	 * Clear any set TERM_SE bits.
5674 	 */
5675 	scsi_cfg1 &= ~TERM_SE;
5676 
5677 	/*
5678 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
5679 	 */
5680 	scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
5681 
5682 	/*
5683 	 * Clear Big Endian and Terminator Polarity bits and set possibly
5684 	 * modified termination control bits in the Microcode SCSI_CFG1
5685 	 * Register Value.
5686 	 *
5687 	 * Big Endian bit is not used even on big endian machines.
5688 	 */
5689 	scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
5690 
5691 	/*
5692 	 * Set SCSI_CFG1 Microcode Default Value
5693 	 *
5694 	 * Set possibly modified termination control bits in the Microcode
5695 	 * SCSI_CFG1 Register Value.
5696 	 *
5697 	 * The microcode will set the SCSI_CFG1 register using this value
5698 	 * after it is started below.
5699 	 */
5700 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5701 
5702 	/*
5703 	 * Set MEM_CFG Microcode Default Value
5704 	 *
5705 	 * The microcode will set the MEM_CFG register using this value
5706 	 * after it is started below.
5707 	 *
5708 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5709 	 * are defined.
5710 	 *
5711 	 * ASC-38C1600 has 32KB internal memory.
5712 	 *
5713 	 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
5714 	 * out a special 16K Adv Library and Microcode version. After the issue
5715 	 * resolved, we should turn back to the 32K support. Both a_condor.h and
5716 	 * mcode.sas files also need to be updated.
5717 	 *
5718 	 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5719 	 *  BIOS_EN | RAM_SZ_32KB);
5720 	 */
5721 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5722 			 BIOS_EN | RAM_SZ_16KB);
5723 
5724 	/*
5725 	 * Set SEL_MASK Microcode Default Value
5726 	 *
5727 	 * The microcode will set the SEL_MASK register using this value
5728 	 * after it is started below.
5729 	 */
5730 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5731 			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5732 
5733 	AdvBuildCarrierFreelist(asc_dvc);
5734 
5735 	/*
5736 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5737 	 */
5738 	asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
5739 	if (!asc_dvc->icq_sp) {
5740 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5741 		return ADV_ERROR;
5742 	}
5743 
5744 	/*
5745 	 * Set RISC ICQ physical address start value. Initialize the
5746 	 * COMMA register to the same value otherwise the RISC will
5747 	 * prematurely detect a command is available.
5748 	 */
5749 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5750 	AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
5751 			      le32_to_cpu(asc_dvc->icq_sp->carr_pa));
5752 
5753 	/*
5754 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5755 	 */
5756 	asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
5757 	if (!asc_dvc->irq_sp) {
5758 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5759 		return ADV_ERROR;
5760 	}
5761 
5762 	/*
5763 	 * Set RISC IRQ physical address start value.
5764 	 */
5765 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5766 	asc_dvc->carr_pending_cnt = 0;
5767 
5768 	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5769 			     (ADV_INTR_ENABLE_HOST_INTR |
5770 			      ADV_INTR_ENABLE_GLOBAL_INTR));
5771 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5772 	AdvWriteWordRegister(iop_base, IOPW_PC, word);
5773 
5774 	/* finally, finally, gentlemen, start your engine */
5775 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5776 
5777 	/*
5778 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5779 	 * Resets should be performed. The RISC has to be running
5780 	 * to issue a SCSI Bus Reset.
5781 	 */
5782 	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5783 		/*
5784 		 * If the BIOS Signature is present in memory, restore the
5785 		 * per TID microcode operating variables.
5786 		 */
5787 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5788 		    0x55AA) {
5789 			/*
5790 			 * Restore per TID negotiated values.
5791 			 */
5792 			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5793 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5794 			AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5795 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5796 					 tagqng_able);
5797 			for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5798 				AdvWriteByteLram(iop_base,
5799 						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5800 						 max_cmd[tid]);
5801 			}
5802 		} else {
5803 			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5804 				warn_code = ASC_WARN_BUSRESET_ERROR;
5805 			}
5806 		}
5807 	}
5808 
5809 	return warn_code;
5810 }
5811 
5812 /*
5813  * Reset chip and SCSI Bus.
5814  *
5815  * Return Value:
5816  *      ADV_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
5817  *      ADV_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
5818  */
AdvResetChipAndSB(ADV_DVC_VAR * asc_dvc)5819 static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
5820 {
5821 	int status;
5822 	ushort wdtr_able, sdtr_able, tagqng_able;
5823 	ushort ppr_able = 0;
5824 	uchar tid, max_cmd[ADV_MAX_TID + 1];
5825 	AdvPortAddr iop_base;
5826 	ushort bios_sig;
5827 
5828 	iop_base = asc_dvc->iop_base;
5829 
5830 	/*
5831 	 * Save current per TID negotiated values.
5832 	 */
5833 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5834 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5835 	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5836 		AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5837 	}
5838 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5839 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5840 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5841 				max_cmd[tid]);
5842 	}
5843 
5844 	/*
5845 	 * Force the AdvInitAsc3550/38C0800Driver() function to
5846 	 * perform a SCSI Bus Reset by clearing the BIOS signature word.
5847 	 * The initialization functions assumes a SCSI Bus Reset is not
5848 	 * needed if the BIOS signature word is present.
5849 	 */
5850 	AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
5851 	AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
5852 
5853 	/*
5854 	 * Stop chip and reset it.
5855 	 */
5856 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
5857 	AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
5858 	mdelay(100);
5859 	AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
5860 			     ADV_CTRL_REG_CMD_WR_IO_REG);
5861 
5862 	/*
5863 	 * Reset Adv Library error code, if any, and try
5864 	 * re-initializing the chip.
5865 	 */
5866 	asc_dvc->err_code = 0;
5867 	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5868 		status = AdvInitAsc38C1600Driver(asc_dvc);
5869 	} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
5870 		status = AdvInitAsc38C0800Driver(asc_dvc);
5871 	} else {
5872 		status = AdvInitAsc3550Driver(asc_dvc);
5873 	}
5874 
5875 	/* Translate initialization return value to status value. */
5876 	if (status == 0) {
5877 		status = ADV_TRUE;
5878 	} else {
5879 		status = ADV_FALSE;
5880 	}
5881 
5882 	/*
5883 	 * Restore the BIOS signature word.
5884 	 */
5885 	AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
5886 
5887 	/*
5888 	 * Restore per TID negotiated values.
5889 	 */
5890 	AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5891 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5892 	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5893 		AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5894 	}
5895 	AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5896 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5897 		AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5898 				 max_cmd[tid]);
5899 	}
5900 
5901 	return status;
5902 }
5903 
5904 /*
5905  * adv_async_callback() - Adv Library asynchronous event callback function.
5906  */
adv_async_callback(ADV_DVC_VAR * adv_dvc_varp,uchar code)5907 static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
5908 {
5909 	switch (code) {
5910 	case ADV_ASYNC_SCSI_BUS_RESET_DET:
5911 		/*
5912 		 * The firmware detected a SCSI Bus reset.
5913 		 */
5914 		ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
5915 		break;
5916 
5917 	case ADV_ASYNC_RDMA_FAILURE:
5918 		/*
5919 		 * Handle RDMA failure by resetting the SCSI Bus and
5920 		 * possibly the chip if it is unresponsive. Log the error
5921 		 * with a unique code.
5922 		 */
5923 		ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
5924 		AdvResetChipAndSB(adv_dvc_varp);
5925 		break;
5926 
5927 	case ADV_HOST_SCSI_BUS_RESET:
5928 		/*
5929 		 * Host generated SCSI bus reset occurred.
5930 		 */
5931 		ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
5932 		break;
5933 
5934 	default:
5935 		ASC_DBG(0, "unknown code 0x%x\n", code);
5936 		break;
5937 	}
5938 }
5939 
5940 /*
5941  * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
5942  *
5943  * Callback function for the Wide SCSI Adv Library.
5944  */
adv_isr_callback(ADV_DVC_VAR * adv_dvc_varp,ADV_SCSI_REQ_Q * scsiqp)5945 static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
5946 {
5947 	struct asc_board *boardp = adv_dvc_varp->drv_ptr;
5948 	adv_req_t *reqp;
5949 	adv_sgblk_t *sgblkp;
5950 	struct scsi_cmnd *scp;
5951 	u32 resid_cnt;
5952 	dma_addr_t sense_addr;
5953 
5954 	ASC_DBG(1, "adv_dvc_varp 0x%p, scsiqp 0x%p\n",
5955 		adv_dvc_varp, scsiqp);
5956 	ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
5957 
5958 	/*
5959 	 * Get the adv_req_t structure for the command that has been
5960 	 * completed. The adv_req_t structure actually contains the
5961 	 * completed ADV_SCSI_REQ_Q structure.
5962 	 */
5963 	scp = scsi_host_find_tag(boardp->shost, scsiqp->srb_tag);
5964 
5965 	ASC_DBG(1, "scp 0x%p\n", scp);
5966 	if (scp == NULL) {
5967 		ASC_PRINT
5968 		    ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
5969 		return;
5970 	}
5971 	ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
5972 
5973 	reqp = (adv_req_t *)scp->host_scribble;
5974 	ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
5975 	if (reqp == NULL) {
5976 		ASC_PRINT("adv_isr_callback: reqp is NULL\n");
5977 		return;
5978 	}
5979 	/*
5980 	 * Remove backreferences to avoid duplicate
5981 	 * command completions.
5982 	 */
5983 	scp->host_scribble = NULL;
5984 	reqp->cmndp = NULL;
5985 
5986 	ASC_STATS(boardp->shost, callback);
5987 	ASC_DBG(1, "shost 0x%p\n", boardp->shost);
5988 
5989 	sense_addr = le32_to_cpu(scsiqp->sense_addr);
5990 	dma_unmap_single(boardp->dev, sense_addr,
5991 			 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
5992 
5993 	/*
5994 	 * 'done_status' contains the command's ending status.
5995 	 */
5996 	switch (scsiqp->done_status) {
5997 	case QD_NO_ERROR:
5998 		ASC_DBG(2, "QD_NO_ERROR\n");
5999 		scp->result = 0;
6000 
6001 		/*
6002 		 * Check for an underrun condition.
6003 		 *
6004 		 * If there was no error and an underrun condition, then
6005 		 * then return the number of underrun bytes.
6006 		 */
6007 		resid_cnt = le32_to_cpu(scsiqp->data_cnt);
6008 		if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
6009 		    resid_cnt <= scsi_bufflen(scp)) {
6010 			ASC_DBG(1, "underrun condition %lu bytes\n",
6011 				 (ulong)resid_cnt);
6012 			scsi_set_resid(scp, resid_cnt);
6013 		}
6014 		break;
6015 
6016 	case QD_WITH_ERROR:
6017 		ASC_DBG(2, "QD_WITH_ERROR\n");
6018 		switch (scsiqp->host_status) {
6019 		case QHSTA_NO_ERROR:
6020 			if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
6021 				ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6022 				ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6023 						  SCSI_SENSE_BUFFERSIZE);
6024 				/*
6025 				 * Note: The 'status_byte()' macro used by
6026 				 * target drivers defined in scsi.h shifts the
6027 				 * status byte returned by host drivers right
6028 				 * by 1 bit.  This is why target drivers also
6029 				 * use right shifted status byte definitions.
6030 				 * For instance target drivers use
6031 				 * CHECK_CONDITION, defined to 0x1, instead of
6032 				 * the SCSI defined check condition value of
6033 				 * 0x2. Host drivers are supposed to return
6034 				 * the status byte as it is defined by SCSI.
6035 				 */
6036 				scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6037 				    STATUS_BYTE(scsiqp->scsi_status);
6038 			} else {
6039 				scp->result = STATUS_BYTE(scsiqp->scsi_status);
6040 			}
6041 			break;
6042 
6043 		default:
6044 			/* Some other QHSTA error occurred. */
6045 			ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
6046 			scp->result = HOST_BYTE(DID_BAD_TARGET);
6047 			break;
6048 		}
6049 		break;
6050 
6051 	case QD_ABORTED_BY_HOST:
6052 		ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6053 		scp->result =
6054 		    HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status);
6055 		break;
6056 
6057 	default:
6058 		ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
6059 		scp->result =
6060 		    HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status);
6061 		break;
6062 	}
6063 
6064 	/*
6065 	 * If the 'init_tidmask' bit isn't already set for the target and the
6066 	 * current request finished normally, then set the bit for the target
6067 	 * to indicate that a device is present.
6068 	 */
6069 	if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6070 	    scsiqp->done_status == QD_NO_ERROR &&
6071 	    scsiqp->host_status == QHSTA_NO_ERROR) {
6072 		boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6073 	}
6074 
6075 	asc_scsi_done(scp);
6076 
6077 	/*
6078 	 * Free all 'adv_sgblk_t' structures allocated for the request.
6079 	 */
6080 	while ((sgblkp = reqp->sgblkp) != NULL) {
6081 		/* Remove 'sgblkp' from the request list. */
6082 		reqp->sgblkp = sgblkp->next_sgblkp;
6083 
6084 		dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
6085 			      sgblkp->sg_addr);
6086 	}
6087 
6088 	ASC_DBG(1, "done\n");
6089 }
6090 
6091 /*
6092  * Adv Library Interrupt Service Routine
6093  *
6094  *  This function is called by a driver's interrupt service routine.
6095  *  The function disables and re-enables interrupts.
6096  *
6097  *  When a microcode idle command is completed, the ADV_DVC_VAR
6098  *  'idle_cmd_done' field is set to ADV_TRUE.
6099  *
6100  *  Note: AdvISR() can be called when interrupts are disabled or even
6101  *  when there is no hardware interrupt condition present. It will
6102  *  always check for completed idle commands and microcode requests.
6103  *  This is an important feature that shouldn't be changed because it
6104  *  allows commands to be completed from polling mode loops.
6105  *
6106  * Return:
6107  *   ADV_TRUE(1) - interrupt was pending
6108  *   ADV_FALSE(0) - no interrupt was pending
6109  */
AdvISR(ADV_DVC_VAR * asc_dvc)6110 static int AdvISR(ADV_DVC_VAR *asc_dvc)
6111 {
6112 	AdvPortAddr iop_base;
6113 	uchar int_stat;
6114 	ushort target_bit;
6115 	ADV_CARR_T *free_carrp;
6116 	__le32 irq_next_vpa;
6117 	ADV_SCSI_REQ_Q *scsiq;
6118 	adv_req_t *reqp;
6119 
6120 	iop_base = asc_dvc->iop_base;
6121 
6122 	/* Reading the register clears the interrupt. */
6123 	int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
6124 
6125 	if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
6126 			 ADV_INTR_STATUS_INTRC)) == 0) {
6127 		return ADV_FALSE;
6128 	}
6129 
6130 	/*
6131 	 * Notify the driver of an asynchronous microcode condition by
6132 	 * calling the adv_async_callback function. The function
6133 	 * is passed the microcode ASC_MC_INTRB_CODE byte value.
6134 	 */
6135 	if (int_stat & ADV_INTR_STATUS_INTRB) {
6136 		uchar intrb_code;
6137 
6138 		AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
6139 
6140 		if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
6141 		    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6142 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
6143 			    asc_dvc->carr_pending_cnt != 0) {
6144 				AdvWriteByteRegister(iop_base, IOPB_TICKLE,
6145 						     ADV_TICKLE_A);
6146 				if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
6147 					AdvWriteByteRegister(iop_base,
6148 							     IOPB_TICKLE,
6149 							     ADV_TICKLE_NOP);
6150 				}
6151 			}
6152 		}
6153 
6154 		adv_async_callback(asc_dvc, intrb_code);
6155 	}
6156 
6157 	/*
6158 	 * Check if the IRQ stopper carrier contains a completed request.
6159 	 */
6160 	while (((irq_next_vpa =
6161 		 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ADV_RQ_DONE) != 0) {
6162 		/*
6163 		 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6164 		 * The RISC will have set 'areq_vpa' to a virtual address.
6165 		 *
6166 		 * The firmware will have copied the ADV_SCSI_REQ_Q.scsiq_ptr
6167 		 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6168 		 * below complements the conversion of ADV_SCSI_REQ_Q.scsiq_ptr'
6169 		 * in AdvExeScsiQueue().
6170 		 */
6171 		u32 pa_offset = le32_to_cpu(asc_dvc->irq_sp->areq_vpa);
6172 		ASC_DBG(1, "irq_sp %p areq_vpa %u\n",
6173 			asc_dvc->irq_sp, pa_offset);
6174 		reqp = adv_get_reqp(asc_dvc, pa_offset);
6175 		scsiq = &reqp->scsi_req_q;
6176 
6177 		/*
6178 		 * Request finished with good status and the queue was not
6179 		 * DMAed to host memory by the firmware. Set all status fields
6180 		 * to indicate good status.
6181 		 */
6182 		if ((irq_next_vpa & ADV_RQ_GOOD) != 0) {
6183 			scsiq->done_status = QD_NO_ERROR;
6184 			scsiq->host_status = scsiq->scsi_status = 0;
6185 			scsiq->data_cnt = 0L;
6186 		}
6187 
6188 		/*
6189 		 * Advance the stopper pointer to the next carrier
6190 		 * ignoring the lower four bits. Free the previous
6191 		 * stopper carrier.
6192 		 */
6193 		free_carrp = asc_dvc->irq_sp;
6194 		asc_dvc->irq_sp = adv_get_carrier(asc_dvc,
6195 						  ADV_GET_CARRP(irq_next_vpa));
6196 
6197 		free_carrp->next_vpa = asc_dvc->carr_freelist->carr_va;
6198 		asc_dvc->carr_freelist = free_carrp;
6199 		asc_dvc->carr_pending_cnt--;
6200 
6201 		target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id);
6202 
6203 		/*
6204 		 * Clear request microcode control flag.
6205 		 */
6206 		scsiq->cntl = 0;
6207 
6208 		/*
6209 		 * Notify the driver of the completed request by passing
6210 		 * the ADV_SCSI_REQ_Q pointer to its callback function.
6211 		 */
6212 		adv_isr_callback(asc_dvc, scsiq);
6213 		/*
6214 		 * Note: After the driver callback function is called, 'scsiq'
6215 		 * can no longer be referenced.
6216 		 *
6217 		 * Fall through and continue processing other completed
6218 		 * requests...
6219 		 */
6220 	}
6221 	return ADV_TRUE;
6222 }
6223 
AscSetLibErrorCode(ASC_DVC_VAR * asc_dvc,ushort err_code)6224 static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
6225 {
6226 	if (asc_dvc->err_code == 0) {
6227 		asc_dvc->err_code = err_code;
6228 		AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
6229 				 err_code);
6230 	}
6231 	return err_code;
6232 }
6233 
AscAckInterrupt(PortAddr iop_base)6234 static void AscAckInterrupt(PortAddr iop_base)
6235 {
6236 	uchar host_flag;
6237 	uchar risc_flag;
6238 	ushort loop;
6239 
6240 	loop = 0;
6241 	do {
6242 		risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
6243 		if (loop++ > 0x7FFF) {
6244 			break;
6245 		}
6246 	} while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
6247 	host_flag =
6248 	    AscReadLramByte(iop_base,
6249 			    ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
6250 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6251 			 (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
6252 	AscSetChipStatus(iop_base, CIW_INT_ACK);
6253 	loop = 0;
6254 	while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
6255 		AscSetChipStatus(iop_base, CIW_INT_ACK);
6256 		if (loop++ > 3) {
6257 			break;
6258 		}
6259 	}
6260 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
6261 }
6262 
AscGetSynPeriodIndex(ASC_DVC_VAR * asc_dvc,uchar syn_time)6263 static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
6264 {
6265 	const uchar *period_table;
6266 	int max_index;
6267 	int min_index;
6268 	int i;
6269 
6270 	period_table = asc_dvc->sdtr_period_tbl;
6271 	max_index = (int)asc_dvc->max_sdtr_index;
6272 	min_index = (int)asc_dvc->min_sdtr_index;
6273 	if ((syn_time <= period_table[max_index])) {
6274 		for (i = min_index; i < (max_index - 1); i++) {
6275 			if (syn_time <= period_table[i]) {
6276 				return (uchar)i;
6277 			}
6278 		}
6279 		return (uchar)max_index;
6280 	} else {
6281 		return (uchar)(max_index + 1);
6282 	}
6283 }
6284 
6285 static uchar
AscMsgOutSDTR(ASC_DVC_VAR * asc_dvc,uchar sdtr_period,uchar sdtr_offset)6286 AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
6287 {
6288 	PortAddr iop_base = asc_dvc->iop_base;
6289 	uchar sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6290 	EXT_MSG sdtr_buf = {
6291 		.msg_type = EXTENDED_MESSAGE,
6292 		.msg_len = MS_SDTR_LEN,
6293 		.msg_req = EXTENDED_SDTR,
6294 		.xfer_period = sdtr_period,
6295 		.req_ack_offset = sdtr_offset,
6296 	};
6297 	sdtr_offset &= ASC_SYN_MAX_OFFSET;
6298 
6299 	if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
6300 		AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6301 					(uchar *)&sdtr_buf,
6302 					sizeof(EXT_MSG) >> 1);
6303 		return ((sdtr_period_index << 4) | sdtr_offset);
6304 	} else {
6305 		sdtr_buf.req_ack_offset = 0;
6306 		AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6307 					(uchar *)&sdtr_buf,
6308 					sizeof(EXT_MSG) >> 1);
6309 		return 0;
6310 	}
6311 }
6312 
6313 static uchar
AscCalSDTRData(ASC_DVC_VAR * asc_dvc,uchar sdtr_period,uchar syn_offset)6314 AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
6315 {
6316 	uchar byte;
6317 	uchar sdtr_period_ix;
6318 
6319 	sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6320 	if (sdtr_period_ix > asc_dvc->max_sdtr_index)
6321 		return 0xFF;
6322 	byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
6323 	return byte;
6324 }
6325 
AscSetChipSynRegAtID(PortAddr iop_base,uchar id,uchar sdtr_data)6326 static bool AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
6327 {
6328 	ASC_SCSI_BIT_ID_TYPE org_id;
6329 	int i;
6330 	bool sta = true;
6331 
6332 	AscSetBank(iop_base, 1);
6333 	org_id = AscReadChipDvcID(iop_base);
6334 	for (i = 0; i <= ASC_MAX_TID; i++) {
6335 		if (org_id == (0x01 << i))
6336 			break;
6337 	}
6338 	org_id = (ASC_SCSI_BIT_ID_TYPE) i;
6339 	AscWriteChipDvcID(iop_base, id);
6340 	if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
6341 		AscSetBank(iop_base, 0);
6342 		AscSetChipSyn(iop_base, sdtr_data);
6343 		if (AscGetChipSyn(iop_base) != sdtr_data) {
6344 			sta = false;
6345 		}
6346 	} else {
6347 		sta = false;
6348 	}
6349 	AscSetBank(iop_base, 1);
6350 	AscWriteChipDvcID(iop_base, org_id);
6351 	AscSetBank(iop_base, 0);
6352 	return (sta);
6353 }
6354 
AscSetChipSDTR(PortAddr iop_base,uchar sdtr_data,uchar tid_no)6355 static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
6356 {
6357 	AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
6358 	AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
6359 }
6360 
AscIsrChipHalted(ASC_DVC_VAR * asc_dvc)6361 static void AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
6362 {
6363 	EXT_MSG ext_msg;
6364 	EXT_MSG out_msg;
6365 	ushort halt_q_addr;
6366 	bool sdtr_accept;
6367 	ushort int_halt_code;
6368 	ASC_SCSI_BIT_ID_TYPE scsi_busy;
6369 	ASC_SCSI_BIT_ID_TYPE target_id;
6370 	PortAddr iop_base;
6371 	uchar tag_code;
6372 	uchar q_status;
6373 	uchar halt_qp;
6374 	uchar sdtr_data;
6375 	uchar target_ix;
6376 	uchar q_cntl, tid_no;
6377 	uchar cur_dvc_qng;
6378 	uchar asyn_sdtr;
6379 	uchar scsi_status;
6380 	struct asc_board *boardp;
6381 
6382 	BUG_ON(!asc_dvc->drv_ptr);
6383 	boardp = asc_dvc->drv_ptr;
6384 
6385 	iop_base = asc_dvc->iop_base;
6386 	int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
6387 
6388 	halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
6389 	halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
6390 	target_ix = AscReadLramByte(iop_base,
6391 				    (ushort)(halt_q_addr +
6392 					     (ushort)ASC_SCSIQ_B_TARGET_IX));
6393 	q_cntl = AscReadLramByte(iop_base,
6394 			    (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6395 	tid_no = ASC_TIX_TO_TID(target_ix);
6396 	target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
6397 	if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6398 		asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
6399 	} else {
6400 		asyn_sdtr = 0;
6401 	}
6402 	if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
6403 		if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6404 			AscSetChipSDTR(iop_base, 0, tid_no);
6405 			boardp->sdtr_data[tid_no] = 0;
6406 		}
6407 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6408 		return;
6409 	} else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
6410 		if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6411 			AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6412 			boardp->sdtr_data[tid_no] = asyn_sdtr;
6413 		}
6414 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6415 		return;
6416 	} else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
6417 		AscMemWordCopyPtrFromLram(iop_base,
6418 					  ASCV_MSGIN_BEG,
6419 					  (uchar *)&ext_msg,
6420 					  sizeof(EXT_MSG) >> 1);
6421 
6422 		if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6423 		    ext_msg.msg_req == EXTENDED_SDTR &&
6424 		    ext_msg.msg_len == MS_SDTR_LEN) {
6425 			sdtr_accept = true;
6426 			if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
6427 
6428 				sdtr_accept = false;
6429 				ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
6430 			}
6431 			if ((ext_msg.xfer_period <
6432 			     asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
6433 			    || (ext_msg.xfer_period >
6434 				asc_dvc->sdtr_period_tbl[asc_dvc->
6435 							 max_sdtr_index])) {
6436 				sdtr_accept = false;
6437 				ext_msg.xfer_period =
6438 				    asc_dvc->sdtr_period_tbl[asc_dvc->
6439 							     min_sdtr_index];
6440 			}
6441 			if (sdtr_accept) {
6442 				sdtr_data =
6443 				    AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
6444 						   ext_msg.req_ack_offset);
6445 				if (sdtr_data == 0xFF) {
6446 
6447 					q_cntl |= QC_MSG_OUT;
6448 					asc_dvc->init_sdtr &= ~target_id;
6449 					asc_dvc->sdtr_done &= ~target_id;
6450 					AscSetChipSDTR(iop_base, asyn_sdtr,
6451 						       tid_no);
6452 					boardp->sdtr_data[tid_no] = asyn_sdtr;
6453 				}
6454 			}
6455 			if (ext_msg.req_ack_offset == 0) {
6456 
6457 				q_cntl &= ~QC_MSG_OUT;
6458 				asc_dvc->init_sdtr &= ~target_id;
6459 				asc_dvc->sdtr_done &= ~target_id;
6460 				AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6461 			} else {
6462 				if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
6463 					q_cntl &= ~QC_MSG_OUT;
6464 					asc_dvc->sdtr_done |= target_id;
6465 					asc_dvc->init_sdtr |= target_id;
6466 					asc_dvc->pci_fix_asyn_xfer &=
6467 					    ~target_id;
6468 					sdtr_data =
6469 					    AscCalSDTRData(asc_dvc,
6470 							   ext_msg.xfer_period,
6471 							   ext_msg.
6472 							   req_ack_offset);
6473 					AscSetChipSDTR(iop_base, sdtr_data,
6474 						       tid_no);
6475 					boardp->sdtr_data[tid_no] = sdtr_data;
6476 				} else {
6477 					q_cntl |= QC_MSG_OUT;
6478 					AscMsgOutSDTR(asc_dvc,
6479 						      ext_msg.xfer_period,
6480 						      ext_msg.req_ack_offset);
6481 					asc_dvc->pci_fix_asyn_xfer &=
6482 					    ~target_id;
6483 					sdtr_data =
6484 					    AscCalSDTRData(asc_dvc,
6485 							   ext_msg.xfer_period,
6486 							   ext_msg.
6487 							   req_ack_offset);
6488 					AscSetChipSDTR(iop_base, sdtr_data,
6489 						       tid_no);
6490 					boardp->sdtr_data[tid_no] = sdtr_data;
6491 					asc_dvc->sdtr_done |= target_id;
6492 					asc_dvc->init_sdtr |= target_id;
6493 				}
6494 			}
6495 
6496 			AscWriteLramByte(iop_base,
6497 					 (ushort)(halt_q_addr +
6498 						  (ushort)ASC_SCSIQ_B_CNTL),
6499 					 q_cntl);
6500 			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6501 			return;
6502 		} else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6503 			   ext_msg.msg_req == EXTENDED_WDTR &&
6504 			   ext_msg.msg_len == MS_WDTR_LEN) {
6505 
6506 			ext_msg.wdtr_width = 0;
6507 			AscMemWordCopyPtrToLram(iop_base,
6508 						ASCV_MSGOUT_BEG,
6509 						(uchar *)&ext_msg,
6510 						sizeof(EXT_MSG) >> 1);
6511 			q_cntl |= QC_MSG_OUT;
6512 			AscWriteLramByte(iop_base,
6513 					 (ushort)(halt_q_addr +
6514 						  (ushort)ASC_SCSIQ_B_CNTL),
6515 					 q_cntl);
6516 			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6517 			return;
6518 		} else {
6519 
6520 			ext_msg.msg_type = MESSAGE_REJECT;
6521 			AscMemWordCopyPtrToLram(iop_base,
6522 						ASCV_MSGOUT_BEG,
6523 						(uchar *)&ext_msg,
6524 						sizeof(EXT_MSG) >> 1);
6525 			q_cntl |= QC_MSG_OUT;
6526 			AscWriteLramByte(iop_base,
6527 					 (ushort)(halt_q_addr +
6528 						  (ushort)ASC_SCSIQ_B_CNTL),
6529 					 q_cntl);
6530 			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6531 			return;
6532 		}
6533 	} else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
6534 
6535 		q_cntl |= QC_REQ_SENSE;
6536 
6537 		if ((asc_dvc->init_sdtr & target_id) != 0) {
6538 
6539 			asc_dvc->sdtr_done &= ~target_id;
6540 
6541 			sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
6542 			q_cntl |= QC_MSG_OUT;
6543 			AscMsgOutSDTR(asc_dvc,
6544 				      asc_dvc->
6545 				      sdtr_period_tbl[(sdtr_data >> 4) &
6546 						      (uchar)(asc_dvc->
6547 							      max_sdtr_index -
6548 							      1)],
6549 				      (uchar)(sdtr_data & (uchar)
6550 					      ASC_SYN_MAX_OFFSET));
6551 		}
6552 
6553 		AscWriteLramByte(iop_base,
6554 				 (ushort)(halt_q_addr +
6555 					  (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6556 
6557 		tag_code = AscReadLramByte(iop_base,
6558 					   (ushort)(halt_q_addr + (ushort)
6559 						    ASC_SCSIQ_B_TAG_CODE));
6560 		tag_code &= 0xDC;
6561 		if ((asc_dvc->pci_fix_asyn_xfer & target_id)
6562 		    && !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
6563 		    ) {
6564 
6565 			tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
6566 				     | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
6567 
6568 		}
6569 		AscWriteLramByte(iop_base,
6570 				 (ushort)(halt_q_addr +
6571 					  (ushort)ASC_SCSIQ_B_TAG_CODE),
6572 				 tag_code);
6573 
6574 		q_status = AscReadLramByte(iop_base,
6575 					   (ushort)(halt_q_addr + (ushort)
6576 						    ASC_SCSIQ_B_STATUS));
6577 		q_status |= (QS_READY | QS_BUSY);
6578 		AscWriteLramByte(iop_base,
6579 				 (ushort)(halt_q_addr +
6580 					  (ushort)ASC_SCSIQ_B_STATUS),
6581 				 q_status);
6582 
6583 		scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
6584 		scsi_busy &= ~target_id;
6585 		AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6586 
6587 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6588 		return;
6589 	} else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
6590 
6591 		AscMemWordCopyPtrFromLram(iop_base,
6592 					  ASCV_MSGOUT_BEG,
6593 					  (uchar *)&out_msg,
6594 					  sizeof(EXT_MSG) >> 1);
6595 
6596 		if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
6597 		    (out_msg.msg_len == MS_SDTR_LEN) &&
6598 		    (out_msg.msg_req == EXTENDED_SDTR)) {
6599 
6600 			asc_dvc->init_sdtr &= ~target_id;
6601 			asc_dvc->sdtr_done &= ~target_id;
6602 			AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6603 			boardp->sdtr_data[tid_no] = asyn_sdtr;
6604 		}
6605 		q_cntl &= ~QC_MSG_OUT;
6606 		AscWriteLramByte(iop_base,
6607 				 (ushort)(halt_q_addr +
6608 					  (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6609 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6610 		return;
6611 	} else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
6612 
6613 		scsi_status = AscReadLramByte(iop_base,
6614 					      (ushort)((ushort)halt_q_addr +
6615 						       (ushort)
6616 						       ASC_SCSIQ_SCSI_STATUS));
6617 		cur_dvc_qng =
6618 		    AscReadLramByte(iop_base,
6619 				    (ushort)((ushort)ASC_QADR_BEG +
6620 					     (ushort)target_ix));
6621 		if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
6622 
6623 			scsi_busy = AscReadLramByte(iop_base,
6624 						    (ushort)ASCV_SCSIBUSY_B);
6625 			scsi_busy |= target_id;
6626 			AscWriteLramByte(iop_base,
6627 					 (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6628 			asc_dvc->queue_full_or_busy |= target_id;
6629 
6630 			if (scsi_status == SAM_STAT_TASK_SET_FULL) {
6631 				if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
6632 					cur_dvc_qng -= 1;
6633 					asc_dvc->max_dvc_qng[tid_no] =
6634 					    cur_dvc_qng;
6635 
6636 					AscWriteLramByte(iop_base,
6637 							 (ushort)((ushort)
6638 								  ASCV_MAX_DVC_QNG_BEG
6639 								  + (ushort)
6640 								  tid_no),
6641 							 cur_dvc_qng);
6642 
6643 					/*
6644 					 * Set the device queue depth to the
6645 					 * number of active requests when the
6646 					 * QUEUE FULL condition was encountered.
6647 					 */
6648 					boardp->queue_full |= target_id;
6649 					boardp->queue_full_cnt[tid_no] =
6650 					    cur_dvc_qng;
6651 				}
6652 			}
6653 		}
6654 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6655 		return;
6656 	}
6657 	return;
6658 }
6659 
6660 /*
6661  * void
6662  * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6663  *
6664  * Calling/Exit State:
6665  *    none
6666  *
6667  * Description:
6668  *     Input an ASC_QDONE_INFO structure from the chip
6669  */
6670 static void
DvcGetQinfo(PortAddr iop_base,ushort s_addr,uchar * inbuf,int words)6671 DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6672 {
6673 	int i;
6674 	ushort word;
6675 
6676 	AscSetChipLramAddr(iop_base, s_addr);
6677 	for (i = 0; i < 2 * words; i += 2) {
6678 		if (i == 10) {
6679 			continue;
6680 		}
6681 		word = inpw(iop_base + IOP_RAM_DATA);
6682 		inbuf[i] = word & 0xff;
6683 		inbuf[i + 1] = (word >> 8) & 0xff;
6684 	}
6685 	ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
6686 }
6687 
6688 static uchar
_AscCopyLramScsiDoneQ(PortAddr iop_base,ushort q_addr,ASC_QDONE_INFO * scsiq,unsigned int max_dma_count)6689 _AscCopyLramScsiDoneQ(PortAddr iop_base,
6690 		      ushort q_addr,
6691 		      ASC_QDONE_INFO *scsiq, unsigned int max_dma_count)
6692 {
6693 	ushort _val;
6694 	uchar sg_queue_cnt;
6695 
6696 	DvcGetQinfo(iop_base,
6697 		    q_addr + ASC_SCSIQ_DONE_INFO_BEG,
6698 		    (uchar *)scsiq,
6699 		    (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
6700 
6701 	_val = AscReadLramWord(iop_base,
6702 			       (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
6703 	scsiq->q_status = (uchar)_val;
6704 	scsiq->q_no = (uchar)(_val >> 8);
6705 	_val = AscReadLramWord(iop_base,
6706 			       (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6707 	scsiq->cntl = (uchar)_val;
6708 	sg_queue_cnt = (uchar)(_val >> 8);
6709 	_val = AscReadLramWord(iop_base,
6710 			       (ushort)(q_addr +
6711 					(ushort)ASC_SCSIQ_B_SENSE_LEN));
6712 	scsiq->sense_len = (uchar)_val;
6713 	scsiq->extra_bytes = (uchar)(_val >> 8);
6714 
6715 	/*
6716 	 * Read high word of remain bytes from alternate location.
6717 	 */
6718 	scsiq->remain_bytes = (((u32)AscReadLramWord(iop_base,
6719 						     (ushort)(q_addr +
6720 							      (ushort)
6721 							      ASC_SCSIQ_W_ALT_DC1)))
6722 			       << 16);
6723 	/*
6724 	 * Read low word of remain bytes from original location.
6725 	 */
6726 	scsiq->remain_bytes += AscReadLramWord(iop_base,
6727 					       (ushort)(q_addr + (ushort)
6728 							ASC_SCSIQ_DW_REMAIN_XFER_CNT));
6729 
6730 	scsiq->remain_bytes &= max_dma_count;
6731 	return sg_queue_cnt;
6732 }
6733 
6734 /*
6735  * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
6736  *
6737  * Interrupt callback function for the Narrow SCSI Asc Library.
6738  */
asc_isr_callback(ASC_DVC_VAR * asc_dvc_varp,ASC_QDONE_INFO * qdonep)6739 static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
6740 {
6741 	struct asc_board *boardp = asc_dvc_varp->drv_ptr;
6742 	u32 srb_tag;
6743 	struct scsi_cmnd *scp;
6744 
6745 	ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
6746 	ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
6747 
6748 	/*
6749 	 * Decrease the srb_tag by 1 to find the SCSI command
6750 	 */
6751 	srb_tag = qdonep->d2.srb_tag - 1;
6752 	scp = scsi_host_find_tag(boardp->shost, srb_tag);
6753 	if (!scp)
6754 		return;
6755 
6756 	ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
6757 
6758 	ASC_STATS(boardp->shost, callback);
6759 
6760 	dma_unmap_single(boardp->dev, scp->SCp.dma_handle,
6761 			 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
6762 	/*
6763 	 * 'qdonep' contains the command's ending status.
6764 	 */
6765 	switch (qdonep->d3.done_stat) {
6766 	case QD_NO_ERROR:
6767 		ASC_DBG(2, "QD_NO_ERROR\n");
6768 		scp->result = 0;
6769 
6770 		/*
6771 		 * Check for an underrun condition.
6772 		 *
6773 		 * If there was no error and an underrun condition, then
6774 		 * return the number of underrun bytes.
6775 		 */
6776 		if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
6777 		    qdonep->remain_bytes <= scsi_bufflen(scp)) {
6778 			ASC_DBG(1, "underrun condition %u bytes\n",
6779 				 (unsigned)qdonep->remain_bytes);
6780 			scsi_set_resid(scp, qdonep->remain_bytes);
6781 		}
6782 		break;
6783 
6784 	case QD_WITH_ERROR:
6785 		ASC_DBG(2, "QD_WITH_ERROR\n");
6786 		switch (qdonep->d3.host_stat) {
6787 		case QHSTA_NO_ERROR:
6788 			if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
6789 				ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6790 				ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6791 						  SCSI_SENSE_BUFFERSIZE);
6792 				/*
6793 				 * Note: The 'status_byte()' macro used by
6794 				 * target drivers defined in scsi.h shifts the
6795 				 * status byte returned by host drivers right
6796 				 * by 1 bit.  This is why target drivers also
6797 				 * use right shifted status byte definitions.
6798 				 * For instance target drivers use
6799 				 * CHECK_CONDITION, defined to 0x1, instead of
6800 				 * the SCSI defined check condition value of
6801 				 * 0x2. Host drivers are supposed to return
6802 				 * the status byte as it is defined by SCSI.
6803 				 */
6804 				scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6805 				    STATUS_BYTE(qdonep->d3.scsi_stat);
6806 			} else {
6807 				scp->result = STATUS_BYTE(qdonep->d3.scsi_stat);
6808 			}
6809 			break;
6810 
6811 		default:
6812 			/* QHSTA error occurred */
6813 			ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
6814 			scp->result = HOST_BYTE(DID_BAD_TARGET);
6815 			break;
6816 		}
6817 		break;
6818 
6819 	case QD_ABORTED_BY_HOST:
6820 		ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6821 		scp->result =
6822 		    HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3.
6823 						    scsi_msg) |
6824 		    STATUS_BYTE(qdonep->d3.scsi_stat);
6825 		break;
6826 
6827 	default:
6828 		ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
6829 		scp->result =
6830 		    HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3.
6831 						    scsi_msg) |
6832 		    STATUS_BYTE(qdonep->d3.scsi_stat);
6833 		break;
6834 	}
6835 
6836 	/*
6837 	 * If the 'init_tidmask' bit isn't already set for the target and the
6838 	 * current request finished normally, then set the bit for the target
6839 	 * to indicate that a device is present.
6840 	 */
6841 	if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6842 	    qdonep->d3.done_stat == QD_NO_ERROR &&
6843 	    qdonep->d3.host_stat == QHSTA_NO_ERROR) {
6844 		boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6845 	}
6846 
6847 	asc_scsi_done(scp);
6848 }
6849 
AscIsrQDone(ASC_DVC_VAR * asc_dvc)6850 static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
6851 {
6852 	uchar next_qp;
6853 	uchar n_q_used;
6854 	uchar sg_list_qp;
6855 	uchar sg_queue_cnt;
6856 	uchar q_cnt;
6857 	uchar done_q_tail;
6858 	uchar tid_no;
6859 	ASC_SCSI_BIT_ID_TYPE scsi_busy;
6860 	ASC_SCSI_BIT_ID_TYPE target_id;
6861 	PortAddr iop_base;
6862 	ushort q_addr;
6863 	ushort sg_q_addr;
6864 	uchar cur_target_qng;
6865 	ASC_QDONE_INFO scsiq_buf;
6866 	ASC_QDONE_INFO *scsiq;
6867 	bool false_overrun;
6868 
6869 	iop_base = asc_dvc->iop_base;
6870 	n_q_used = 1;
6871 	scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
6872 	done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
6873 	q_addr = ASC_QNO_TO_QADDR(done_q_tail);
6874 	next_qp = AscReadLramByte(iop_base,
6875 				  (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
6876 	if (next_qp != ASC_QLINK_END) {
6877 		AscPutVarDoneQTail(iop_base, next_qp);
6878 		q_addr = ASC_QNO_TO_QADDR(next_qp);
6879 		sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
6880 						     asc_dvc->max_dma_count);
6881 		AscWriteLramByte(iop_base,
6882 				 (ushort)(q_addr +
6883 					  (ushort)ASC_SCSIQ_B_STATUS),
6884 				 (uchar)(scsiq->
6885 					 q_status & (uchar)~(QS_READY |
6886 							     QS_ABORTED)));
6887 		tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
6888 		target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
6889 		if ((scsiq->cntl & QC_SG_HEAD) != 0) {
6890 			sg_q_addr = q_addr;
6891 			sg_list_qp = next_qp;
6892 			for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
6893 				sg_list_qp = AscReadLramByte(iop_base,
6894 							     (ushort)(sg_q_addr
6895 								      + (ushort)
6896 								      ASC_SCSIQ_B_FWD));
6897 				sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
6898 				if (sg_list_qp == ASC_QLINK_END) {
6899 					AscSetLibErrorCode(asc_dvc,
6900 							   ASCQ_ERR_SG_Q_LINKS);
6901 					scsiq->d3.done_stat = QD_WITH_ERROR;
6902 					scsiq->d3.host_stat =
6903 					    QHSTA_D_QDONE_SG_LIST_CORRUPTED;
6904 					goto FATAL_ERR_QDONE;
6905 				}
6906 				AscWriteLramByte(iop_base,
6907 						 (ushort)(sg_q_addr + (ushort)
6908 							  ASC_SCSIQ_B_STATUS),
6909 						 QS_FREE);
6910 			}
6911 			n_q_used = sg_queue_cnt + 1;
6912 			AscPutVarDoneQTail(iop_base, sg_list_qp);
6913 		}
6914 		if (asc_dvc->queue_full_or_busy & target_id) {
6915 			cur_target_qng = AscReadLramByte(iop_base,
6916 							 (ushort)((ushort)
6917 								  ASC_QADR_BEG
6918 								  + (ushort)
6919 								  scsiq->d2.
6920 								  target_ix));
6921 			if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
6922 				scsi_busy = AscReadLramByte(iop_base, (ushort)
6923 							    ASCV_SCSIBUSY_B);
6924 				scsi_busy &= ~target_id;
6925 				AscWriteLramByte(iop_base,
6926 						 (ushort)ASCV_SCSIBUSY_B,
6927 						 scsi_busy);
6928 				asc_dvc->queue_full_or_busy &= ~target_id;
6929 			}
6930 		}
6931 		if (asc_dvc->cur_total_qng >= n_q_used) {
6932 			asc_dvc->cur_total_qng -= n_q_used;
6933 			if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
6934 				asc_dvc->cur_dvc_qng[tid_no]--;
6935 			}
6936 		} else {
6937 			AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
6938 			scsiq->d3.done_stat = QD_WITH_ERROR;
6939 			goto FATAL_ERR_QDONE;
6940 		}
6941 		if ((scsiq->d2.srb_tag == 0UL) ||
6942 		    ((scsiq->q_status & QS_ABORTED) != 0)) {
6943 			return (0x11);
6944 		} else if (scsiq->q_status == QS_DONE) {
6945 			/*
6946 			 * This is also curious.
6947 			 * false_overrun will _always_ be set to 'false'
6948 			 */
6949 			false_overrun = false;
6950 			if (scsiq->extra_bytes != 0) {
6951 				scsiq->remain_bytes += scsiq->extra_bytes;
6952 			}
6953 			if (scsiq->d3.done_stat == QD_WITH_ERROR) {
6954 				if (scsiq->d3.host_stat ==
6955 				    QHSTA_M_DATA_OVER_RUN) {
6956 					if ((scsiq->
6957 					     cntl & (QC_DATA_IN | QC_DATA_OUT))
6958 					    == 0) {
6959 						scsiq->d3.done_stat =
6960 						    QD_NO_ERROR;
6961 						scsiq->d3.host_stat =
6962 						    QHSTA_NO_ERROR;
6963 					} else if (false_overrun) {
6964 						scsiq->d3.done_stat =
6965 						    QD_NO_ERROR;
6966 						scsiq->d3.host_stat =
6967 						    QHSTA_NO_ERROR;
6968 					}
6969 				} else if (scsiq->d3.host_stat ==
6970 					   QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
6971 					AscStopChip(iop_base);
6972 					AscSetChipControl(iop_base,
6973 							  (uchar)(CC_SCSI_RESET
6974 								  | CC_HALT));
6975 					udelay(60);
6976 					AscSetChipControl(iop_base, CC_HALT);
6977 					AscSetChipStatus(iop_base,
6978 							 CIW_CLR_SCSI_RESET_INT);
6979 					AscSetChipStatus(iop_base, 0);
6980 					AscSetChipControl(iop_base, 0);
6981 				}
6982 			}
6983 			if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
6984 				asc_isr_callback(asc_dvc, scsiq);
6985 			} else {
6986 				if ((AscReadLramByte(iop_base,
6987 						     (ushort)(q_addr + (ushort)
6988 							      ASC_SCSIQ_CDB_BEG))
6989 				     == START_STOP)) {
6990 					asc_dvc->unit_not_ready &= ~target_id;
6991 					if (scsiq->d3.done_stat != QD_NO_ERROR) {
6992 						asc_dvc->start_motor &=
6993 						    ~target_id;
6994 					}
6995 				}
6996 			}
6997 			return (1);
6998 		} else {
6999 			AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
7000  FATAL_ERR_QDONE:
7001 			if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7002 				asc_isr_callback(asc_dvc, scsiq);
7003 			}
7004 			return (0x80);
7005 		}
7006 	}
7007 	return (0);
7008 }
7009 
AscISR(ASC_DVC_VAR * asc_dvc)7010 static int AscISR(ASC_DVC_VAR *asc_dvc)
7011 {
7012 	ASC_CS_TYPE chipstat;
7013 	PortAddr iop_base;
7014 	ushort saved_ram_addr;
7015 	uchar ctrl_reg;
7016 	uchar saved_ctrl_reg;
7017 	int int_pending;
7018 	int status;
7019 	uchar host_flag;
7020 
7021 	iop_base = asc_dvc->iop_base;
7022 	int_pending = ASC_FALSE;
7023 
7024 	if (AscIsIntPending(iop_base) == 0)
7025 		return int_pending;
7026 
7027 	if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
7028 		return ASC_ERROR;
7029 	}
7030 	if (asc_dvc->in_critical_cnt != 0) {
7031 		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
7032 		return ASC_ERROR;
7033 	}
7034 	if (asc_dvc->is_in_int) {
7035 		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
7036 		return ASC_ERROR;
7037 	}
7038 	asc_dvc->is_in_int = true;
7039 	ctrl_reg = AscGetChipControl(iop_base);
7040 	saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
7041 				       CC_SINGLE_STEP | CC_DIAG | CC_TEST));
7042 	chipstat = AscGetChipStatus(iop_base);
7043 	if (chipstat & CSW_SCSI_RESET_LATCH) {
7044 		if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
7045 			int i = 10;
7046 			int_pending = ASC_TRUE;
7047 			asc_dvc->sdtr_done = 0;
7048 			saved_ctrl_reg &= (uchar)(~CC_HALT);
7049 			while ((AscGetChipStatus(iop_base) &
7050 				CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
7051 				mdelay(100);
7052 			}
7053 			AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
7054 			AscSetChipControl(iop_base, CC_HALT);
7055 			AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
7056 			AscSetChipStatus(iop_base, 0);
7057 			chipstat = AscGetChipStatus(iop_base);
7058 		}
7059 	}
7060 	saved_ram_addr = AscGetChipLramAddr(iop_base);
7061 	host_flag = AscReadLramByte(iop_base,
7062 				    ASCV_HOST_FLAG_B) &
7063 	    (uchar)(~ASC_HOST_FLAG_IN_ISR);
7064 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
7065 			 (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
7066 	if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
7067 		AscAckInterrupt(iop_base);
7068 		int_pending = ASC_TRUE;
7069 		if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
7070 			AscIsrChipHalted(asc_dvc);
7071 			saved_ctrl_reg &= (uchar)(~CC_HALT);
7072 		} else {
7073 			if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
7074 				while (((status =
7075 					 AscIsrQDone(asc_dvc)) & 0x01) != 0) {
7076 				}
7077 			} else {
7078 				do {
7079 					if ((status =
7080 					     AscIsrQDone(asc_dvc)) == 1) {
7081 						break;
7082 					}
7083 				} while (status == 0x11);
7084 			}
7085 			if ((status & 0x80) != 0)
7086 				int_pending = ASC_ERROR;
7087 		}
7088 	}
7089 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
7090 	AscSetChipLramAddr(iop_base, saved_ram_addr);
7091 	AscSetChipControl(iop_base, saved_ctrl_reg);
7092 	asc_dvc->is_in_int = false;
7093 	return int_pending;
7094 }
7095 
7096 /*
7097  * advansys_reset()
7098  *
7099  * Reset the host associated with the command 'scp'.
7100  *
7101  * This function runs its own thread. Interrupts must be blocked but
7102  * sleeping is allowed and no locking other than for host structures is
7103  * required. Returns SUCCESS or FAILED.
7104  */
advansys_reset(struct scsi_cmnd * scp)7105 static int advansys_reset(struct scsi_cmnd *scp)
7106 {
7107 	struct Scsi_Host *shost = scp->device->host;
7108 	struct asc_board *boardp = shost_priv(shost);
7109 	unsigned long flags;
7110 	int status;
7111 	int ret = SUCCESS;
7112 
7113 	ASC_DBG(1, "0x%p\n", scp);
7114 
7115 	ASC_STATS(shost, reset);
7116 
7117 	scmd_printk(KERN_INFO, scp, "SCSI host reset started...\n");
7118 
7119 	if (ASC_NARROW_BOARD(boardp)) {
7120 		ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7121 
7122 		/* Reset the chip and SCSI bus. */
7123 		ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7124 		status = AscInitAsc1000Driver(asc_dvc);
7125 
7126 		/* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7127 		if (asc_dvc->err_code || !asc_dvc->overrun_dma) {
7128 			scmd_printk(KERN_INFO, scp, "SCSI host reset error: "
7129 				    "0x%x, status: 0x%x\n", asc_dvc->err_code,
7130 				    status);
7131 			ret = FAILED;
7132 		} else if (status) {
7133 			scmd_printk(KERN_INFO, scp, "SCSI host reset warning: "
7134 				    "0x%x\n", status);
7135 		} else {
7136 			scmd_printk(KERN_INFO, scp, "SCSI host reset "
7137 				    "successful\n");
7138 		}
7139 
7140 		ASC_DBG(1, "after AscInitAsc1000Driver()\n");
7141 	} else {
7142 		/*
7143 		 * If the suggest reset bus flags are set, then reset the bus.
7144 		 * Otherwise only reset the device.
7145 		 */
7146 		ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
7147 
7148 		/*
7149 		 * Reset the chip and SCSI bus.
7150 		 */
7151 		ASC_DBG(1, "before AdvResetChipAndSB()\n");
7152 		switch (AdvResetChipAndSB(adv_dvc)) {
7153 		case ASC_TRUE:
7154 			scmd_printk(KERN_INFO, scp, "SCSI host reset "
7155 				    "successful\n");
7156 			break;
7157 		case ASC_FALSE:
7158 		default:
7159 			scmd_printk(KERN_INFO, scp, "SCSI host reset error\n");
7160 			ret = FAILED;
7161 			break;
7162 		}
7163 		spin_lock_irqsave(shost->host_lock, flags);
7164 		AdvISR(adv_dvc);
7165 		spin_unlock_irqrestore(shost->host_lock, flags);
7166 	}
7167 
7168 	ASC_DBG(1, "ret %d\n", ret);
7169 
7170 	return ret;
7171 }
7172 
7173 /*
7174  * advansys_biosparam()
7175  *
7176  * Translate disk drive geometry if the "BIOS greater than 1 GB"
7177  * support is enabled for a drive.
7178  *
7179  * ip (information pointer) is an int array with the following definition:
7180  * ip[0]: heads
7181  * ip[1]: sectors
7182  * ip[2]: cylinders
7183  */
7184 static int
advansys_biosparam(struct scsi_device * sdev,struct block_device * bdev,sector_t capacity,int ip[])7185 advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
7186 		   sector_t capacity, int ip[])
7187 {
7188 	struct asc_board *boardp = shost_priv(sdev->host);
7189 
7190 	ASC_DBG(1, "begin\n");
7191 	ASC_STATS(sdev->host, biosparam);
7192 	if (ASC_NARROW_BOARD(boardp)) {
7193 		if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
7194 		     ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
7195 			ip[0] = 255;
7196 			ip[1] = 63;
7197 		} else {
7198 			ip[0] = 64;
7199 			ip[1] = 32;
7200 		}
7201 	} else {
7202 		if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
7203 		     BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
7204 			ip[0] = 255;
7205 			ip[1] = 63;
7206 		} else {
7207 			ip[0] = 64;
7208 			ip[1] = 32;
7209 		}
7210 	}
7211 	ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
7212 	ASC_DBG(1, "end\n");
7213 	return 0;
7214 }
7215 
7216 /*
7217  * First-level interrupt handler.
7218  *
7219  * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
7220  */
advansys_interrupt(int irq,void * dev_id)7221 static irqreturn_t advansys_interrupt(int irq, void *dev_id)
7222 {
7223 	struct Scsi_Host *shost = dev_id;
7224 	struct asc_board *boardp = shost_priv(shost);
7225 	irqreturn_t result = IRQ_NONE;
7226 	unsigned long flags;
7227 
7228 	ASC_DBG(2, "boardp 0x%p\n", boardp);
7229 	spin_lock_irqsave(shost->host_lock, flags);
7230 	if (ASC_NARROW_BOARD(boardp)) {
7231 		if (AscIsIntPending(shost->io_port)) {
7232 			result = IRQ_HANDLED;
7233 			ASC_STATS(shost, interrupt);
7234 			ASC_DBG(1, "before AscISR()\n");
7235 			AscISR(&boardp->dvc_var.asc_dvc_var);
7236 		}
7237 	} else {
7238 		ASC_DBG(1, "before AdvISR()\n");
7239 		if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
7240 			result = IRQ_HANDLED;
7241 			ASC_STATS(shost, interrupt);
7242 		}
7243 	}
7244 	spin_unlock_irqrestore(shost->host_lock, flags);
7245 
7246 	ASC_DBG(1, "end\n");
7247 	return result;
7248 }
7249 
AscHostReqRiscHalt(PortAddr iop_base)7250 static bool AscHostReqRiscHalt(PortAddr iop_base)
7251 {
7252 	int count = 0;
7253 	bool sta = false;
7254 	uchar saved_stop_code;
7255 
7256 	if (AscIsChipHalted(iop_base))
7257 		return true;
7258 	saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
7259 	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
7260 			 ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
7261 	do {
7262 		if (AscIsChipHalted(iop_base)) {
7263 			sta = true;
7264 			break;
7265 		}
7266 		mdelay(100);
7267 	} while (count++ < 20);
7268 	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
7269 	return sta;
7270 }
7271 
7272 static bool
AscSetRunChipSynRegAtID(PortAddr iop_base,uchar tid_no,uchar sdtr_data)7273 AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
7274 {
7275 	bool sta = false;
7276 
7277 	if (AscHostReqRiscHalt(iop_base)) {
7278 		sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
7279 		AscStartChip(iop_base);
7280 	}
7281 	return sta;
7282 }
7283 
AscAsyncFix(ASC_DVC_VAR * asc_dvc,struct scsi_device * sdev)7284 static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
7285 {
7286 	char type = sdev->type;
7287 	ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
7288 
7289 	if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
7290 		return;
7291 	if (asc_dvc->init_sdtr & tid_bits)
7292 		return;
7293 
7294 	if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
7295 		asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
7296 
7297 	asc_dvc->pci_fix_asyn_xfer |= tid_bits;
7298 	if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
7299 	    (type == TYPE_ROM) || (type == TYPE_TAPE))
7300 		asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
7301 
7302 	if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
7303 		AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
7304 					ASYN_SDTR_DATA_FIX_PCI_REV_AB);
7305 }
7306 
7307 static void
advansys_narrow_slave_configure(struct scsi_device * sdev,ASC_DVC_VAR * asc_dvc)7308 advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
7309 {
7310 	ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
7311 	ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
7312 
7313 	if (sdev->lun == 0) {
7314 		ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
7315 		if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
7316 			asc_dvc->init_sdtr |= tid_bit;
7317 		} else {
7318 			asc_dvc->init_sdtr &= ~tid_bit;
7319 		}
7320 
7321 		if (orig_init_sdtr != asc_dvc->init_sdtr)
7322 			AscAsyncFix(asc_dvc, sdev);
7323 	}
7324 
7325 	if (sdev->tagged_supported) {
7326 		if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
7327 			if (sdev->lun == 0) {
7328 				asc_dvc->cfg->can_tagged_qng |= tid_bit;
7329 				asc_dvc->use_tagged_qng |= tid_bit;
7330 			}
7331 			scsi_change_queue_depth(sdev,
7332 						asc_dvc->max_dvc_qng[sdev->id]);
7333 		}
7334 	} else {
7335 		if (sdev->lun == 0) {
7336 			asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
7337 			asc_dvc->use_tagged_qng &= ~tid_bit;
7338 		}
7339 	}
7340 
7341 	if ((sdev->lun == 0) &&
7342 	    (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
7343 		AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
7344 				 asc_dvc->cfg->disc_enable);
7345 		AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
7346 				 asc_dvc->use_tagged_qng);
7347 		AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
7348 				 asc_dvc->cfg->can_tagged_qng);
7349 
7350 		asc_dvc->max_dvc_qng[sdev->id] =
7351 					asc_dvc->cfg->max_tag_qng[sdev->id];
7352 		AscWriteLramByte(asc_dvc->iop_base,
7353 				 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
7354 				 asc_dvc->max_dvc_qng[sdev->id]);
7355 	}
7356 }
7357 
7358 /*
7359  * Wide Transfers
7360  *
7361  * If the EEPROM enabled WDTR for the device and the device supports wide
7362  * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
7363  * write the new value to the microcode.
7364  */
7365 static void
advansys_wide_enable_wdtr(AdvPortAddr iop_base,unsigned short tidmask)7366 advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
7367 {
7368 	unsigned short cfg_word;
7369 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7370 	if ((cfg_word & tidmask) != 0)
7371 		return;
7372 
7373 	cfg_word |= tidmask;
7374 	AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7375 
7376 	/*
7377 	 * Clear the microcode SDTR and WDTR negotiation done indicators for
7378 	 * the target to cause it to negotiate with the new setting set above.
7379 	 * WDTR when accepted causes the target to enter asynchronous mode, so
7380 	 * SDTR must be negotiated.
7381 	 */
7382 	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7383 	cfg_word &= ~tidmask;
7384 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7385 	AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7386 	cfg_word &= ~tidmask;
7387 	AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7388 }
7389 
7390 /*
7391  * Synchronous Transfers
7392  *
7393  * If the EEPROM enabled SDTR for the device and the device
7394  * supports synchronous transfers, then turn on the device's
7395  * 'sdtr_able' bit. Write the new value to the microcode.
7396  */
7397 static void
advansys_wide_enable_sdtr(AdvPortAddr iop_base,unsigned short tidmask)7398 advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
7399 {
7400 	unsigned short cfg_word;
7401 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7402 	if ((cfg_word & tidmask) != 0)
7403 		return;
7404 
7405 	cfg_word |= tidmask;
7406 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7407 
7408 	/*
7409 	 * Clear the microcode "SDTR negotiation" done indicator for the
7410 	 * target to cause it to negotiate with the new setting set above.
7411 	 */
7412 	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7413 	cfg_word &= ~tidmask;
7414 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7415 }
7416 
7417 /*
7418  * PPR (Parallel Protocol Request) Capable
7419  *
7420  * If the device supports DT mode, then it must be PPR capable.
7421  * The PPR message will be used in place of the SDTR and WDTR
7422  * messages to negotiate synchronous speed and offset, transfer
7423  * width, and protocol options.
7424  */
advansys_wide_enable_ppr(ADV_DVC_VAR * adv_dvc,AdvPortAddr iop_base,unsigned short tidmask)7425 static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
7426 				AdvPortAddr iop_base, unsigned short tidmask)
7427 {
7428 	AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7429 	adv_dvc->ppr_able |= tidmask;
7430 	AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7431 }
7432 
7433 static void
advansys_wide_slave_configure(struct scsi_device * sdev,ADV_DVC_VAR * adv_dvc)7434 advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
7435 {
7436 	AdvPortAddr iop_base = adv_dvc->iop_base;
7437 	unsigned short tidmask = 1 << sdev->id;
7438 
7439 	if (sdev->lun == 0) {
7440 		/*
7441 		 * Handle WDTR, SDTR, and Tag Queuing. If the feature
7442 		 * is enabled in the EEPROM and the device supports the
7443 		 * feature, then enable it in the microcode.
7444 		 */
7445 
7446 		if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
7447 			advansys_wide_enable_wdtr(iop_base, tidmask);
7448 		if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
7449 			advansys_wide_enable_sdtr(iop_base, tidmask);
7450 		if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
7451 			advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
7452 
7453 		/*
7454 		 * Tag Queuing is disabled for the BIOS which runs in polled
7455 		 * mode and would see no benefit from Tag Queuing. Also by
7456 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
7457 		 * bugs will at least work with the BIOS.
7458 		 */
7459 		if ((adv_dvc->tagqng_able & tidmask) &&
7460 		    sdev->tagged_supported) {
7461 			unsigned short cfg_word;
7462 			AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
7463 			cfg_word |= tidmask;
7464 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
7465 					 cfg_word);
7466 			AdvWriteByteLram(iop_base,
7467 					 ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
7468 					 adv_dvc->max_dvc_qng);
7469 		}
7470 	}
7471 
7472 	if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported)
7473 		scsi_change_queue_depth(sdev, adv_dvc->max_dvc_qng);
7474 }
7475 
7476 /*
7477  * Set the number of commands to queue per device for the
7478  * specified host adapter.
7479  */
advansys_slave_configure(struct scsi_device * sdev)7480 static int advansys_slave_configure(struct scsi_device *sdev)
7481 {
7482 	struct asc_board *boardp = shost_priv(sdev->host);
7483 
7484 	if (ASC_NARROW_BOARD(boardp))
7485 		advansys_narrow_slave_configure(sdev,
7486 						&boardp->dvc_var.asc_dvc_var);
7487 	else
7488 		advansys_wide_slave_configure(sdev,
7489 						&boardp->dvc_var.adv_dvc_var);
7490 
7491 	return 0;
7492 }
7493 
asc_get_sense_buffer_dma(struct scsi_cmnd * scp)7494 static __le32 asc_get_sense_buffer_dma(struct scsi_cmnd *scp)
7495 {
7496 	struct asc_board *board = shost_priv(scp->device->host);
7497 
7498 	scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer,
7499 					     SCSI_SENSE_BUFFERSIZE,
7500 					     DMA_FROM_DEVICE);
7501 	if (dma_mapping_error(board->dev, scp->SCp.dma_handle)) {
7502 		ASC_DBG(1, "failed to map sense buffer\n");
7503 		return 0;
7504 	}
7505 	return cpu_to_le32(scp->SCp.dma_handle);
7506 }
7507 
asc_build_req(struct asc_board * boardp,struct scsi_cmnd * scp,struct asc_scsi_q * asc_scsi_q)7508 static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7509 			struct asc_scsi_q *asc_scsi_q)
7510 {
7511 	struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7512 	int use_sg;
7513 	u32 srb_tag;
7514 
7515 	memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
7516 
7517 	/*
7518 	 * Set the srb_tag to the command tag + 1, as
7519 	 * srb_tag '0' is used internally by the chip.
7520 	 */
7521 	srb_tag = scp->request->tag + 1;
7522 	asc_scsi_q->q2.srb_tag = srb_tag;
7523 
7524 	/*
7525 	 * Build the ASC_SCSI_Q request.
7526 	 */
7527 	asc_scsi_q->cdbptr = &scp->cmnd[0];
7528 	asc_scsi_q->q2.cdb_len = scp->cmd_len;
7529 	asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
7530 	asc_scsi_q->q1.target_lun = scp->device->lun;
7531 	asc_scsi_q->q2.target_ix =
7532 	    ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
7533 	asc_scsi_q->q1.sense_addr = asc_get_sense_buffer_dma(scp);
7534 	asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
7535 	if (!asc_scsi_q->q1.sense_addr)
7536 		return ASC_BUSY;
7537 
7538 	/*
7539 	 * If there are any outstanding requests for the current target,
7540 	 * then every 255th request send an ORDERED request. This heuristic
7541 	 * tries to retain the benefit of request sorting while preventing
7542 	 * request starvation. 255 is the max number of tags or pending commands
7543 	 * a device may have outstanding.
7544 	 *
7545 	 * The request count is incremented below for every successfully
7546 	 * started request.
7547 	 *
7548 	 */
7549 	if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
7550 	    (boardp->reqcnt[scp->device->id] % 255) == 0) {
7551 		asc_scsi_q->q2.tag_code = ORDERED_QUEUE_TAG;
7552 	} else {
7553 		asc_scsi_q->q2.tag_code = SIMPLE_QUEUE_TAG;
7554 	}
7555 
7556 	/* Build ASC_SCSI_Q */
7557 	use_sg = scsi_dma_map(scp);
7558 	if (use_sg < 0) {
7559 		ASC_DBG(1, "failed to map sglist\n");
7560 		return ASC_BUSY;
7561 	} else if (use_sg > 0) {
7562 		int sgcnt;
7563 		struct scatterlist *slp;
7564 		struct asc_sg_head *asc_sg_head;
7565 
7566 		if (use_sg > scp->device->host->sg_tablesize) {
7567 			scmd_printk(KERN_ERR, scp, "use_sg %d > "
7568 				"sg_tablesize %d\n", use_sg,
7569 				scp->device->host->sg_tablesize);
7570 			scsi_dma_unmap(scp);
7571 			scp->result = HOST_BYTE(DID_ERROR);
7572 			return ASC_ERROR;
7573 		}
7574 
7575 		asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) +
7576 			use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC);
7577 		if (!asc_sg_head) {
7578 			scsi_dma_unmap(scp);
7579 			scp->result = HOST_BYTE(DID_SOFT_ERROR);
7580 			return ASC_ERROR;
7581 		}
7582 
7583 		asc_scsi_q->q1.cntl |= QC_SG_HEAD;
7584 		asc_scsi_q->sg_head = asc_sg_head;
7585 		asc_scsi_q->q1.data_cnt = 0;
7586 		asc_scsi_q->q1.data_addr = 0;
7587 		/* This is a byte value, otherwise it would need to be swapped. */
7588 		asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
7589 		ASC_STATS_ADD(scp->device->host, xfer_elem,
7590 			      asc_sg_head->entry_cnt);
7591 
7592 		/*
7593 		 * Convert scatter-gather list into ASC_SG_HEAD list.
7594 		 */
7595 		scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
7596 			asc_sg_head->sg_list[sgcnt].addr =
7597 			    cpu_to_le32(sg_dma_address(slp));
7598 			asc_sg_head->sg_list[sgcnt].bytes =
7599 			    cpu_to_le32(sg_dma_len(slp));
7600 			ASC_STATS_ADD(scp->device->host, xfer_sect,
7601 				      DIV_ROUND_UP(sg_dma_len(slp), 512));
7602 		}
7603 	}
7604 
7605 	ASC_STATS(scp->device->host, xfer_cnt);
7606 
7607 	ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
7608 	ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7609 
7610 	return ASC_NOERROR;
7611 }
7612 
7613 /*
7614  * Build scatter-gather list for Adv Library (Wide Board).
7615  *
7616  * Additional ADV_SG_BLOCK structures will need to be allocated
7617  * if the total number of scatter-gather elements exceeds
7618  * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
7619  * assumed to be physically contiguous.
7620  *
7621  * Return:
7622  *      ADV_SUCCESS(1) - SG List successfully created
7623  *      ADV_ERROR(-1) - SG List creation failed
7624  */
7625 static int
adv_get_sglist(struct asc_board * boardp,adv_req_t * reqp,ADV_SCSI_REQ_Q * scsiqp,struct scsi_cmnd * scp,int use_sg)7626 adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp,
7627 	       ADV_SCSI_REQ_Q *scsiqp, struct scsi_cmnd *scp, int use_sg)
7628 {
7629 	adv_sgblk_t *sgblkp, *prev_sgblkp;
7630 	struct scatterlist *slp;
7631 	int sg_elem_cnt;
7632 	ADV_SG_BLOCK *sg_block, *prev_sg_block;
7633 	dma_addr_t sgblk_paddr;
7634 	int i;
7635 
7636 	slp = scsi_sglist(scp);
7637 	sg_elem_cnt = use_sg;
7638 	prev_sgblkp = NULL;
7639 	prev_sg_block = NULL;
7640 	reqp->sgblkp = NULL;
7641 
7642 	for (;;) {
7643 		/*
7644 		 * Allocate a 'adv_sgblk_t' structure from the board free
7645 		 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
7646 		 * (15) scatter-gather elements.
7647 		 */
7648 		sgblkp = dma_pool_alloc(boardp->adv_sgblk_pool, GFP_ATOMIC,
7649 					&sgblk_paddr);
7650 		if (!sgblkp) {
7651 			ASC_DBG(1, "no free adv_sgblk_t\n");
7652 			ASC_STATS(scp->device->host, adv_build_nosg);
7653 
7654 			/*
7655 			 * Allocation failed. Free 'adv_sgblk_t' structures
7656 			 * already allocated for the request.
7657 			 */
7658 			while ((sgblkp = reqp->sgblkp) != NULL) {
7659 				/* Remove 'sgblkp' from the request list. */
7660 				reqp->sgblkp = sgblkp->next_sgblkp;
7661 				sgblkp->next_sgblkp = NULL;
7662 				dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
7663 					      sgblkp->sg_addr);
7664 			}
7665 			return ASC_BUSY;
7666 		}
7667 		/* Complete 'adv_sgblk_t' board allocation. */
7668 		sgblkp->sg_addr = sgblk_paddr;
7669 		sgblkp->next_sgblkp = NULL;
7670 		sg_block = &sgblkp->sg_block;
7671 
7672 		/*
7673 		 * Check if this is the first 'adv_sgblk_t' for the
7674 		 * request.
7675 		 */
7676 		if (reqp->sgblkp == NULL) {
7677 			/* Request's first scatter-gather block. */
7678 			reqp->sgblkp = sgblkp;
7679 
7680 			/*
7681 			 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
7682 			 * address pointers.
7683 			 */
7684 			scsiqp->sg_list_ptr = sg_block;
7685 			scsiqp->sg_real_addr = cpu_to_le32(sgblk_paddr);
7686 		} else {
7687 			/* Request's second or later scatter-gather block. */
7688 			prev_sgblkp->next_sgblkp = sgblkp;
7689 
7690 			/*
7691 			 * Point the previous ADV_SG_BLOCK structure to
7692 			 * the newly allocated ADV_SG_BLOCK structure.
7693 			 */
7694 			prev_sg_block->sg_ptr = cpu_to_le32(sgblk_paddr);
7695 		}
7696 
7697 		for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
7698 			sg_block->sg_list[i].sg_addr =
7699 					cpu_to_le32(sg_dma_address(slp));
7700 			sg_block->sg_list[i].sg_count =
7701 					cpu_to_le32(sg_dma_len(slp));
7702 			ASC_STATS_ADD(scp->device->host, xfer_sect,
7703 				      DIV_ROUND_UP(sg_dma_len(slp), 512));
7704 
7705 			if (--sg_elem_cnt == 0) {
7706 				/*
7707 				 * Last ADV_SG_BLOCK and scatter-gather entry.
7708 				 */
7709 				sg_block->sg_cnt = i + 1;
7710 				sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */
7711 				return ADV_SUCCESS;
7712 			}
7713 			slp = sg_next(slp);
7714 		}
7715 		sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
7716 		prev_sg_block = sg_block;
7717 		prev_sgblkp = sgblkp;
7718 	}
7719 }
7720 
7721 /*
7722  * Build a request structure for the Adv Library (Wide Board).
7723  *
7724  * If an adv_req_t can not be allocated to issue the request,
7725  * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
7726  *
7727  * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the
7728  * microcode for DMA addresses or math operations are byte swapped
7729  * to little-endian order.
7730  */
7731 static int
adv_build_req(struct asc_board * boardp,struct scsi_cmnd * scp,adv_req_t ** adv_reqpp)7732 adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7733 	      adv_req_t **adv_reqpp)
7734 {
7735 	u32 srb_tag = scp->request->tag;
7736 	adv_req_t *reqp;
7737 	ADV_SCSI_REQ_Q *scsiqp;
7738 	int ret;
7739 	int use_sg;
7740 	dma_addr_t sense_addr;
7741 
7742 	/*
7743 	 * Allocate an adv_req_t structure from the board to execute
7744 	 * the command.
7745 	 */
7746 	reqp = &boardp->adv_reqp[srb_tag];
7747 	if (reqp->cmndp && reqp->cmndp != scp ) {
7748 		ASC_DBG(1, "no free adv_req_t\n");
7749 		ASC_STATS(scp->device->host, adv_build_noreq);
7750 		return ASC_BUSY;
7751 	}
7752 
7753 	reqp->req_addr = boardp->adv_reqp_addr + (srb_tag * sizeof(adv_req_t));
7754 
7755 	scsiqp = &reqp->scsi_req_q;
7756 
7757 	/*
7758 	 * Initialize the structure.
7759 	 */
7760 	scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
7761 
7762 	/*
7763 	 * Set the srb_tag to the command tag.
7764 	 */
7765 	scsiqp->srb_tag = srb_tag;
7766 
7767 	/*
7768 	 * Set 'host_scribble' to point to the adv_req_t structure.
7769 	 */
7770 	reqp->cmndp = scp;
7771 	scp->host_scribble = (void *)reqp;
7772 
7773 	/*
7774 	 * Build the ADV_SCSI_REQ_Q request.
7775 	 */
7776 
7777 	/* Set CDB length and copy it to the request structure.  */
7778 	scsiqp->cdb_len = scp->cmd_len;
7779 	/* Copy first 12 CDB bytes to cdb[]. */
7780 	memcpy(scsiqp->cdb, scp->cmnd, scp->cmd_len < 12 ? scp->cmd_len : 12);
7781 	/* Copy last 4 CDB bytes, if present, to cdb16[]. */
7782 	if (scp->cmd_len > 12) {
7783 		int cdb16_len = scp->cmd_len - 12;
7784 
7785 		memcpy(scsiqp->cdb16, &scp->cmnd[12], cdb16_len);
7786 	}
7787 
7788 	scsiqp->target_id = scp->device->id;
7789 	scsiqp->target_lun = scp->device->lun;
7790 
7791 	sense_addr = dma_map_single(boardp->dev, scp->sense_buffer,
7792 				    SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7793 	if (dma_mapping_error(boardp->dev, sense_addr)) {
7794 		ASC_DBG(1, "failed to map sense buffer\n");
7795 		ASC_STATS(scp->device->host, adv_build_noreq);
7796 		return ASC_BUSY;
7797 	}
7798 	scsiqp->sense_addr = cpu_to_le32(sense_addr);
7799 	scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
7800 
7801 	/* Build ADV_SCSI_REQ_Q */
7802 
7803 	use_sg = scsi_dma_map(scp);
7804 	if (use_sg < 0) {
7805 		ASC_DBG(1, "failed to map SG list\n");
7806 		ASC_STATS(scp->device->host, adv_build_noreq);
7807 		return ASC_BUSY;
7808 	} else if (use_sg == 0) {
7809 		/* Zero-length transfer */
7810 		reqp->sgblkp = NULL;
7811 		scsiqp->data_cnt = 0;
7812 
7813 		scsiqp->data_addr = 0;
7814 		scsiqp->sg_list_ptr = NULL;
7815 		scsiqp->sg_real_addr = 0;
7816 	} else {
7817 		if (use_sg > ADV_MAX_SG_LIST) {
7818 			scmd_printk(KERN_ERR, scp, "use_sg %d > "
7819 				   "ADV_MAX_SG_LIST %d\n", use_sg,
7820 				   scp->device->host->sg_tablesize);
7821 			scsi_dma_unmap(scp);
7822 			scp->result = HOST_BYTE(DID_ERROR);
7823 			reqp->cmndp = NULL;
7824 			scp->host_scribble = NULL;
7825 
7826 			return ASC_ERROR;
7827 		}
7828 
7829 		scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
7830 
7831 		ret = adv_get_sglist(boardp, reqp, scsiqp, scp, use_sg);
7832 		if (ret != ADV_SUCCESS) {
7833 			scsi_dma_unmap(scp);
7834 			scp->result = HOST_BYTE(DID_ERROR);
7835 			reqp->cmndp = NULL;
7836 			scp->host_scribble = NULL;
7837 
7838 			return ret;
7839 		}
7840 
7841 		ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
7842 	}
7843 
7844 	ASC_STATS(scp->device->host, xfer_cnt);
7845 
7846 	ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
7847 	ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7848 
7849 	*adv_reqpp = reqp;
7850 
7851 	return ASC_NOERROR;
7852 }
7853 
AscSgListToQueue(int sg_list)7854 static int AscSgListToQueue(int sg_list)
7855 {
7856 	int n_sg_list_qs;
7857 
7858 	n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
7859 	if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
7860 		n_sg_list_qs++;
7861 	return n_sg_list_qs + 1;
7862 }
7863 
7864 static uint
AscGetNumOfFreeQueue(ASC_DVC_VAR * asc_dvc,uchar target_ix,uchar n_qs)7865 AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
7866 {
7867 	uint cur_used_qs;
7868 	uint cur_free_qs;
7869 	ASC_SCSI_BIT_ID_TYPE target_id;
7870 	uchar tid_no;
7871 
7872 	target_id = ASC_TIX_TO_TARGET_ID(target_ix);
7873 	tid_no = ASC_TIX_TO_TID(target_ix);
7874 	if ((asc_dvc->unit_not_ready & target_id) ||
7875 	    (asc_dvc->queue_full_or_busy & target_id)) {
7876 		return 0;
7877 	}
7878 	if (n_qs == 1) {
7879 		cur_used_qs = (uint) asc_dvc->cur_total_qng +
7880 		    (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
7881 	} else {
7882 		cur_used_qs = (uint) asc_dvc->cur_total_qng +
7883 		    (uint) ASC_MIN_FREE_Q;
7884 	}
7885 	if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
7886 		cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
7887 		if (asc_dvc->cur_dvc_qng[tid_no] >=
7888 		    asc_dvc->max_dvc_qng[tid_no]) {
7889 			return 0;
7890 		}
7891 		return cur_free_qs;
7892 	}
7893 	if (n_qs > 1) {
7894 		if ((n_qs > asc_dvc->last_q_shortage)
7895 		    && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
7896 			asc_dvc->last_q_shortage = n_qs;
7897 		}
7898 	}
7899 	return 0;
7900 }
7901 
AscAllocFreeQueue(PortAddr iop_base,uchar free_q_head)7902 static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
7903 {
7904 	ushort q_addr;
7905 	uchar next_qp;
7906 	uchar q_status;
7907 
7908 	q_addr = ASC_QNO_TO_QADDR(free_q_head);
7909 	q_status = (uchar)AscReadLramByte(iop_base,
7910 					  (ushort)(q_addr +
7911 						   ASC_SCSIQ_B_STATUS));
7912 	next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
7913 	if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
7914 		return next_qp;
7915 	return ASC_QLINK_END;
7916 }
7917 
7918 static uchar
AscAllocMultipleFreeQueue(PortAddr iop_base,uchar free_q_head,uchar n_free_q)7919 AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
7920 {
7921 	uchar i;
7922 
7923 	for (i = 0; i < n_free_q; i++) {
7924 		free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
7925 		if (free_q_head == ASC_QLINK_END)
7926 			break;
7927 	}
7928 	return free_q_head;
7929 }
7930 
7931 /*
7932  * void
7933  * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7934  *
7935  * Calling/Exit State:
7936  *    none
7937  *
7938  * Description:
7939  *     Output an ASC_SCSI_Q structure to the chip
7940  */
7941 static void
DvcPutScsiQ(PortAddr iop_base,ushort s_addr,uchar * outbuf,int words)7942 DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7943 {
7944 	int i;
7945 
7946 	ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
7947 	AscSetChipLramAddr(iop_base, s_addr);
7948 	for (i = 0; i < 2 * words; i += 2) {
7949 		if (i == 4 || i == 20) {
7950 			continue;
7951 		}
7952 		outpw(iop_base + IOP_RAM_DATA,
7953 		      ((ushort)outbuf[i + 1] << 8) | outbuf[i]);
7954 	}
7955 }
7956 
AscPutReadyQueue(ASC_DVC_VAR * asc_dvc,ASC_SCSI_Q * scsiq,uchar q_no)7957 static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
7958 {
7959 	ushort q_addr;
7960 	uchar tid_no;
7961 	uchar sdtr_data;
7962 	uchar syn_period_ix;
7963 	uchar syn_offset;
7964 	PortAddr iop_base;
7965 
7966 	iop_base = asc_dvc->iop_base;
7967 	if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
7968 	    ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
7969 		tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
7970 		sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
7971 		syn_period_ix =
7972 		    (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
7973 		syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
7974 		AscMsgOutSDTR(asc_dvc,
7975 			      asc_dvc->sdtr_period_tbl[syn_period_ix],
7976 			      syn_offset);
7977 		scsiq->q1.cntl |= QC_MSG_OUT;
7978 	}
7979 	q_addr = ASC_QNO_TO_QADDR(q_no);
7980 	if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
7981 		scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
7982 	}
7983 	scsiq->q1.status = QS_FREE;
7984 	AscMemWordCopyPtrToLram(iop_base,
7985 				q_addr + ASC_SCSIQ_CDB_BEG,
7986 				(uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
7987 
7988 	DvcPutScsiQ(iop_base,
7989 		    q_addr + ASC_SCSIQ_CPY_BEG,
7990 		    (uchar *)&scsiq->q1.cntl,
7991 		    ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
7992 	AscWriteLramWord(iop_base,
7993 			 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
7994 			 (ushort)(((ushort)scsiq->q1.
7995 				   q_no << 8) | (ushort)QS_READY));
7996 	return 1;
7997 }
7998 
7999 static int
AscPutReadySgListQueue(ASC_DVC_VAR * asc_dvc,ASC_SCSI_Q * scsiq,uchar q_no)8000 AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8001 {
8002 	int sta;
8003 	int i;
8004 	ASC_SG_HEAD *sg_head;
8005 	ASC_SG_LIST_Q scsi_sg_q;
8006 	__le32 saved_data_addr;
8007 	__le32 saved_data_cnt;
8008 	PortAddr iop_base;
8009 	ushort sg_list_dwords;
8010 	ushort sg_index;
8011 	ushort sg_entry_cnt;
8012 	ushort q_addr;
8013 	uchar next_qp;
8014 
8015 	iop_base = asc_dvc->iop_base;
8016 	sg_head = scsiq->sg_head;
8017 	saved_data_addr = scsiq->q1.data_addr;
8018 	saved_data_cnt = scsiq->q1.data_cnt;
8019 	scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
8020 	scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
8021 	/*
8022 	 * Set sg_entry_cnt to be the number of SG elements that
8023 	 * will fit in the allocated SG queues. It is minus 1, because
8024 	 * the first SG element is handled above.
8025 	 */
8026 	sg_entry_cnt = sg_head->entry_cnt - 1;
8027 
8028 	if (sg_entry_cnt != 0) {
8029 		scsiq->q1.cntl |= QC_SG_HEAD;
8030 		q_addr = ASC_QNO_TO_QADDR(q_no);
8031 		sg_index = 1;
8032 		scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
8033 		scsi_sg_q.sg_head_qp = q_no;
8034 		scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
8035 		for (i = 0; i < sg_head->queue_cnt; i++) {
8036 			scsi_sg_q.seq_no = i + 1;
8037 			if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
8038 				sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
8039 				sg_entry_cnt -= ASC_SG_LIST_PER_Q;
8040 				if (i == 0) {
8041 					scsi_sg_q.sg_list_cnt =
8042 					    ASC_SG_LIST_PER_Q;
8043 					scsi_sg_q.sg_cur_list_cnt =
8044 					    ASC_SG_LIST_PER_Q;
8045 				} else {
8046 					scsi_sg_q.sg_list_cnt =
8047 					    ASC_SG_LIST_PER_Q - 1;
8048 					scsi_sg_q.sg_cur_list_cnt =
8049 					    ASC_SG_LIST_PER_Q - 1;
8050 				}
8051 			} else {
8052 				scsi_sg_q.cntl |= QCSG_SG_XFER_END;
8053 				sg_list_dwords = sg_entry_cnt << 1;
8054 				if (i == 0) {
8055 					scsi_sg_q.sg_list_cnt = sg_entry_cnt;
8056 					scsi_sg_q.sg_cur_list_cnt =
8057 					    sg_entry_cnt;
8058 				} else {
8059 					scsi_sg_q.sg_list_cnt =
8060 					    sg_entry_cnt - 1;
8061 					scsi_sg_q.sg_cur_list_cnt =
8062 					    sg_entry_cnt - 1;
8063 				}
8064 				sg_entry_cnt = 0;
8065 			}
8066 			next_qp = AscReadLramByte(iop_base,
8067 						  (ushort)(q_addr +
8068 							   ASC_SCSIQ_B_FWD));
8069 			scsi_sg_q.q_no = next_qp;
8070 			q_addr = ASC_QNO_TO_QADDR(next_qp);
8071 			AscMemWordCopyPtrToLram(iop_base,
8072 						q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
8073 						(uchar *)&scsi_sg_q,
8074 						sizeof(ASC_SG_LIST_Q) >> 1);
8075 			AscMemDWordCopyPtrToLram(iop_base,
8076 						 q_addr + ASC_SGQ_LIST_BEG,
8077 						 (uchar *)&sg_head->
8078 						 sg_list[sg_index],
8079 						 sg_list_dwords);
8080 			sg_index += ASC_SG_LIST_PER_Q;
8081 			scsiq->next_sg_index = sg_index;
8082 		}
8083 	} else {
8084 		scsiq->q1.cntl &= ~QC_SG_HEAD;
8085 	}
8086 	sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
8087 	scsiq->q1.data_addr = saved_data_addr;
8088 	scsiq->q1.data_cnt = saved_data_cnt;
8089 	return (sta);
8090 }
8091 
8092 static int
AscSendScsiQueue(ASC_DVC_VAR * asc_dvc,ASC_SCSI_Q * scsiq,uchar n_q_required)8093 AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
8094 {
8095 	PortAddr iop_base;
8096 	uchar free_q_head;
8097 	uchar next_qp;
8098 	uchar tid_no;
8099 	uchar target_ix;
8100 	int sta;
8101 
8102 	iop_base = asc_dvc->iop_base;
8103 	target_ix = scsiq->q2.target_ix;
8104 	tid_no = ASC_TIX_TO_TID(target_ix);
8105 	sta = 0;
8106 	free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
8107 	if (n_q_required > 1) {
8108 		next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
8109 						    (uchar)n_q_required);
8110 		if (next_qp != ASC_QLINK_END) {
8111 			asc_dvc->last_q_shortage = 0;
8112 			scsiq->sg_head->queue_cnt = n_q_required - 1;
8113 			scsiq->q1.q_no = free_q_head;
8114 			sta = AscPutReadySgListQueue(asc_dvc, scsiq,
8115 						     free_q_head);
8116 		}
8117 	} else if (n_q_required == 1) {
8118 		next_qp = AscAllocFreeQueue(iop_base, free_q_head);
8119 		if (next_qp != ASC_QLINK_END) {
8120 			scsiq->q1.q_no = free_q_head;
8121 			sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
8122 		}
8123 	}
8124 	if (sta == 1) {
8125 		AscPutVarFreeQHead(iop_base, next_qp);
8126 		asc_dvc->cur_total_qng += n_q_required;
8127 		asc_dvc->cur_dvc_qng[tid_no]++;
8128 	}
8129 	return sta;
8130 }
8131 
8132 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST  16
8133 static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
8134 	INQUIRY,
8135 	REQUEST_SENSE,
8136 	READ_CAPACITY,
8137 	READ_TOC,
8138 	MODE_SELECT,
8139 	MODE_SENSE,
8140 	MODE_SELECT_10,
8141 	MODE_SENSE_10,
8142 	0xFF,
8143 	0xFF,
8144 	0xFF,
8145 	0xFF,
8146 	0xFF,
8147 	0xFF,
8148 	0xFF,
8149 	0xFF
8150 };
8151 
AscExeScsiQueue(ASC_DVC_VAR * asc_dvc,ASC_SCSI_Q * scsiq)8152 static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
8153 {
8154 	PortAddr iop_base;
8155 	int sta;
8156 	int n_q_required;
8157 	bool disable_syn_offset_one_fix;
8158 	int i;
8159 	u32 addr;
8160 	ushort sg_entry_cnt = 0;
8161 	ushort sg_entry_cnt_minus_one = 0;
8162 	uchar target_ix;
8163 	uchar tid_no;
8164 	uchar sdtr_data;
8165 	uchar extra_bytes;
8166 	uchar scsi_cmd;
8167 	uchar disable_cmd;
8168 	ASC_SG_HEAD *sg_head;
8169 	unsigned long data_cnt;
8170 
8171 	iop_base = asc_dvc->iop_base;
8172 	sg_head = scsiq->sg_head;
8173 	if (asc_dvc->err_code != 0)
8174 		return ASC_ERROR;
8175 	scsiq->q1.q_no = 0;
8176 	if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
8177 		scsiq->q1.extra_bytes = 0;
8178 	}
8179 	sta = 0;
8180 	target_ix = scsiq->q2.target_ix;
8181 	tid_no = ASC_TIX_TO_TID(target_ix);
8182 	n_q_required = 1;
8183 	if (scsiq->cdbptr[0] == REQUEST_SENSE) {
8184 		if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
8185 			asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
8186 			sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8187 			AscMsgOutSDTR(asc_dvc,
8188 				      asc_dvc->
8189 				      sdtr_period_tbl[(sdtr_data >> 4) &
8190 						      (uchar)(asc_dvc->
8191 							      max_sdtr_index -
8192 							      1)],
8193 				      (uchar)(sdtr_data & (uchar)
8194 					      ASC_SYN_MAX_OFFSET));
8195 			scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
8196 		}
8197 	}
8198 	if (asc_dvc->in_critical_cnt != 0) {
8199 		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
8200 		return ASC_ERROR;
8201 	}
8202 	asc_dvc->in_critical_cnt++;
8203 	if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8204 		if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
8205 			asc_dvc->in_critical_cnt--;
8206 			return ASC_ERROR;
8207 		}
8208 		if (sg_entry_cnt > ASC_MAX_SG_LIST) {
8209 			asc_dvc->in_critical_cnt--;
8210 			return ASC_ERROR;
8211 		}
8212 		if (sg_entry_cnt == 1) {
8213 			scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
8214 			scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
8215 			scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
8216 		}
8217 		sg_entry_cnt_minus_one = sg_entry_cnt - 1;
8218 	}
8219 	scsi_cmd = scsiq->cdbptr[0];
8220 	disable_syn_offset_one_fix = false;
8221 	if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
8222 	    !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
8223 		if (scsiq->q1.cntl & QC_SG_HEAD) {
8224 			data_cnt = 0;
8225 			for (i = 0; i < sg_entry_cnt; i++) {
8226 				data_cnt += le32_to_cpu(sg_head->sg_list[i].
8227 							bytes);
8228 			}
8229 		} else {
8230 			data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
8231 		}
8232 		if (data_cnt != 0UL) {
8233 			if (data_cnt < 512UL) {
8234 				disable_syn_offset_one_fix = true;
8235 			} else {
8236 				for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
8237 				     i++) {
8238 					disable_cmd =
8239 					    _syn_offset_one_disable_cmd[i];
8240 					if (disable_cmd == 0xFF) {
8241 						break;
8242 					}
8243 					if (scsi_cmd == disable_cmd) {
8244 						disable_syn_offset_one_fix =
8245 						    true;
8246 						break;
8247 					}
8248 				}
8249 			}
8250 		}
8251 	}
8252 	if (disable_syn_offset_one_fix) {
8253 		scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
8254 		scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
8255 				       ASC_TAG_FLAG_DISABLE_DISCONNECT);
8256 	} else {
8257 		scsiq->q2.tag_code &= 0x27;
8258 	}
8259 	if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8260 		if (asc_dvc->bug_fix_cntl) {
8261 			if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8262 				if ((scsi_cmd == READ_6) ||
8263 				    (scsi_cmd == READ_10)) {
8264 					addr = le32_to_cpu(sg_head->
8265 								   sg_list
8266 								   [sg_entry_cnt_minus_one].
8267 								   addr) +
8268 						le32_to_cpu(sg_head->
8269 								  sg_list
8270 								  [sg_entry_cnt_minus_one].
8271 								  bytes);
8272 					extra_bytes =
8273 					    (uchar)((ushort)addr & 0x0003);
8274 					if ((extra_bytes != 0)
8275 					    &&
8276 					    ((scsiq->q2.
8277 					      tag_code &
8278 					      ASC_TAG_FLAG_EXTRA_BYTES)
8279 					     == 0)) {
8280 						scsiq->q2.tag_code |=
8281 						    ASC_TAG_FLAG_EXTRA_BYTES;
8282 						scsiq->q1.extra_bytes =
8283 						    extra_bytes;
8284 						data_cnt =
8285 						    le32_to_cpu(sg_head->
8286 								sg_list
8287 								[sg_entry_cnt_minus_one].
8288 								bytes);
8289 						data_cnt -= extra_bytes;
8290 						sg_head->
8291 						    sg_list
8292 						    [sg_entry_cnt_minus_one].
8293 						    bytes =
8294 						    cpu_to_le32(data_cnt);
8295 					}
8296 				}
8297 			}
8298 		}
8299 		sg_head->entry_to_copy = sg_head->entry_cnt;
8300 		n_q_required = AscSgListToQueue(sg_entry_cnt);
8301 		if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
8302 		     (uint) n_q_required)
8303 		    || ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8304 			if ((sta =
8305 			     AscSendScsiQueue(asc_dvc, scsiq,
8306 					      n_q_required)) == 1) {
8307 				asc_dvc->in_critical_cnt--;
8308 				return (sta);
8309 			}
8310 		}
8311 	} else {
8312 		if (asc_dvc->bug_fix_cntl) {
8313 			if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8314 				if ((scsi_cmd == READ_6) ||
8315 				    (scsi_cmd == READ_10)) {
8316 					addr =
8317 					    le32_to_cpu(scsiq->q1.data_addr) +
8318 					    le32_to_cpu(scsiq->q1.data_cnt);
8319 					extra_bytes =
8320 					    (uchar)((ushort)addr & 0x0003);
8321 					if ((extra_bytes != 0)
8322 					    &&
8323 					    ((scsiq->q2.
8324 					      tag_code &
8325 					      ASC_TAG_FLAG_EXTRA_BYTES)
8326 					     == 0)) {
8327 						data_cnt =
8328 						    le32_to_cpu(scsiq->q1.
8329 								data_cnt);
8330 						if (((ushort)data_cnt & 0x01FF)
8331 						    == 0) {
8332 							scsiq->q2.tag_code |=
8333 							    ASC_TAG_FLAG_EXTRA_BYTES;
8334 							data_cnt -= extra_bytes;
8335 							scsiq->q1.data_cnt =
8336 							    cpu_to_le32
8337 							    (data_cnt);
8338 							scsiq->q1.extra_bytes =
8339 							    extra_bytes;
8340 						}
8341 					}
8342 				}
8343 			}
8344 		}
8345 		n_q_required = 1;
8346 		if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
8347 		    ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8348 			if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
8349 						    n_q_required)) == 1) {
8350 				asc_dvc->in_critical_cnt--;
8351 				return (sta);
8352 			}
8353 		}
8354 	}
8355 	asc_dvc->in_critical_cnt--;
8356 	return (sta);
8357 }
8358 
8359 /*
8360  * AdvExeScsiQueue() - Send a request to the RISC microcode program.
8361  *
8362  *   Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
8363  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
8364  *   RISC to notify it a new command is ready to be executed.
8365  *
8366  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
8367  * set to SCSI_MAX_RETRY.
8368  *
8369  * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the microcode
8370  * for DMA addresses or math operations are byte swapped to little-endian
8371  * order.
8372  *
8373  * Return:
8374  *      ADV_SUCCESS(1) - The request was successfully queued.
8375  *      ADV_BUSY(0) -    Resource unavailable; Retry again after pending
8376  *                       request completes.
8377  *      ADV_ERROR(-1) -  Invalid ADV_SCSI_REQ_Q request structure
8378  *                       host IC error.
8379  */
AdvExeScsiQueue(ADV_DVC_VAR * asc_dvc,adv_req_t * reqp)8380 static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, adv_req_t *reqp)
8381 {
8382 	AdvPortAddr iop_base;
8383 	ADV_CARR_T *new_carrp;
8384 	ADV_SCSI_REQ_Q *scsiq = &reqp->scsi_req_q;
8385 
8386 	/*
8387 	 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
8388 	 */
8389 	if (scsiq->target_id > ADV_MAX_TID) {
8390 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
8391 		scsiq->done_status = QD_WITH_ERROR;
8392 		return ADV_ERROR;
8393 	}
8394 
8395 	iop_base = asc_dvc->iop_base;
8396 
8397 	/*
8398 	 * Allocate a carrier ensuring at least one carrier always
8399 	 * remains on the freelist and initialize fields.
8400 	 */
8401 	new_carrp = adv_get_next_carrier(asc_dvc);
8402 	if (!new_carrp) {
8403 		ASC_DBG(1, "No free carriers\n");
8404 		return ADV_BUSY;
8405 	}
8406 
8407 	asc_dvc->carr_pending_cnt++;
8408 
8409 	/* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
8410 	scsiq->scsiq_ptr = cpu_to_le32(scsiq->srb_tag);
8411 	scsiq->scsiq_rptr = cpu_to_le32(reqp->req_addr);
8412 
8413 	scsiq->carr_va = asc_dvc->icq_sp->carr_va;
8414 	scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
8415 
8416 	/*
8417 	 * Use the current stopper to send the ADV_SCSI_REQ_Q command to
8418 	 * the microcode. The newly allocated stopper will become the new
8419 	 * stopper.
8420 	 */
8421 	asc_dvc->icq_sp->areq_vpa = scsiq->scsiq_rptr;
8422 
8423 	/*
8424 	 * Set the 'next_vpa' pointer for the old stopper to be the
8425 	 * physical address of the new stopper. The RISC can only
8426 	 * follow physical addresses.
8427 	 */
8428 	asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
8429 
8430 	/*
8431 	 * Set the host adapter stopper pointer to point to the new carrier.
8432 	 */
8433 	asc_dvc->icq_sp = new_carrp;
8434 
8435 	if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
8436 	    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
8437 		/*
8438 		 * Tickle the RISC to tell it to read its Command Queue Head pointer.
8439 		 */
8440 		AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
8441 		if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
8442 			/*
8443 			 * Clear the tickle value. In the ASC-3550 the RISC flag
8444 			 * command 'clr_tickle_a' does not work unless the host
8445 			 * value is cleared.
8446 			 */
8447 			AdvWriteByteRegister(iop_base, IOPB_TICKLE,
8448 					     ADV_TICKLE_NOP);
8449 		}
8450 	} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
8451 		/*
8452 		 * Notify the RISC a carrier is ready by writing the physical
8453 		 * address of the new carrier stopper to the COMMA register.
8454 		 */
8455 		AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
8456 				      le32_to_cpu(new_carrp->carr_pa));
8457 	}
8458 
8459 	return ADV_SUCCESS;
8460 }
8461 
8462 /*
8463  * Execute a single 'struct scsi_cmnd'.
8464  */
asc_execute_scsi_cmnd(struct scsi_cmnd * scp)8465 static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
8466 {
8467 	int ret, err_code;
8468 	struct asc_board *boardp = shost_priv(scp->device->host);
8469 
8470 	ASC_DBG(1, "scp 0x%p\n", scp);
8471 
8472 	if (ASC_NARROW_BOARD(boardp)) {
8473 		ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
8474 		struct asc_scsi_q asc_scsi_q;
8475 
8476 		ret = asc_build_req(boardp, scp, &asc_scsi_q);
8477 		if (ret != ASC_NOERROR) {
8478 			ASC_STATS(scp->device->host, build_error);
8479 			return ret;
8480 		}
8481 
8482 		ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
8483 		kfree(asc_scsi_q.sg_head);
8484 		err_code = asc_dvc->err_code;
8485 	} else {
8486 		ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
8487 		adv_req_t *adv_reqp;
8488 
8489 		switch (adv_build_req(boardp, scp, &adv_reqp)) {
8490 		case ASC_NOERROR:
8491 			ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
8492 			break;
8493 		case ASC_BUSY:
8494 			ASC_DBG(1, "adv_build_req ASC_BUSY\n");
8495 			/*
8496 			 * The asc_stats fields 'adv_build_noreq' and
8497 			 * 'adv_build_nosg' count wide board busy conditions.
8498 			 * They are updated in adv_build_req and
8499 			 * adv_get_sglist, respectively.
8500 			 */
8501 			return ASC_BUSY;
8502 		case ASC_ERROR:
8503 		default:
8504 			ASC_DBG(1, "adv_build_req ASC_ERROR\n");
8505 			ASC_STATS(scp->device->host, build_error);
8506 			return ASC_ERROR;
8507 		}
8508 
8509 		ret = AdvExeScsiQueue(adv_dvc, adv_reqp);
8510 		err_code = adv_dvc->err_code;
8511 	}
8512 
8513 	switch (ret) {
8514 	case ASC_NOERROR:
8515 		ASC_STATS(scp->device->host, exe_noerror);
8516 		/*
8517 		 * Increment monotonically increasing per device
8518 		 * successful request counter. Wrapping doesn't matter.
8519 		 */
8520 		boardp->reqcnt[scp->device->id]++;
8521 		ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
8522 		break;
8523 	case ASC_BUSY:
8524 		ASC_DBG(1, "ExeScsiQueue() ASC_BUSY\n");
8525 		ASC_STATS(scp->device->host, exe_busy);
8526 		break;
8527 	case ASC_ERROR:
8528 		scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
8529 			"err_code 0x%x\n", err_code);
8530 		ASC_STATS(scp->device->host, exe_error);
8531 		scp->result = HOST_BYTE(DID_ERROR);
8532 		break;
8533 	default:
8534 		scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
8535 			"err_code 0x%x\n", err_code);
8536 		ASC_STATS(scp->device->host, exe_unknown);
8537 		scp->result = HOST_BYTE(DID_ERROR);
8538 		break;
8539 	}
8540 
8541 	ASC_DBG(1, "end\n");
8542 	return ret;
8543 }
8544 
8545 /*
8546  * advansys_queuecommand() - interrupt-driven I/O entrypoint.
8547  *
8548  * This function always returns 0. Command return status is saved
8549  * in the 'scp' result field.
8550  */
8551 static int
advansys_queuecommand_lck(struct scsi_cmnd * scp,void (* done)(struct scsi_cmnd *))8552 advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *))
8553 {
8554 	struct Scsi_Host *shost = scp->device->host;
8555 	int asc_res, result = 0;
8556 
8557 	ASC_STATS(shost, queuecommand);
8558 	scp->scsi_done = done;
8559 
8560 	asc_res = asc_execute_scsi_cmnd(scp);
8561 
8562 	switch (asc_res) {
8563 	case ASC_NOERROR:
8564 		break;
8565 	case ASC_BUSY:
8566 		result = SCSI_MLQUEUE_HOST_BUSY;
8567 		break;
8568 	case ASC_ERROR:
8569 	default:
8570 		asc_scsi_done(scp);
8571 		break;
8572 	}
8573 
8574 	return result;
8575 }
8576 
DEF_SCSI_QCMD(advansys_queuecommand)8577 static DEF_SCSI_QCMD(advansys_queuecommand)
8578 
8579 static ushort AscGetEisaChipCfg(PortAddr iop_base)
8580 {
8581 	PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
8582 	    (PortAddr) (ASC_EISA_CFG_IOP_MASK);
8583 	return inpw(eisa_cfg_iop);
8584 }
8585 
8586 /*
8587  * Return the BIOS address of the adapter at the specified
8588  * I/O port and with the specified bus type.
8589  */
AscGetChipBiosAddress(PortAddr iop_base,unsigned short bus_type)8590 static unsigned short AscGetChipBiosAddress(PortAddr iop_base,
8591 					    unsigned short bus_type)
8592 {
8593 	unsigned short cfg_lsw;
8594 	unsigned short bios_addr;
8595 
8596 	/*
8597 	 * The PCI BIOS is re-located by the motherboard BIOS. Because
8598 	 * of this the driver can not determine where a PCI BIOS is
8599 	 * loaded and executes.
8600 	 */
8601 	if (bus_type & ASC_IS_PCI)
8602 		return 0;
8603 
8604 	if ((bus_type & ASC_IS_EISA) != 0) {
8605 		cfg_lsw = AscGetEisaChipCfg(iop_base);
8606 		cfg_lsw &= 0x000F;
8607 		bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
8608 		return bios_addr;
8609 	}
8610 
8611 	cfg_lsw = AscGetChipCfgLsw(iop_base);
8612 
8613 	/*
8614 	 *  ISA PnP uses the top bit as the 32K BIOS flag
8615 	 */
8616 	if (bus_type == ASC_IS_ISAPNP)
8617 		cfg_lsw &= 0x7FFF;
8618 	bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
8619 	return bios_addr;
8620 }
8621 
AscSetChipScsiID(PortAddr iop_base,uchar new_host_id)8622 static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
8623 {
8624 	ushort cfg_lsw;
8625 
8626 	if (AscGetChipScsiID(iop_base) == new_host_id) {
8627 		return (new_host_id);
8628 	}
8629 	cfg_lsw = AscGetChipCfgLsw(iop_base);
8630 	cfg_lsw &= 0xF8FF;
8631 	cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
8632 	AscSetChipCfgLsw(iop_base, cfg_lsw);
8633 	return (AscGetChipScsiID(iop_base));
8634 }
8635 
AscGetChipScsiCtrl(PortAddr iop_base)8636 static unsigned char AscGetChipScsiCtrl(PortAddr iop_base)
8637 {
8638 	unsigned char sc;
8639 
8640 	AscSetBank(iop_base, 1);
8641 	sc = inp(iop_base + IOP_REG_SC);
8642 	AscSetBank(iop_base, 0);
8643 	return sc;
8644 }
8645 
AscGetChipVersion(PortAddr iop_base,unsigned short bus_type)8646 static unsigned char AscGetChipVersion(PortAddr iop_base,
8647 				       unsigned short bus_type)
8648 {
8649 	if (bus_type & ASC_IS_EISA) {
8650 		PortAddr eisa_iop;
8651 		unsigned char revision;
8652 		eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
8653 		    (PortAddr) ASC_EISA_REV_IOP_MASK;
8654 		revision = inp(eisa_iop);
8655 		return ASC_CHIP_MIN_VER_EISA - 1 + revision;
8656 	}
8657 	return AscGetChipVerNo(iop_base);
8658 }
8659 
8660 #ifdef CONFIG_ISA
AscEnableIsaDma(uchar dma_channel)8661 static void AscEnableIsaDma(uchar dma_channel)
8662 {
8663 	if (dma_channel < 4) {
8664 		outp(0x000B, (ushort)(0xC0 | dma_channel));
8665 		outp(0x000A, dma_channel);
8666 	} else if (dma_channel < 8) {
8667 		outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4)));
8668 		outp(0x00D4, (ushort)(dma_channel - 4));
8669 	}
8670 }
8671 #endif /* CONFIG_ISA */
8672 
AscStopQueueExe(PortAddr iop_base)8673 static int AscStopQueueExe(PortAddr iop_base)
8674 {
8675 	int count = 0;
8676 
8677 	if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
8678 		AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
8679 				 ASC_STOP_REQ_RISC_STOP);
8680 		do {
8681 			if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
8682 			    ASC_STOP_ACK_RISC_STOP) {
8683 				return (1);
8684 			}
8685 			mdelay(100);
8686 		} while (count++ < 20);
8687 	}
8688 	return (0);
8689 }
8690 
AscGetMaxDmaCount(ushort bus_type)8691 static unsigned int AscGetMaxDmaCount(ushort bus_type)
8692 {
8693 	if (bus_type & ASC_IS_ISA)
8694 		return ASC_MAX_ISA_DMA_COUNT;
8695 	else if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
8696 		return ASC_MAX_VL_DMA_COUNT;
8697 	return ASC_MAX_PCI_DMA_COUNT;
8698 }
8699 
8700 #ifdef CONFIG_ISA
AscGetIsaDmaChannel(PortAddr iop_base)8701 static ushort AscGetIsaDmaChannel(PortAddr iop_base)
8702 {
8703 	ushort channel;
8704 
8705 	channel = AscGetChipCfgLsw(iop_base) & 0x0003;
8706 	if (channel == 0x03)
8707 		return (0);
8708 	else if (channel == 0x00)
8709 		return (7);
8710 	return (channel + 4);
8711 }
8712 
AscSetIsaDmaChannel(PortAddr iop_base,ushort dma_channel)8713 static ushort AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel)
8714 {
8715 	ushort cfg_lsw;
8716 	uchar value;
8717 
8718 	if ((dma_channel >= 5) && (dma_channel <= 7)) {
8719 		if (dma_channel == 7)
8720 			value = 0x00;
8721 		else
8722 			value = dma_channel - 4;
8723 		cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC;
8724 		cfg_lsw |= value;
8725 		AscSetChipCfgLsw(iop_base, cfg_lsw);
8726 		return (AscGetIsaDmaChannel(iop_base));
8727 	}
8728 	return 0;
8729 }
8730 
AscGetIsaDmaSpeed(PortAddr iop_base)8731 static uchar AscGetIsaDmaSpeed(PortAddr iop_base)
8732 {
8733 	uchar speed_value;
8734 
8735 	AscSetBank(iop_base, 1);
8736 	speed_value = AscReadChipDmaSpeed(iop_base);
8737 	speed_value &= 0x07;
8738 	AscSetBank(iop_base, 0);
8739 	return speed_value;
8740 }
8741 
AscSetIsaDmaSpeed(PortAddr iop_base,uchar speed_value)8742 static uchar AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value)
8743 {
8744 	speed_value &= 0x07;
8745 	AscSetBank(iop_base, 1);
8746 	AscWriteChipDmaSpeed(iop_base, speed_value);
8747 	AscSetBank(iop_base, 0);
8748 	return AscGetIsaDmaSpeed(iop_base);
8749 }
8750 #endif /* CONFIG_ISA */
8751 
AscInitAscDvcVar(ASC_DVC_VAR * asc_dvc)8752 static void AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
8753 {
8754 	int i;
8755 	PortAddr iop_base;
8756 	uchar chip_version;
8757 
8758 	iop_base = asc_dvc->iop_base;
8759 	asc_dvc->err_code = 0;
8760 	if ((asc_dvc->bus_type &
8761 	     (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
8762 		asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
8763 	}
8764 	AscSetChipControl(iop_base, CC_HALT);
8765 	AscSetChipStatus(iop_base, 0);
8766 	asc_dvc->bug_fix_cntl = 0;
8767 	asc_dvc->pci_fix_asyn_xfer = 0;
8768 	asc_dvc->pci_fix_asyn_xfer_always = 0;
8769 	/* asc_dvc->init_state initialized in AscInitGetConfig(). */
8770 	asc_dvc->sdtr_done = 0;
8771 	asc_dvc->cur_total_qng = 0;
8772 	asc_dvc->is_in_int = false;
8773 	asc_dvc->in_critical_cnt = 0;
8774 	asc_dvc->last_q_shortage = 0;
8775 	asc_dvc->use_tagged_qng = 0;
8776 	asc_dvc->no_scam = 0;
8777 	asc_dvc->unit_not_ready = 0;
8778 	asc_dvc->queue_full_or_busy = 0;
8779 	asc_dvc->redo_scam = 0;
8780 	asc_dvc->res2 = 0;
8781 	asc_dvc->min_sdtr_index = 0;
8782 	asc_dvc->cfg->can_tagged_qng = 0;
8783 	asc_dvc->cfg->cmd_qng_enabled = 0;
8784 	asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
8785 	asc_dvc->init_sdtr = 0;
8786 	asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
8787 	asc_dvc->scsi_reset_wait = 3;
8788 	asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
8789 	asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
8790 	asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
8791 	asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
8792 	asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
8793 	chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
8794 	asc_dvc->cfg->chip_version = chip_version;
8795 	asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
8796 	asc_dvc->max_sdtr_index = 7;
8797 	if ((asc_dvc->bus_type & ASC_IS_PCI) &&
8798 	    (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
8799 		asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
8800 		asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
8801 		asc_dvc->max_sdtr_index = 15;
8802 		if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
8803 			AscSetExtraControl(iop_base,
8804 					   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
8805 		} else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
8806 			AscSetExtraControl(iop_base,
8807 					   (SEC_ACTIVE_NEGATE |
8808 					    SEC_ENABLE_FILTER));
8809 		}
8810 	}
8811 	if (asc_dvc->bus_type == ASC_IS_PCI) {
8812 		AscSetExtraControl(iop_base,
8813 				   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
8814 	}
8815 
8816 	asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED;
8817 #ifdef CONFIG_ISA
8818 	if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) {
8819 		if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) {
8820 			AscSetChipIFC(iop_base, IFC_INIT_DEFAULT);
8821 			asc_dvc->bus_type = ASC_IS_ISAPNP;
8822 		}
8823 		asc_dvc->cfg->isa_dma_channel =
8824 		    (uchar)AscGetIsaDmaChannel(iop_base);
8825 	}
8826 #endif /* CONFIG_ISA */
8827 	for (i = 0; i <= ASC_MAX_TID; i++) {
8828 		asc_dvc->cur_dvc_qng[i] = 0;
8829 		asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
8830 		asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
8831 		asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
8832 		asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
8833 	}
8834 }
8835 
AscWriteEEPCmdReg(PortAddr iop_base,uchar cmd_reg)8836 static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
8837 {
8838 	int retry;
8839 
8840 	for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
8841 		unsigned char read_back;
8842 		AscSetChipEEPCmd(iop_base, cmd_reg);
8843 		mdelay(1);
8844 		read_back = AscGetChipEEPCmd(iop_base);
8845 		if (read_back == cmd_reg)
8846 			return 1;
8847 	}
8848 	return 0;
8849 }
8850 
AscWaitEEPRead(void)8851 static void AscWaitEEPRead(void)
8852 {
8853 	mdelay(1);
8854 }
8855 
AscReadEEPWord(PortAddr iop_base,uchar addr)8856 static ushort AscReadEEPWord(PortAddr iop_base, uchar addr)
8857 {
8858 	ushort read_wval;
8859 	uchar cmd_reg;
8860 
8861 	AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
8862 	AscWaitEEPRead();
8863 	cmd_reg = addr | ASC_EEP_CMD_READ;
8864 	AscWriteEEPCmdReg(iop_base, cmd_reg);
8865 	AscWaitEEPRead();
8866 	read_wval = AscGetChipEEPData(iop_base);
8867 	AscWaitEEPRead();
8868 	return read_wval;
8869 }
8870 
AscGetEEPConfig(PortAddr iop_base,ASCEEP_CONFIG * cfg_buf,ushort bus_type)8871 static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8872 			      ushort bus_type)
8873 {
8874 	ushort wval;
8875 	ushort sum;
8876 	ushort *wbuf;
8877 	int cfg_beg;
8878 	int cfg_end;
8879 	int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
8880 	int s_addr;
8881 
8882 	wbuf = (ushort *)cfg_buf;
8883 	sum = 0;
8884 	/* Read two config words; Byte-swapping done by AscReadEEPWord(). */
8885 	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
8886 		*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
8887 		sum += *wbuf;
8888 	}
8889 	if (bus_type & ASC_IS_VL) {
8890 		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
8891 		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
8892 	} else {
8893 		cfg_beg = ASC_EEP_DVC_CFG_BEG;
8894 		cfg_end = ASC_EEP_MAX_DVC_ADDR;
8895 	}
8896 	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
8897 		wval = AscReadEEPWord(iop_base, (uchar)s_addr);
8898 		if (s_addr <= uchar_end_in_config) {
8899 			/*
8900 			 * Swap all char fields - must unswap bytes already swapped
8901 			 * by AscReadEEPWord().
8902 			 */
8903 			*wbuf = le16_to_cpu(wval);
8904 		} else {
8905 			/* Don't swap word field at the end - cntl field. */
8906 			*wbuf = wval;
8907 		}
8908 		sum += wval;	/* Checksum treats all EEPROM data as words. */
8909 	}
8910 	/*
8911 	 * Read the checksum word which will be compared against 'sum'
8912 	 * by the caller. Word field already swapped.
8913 	 */
8914 	*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
8915 	return sum;
8916 }
8917 
AscTestExternalLram(ASC_DVC_VAR * asc_dvc)8918 static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
8919 {
8920 	PortAddr iop_base;
8921 	ushort q_addr;
8922 	ushort saved_word;
8923 	int sta;
8924 
8925 	iop_base = asc_dvc->iop_base;
8926 	sta = 0;
8927 	q_addr = ASC_QNO_TO_QADDR(241);
8928 	saved_word = AscReadLramWord(iop_base, q_addr);
8929 	AscSetChipLramAddr(iop_base, q_addr);
8930 	AscSetChipLramData(iop_base, 0x55AA);
8931 	mdelay(10);
8932 	AscSetChipLramAddr(iop_base, q_addr);
8933 	if (AscGetChipLramData(iop_base) == 0x55AA) {
8934 		sta = 1;
8935 		AscWriteLramWord(iop_base, q_addr, saved_word);
8936 	}
8937 	return (sta);
8938 }
8939 
AscWaitEEPWrite(void)8940 static void AscWaitEEPWrite(void)
8941 {
8942 	mdelay(20);
8943 }
8944 
AscWriteEEPDataReg(PortAddr iop_base,ushort data_reg)8945 static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
8946 {
8947 	ushort read_back;
8948 	int retry;
8949 
8950 	retry = 0;
8951 	while (true) {
8952 		AscSetChipEEPData(iop_base, data_reg);
8953 		mdelay(1);
8954 		read_back = AscGetChipEEPData(iop_base);
8955 		if (read_back == data_reg) {
8956 			return (1);
8957 		}
8958 		if (retry++ > ASC_EEP_MAX_RETRY) {
8959 			return (0);
8960 		}
8961 	}
8962 }
8963 
AscWriteEEPWord(PortAddr iop_base,uchar addr,ushort word_val)8964 static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
8965 {
8966 	ushort read_wval;
8967 
8968 	read_wval = AscReadEEPWord(iop_base, addr);
8969 	if (read_wval != word_val) {
8970 		AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
8971 		AscWaitEEPRead();
8972 		AscWriteEEPDataReg(iop_base, word_val);
8973 		AscWaitEEPRead();
8974 		AscWriteEEPCmdReg(iop_base,
8975 				  (uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
8976 		AscWaitEEPWrite();
8977 		AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
8978 		AscWaitEEPRead();
8979 		return (AscReadEEPWord(iop_base, addr));
8980 	}
8981 	return (read_wval);
8982 }
8983 
AscSetEEPConfigOnce(PortAddr iop_base,ASCEEP_CONFIG * cfg_buf,ushort bus_type)8984 static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8985 			       ushort bus_type)
8986 {
8987 	int n_error;
8988 	ushort *wbuf;
8989 	ushort word;
8990 	ushort sum;
8991 	int s_addr;
8992 	int cfg_beg;
8993 	int cfg_end;
8994 	int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
8995 
8996 	wbuf = (ushort *)cfg_buf;
8997 	n_error = 0;
8998 	sum = 0;
8999 	/* Write two config words; AscWriteEEPWord() will swap bytes. */
9000 	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9001 		sum += *wbuf;
9002 		if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9003 			n_error++;
9004 		}
9005 	}
9006 	if (bus_type & ASC_IS_VL) {
9007 		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9008 		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9009 	} else {
9010 		cfg_beg = ASC_EEP_DVC_CFG_BEG;
9011 		cfg_end = ASC_EEP_MAX_DVC_ADDR;
9012 	}
9013 	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9014 		if (s_addr <= uchar_end_in_config) {
9015 			/*
9016 			 * This is a char field. Swap char fields before they are
9017 			 * swapped again by AscWriteEEPWord().
9018 			 */
9019 			word = cpu_to_le16(*wbuf);
9020 			if (word !=
9021 			    AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
9022 				n_error++;
9023 			}
9024 		} else {
9025 			/* Don't swap word field at the end - cntl field. */
9026 			if (*wbuf !=
9027 			    AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9028 				n_error++;
9029 			}
9030 		}
9031 		sum += *wbuf;	/* Checksum calculated from word values. */
9032 	}
9033 	/* Write checksum word. It will be swapped by AscWriteEEPWord(). */
9034 	*wbuf = sum;
9035 	if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
9036 		n_error++;
9037 	}
9038 
9039 	/* Read EEPROM back again. */
9040 	wbuf = (ushort *)cfg_buf;
9041 	/*
9042 	 * Read two config words; Byte-swapping done by AscReadEEPWord().
9043 	 */
9044 	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9045 		if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
9046 			n_error++;
9047 		}
9048 	}
9049 	if (bus_type & ASC_IS_VL) {
9050 		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9051 		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9052 	} else {
9053 		cfg_beg = ASC_EEP_DVC_CFG_BEG;
9054 		cfg_end = ASC_EEP_MAX_DVC_ADDR;
9055 	}
9056 	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9057 		if (s_addr <= uchar_end_in_config) {
9058 			/*
9059 			 * Swap all char fields. Must unswap bytes already swapped
9060 			 * by AscReadEEPWord().
9061 			 */
9062 			word =
9063 			    le16_to_cpu(AscReadEEPWord
9064 					(iop_base, (uchar)s_addr));
9065 		} else {
9066 			/* Don't swap word field at the end - cntl field. */
9067 			word = AscReadEEPWord(iop_base, (uchar)s_addr);
9068 		}
9069 		if (*wbuf != word) {
9070 			n_error++;
9071 		}
9072 	}
9073 	/* Read checksum; Byte swapping not needed. */
9074 	if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
9075 		n_error++;
9076 	}
9077 	return n_error;
9078 }
9079 
AscSetEEPConfig(PortAddr iop_base,ASCEEP_CONFIG * cfg_buf,ushort bus_type)9080 static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
9081 			   ushort bus_type)
9082 {
9083 	int retry;
9084 	int n_error;
9085 
9086 	retry = 0;
9087 	while (true) {
9088 		if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
9089 						   bus_type)) == 0) {
9090 			break;
9091 		}
9092 		if (++retry > ASC_EEP_MAX_RETRY) {
9093 			break;
9094 		}
9095 	}
9096 	return n_error;
9097 }
9098 
AscInitFromEEP(ASC_DVC_VAR * asc_dvc)9099 static int AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
9100 {
9101 	ASCEEP_CONFIG eep_config_buf;
9102 	ASCEEP_CONFIG *eep_config;
9103 	PortAddr iop_base;
9104 	ushort chksum;
9105 	ushort warn_code;
9106 	ushort cfg_msw, cfg_lsw;
9107 	int i;
9108 	int write_eep = 0;
9109 
9110 	iop_base = asc_dvc->iop_base;
9111 	warn_code = 0;
9112 	AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
9113 	AscStopQueueExe(iop_base);
9114 	if ((AscStopChip(iop_base)) ||
9115 	    (AscGetChipScsiCtrl(iop_base) != 0)) {
9116 		asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
9117 		AscResetChipAndScsiBus(asc_dvc);
9118 		mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
9119 	}
9120 	if (!AscIsChipHalted(iop_base)) {
9121 		asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
9122 		return (warn_code);
9123 	}
9124 	AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
9125 	if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
9126 		asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
9127 		return (warn_code);
9128 	}
9129 	eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
9130 	cfg_msw = AscGetChipCfgMsw(iop_base);
9131 	cfg_lsw = AscGetChipCfgLsw(iop_base);
9132 	if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9133 		cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9134 		warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9135 		AscSetChipCfgMsw(iop_base, cfg_msw);
9136 	}
9137 	chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
9138 	ASC_DBG(1, "chksum 0x%x\n", chksum);
9139 	if (chksum == 0) {
9140 		chksum = 0xaa55;
9141 	}
9142 	if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9143 		warn_code |= ASC_WARN_AUTO_CONFIG;
9144 		if (asc_dvc->cfg->chip_version == 3) {
9145 			if (eep_config->cfg_lsw != cfg_lsw) {
9146 				warn_code |= ASC_WARN_EEPROM_RECOVER;
9147 				eep_config->cfg_lsw =
9148 				    AscGetChipCfgLsw(iop_base);
9149 			}
9150 			if (eep_config->cfg_msw != cfg_msw) {
9151 				warn_code |= ASC_WARN_EEPROM_RECOVER;
9152 				eep_config->cfg_msw =
9153 				    AscGetChipCfgMsw(iop_base);
9154 			}
9155 		}
9156 	}
9157 	eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9158 	eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
9159 	ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
9160 	if (chksum != eep_config->chksum) {
9161 		if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
9162 		    ASC_CHIP_VER_PCI_ULTRA_3050) {
9163 			ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
9164 			eep_config->init_sdtr = 0xFF;
9165 			eep_config->disc_enable = 0xFF;
9166 			eep_config->start_motor = 0xFF;
9167 			eep_config->use_cmd_qng = 0;
9168 			eep_config->max_total_qng = 0xF0;
9169 			eep_config->max_tag_qng = 0x20;
9170 			eep_config->cntl = 0xBFFF;
9171 			ASC_EEP_SET_CHIP_ID(eep_config, 7);
9172 			eep_config->no_scam = 0;
9173 			eep_config->adapter_info[0] = 0;
9174 			eep_config->adapter_info[1] = 0;
9175 			eep_config->adapter_info[2] = 0;
9176 			eep_config->adapter_info[3] = 0;
9177 			eep_config->adapter_info[4] = 0;
9178 			/* Indicate EEPROM-less board. */
9179 			eep_config->adapter_info[5] = 0xBB;
9180 		} else {
9181 			ASC_PRINT
9182 			    ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
9183 			write_eep = 1;
9184 			warn_code |= ASC_WARN_EEPROM_CHKSUM;
9185 		}
9186 	}
9187 	asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
9188 	asc_dvc->cfg->disc_enable = eep_config->disc_enable;
9189 	asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
9190 	asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config);
9191 	asc_dvc->start_motor = eep_config->start_motor;
9192 	asc_dvc->dvc_cntl = eep_config->cntl;
9193 	asc_dvc->no_scam = eep_config->no_scam;
9194 	asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
9195 	asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
9196 	asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
9197 	asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
9198 	asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
9199 	asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
9200 	if (!AscTestExternalLram(asc_dvc)) {
9201 		if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
9202 		     ASC_IS_PCI_ULTRA)) {
9203 			eep_config->max_total_qng =
9204 			    ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
9205 			eep_config->max_tag_qng =
9206 			    ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
9207 		} else {
9208 			eep_config->cfg_msw |= 0x0800;
9209 			cfg_msw |= 0x0800;
9210 			AscSetChipCfgMsw(iop_base, cfg_msw);
9211 			eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
9212 			eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
9213 		}
9214 	} else {
9215 	}
9216 	if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
9217 		eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
9218 	}
9219 	if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
9220 		eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
9221 	}
9222 	if (eep_config->max_tag_qng > eep_config->max_total_qng) {
9223 		eep_config->max_tag_qng = eep_config->max_total_qng;
9224 	}
9225 	if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
9226 		eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
9227 	}
9228 	asc_dvc->max_total_qng = eep_config->max_total_qng;
9229 	if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
9230 	    eep_config->use_cmd_qng) {
9231 		eep_config->disc_enable = eep_config->use_cmd_qng;
9232 		warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9233 	}
9234 	ASC_EEP_SET_CHIP_ID(eep_config,
9235 			    ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
9236 	asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
9237 	if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
9238 	    !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
9239 		asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
9240 	}
9241 
9242 	for (i = 0; i <= ASC_MAX_TID; i++) {
9243 		asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
9244 		asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
9245 		asc_dvc->cfg->sdtr_period_offset[i] =
9246 		    (uchar)(ASC_DEF_SDTR_OFFSET |
9247 			    (asc_dvc->min_sdtr_index << 4));
9248 	}
9249 	eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
9250 	if (write_eep) {
9251 		if ((i = AscSetEEPConfig(iop_base, eep_config,
9252 				     asc_dvc->bus_type)) != 0) {
9253 			ASC_PRINT1
9254 			    ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
9255 			     i);
9256 		} else {
9257 			ASC_PRINT
9258 			    ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
9259 		}
9260 	}
9261 	return (warn_code);
9262 }
9263 
AscInitGetConfig(struct Scsi_Host * shost)9264 static int AscInitGetConfig(struct Scsi_Host *shost)
9265 {
9266 	struct asc_board *board = shost_priv(shost);
9267 	ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9268 	unsigned short warn_code = 0;
9269 
9270 	asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
9271 	if (asc_dvc->err_code != 0)
9272 		return asc_dvc->err_code;
9273 
9274 	if (AscFindSignature(asc_dvc->iop_base)) {
9275 		AscInitAscDvcVar(asc_dvc);
9276 		warn_code = AscInitFromEEP(asc_dvc);
9277 		asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
9278 		if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
9279 			asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
9280 	} else {
9281 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9282 	}
9283 
9284 	switch (warn_code) {
9285 	case 0:	/* No error */
9286 		break;
9287 	case ASC_WARN_IO_PORT_ROTATE:
9288 		shost_printk(KERN_WARNING, shost, "I/O port address "
9289 				"modified\n");
9290 		break;
9291 	case ASC_WARN_AUTO_CONFIG:
9292 		shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9293 				"enabled\n");
9294 		break;
9295 	case ASC_WARN_EEPROM_CHKSUM:
9296 		shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9297 		break;
9298 	case ASC_WARN_IRQ_MODIFIED:
9299 		shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9300 		break;
9301 	case ASC_WARN_CMD_QNG_CONFLICT:
9302 		shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
9303 				"disconnects\n");
9304 		break;
9305 	default:
9306 		shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9307 				warn_code);
9308 		break;
9309 	}
9310 
9311 	if (asc_dvc->err_code != 0)
9312 		shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9313 			"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9314 
9315 	return asc_dvc->err_code;
9316 }
9317 
AscInitSetConfig(struct pci_dev * pdev,struct Scsi_Host * shost)9318 static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
9319 {
9320 	struct asc_board *board = shost_priv(shost);
9321 	ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9322 	PortAddr iop_base = asc_dvc->iop_base;
9323 	unsigned short cfg_msw;
9324 	unsigned short warn_code = 0;
9325 
9326 	asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
9327 	if (asc_dvc->err_code != 0)
9328 		return asc_dvc->err_code;
9329 	if (!AscFindSignature(asc_dvc->iop_base)) {
9330 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9331 		return asc_dvc->err_code;
9332 	}
9333 
9334 	cfg_msw = AscGetChipCfgMsw(iop_base);
9335 	if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9336 		cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9337 		warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9338 		AscSetChipCfgMsw(iop_base, cfg_msw);
9339 	}
9340 	if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
9341 	    asc_dvc->cfg->cmd_qng_enabled) {
9342 		asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
9343 		warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9344 	}
9345 	if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9346 		warn_code |= ASC_WARN_AUTO_CONFIG;
9347 	}
9348 #ifdef CONFIG_PCI
9349 	if (asc_dvc->bus_type & ASC_IS_PCI) {
9350 		cfg_msw &= 0xFFC0;
9351 		AscSetChipCfgMsw(iop_base, cfg_msw);
9352 		if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
9353 		} else {
9354 			if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
9355 			    (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
9356 				asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
9357 				asc_dvc->bug_fix_cntl |=
9358 				    ASC_BUG_FIX_ASYN_USE_SYN;
9359 			}
9360 		}
9361 	} else
9362 #endif /* CONFIG_PCI */
9363 	if (asc_dvc->bus_type == ASC_IS_ISAPNP) {
9364 		if (AscGetChipVersion(iop_base, asc_dvc->bus_type)
9365 		    == ASC_CHIP_VER_ASYN_BUG) {
9366 			asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN;
9367 		}
9368 	}
9369 	if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
9370 	    asc_dvc->cfg->chip_scsi_id) {
9371 		asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
9372 	}
9373 #ifdef CONFIG_ISA
9374 	if (asc_dvc->bus_type & ASC_IS_ISA) {
9375 		AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel);
9376 		AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed);
9377 	}
9378 #endif /* CONFIG_ISA */
9379 
9380 	asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
9381 
9382 	switch (warn_code) {
9383 	case 0:	/* No error. */
9384 		break;
9385 	case ASC_WARN_IO_PORT_ROTATE:
9386 		shost_printk(KERN_WARNING, shost, "I/O port address "
9387 				"modified\n");
9388 		break;
9389 	case ASC_WARN_AUTO_CONFIG:
9390 		shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9391 				"enabled\n");
9392 		break;
9393 	case ASC_WARN_EEPROM_CHKSUM:
9394 		shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9395 		break;
9396 	case ASC_WARN_IRQ_MODIFIED:
9397 		shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9398 		break;
9399 	case ASC_WARN_CMD_QNG_CONFLICT:
9400 		shost_printk(KERN_WARNING, shost, "tag queuing w/o "
9401 				"disconnects\n");
9402 		break;
9403 	default:
9404 		shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9405 				warn_code);
9406 		break;
9407 	}
9408 
9409 	if (asc_dvc->err_code != 0)
9410 		shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9411 			"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9412 
9413 	return asc_dvc->err_code;
9414 }
9415 
9416 /*
9417  * EEPROM Configuration.
9418  *
9419  * All drivers should use this structure to set the default EEPROM
9420  * configuration. The BIOS now uses this structure when it is built.
9421  * Additional structure information can be found in a_condor.h where
9422  * the structure is defined.
9423  *
9424  * The *_Field_IsChar structs are needed to correct for endianness.
9425  * These values are read from the board 16 bits at a time directly
9426  * into the structs. Because some fields are char, the values will be
9427  * in the wrong order. The *_Field_IsChar tells when to flip the
9428  * bytes. Data read and written to PCI memory is automatically swapped
9429  * on big-endian platforms so char fields read as words are actually being
9430  * unswapped on big-endian platforms.
9431  */
9432 #ifdef CONFIG_PCI
9433 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = {
9434 	ADV_EEPROM_BIOS_ENABLE,	/* cfg_lsw */
9435 	0x0000,			/* cfg_msw */
9436 	0xFFFF,			/* disc_enable */
9437 	0xFFFF,			/* wdtr_able */
9438 	0xFFFF,			/* sdtr_able */
9439 	0xFFFF,			/* start_motor */
9440 	0xFFFF,			/* tagqng_able */
9441 	0xFFFF,			/* bios_scan */
9442 	0,			/* scam_tolerant */
9443 	7,			/* adapter_scsi_id */
9444 	0,			/* bios_boot_delay */
9445 	3,			/* scsi_reset_delay */
9446 	0,			/* bios_id_lun */
9447 	0,			/* termination */
9448 	0,			/* reserved1 */
9449 	0xFFE7,			/* bios_ctrl */
9450 	0xFFFF,			/* ultra_able */
9451 	0,			/* reserved2 */
9452 	ASC_DEF_MAX_HOST_QNG,	/* max_host_qng */
9453 	ASC_DEF_MAX_DVC_QNG,	/* max_dvc_qng */
9454 	0,			/* dvc_cntl */
9455 	0,			/* bug_fix */
9456 	0,			/* serial_number_word1 */
9457 	0,			/* serial_number_word2 */
9458 	0,			/* serial_number_word3 */
9459 	0,			/* check_sum */
9460 	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9461 	,			/* oem_name[16] */
9462 	0,			/* dvc_err_code */
9463 	0,			/* adv_err_code */
9464 	0,			/* adv_err_addr */
9465 	0,			/* saved_dvc_err_code */
9466 	0,			/* saved_adv_err_code */
9467 	0,			/* saved_adv_err_addr */
9468 	0			/* num_of_err */
9469 };
9470 
9471 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = {
9472 	0,			/* cfg_lsw */
9473 	0,			/* cfg_msw */
9474 	0,			/* -disc_enable */
9475 	0,			/* wdtr_able */
9476 	0,			/* sdtr_able */
9477 	0,			/* start_motor */
9478 	0,			/* tagqng_able */
9479 	0,			/* bios_scan */
9480 	0,			/* scam_tolerant */
9481 	1,			/* adapter_scsi_id */
9482 	1,			/* bios_boot_delay */
9483 	1,			/* scsi_reset_delay */
9484 	1,			/* bios_id_lun */
9485 	1,			/* termination */
9486 	1,			/* reserved1 */
9487 	0,			/* bios_ctrl */
9488 	0,			/* ultra_able */
9489 	0,			/* reserved2 */
9490 	1,			/* max_host_qng */
9491 	1,			/* max_dvc_qng */
9492 	0,			/* dvc_cntl */
9493 	0,			/* bug_fix */
9494 	0,			/* serial_number_word1 */
9495 	0,			/* serial_number_word2 */
9496 	0,			/* serial_number_word3 */
9497 	0,			/* check_sum */
9498 	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9499 	,			/* oem_name[16] */
9500 	0,			/* dvc_err_code */
9501 	0,			/* adv_err_code */
9502 	0,			/* adv_err_addr */
9503 	0,			/* saved_dvc_err_code */
9504 	0,			/* saved_adv_err_code */
9505 	0,			/* saved_adv_err_addr */
9506 	0			/* num_of_err */
9507 };
9508 
9509 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = {
9510 	ADV_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
9511 	0x0000,			/* 01 cfg_msw */
9512 	0xFFFF,			/* 02 disc_enable */
9513 	0xFFFF,			/* 03 wdtr_able */
9514 	0x4444,			/* 04 sdtr_speed1 */
9515 	0xFFFF,			/* 05 start_motor */
9516 	0xFFFF,			/* 06 tagqng_able */
9517 	0xFFFF,			/* 07 bios_scan */
9518 	0,			/* 08 scam_tolerant */
9519 	7,			/* 09 adapter_scsi_id */
9520 	0,			/*    bios_boot_delay */
9521 	3,			/* 10 scsi_reset_delay */
9522 	0,			/*    bios_id_lun */
9523 	0,			/* 11 termination_se */
9524 	0,			/*    termination_lvd */
9525 	0xFFE7,			/* 12 bios_ctrl */
9526 	0x4444,			/* 13 sdtr_speed2 */
9527 	0x4444,			/* 14 sdtr_speed3 */
9528 	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
9529 	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
9530 	0,			/* 16 dvc_cntl */
9531 	0x4444,			/* 17 sdtr_speed4 */
9532 	0,			/* 18 serial_number_word1 */
9533 	0,			/* 19 serial_number_word2 */
9534 	0,			/* 20 serial_number_word3 */
9535 	0,			/* 21 check_sum */
9536 	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9537 	,			/* 22-29 oem_name[16] */
9538 	0,			/* 30 dvc_err_code */
9539 	0,			/* 31 adv_err_code */
9540 	0,			/* 32 adv_err_addr */
9541 	0,			/* 33 saved_dvc_err_code */
9542 	0,			/* 34 saved_adv_err_code */
9543 	0,			/* 35 saved_adv_err_addr */
9544 	0,			/* 36 reserved */
9545 	0,			/* 37 reserved */
9546 	0,			/* 38 reserved */
9547 	0,			/* 39 reserved */
9548 	0,			/* 40 reserved */
9549 	0,			/* 41 reserved */
9550 	0,			/* 42 reserved */
9551 	0,			/* 43 reserved */
9552 	0,			/* 44 reserved */
9553 	0,			/* 45 reserved */
9554 	0,			/* 46 reserved */
9555 	0,			/* 47 reserved */
9556 	0,			/* 48 reserved */
9557 	0,			/* 49 reserved */
9558 	0,			/* 50 reserved */
9559 	0,			/* 51 reserved */
9560 	0,			/* 52 reserved */
9561 	0,			/* 53 reserved */
9562 	0,			/* 54 reserved */
9563 	0,			/* 55 reserved */
9564 	0,			/* 56 cisptr_lsw */
9565 	0,			/* 57 cisprt_msw */
9566 	PCI_VENDOR_ID_ASP,	/* 58 subsysvid */
9567 	PCI_DEVICE_ID_38C0800_REV1,	/* 59 subsysid */
9568 	0,			/* 60 reserved */
9569 	0,			/* 61 reserved */
9570 	0,			/* 62 reserved */
9571 	0			/* 63 reserved */
9572 };
9573 
9574 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = {
9575 	0,			/* 00 cfg_lsw */
9576 	0,			/* 01 cfg_msw */
9577 	0,			/* 02 disc_enable */
9578 	0,			/* 03 wdtr_able */
9579 	0,			/* 04 sdtr_speed1 */
9580 	0,			/* 05 start_motor */
9581 	0,			/* 06 tagqng_able */
9582 	0,			/* 07 bios_scan */
9583 	0,			/* 08 scam_tolerant */
9584 	1,			/* 09 adapter_scsi_id */
9585 	1,			/*    bios_boot_delay */
9586 	1,			/* 10 scsi_reset_delay */
9587 	1,			/*    bios_id_lun */
9588 	1,			/* 11 termination_se */
9589 	1,			/*    termination_lvd */
9590 	0,			/* 12 bios_ctrl */
9591 	0,			/* 13 sdtr_speed2 */
9592 	0,			/* 14 sdtr_speed3 */
9593 	1,			/* 15 max_host_qng */
9594 	1,			/*    max_dvc_qng */
9595 	0,			/* 16 dvc_cntl */
9596 	0,			/* 17 sdtr_speed4 */
9597 	0,			/* 18 serial_number_word1 */
9598 	0,			/* 19 serial_number_word2 */
9599 	0,			/* 20 serial_number_word3 */
9600 	0,			/* 21 check_sum */
9601 	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9602 	,			/* 22-29 oem_name[16] */
9603 	0,			/* 30 dvc_err_code */
9604 	0,			/* 31 adv_err_code */
9605 	0,			/* 32 adv_err_addr */
9606 	0,			/* 33 saved_dvc_err_code */
9607 	0,			/* 34 saved_adv_err_code */
9608 	0,			/* 35 saved_adv_err_addr */
9609 	0,			/* 36 reserved */
9610 	0,			/* 37 reserved */
9611 	0,			/* 38 reserved */
9612 	0,			/* 39 reserved */
9613 	0,			/* 40 reserved */
9614 	0,			/* 41 reserved */
9615 	0,			/* 42 reserved */
9616 	0,			/* 43 reserved */
9617 	0,			/* 44 reserved */
9618 	0,			/* 45 reserved */
9619 	0,			/* 46 reserved */
9620 	0,			/* 47 reserved */
9621 	0,			/* 48 reserved */
9622 	0,			/* 49 reserved */
9623 	0,			/* 50 reserved */
9624 	0,			/* 51 reserved */
9625 	0,			/* 52 reserved */
9626 	0,			/* 53 reserved */
9627 	0,			/* 54 reserved */
9628 	0,			/* 55 reserved */
9629 	0,			/* 56 cisptr_lsw */
9630 	0,			/* 57 cisprt_msw */
9631 	0,			/* 58 subsysvid */
9632 	0,			/* 59 subsysid */
9633 	0,			/* 60 reserved */
9634 	0,			/* 61 reserved */
9635 	0,			/* 62 reserved */
9636 	0			/* 63 reserved */
9637 };
9638 
9639 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = {
9640 	ADV_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
9641 	0x0000,			/* 01 cfg_msw */
9642 	0xFFFF,			/* 02 disc_enable */
9643 	0xFFFF,			/* 03 wdtr_able */
9644 	0x5555,			/* 04 sdtr_speed1 */
9645 	0xFFFF,			/* 05 start_motor */
9646 	0xFFFF,			/* 06 tagqng_able */
9647 	0xFFFF,			/* 07 bios_scan */
9648 	0,			/* 08 scam_tolerant */
9649 	7,			/* 09 adapter_scsi_id */
9650 	0,			/*    bios_boot_delay */
9651 	3,			/* 10 scsi_reset_delay */
9652 	0,			/*    bios_id_lun */
9653 	0,			/* 11 termination_se */
9654 	0,			/*    termination_lvd */
9655 	0xFFE7,			/* 12 bios_ctrl */
9656 	0x5555,			/* 13 sdtr_speed2 */
9657 	0x5555,			/* 14 sdtr_speed3 */
9658 	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
9659 	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
9660 	0,			/* 16 dvc_cntl */
9661 	0x5555,			/* 17 sdtr_speed4 */
9662 	0,			/* 18 serial_number_word1 */
9663 	0,			/* 19 serial_number_word2 */
9664 	0,			/* 20 serial_number_word3 */
9665 	0,			/* 21 check_sum */
9666 	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9667 	,			/* 22-29 oem_name[16] */
9668 	0,			/* 30 dvc_err_code */
9669 	0,			/* 31 adv_err_code */
9670 	0,			/* 32 adv_err_addr */
9671 	0,			/* 33 saved_dvc_err_code */
9672 	0,			/* 34 saved_adv_err_code */
9673 	0,			/* 35 saved_adv_err_addr */
9674 	0,			/* 36 reserved */
9675 	0,			/* 37 reserved */
9676 	0,			/* 38 reserved */
9677 	0,			/* 39 reserved */
9678 	0,			/* 40 reserved */
9679 	0,			/* 41 reserved */
9680 	0,			/* 42 reserved */
9681 	0,			/* 43 reserved */
9682 	0,			/* 44 reserved */
9683 	0,			/* 45 reserved */
9684 	0,			/* 46 reserved */
9685 	0,			/* 47 reserved */
9686 	0,			/* 48 reserved */
9687 	0,			/* 49 reserved */
9688 	0,			/* 50 reserved */
9689 	0,			/* 51 reserved */
9690 	0,			/* 52 reserved */
9691 	0,			/* 53 reserved */
9692 	0,			/* 54 reserved */
9693 	0,			/* 55 reserved */
9694 	0,			/* 56 cisptr_lsw */
9695 	0,			/* 57 cisprt_msw */
9696 	PCI_VENDOR_ID_ASP,	/* 58 subsysvid */
9697 	PCI_DEVICE_ID_38C1600_REV1,	/* 59 subsysid */
9698 	0,			/* 60 reserved */
9699 	0,			/* 61 reserved */
9700 	0,			/* 62 reserved */
9701 	0			/* 63 reserved */
9702 };
9703 
9704 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = {
9705 	0,			/* 00 cfg_lsw */
9706 	0,			/* 01 cfg_msw */
9707 	0,			/* 02 disc_enable */
9708 	0,			/* 03 wdtr_able */
9709 	0,			/* 04 sdtr_speed1 */
9710 	0,			/* 05 start_motor */
9711 	0,			/* 06 tagqng_able */
9712 	0,			/* 07 bios_scan */
9713 	0,			/* 08 scam_tolerant */
9714 	1,			/* 09 adapter_scsi_id */
9715 	1,			/*    bios_boot_delay */
9716 	1,			/* 10 scsi_reset_delay */
9717 	1,			/*    bios_id_lun */
9718 	1,			/* 11 termination_se */
9719 	1,			/*    termination_lvd */
9720 	0,			/* 12 bios_ctrl */
9721 	0,			/* 13 sdtr_speed2 */
9722 	0,			/* 14 sdtr_speed3 */
9723 	1,			/* 15 max_host_qng */
9724 	1,			/*    max_dvc_qng */
9725 	0,			/* 16 dvc_cntl */
9726 	0,			/* 17 sdtr_speed4 */
9727 	0,			/* 18 serial_number_word1 */
9728 	0,			/* 19 serial_number_word2 */
9729 	0,			/* 20 serial_number_word3 */
9730 	0,			/* 21 check_sum */
9731 	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9732 	,			/* 22-29 oem_name[16] */
9733 	0,			/* 30 dvc_err_code */
9734 	0,			/* 31 adv_err_code */
9735 	0,			/* 32 adv_err_addr */
9736 	0,			/* 33 saved_dvc_err_code */
9737 	0,			/* 34 saved_adv_err_code */
9738 	0,			/* 35 saved_adv_err_addr */
9739 	0,			/* 36 reserved */
9740 	0,			/* 37 reserved */
9741 	0,			/* 38 reserved */
9742 	0,			/* 39 reserved */
9743 	0,			/* 40 reserved */
9744 	0,			/* 41 reserved */
9745 	0,			/* 42 reserved */
9746 	0,			/* 43 reserved */
9747 	0,			/* 44 reserved */
9748 	0,			/* 45 reserved */
9749 	0,			/* 46 reserved */
9750 	0,			/* 47 reserved */
9751 	0,			/* 48 reserved */
9752 	0,			/* 49 reserved */
9753 	0,			/* 50 reserved */
9754 	0,			/* 51 reserved */
9755 	0,			/* 52 reserved */
9756 	0,			/* 53 reserved */
9757 	0,			/* 54 reserved */
9758 	0,			/* 55 reserved */
9759 	0,			/* 56 cisptr_lsw */
9760 	0,			/* 57 cisprt_msw */
9761 	0,			/* 58 subsysvid */
9762 	0,			/* 59 subsysid */
9763 	0,			/* 60 reserved */
9764 	0,			/* 61 reserved */
9765 	0,			/* 62 reserved */
9766 	0			/* 63 reserved */
9767 };
9768 
9769 /*
9770  * Wait for EEPROM command to complete
9771  */
AdvWaitEEPCmd(AdvPortAddr iop_base)9772 static void AdvWaitEEPCmd(AdvPortAddr iop_base)
9773 {
9774 	int eep_delay_ms;
9775 
9776 	for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
9777 		if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
9778 		    ASC_EEP_CMD_DONE) {
9779 			break;
9780 		}
9781 		mdelay(1);
9782 	}
9783 	if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
9784 	    0)
9785 		BUG();
9786 }
9787 
9788 /*
9789  * Read the EEPROM from specified location
9790  */
AdvReadEEPWord(AdvPortAddr iop_base,int eep_word_addr)9791 static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
9792 {
9793 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9794 			     ASC_EEP_CMD_READ | eep_word_addr);
9795 	AdvWaitEEPCmd(iop_base);
9796 	return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
9797 }
9798 
9799 /*
9800  * Write the EEPROM from 'cfg_buf'.
9801  */
AdvSet3550EEPConfig(AdvPortAddr iop_base,ADVEEP_3550_CONFIG * cfg_buf)9802 static void AdvSet3550EEPConfig(AdvPortAddr iop_base,
9803 				ADVEEP_3550_CONFIG *cfg_buf)
9804 {
9805 	ushort *wbuf;
9806 	ushort addr, chksum;
9807 	ushort *charfields;
9808 
9809 	wbuf = (ushort *)cfg_buf;
9810 	charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
9811 	chksum = 0;
9812 
9813 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9814 	AdvWaitEEPCmd(iop_base);
9815 
9816 	/*
9817 	 * Write EEPROM from word 0 to word 20.
9818 	 */
9819 	for (addr = ADV_EEP_DVC_CFG_BEGIN;
9820 	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9821 		ushort word;
9822 
9823 		if (*charfields++) {
9824 			word = cpu_to_le16(*wbuf);
9825 		} else {
9826 			word = *wbuf;
9827 		}
9828 		chksum += *wbuf;	/* Checksum is calculated from word values. */
9829 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9830 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9831 				     ASC_EEP_CMD_WRITE | addr);
9832 		AdvWaitEEPCmd(iop_base);
9833 		mdelay(ADV_EEP_DELAY_MS);
9834 	}
9835 
9836 	/*
9837 	 * Write EEPROM checksum at word 21.
9838 	 */
9839 	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9840 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9841 	AdvWaitEEPCmd(iop_base);
9842 	wbuf++;
9843 	charfields++;
9844 
9845 	/*
9846 	 * Write EEPROM OEM name at words 22 to 29.
9847 	 */
9848 	for (addr = ADV_EEP_DVC_CTL_BEGIN;
9849 	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9850 		ushort word;
9851 
9852 		if (*charfields++) {
9853 			word = cpu_to_le16(*wbuf);
9854 		} else {
9855 			word = *wbuf;
9856 		}
9857 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9858 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9859 				     ASC_EEP_CMD_WRITE | addr);
9860 		AdvWaitEEPCmd(iop_base);
9861 	}
9862 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9863 	AdvWaitEEPCmd(iop_base);
9864 }
9865 
9866 /*
9867  * Write the EEPROM from 'cfg_buf'.
9868  */
AdvSet38C0800EEPConfig(AdvPortAddr iop_base,ADVEEP_38C0800_CONFIG * cfg_buf)9869 static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base,
9870 				   ADVEEP_38C0800_CONFIG *cfg_buf)
9871 {
9872 	ushort *wbuf;
9873 	ushort *charfields;
9874 	ushort addr, chksum;
9875 
9876 	wbuf = (ushort *)cfg_buf;
9877 	charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
9878 	chksum = 0;
9879 
9880 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9881 	AdvWaitEEPCmd(iop_base);
9882 
9883 	/*
9884 	 * Write EEPROM from word 0 to word 20.
9885 	 */
9886 	for (addr = ADV_EEP_DVC_CFG_BEGIN;
9887 	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9888 		ushort word;
9889 
9890 		if (*charfields++) {
9891 			word = cpu_to_le16(*wbuf);
9892 		} else {
9893 			word = *wbuf;
9894 		}
9895 		chksum += *wbuf;	/* Checksum is calculated from word values. */
9896 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9897 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9898 				     ASC_EEP_CMD_WRITE | addr);
9899 		AdvWaitEEPCmd(iop_base);
9900 		mdelay(ADV_EEP_DELAY_MS);
9901 	}
9902 
9903 	/*
9904 	 * Write EEPROM checksum at word 21.
9905 	 */
9906 	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9907 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9908 	AdvWaitEEPCmd(iop_base);
9909 	wbuf++;
9910 	charfields++;
9911 
9912 	/*
9913 	 * Write EEPROM OEM name at words 22 to 29.
9914 	 */
9915 	for (addr = ADV_EEP_DVC_CTL_BEGIN;
9916 	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9917 		ushort word;
9918 
9919 		if (*charfields++) {
9920 			word = cpu_to_le16(*wbuf);
9921 		} else {
9922 			word = *wbuf;
9923 		}
9924 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9925 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9926 				     ASC_EEP_CMD_WRITE | addr);
9927 		AdvWaitEEPCmd(iop_base);
9928 	}
9929 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9930 	AdvWaitEEPCmd(iop_base);
9931 }
9932 
9933 /*
9934  * Write the EEPROM from 'cfg_buf'.
9935  */
AdvSet38C1600EEPConfig(AdvPortAddr iop_base,ADVEEP_38C1600_CONFIG * cfg_buf)9936 static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base,
9937 				   ADVEEP_38C1600_CONFIG *cfg_buf)
9938 {
9939 	ushort *wbuf;
9940 	ushort *charfields;
9941 	ushort addr, chksum;
9942 
9943 	wbuf = (ushort *)cfg_buf;
9944 	charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
9945 	chksum = 0;
9946 
9947 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9948 	AdvWaitEEPCmd(iop_base);
9949 
9950 	/*
9951 	 * Write EEPROM from word 0 to word 20.
9952 	 */
9953 	for (addr = ADV_EEP_DVC_CFG_BEGIN;
9954 	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9955 		ushort word;
9956 
9957 		if (*charfields++) {
9958 			word = cpu_to_le16(*wbuf);
9959 		} else {
9960 			word = *wbuf;
9961 		}
9962 		chksum += *wbuf;	/* Checksum is calculated from word values. */
9963 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9964 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9965 				     ASC_EEP_CMD_WRITE | addr);
9966 		AdvWaitEEPCmd(iop_base);
9967 		mdelay(ADV_EEP_DELAY_MS);
9968 	}
9969 
9970 	/*
9971 	 * Write EEPROM checksum at word 21.
9972 	 */
9973 	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9974 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9975 	AdvWaitEEPCmd(iop_base);
9976 	wbuf++;
9977 	charfields++;
9978 
9979 	/*
9980 	 * Write EEPROM OEM name at words 22 to 29.
9981 	 */
9982 	for (addr = ADV_EEP_DVC_CTL_BEGIN;
9983 	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9984 		ushort word;
9985 
9986 		if (*charfields++) {
9987 			word = cpu_to_le16(*wbuf);
9988 		} else {
9989 			word = *wbuf;
9990 		}
9991 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9992 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9993 				     ASC_EEP_CMD_WRITE | addr);
9994 		AdvWaitEEPCmd(iop_base);
9995 	}
9996 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9997 	AdvWaitEEPCmd(iop_base);
9998 }
9999 
10000 /*
10001  * Read EEPROM configuration into the specified buffer.
10002  *
10003  * Return a checksum based on the EEPROM configuration read.
10004  */
AdvGet3550EEPConfig(AdvPortAddr iop_base,ADVEEP_3550_CONFIG * cfg_buf)10005 static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base,
10006 				  ADVEEP_3550_CONFIG *cfg_buf)
10007 {
10008 	ushort wval, chksum;
10009 	ushort *wbuf;
10010 	int eep_addr;
10011 	ushort *charfields;
10012 
10013 	charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10014 	wbuf = (ushort *)cfg_buf;
10015 	chksum = 0;
10016 
10017 	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10018 	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10019 		wval = AdvReadEEPWord(iop_base, eep_addr);
10020 		chksum += wval;	/* Checksum is calculated from word values. */
10021 		if (*charfields++) {
10022 			*wbuf = le16_to_cpu(wval);
10023 		} else {
10024 			*wbuf = wval;
10025 		}
10026 	}
10027 	/* Read checksum word. */
10028 	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10029 	wbuf++;
10030 	charfields++;
10031 
10032 	/* Read rest of EEPROM not covered by the checksum. */
10033 	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10034 	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10035 		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10036 		if (*charfields++) {
10037 			*wbuf = le16_to_cpu(*wbuf);
10038 		}
10039 	}
10040 	return chksum;
10041 }
10042 
10043 /*
10044  * Read EEPROM configuration into the specified buffer.
10045  *
10046  * Return a checksum based on the EEPROM configuration read.
10047  */
AdvGet38C0800EEPConfig(AdvPortAddr iop_base,ADVEEP_38C0800_CONFIG * cfg_buf)10048 static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base,
10049 				     ADVEEP_38C0800_CONFIG *cfg_buf)
10050 {
10051 	ushort wval, chksum;
10052 	ushort *wbuf;
10053 	int eep_addr;
10054 	ushort *charfields;
10055 
10056 	charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10057 	wbuf = (ushort *)cfg_buf;
10058 	chksum = 0;
10059 
10060 	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10061 	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10062 		wval = AdvReadEEPWord(iop_base, eep_addr);
10063 		chksum += wval;	/* Checksum is calculated from word values. */
10064 		if (*charfields++) {
10065 			*wbuf = le16_to_cpu(wval);
10066 		} else {
10067 			*wbuf = wval;
10068 		}
10069 	}
10070 	/* Read checksum word. */
10071 	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10072 	wbuf++;
10073 	charfields++;
10074 
10075 	/* Read rest of EEPROM not covered by the checksum. */
10076 	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10077 	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10078 		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10079 		if (*charfields++) {
10080 			*wbuf = le16_to_cpu(*wbuf);
10081 		}
10082 	}
10083 	return chksum;
10084 }
10085 
10086 /*
10087  * Read EEPROM configuration into the specified buffer.
10088  *
10089  * Return a checksum based on the EEPROM configuration read.
10090  */
AdvGet38C1600EEPConfig(AdvPortAddr iop_base,ADVEEP_38C1600_CONFIG * cfg_buf)10091 static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base,
10092 				     ADVEEP_38C1600_CONFIG *cfg_buf)
10093 {
10094 	ushort wval, chksum;
10095 	ushort *wbuf;
10096 	int eep_addr;
10097 	ushort *charfields;
10098 
10099 	charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
10100 	wbuf = (ushort *)cfg_buf;
10101 	chksum = 0;
10102 
10103 	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10104 	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10105 		wval = AdvReadEEPWord(iop_base, eep_addr);
10106 		chksum += wval;	/* Checksum is calculated from word values. */
10107 		if (*charfields++) {
10108 			*wbuf = le16_to_cpu(wval);
10109 		} else {
10110 			*wbuf = wval;
10111 		}
10112 	}
10113 	/* Read checksum word. */
10114 	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10115 	wbuf++;
10116 	charfields++;
10117 
10118 	/* Read rest of EEPROM not covered by the checksum. */
10119 	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10120 	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10121 		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10122 		if (*charfields++) {
10123 			*wbuf = le16_to_cpu(*wbuf);
10124 		}
10125 	}
10126 	return chksum;
10127 }
10128 
10129 /*
10130  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10131  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10132  * all of this is done.
10133  *
10134  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10135  *
10136  * For a non-fatal error return a warning code. If there are no warnings
10137  * then 0 is returned.
10138  *
10139  * Note: Chip is stopped on entry.
10140  */
AdvInitFrom3550EEP(ADV_DVC_VAR * asc_dvc)10141 static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
10142 {
10143 	AdvPortAddr iop_base;
10144 	ushort warn_code;
10145 	ADVEEP_3550_CONFIG eep_config;
10146 
10147 	iop_base = asc_dvc->iop_base;
10148 
10149 	warn_code = 0;
10150 
10151 	/*
10152 	 * Read the board's EEPROM configuration.
10153 	 *
10154 	 * Set default values if a bad checksum is found.
10155 	 */
10156 	if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
10157 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
10158 
10159 		/*
10160 		 * Set EEPROM default values.
10161 		 */
10162 		memcpy(&eep_config, &Default_3550_EEPROM_Config,
10163 			sizeof(ADVEEP_3550_CONFIG));
10164 
10165 		/*
10166 		 * Assume the 6 byte board serial number that was read from
10167 		 * EEPROM is correct even if the EEPROM checksum failed.
10168 		 */
10169 		eep_config.serial_number_word3 =
10170 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10171 
10172 		eep_config.serial_number_word2 =
10173 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10174 
10175 		eep_config.serial_number_word1 =
10176 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10177 
10178 		AdvSet3550EEPConfig(iop_base, &eep_config);
10179 	}
10180 	/*
10181 	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10182 	 * EEPROM configuration that was read.
10183 	 *
10184 	 * This is the mapping of EEPROM fields to Adv Library fields.
10185 	 */
10186 	asc_dvc->wdtr_able = eep_config.wdtr_able;
10187 	asc_dvc->sdtr_able = eep_config.sdtr_able;
10188 	asc_dvc->ultra_able = eep_config.ultra_able;
10189 	asc_dvc->tagqng_able = eep_config.tagqng_able;
10190 	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10191 	asc_dvc->max_host_qng = eep_config.max_host_qng;
10192 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10193 	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10194 	asc_dvc->start_motor = eep_config.start_motor;
10195 	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10196 	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10197 	asc_dvc->no_scam = eep_config.scam_tolerant;
10198 	asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10199 	asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10200 	asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10201 
10202 	/*
10203 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
10204 	 * maximum queuing (max. 63, min. 4).
10205 	 */
10206 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10207 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10208 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10209 		/* If the value is zero, assume it is uninitialized. */
10210 		if (eep_config.max_host_qng == 0) {
10211 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10212 		} else {
10213 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10214 		}
10215 	}
10216 
10217 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10218 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10219 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10220 		/* If the value is zero, assume it is uninitialized. */
10221 		if (eep_config.max_dvc_qng == 0) {
10222 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10223 		} else {
10224 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10225 		}
10226 	}
10227 
10228 	/*
10229 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10230 	 * set 'max_dvc_qng' to 'max_host_qng'.
10231 	 */
10232 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10233 		eep_config.max_dvc_qng = eep_config.max_host_qng;
10234 	}
10235 
10236 	/*
10237 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10238 	 * values based on possibly adjusted EEPROM values.
10239 	 */
10240 	asc_dvc->max_host_qng = eep_config.max_host_qng;
10241 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10242 
10243 	/*
10244 	 * If the EEPROM 'termination' field is set to automatic (0), then set
10245 	 * the ADV_DVC_CFG 'termination' field to automatic also.
10246 	 *
10247 	 * If the termination is specified with a non-zero 'termination'
10248 	 * value check that a legal value is set and set the ADV_DVC_CFG
10249 	 * 'termination' field appropriately.
10250 	 */
10251 	if (eep_config.termination == 0) {
10252 		asc_dvc->cfg->termination = 0;	/* auto termination */
10253 	} else {
10254 		/* Enable manual control with low off / high off. */
10255 		if (eep_config.termination == 1) {
10256 			asc_dvc->cfg->termination = TERM_CTL_SEL;
10257 
10258 			/* Enable manual control with low off / high on. */
10259 		} else if (eep_config.termination == 2) {
10260 			asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
10261 
10262 			/* Enable manual control with low on / high on. */
10263 		} else if (eep_config.termination == 3) {
10264 			asc_dvc->cfg->termination =
10265 			    TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
10266 		} else {
10267 			/*
10268 			 * The EEPROM 'termination' field contains a bad value. Use
10269 			 * automatic termination instead.
10270 			 */
10271 			asc_dvc->cfg->termination = 0;
10272 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10273 		}
10274 	}
10275 
10276 	return warn_code;
10277 }
10278 
10279 /*
10280  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10281  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10282  * all of this is done.
10283  *
10284  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10285  *
10286  * For a non-fatal error return a warning code. If there are no warnings
10287  * then 0 is returned.
10288  *
10289  * Note: Chip is stopped on entry.
10290  */
AdvInitFrom38C0800EEP(ADV_DVC_VAR * asc_dvc)10291 static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
10292 {
10293 	AdvPortAddr iop_base;
10294 	ushort warn_code;
10295 	ADVEEP_38C0800_CONFIG eep_config;
10296 	uchar tid, termination;
10297 	ushort sdtr_speed = 0;
10298 
10299 	iop_base = asc_dvc->iop_base;
10300 
10301 	warn_code = 0;
10302 
10303 	/*
10304 	 * Read the board's EEPROM configuration.
10305 	 *
10306 	 * Set default values if a bad checksum is found.
10307 	 */
10308 	if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
10309 	    eep_config.check_sum) {
10310 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
10311 
10312 		/*
10313 		 * Set EEPROM default values.
10314 		 */
10315 		memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
10316 			sizeof(ADVEEP_38C0800_CONFIG));
10317 
10318 		/*
10319 		 * Assume the 6 byte board serial number that was read from
10320 		 * EEPROM is correct even if the EEPROM checksum failed.
10321 		 */
10322 		eep_config.serial_number_word3 =
10323 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10324 
10325 		eep_config.serial_number_word2 =
10326 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10327 
10328 		eep_config.serial_number_word1 =
10329 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10330 
10331 		AdvSet38C0800EEPConfig(iop_base, &eep_config);
10332 	}
10333 	/*
10334 	 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
10335 	 * EEPROM configuration that was read.
10336 	 *
10337 	 * This is the mapping of EEPROM fields to Adv Library fields.
10338 	 */
10339 	asc_dvc->wdtr_able = eep_config.wdtr_able;
10340 	asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10341 	asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10342 	asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10343 	asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10344 	asc_dvc->tagqng_able = eep_config.tagqng_able;
10345 	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10346 	asc_dvc->max_host_qng = eep_config.max_host_qng;
10347 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10348 	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10349 	asc_dvc->start_motor = eep_config.start_motor;
10350 	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10351 	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10352 	asc_dvc->no_scam = eep_config.scam_tolerant;
10353 	asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10354 	asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10355 	asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10356 
10357 	/*
10358 	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10359 	 * are set, then set an 'sdtr_able' bit for it.
10360 	 */
10361 	asc_dvc->sdtr_able = 0;
10362 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
10363 		if (tid == 0) {
10364 			sdtr_speed = asc_dvc->sdtr_speed1;
10365 		} else if (tid == 4) {
10366 			sdtr_speed = asc_dvc->sdtr_speed2;
10367 		} else if (tid == 8) {
10368 			sdtr_speed = asc_dvc->sdtr_speed3;
10369 		} else if (tid == 12) {
10370 			sdtr_speed = asc_dvc->sdtr_speed4;
10371 		}
10372 		if (sdtr_speed & ADV_MAX_TID) {
10373 			asc_dvc->sdtr_able |= (1 << tid);
10374 		}
10375 		sdtr_speed >>= 4;
10376 	}
10377 
10378 	/*
10379 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
10380 	 * maximum queuing (max. 63, min. 4).
10381 	 */
10382 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10383 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10384 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10385 		/* If the value is zero, assume it is uninitialized. */
10386 		if (eep_config.max_host_qng == 0) {
10387 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10388 		} else {
10389 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10390 		}
10391 	}
10392 
10393 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10394 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10395 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10396 		/* If the value is zero, assume it is uninitialized. */
10397 		if (eep_config.max_dvc_qng == 0) {
10398 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10399 		} else {
10400 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10401 		}
10402 	}
10403 
10404 	/*
10405 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10406 	 * set 'max_dvc_qng' to 'max_host_qng'.
10407 	 */
10408 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10409 		eep_config.max_dvc_qng = eep_config.max_host_qng;
10410 	}
10411 
10412 	/*
10413 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10414 	 * values based on possibly adjusted EEPROM values.
10415 	 */
10416 	asc_dvc->max_host_qng = eep_config.max_host_qng;
10417 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10418 
10419 	/*
10420 	 * If the EEPROM 'termination' field is set to automatic (0), then set
10421 	 * the ADV_DVC_CFG 'termination' field to automatic also.
10422 	 *
10423 	 * If the termination is specified with a non-zero 'termination'
10424 	 * value check that a legal value is set and set the ADV_DVC_CFG
10425 	 * 'termination' field appropriately.
10426 	 */
10427 	if (eep_config.termination_se == 0) {
10428 		termination = 0;	/* auto termination for SE */
10429 	} else {
10430 		/* Enable manual control with low off / high off. */
10431 		if (eep_config.termination_se == 1) {
10432 			termination = 0;
10433 
10434 			/* Enable manual control with low off / high on. */
10435 		} else if (eep_config.termination_se == 2) {
10436 			termination = TERM_SE_HI;
10437 
10438 			/* Enable manual control with low on / high on. */
10439 		} else if (eep_config.termination_se == 3) {
10440 			termination = TERM_SE;
10441 		} else {
10442 			/*
10443 			 * The EEPROM 'termination_se' field contains a bad value.
10444 			 * Use automatic termination instead.
10445 			 */
10446 			termination = 0;
10447 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10448 		}
10449 	}
10450 
10451 	if (eep_config.termination_lvd == 0) {
10452 		asc_dvc->cfg->termination = termination;	/* auto termination for LVD */
10453 	} else {
10454 		/* Enable manual control with low off / high off. */
10455 		if (eep_config.termination_lvd == 1) {
10456 			asc_dvc->cfg->termination = termination;
10457 
10458 			/* Enable manual control with low off / high on. */
10459 		} else if (eep_config.termination_lvd == 2) {
10460 			asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10461 
10462 			/* Enable manual control with low on / high on. */
10463 		} else if (eep_config.termination_lvd == 3) {
10464 			asc_dvc->cfg->termination = termination | TERM_LVD;
10465 		} else {
10466 			/*
10467 			 * The EEPROM 'termination_lvd' field contains a bad value.
10468 			 * Use automatic termination instead.
10469 			 */
10470 			asc_dvc->cfg->termination = termination;
10471 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10472 		}
10473 	}
10474 
10475 	return warn_code;
10476 }
10477 
10478 /*
10479  * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
10480  * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
10481  * all of this is done.
10482  *
10483  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
10484  *
10485  * For a non-fatal error return a warning code. If there are no warnings
10486  * then 0 is returned.
10487  *
10488  * Note: Chip is stopped on entry.
10489  */
AdvInitFrom38C1600EEP(ADV_DVC_VAR * asc_dvc)10490 static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
10491 {
10492 	AdvPortAddr iop_base;
10493 	ushort warn_code;
10494 	ADVEEP_38C1600_CONFIG eep_config;
10495 	uchar tid, termination;
10496 	ushort sdtr_speed = 0;
10497 
10498 	iop_base = asc_dvc->iop_base;
10499 
10500 	warn_code = 0;
10501 
10502 	/*
10503 	 * Read the board's EEPROM configuration.
10504 	 *
10505 	 * Set default values if a bad checksum is found.
10506 	 */
10507 	if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
10508 	    eep_config.check_sum) {
10509 		struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
10510 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
10511 
10512 		/*
10513 		 * Set EEPROM default values.
10514 		 */
10515 		memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
10516 			sizeof(ADVEEP_38C1600_CONFIG));
10517 
10518 		if (PCI_FUNC(pdev->devfn) != 0) {
10519 			u8 ints;
10520 			/*
10521 			 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
10522 			 * and old Mac system booting problem. The Expansion
10523 			 * ROM must be disabled in Function 1 for these systems
10524 			 */
10525 			eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
10526 			/*
10527 			 * Clear the INTAB (bit 11) if the GPIO 0 input
10528 			 * indicates the Function 1 interrupt line is wired
10529 			 * to INTB.
10530 			 *
10531 			 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
10532 			 *   1 - Function 1 interrupt line wired to INT A.
10533 			 *   0 - Function 1 interrupt line wired to INT B.
10534 			 *
10535 			 * Note: Function 0 is always wired to INTA.
10536 			 * Put all 5 GPIO bits in input mode and then read
10537 			 * their input values.
10538 			 */
10539 			AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
10540 			ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
10541 			if ((ints & 0x01) == 0)
10542 				eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
10543 		}
10544 
10545 		/*
10546 		 * Assume the 6 byte board serial number that was read from
10547 		 * EEPROM is correct even if the EEPROM checksum failed.
10548 		 */
10549 		eep_config.serial_number_word3 =
10550 			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10551 		eep_config.serial_number_word2 =
10552 			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10553 		eep_config.serial_number_word1 =
10554 			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10555 
10556 		AdvSet38C1600EEPConfig(iop_base, &eep_config);
10557 	}
10558 
10559 	/*
10560 	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10561 	 * EEPROM configuration that was read.
10562 	 *
10563 	 * This is the mapping of EEPROM fields to Adv Library fields.
10564 	 */
10565 	asc_dvc->wdtr_able = eep_config.wdtr_able;
10566 	asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10567 	asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10568 	asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10569 	asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10570 	asc_dvc->ppr_able = 0;
10571 	asc_dvc->tagqng_able = eep_config.tagqng_able;
10572 	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10573 	asc_dvc->max_host_qng = eep_config.max_host_qng;
10574 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10575 	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
10576 	asc_dvc->start_motor = eep_config.start_motor;
10577 	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10578 	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10579 	asc_dvc->no_scam = eep_config.scam_tolerant;
10580 
10581 	/*
10582 	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10583 	 * are set, then set an 'sdtr_able' bit for it.
10584 	 */
10585 	asc_dvc->sdtr_able = 0;
10586 	for (tid = 0; tid <= ASC_MAX_TID; tid++) {
10587 		if (tid == 0) {
10588 			sdtr_speed = asc_dvc->sdtr_speed1;
10589 		} else if (tid == 4) {
10590 			sdtr_speed = asc_dvc->sdtr_speed2;
10591 		} else if (tid == 8) {
10592 			sdtr_speed = asc_dvc->sdtr_speed3;
10593 		} else if (tid == 12) {
10594 			sdtr_speed = asc_dvc->sdtr_speed4;
10595 		}
10596 		if (sdtr_speed & ASC_MAX_TID) {
10597 			asc_dvc->sdtr_able |= (1 << tid);
10598 		}
10599 		sdtr_speed >>= 4;
10600 	}
10601 
10602 	/*
10603 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
10604 	 * maximum queuing (max. 63, min. 4).
10605 	 */
10606 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10607 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10608 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10609 		/* If the value is zero, assume it is uninitialized. */
10610 		if (eep_config.max_host_qng == 0) {
10611 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10612 		} else {
10613 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10614 		}
10615 	}
10616 
10617 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10618 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10619 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10620 		/* If the value is zero, assume it is uninitialized. */
10621 		if (eep_config.max_dvc_qng == 0) {
10622 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10623 		} else {
10624 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10625 		}
10626 	}
10627 
10628 	/*
10629 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10630 	 * set 'max_dvc_qng' to 'max_host_qng'.
10631 	 */
10632 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10633 		eep_config.max_dvc_qng = eep_config.max_host_qng;
10634 	}
10635 
10636 	/*
10637 	 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
10638 	 * values based on possibly adjusted EEPROM values.
10639 	 */
10640 	asc_dvc->max_host_qng = eep_config.max_host_qng;
10641 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10642 
10643 	/*
10644 	 * If the EEPROM 'termination' field is set to automatic (0), then set
10645 	 * the ASC_DVC_CFG 'termination' field to automatic also.
10646 	 *
10647 	 * If the termination is specified with a non-zero 'termination'
10648 	 * value check that a legal value is set and set the ASC_DVC_CFG
10649 	 * 'termination' field appropriately.
10650 	 */
10651 	if (eep_config.termination_se == 0) {
10652 		termination = 0;	/* auto termination for SE */
10653 	} else {
10654 		/* Enable manual control with low off / high off. */
10655 		if (eep_config.termination_se == 1) {
10656 			termination = 0;
10657 
10658 			/* Enable manual control with low off / high on. */
10659 		} else if (eep_config.termination_se == 2) {
10660 			termination = TERM_SE_HI;
10661 
10662 			/* Enable manual control with low on / high on. */
10663 		} else if (eep_config.termination_se == 3) {
10664 			termination = TERM_SE;
10665 		} else {
10666 			/*
10667 			 * The EEPROM 'termination_se' field contains a bad value.
10668 			 * Use automatic termination instead.
10669 			 */
10670 			termination = 0;
10671 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10672 		}
10673 	}
10674 
10675 	if (eep_config.termination_lvd == 0) {
10676 		asc_dvc->cfg->termination = termination;	/* auto termination for LVD */
10677 	} else {
10678 		/* Enable manual control with low off / high off. */
10679 		if (eep_config.termination_lvd == 1) {
10680 			asc_dvc->cfg->termination = termination;
10681 
10682 			/* Enable manual control with low off / high on. */
10683 		} else if (eep_config.termination_lvd == 2) {
10684 			asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10685 
10686 			/* Enable manual control with low on / high on. */
10687 		} else if (eep_config.termination_lvd == 3) {
10688 			asc_dvc->cfg->termination = termination | TERM_LVD;
10689 		} else {
10690 			/*
10691 			 * The EEPROM 'termination_lvd' field contains a bad value.
10692 			 * Use automatic termination instead.
10693 			 */
10694 			asc_dvc->cfg->termination = termination;
10695 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10696 		}
10697 	}
10698 
10699 	return warn_code;
10700 }
10701 
10702 /*
10703  * Initialize the ADV_DVC_VAR structure.
10704  *
10705  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10706  *
10707  * For a non-fatal error return a warning code. If there are no warnings
10708  * then 0 is returned.
10709  */
AdvInitGetConfig(struct pci_dev * pdev,struct Scsi_Host * shost)10710 static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
10711 {
10712 	struct asc_board *board = shost_priv(shost);
10713 	ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
10714 	unsigned short warn_code = 0;
10715 	AdvPortAddr iop_base = asc_dvc->iop_base;
10716 	u16 cmd;
10717 	int status;
10718 
10719 	asc_dvc->err_code = 0;
10720 
10721 	/*
10722 	 * Save the state of the PCI Configuration Command Register
10723 	 * "Parity Error Response Control" Bit. If the bit is clear (0),
10724 	 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
10725 	 * DMA parity errors.
10726 	 */
10727 	asc_dvc->cfg->control_flag = 0;
10728 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
10729 	if ((cmd & PCI_COMMAND_PARITY) == 0)
10730 		asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
10731 
10732 	asc_dvc->cfg->chip_version =
10733 	    AdvGetChipVersion(iop_base, asc_dvc->bus_type);
10734 
10735 	ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
10736 		 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
10737 		 (ushort)ADV_CHIP_ID_BYTE);
10738 
10739 	ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
10740 		 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
10741 		 (ushort)ADV_CHIP_ID_WORD);
10742 
10743 	/*
10744 	 * Reset the chip to start and allow register writes.
10745 	 */
10746 	if (AdvFindSignature(iop_base) == 0) {
10747 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10748 		return ADV_ERROR;
10749 	} else {
10750 		/*
10751 		 * The caller must set 'chip_type' to a valid setting.
10752 		 */
10753 		if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
10754 		    asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
10755 		    asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
10756 			asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
10757 			return ADV_ERROR;
10758 		}
10759 
10760 		/*
10761 		 * Reset Chip.
10762 		 */
10763 		AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
10764 				     ADV_CTRL_REG_CMD_RESET);
10765 		mdelay(100);
10766 		AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
10767 				     ADV_CTRL_REG_CMD_WR_IO_REG);
10768 
10769 		if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
10770 			status = AdvInitFrom38C1600EEP(asc_dvc);
10771 		} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
10772 			status = AdvInitFrom38C0800EEP(asc_dvc);
10773 		} else {
10774 			status = AdvInitFrom3550EEP(asc_dvc);
10775 		}
10776 		warn_code |= status;
10777 	}
10778 
10779 	if (warn_code != 0)
10780 		shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
10781 
10782 	if (asc_dvc->err_code)
10783 		shost_printk(KERN_ERR, shost, "error code 0x%x\n",
10784 				asc_dvc->err_code);
10785 
10786 	return asc_dvc->err_code;
10787 }
10788 #endif
10789 
10790 static struct scsi_host_template advansys_template = {
10791 	.proc_name = DRV_NAME,
10792 #ifdef CONFIG_PROC_FS
10793 	.show_info = advansys_show_info,
10794 #endif
10795 	.name = DRV_NAME,
10796 	.info = advansys_info,
10797 	.queuecommand = advansys_queuecommand,
10798 	.eh_host_reset_handler = advansys_reset,
10799 	.bios_param = advansys_biosparam,
10800 	.slave_configure = advansys_slave_configure,
10801 	/*
10802 	 * Because the driver may control an ISA adapter 'unchecked_isa_dma'
10803 	 * must be set. The flag will be cleared in advansys_board_found
10804 	 * for non-ISA adapters.
10805 	 */
10806 	.unchecked_isa_dma = true,
10807 };
10808 
advansys_wide_init_chip(struct Scsi_Host * shost)10809 static int advansys_wide_init_chip(struct Scsi_Host *shost)
10810 {
10811 	struct asc_board *board = shost_priv(shost);
10812 	struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
10813 	size_t sgblk_pool_size;
10814 	int warn_code, err_code;
10815 
10816 	/*
10817 	 * Allocate buffer carrier structures. The total size
10818 	 * is about 8 KB, so allocate all at once.
10819 	 */
10820 	adv_dvc->carrier = dma_alloc_coherent(board->dev,
10821 		ADV_CARRIER_BUFSIZE, &adv_dvc->carrier_addr, GFP_KERNEL);
10822 	ASC_DBG(1, "carrier 0x%p\n", adv_dvc->carrier);
10823 
10824 	if (!adv_dvc->carrier)
10825 		goto kmalloc_failed;
10826 
10827 	/*
10828 	 * Allocate up to 'max_host_qng' request structures for the Wide
10829 	 * board. The total size is about 16 KB, so allocate all at once.
10830 	 * If the allocation fails decrement and try again.
10831 	 */
10832 	board->adv_reqp_size = adv_dvc->max_host_qng * sizeof(adv_req_t);
10833 	if (board->adv_reqp_size & 0x1f) {
10834 		ASC_DBG(1, "unaligned reqp %lu bytes\n", sizeof(adv_req_t));
10835 		board->adv_reqp_size = ADV_32BALIGN(board->adv_reqp_size);
10836 	}
10837 	board->adv_reqp = dma_alloc_coherent(board->dev, board->adv_reqp_size,
10838 		&board->adv_reqp_addr, GFP_KERNEL);
10839 
10840 	if (!board->adv_reqp)
10841 		goto kmalloc_failed;
10842 
10843 	ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", board->adv_reqp,
10844 		adv_dvc->max_host_qng, board->adv_reqp_size);
10845 
10846 	/*
10847 	 * Allocate up to ADV_TOT_SG_BLOCK request structures for
10848 	 * the Wide board. Each structure is about 136 bytes.
10849 	 */
10850 	sgblk_pool_size = sizeof(adv_sgblk_t) * ADV_TOT_SG_BLOCK;
10851 	board->adv_sgblk_pool = dma_pool_create("adv_sgblk", board->dev,
10852 						sgblk_pool_size, 32, 0);
10853 
10854 	ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", ADV_TOT_SG_BLOCK,
10855 		sizeof(adv_sgblk_t), sgblk_pool_size);
10856 
10857 	if (!board->adv_sgblk_pool)
10858 		goto kmalloc_failed;
10859 
10860 	if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
10861 		ASC_DBG(2, "AdvInitAsc3550Driver()\n");
10862 		warn_code = AdvInitAsc3550Driver(adv_dvc);
10863 	} else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
10864 		ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
10865 		warn_code = AdvInitAsc38C0800Driver(adv_dvc);
10866 	} else {
10867 		ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
10868 		warn_code = AdvInitAsc38C1600Driver(adv_dvc);
10869 	}
10870 	err_code = adv_dvc->err_code;
10871 
10872 	if (warn_code || err_code) {
10873 		shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
10874 			"0x%x\n", warn_code, err_code);
10875 	}
10876 
10877 	goto exit;
10878 
10879  kmalloc_failed:
10880 	shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
10881 	err_code = ADV_ERROR;
10882  exit:
10883 	return err_code;
10884 }
10885 
advansys_wide_free_mem(struct asc_board * board)10886 static void advansys_wide_free_mem(struct asc_board *board)
10887 {
10888 	struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
10889 
10890 	if (adv_dvc->carrier) {
10891 		dma_free_coherent(board->dev, ADV_CARRIER_BUFSIZE,
10892 				  adv_dvc->carrier, adv_dvc->carrier_addr);
10893 		adv_dvc->carrier = NULL;
10894 	}
10895 	if (board->adv_reqp) {
10896 		dma_free_coherent(board->dev, board->adv_reqp_size,
10897 				  board->adv_reqp, board->adv_reqp_addr);
10898 		board->adv_reqp = NULL;
10899 	}
10900 	if (board->adv_sgblk_pool) {
10901 		dma_pool_destroy(board->adv_sgblk_pool);
10902 		board->adv_sgblk_pool = NULL;
10903 	}
10904 }
10905 
advansys_board_found(struct Scsi_Host * shost,unsigned int iop,int bus_type)10906 static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop,
10907 				int bus_type)
10908 {
10909 	struct pci_dev *pdev;
10910 	struct asc_board *boardp = shost_priv(shost);
10911 	ASC_DVC_VAR *asc_dvc_varp = NULL;
10912 	ADV_DVC_VAR *adv_dvc_varp = NULL;
10913 	int share_irq, warn_code, ret;
10914 
10915 	pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
10916 
10917 	if (ASC_NARROW_BOARD(boardp)) {
10918 		ASC_DBG(1, "narrow board\n");
10919 		asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
10920 		asc_dvc_varp->bus_type = bus_type;
10921 		asc_dvc_varp->drv_ptr = boardp;
10922 		asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
10923 		asc_dvc_varp->iop_base = iop;
10924 	} else {
10925 #ifdef CONFIG_PCI
10926 		adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
10927 		adv_dvc_varp->drv_ptr = boardp;
10928 		adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
10929 		if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
10930 			ASC_DBG(1, "wide board ASC-3550\n");
10931 			adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
10932 		} else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
10933 			ASC_DBG(1, "wide board ASC-38C0800\n");
10934 			adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
10935 		} else {
10936 			ASC_DBG(1, "wide board ASC-38C1600\n");
10937 			adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
10938 		}
10939 
10940 		boardp->asc_n_io_port = pci_resource_len(pdev, 1);
10941 		boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
10942 		if (!boardp->ioremap_addr) {
10943 			shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
10944 					"returned NULL\n",
10945 					(long)pci_resource_start(pdev, 1),
10946 					boardp->asc_n_io_port);
10947 			ret = -ENODEV;
10948 			goto err_shost;
10949 		}
10950 		adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
10951 		ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
10952 
10953 		/*
10954 		 * Even though it isn't used to access wide boards, other
10955 		 * than for the debug line below, save I/O Port address so
10956 		 * that it can be reported.
10957 		 */
10958 		boardp->ioport = iop;
10959 
10960 		ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
10961 				(ushort)inp(iop + 1), (ushort)inpw(iop));
10962 #endif /* CONFIG_PCI */
10963 	}
10964 
10965 	if (ASC_NARROW_BOARD(boardp)) {
10966 		/*
10967 		 * Set the board bus type and PCI IRQ before
10968 		 * calling AscInitGetConfig().
10969 		 */
10970 		switch (asc_dvc_varp->bus_type) {
10971 #ifdef CONFIG_ISA
10972 		case ASC_IS_ISA:
10973 			shost->unchecked_isa_dma = true;
10974 			share_irq = 0;
10975 			break;
10976 		case ASC_IS_VL:
10977 			shost->unchecked_isa_dma = false;
10978 			share_irq = 0;
10979 			break;
10980 		case ASC_IS_EISA:
10981 			shost->unchecked_isa_dma = false;
10982 			share_irq = IRQF_SHARED;
10983 			break;
10984 #endif /* CONFIG_ISA */
10985 #ifdef CONFIG_PCI
10986 		case ASC_IS_PCI:
10987 			shost->unchecked_isa_dma = false;
10988 			share_irq = IRQF_SHARED;
10989 			break;
10990 #endif /* CONFIG_PCI */
10991 		default:
10992 			shost_printk(KERN_ERR, shost, "unknown adapter type: "
10993 					"%d\n", asc_dvc_varp->bus_type);
10994 			shost->unchecked_isa_dma = false;
10995 			share_irq = 0;
10996 			break;
10997 		}
10998 
10999 		/*
11000 		 * NOTE: AscInitGetConfig() may change the board's
11001 		 * bus_type value. The bus_type value should no
11002 		 * longer be used. If the bus_type field must be
11003 		 * referenced only use the bit-wise AND operator "&".
11004 		 */
11005 		ASC_DBG(2, "AscInitGetConfig()\n");
11006 		ret = AscInitGetConfig(shost) ? -ENODEV : 0;
11007 	} else {
11008 #ifdef CONFIG_PCI
11009 		/*
11010 		 * For Wide boards set PCI information before calling
11011 		 * AdvInitGetConfig().
11012 		 */
11013 		shost->unchecked_isa_dma = false;
11014 		share_irq = IRQF_SHARED;
11015 		ASC_DBG(2, "AdvInitGetConfig()\n");
11016 
11017 		ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
11018 #else
11019 		share_irq = 0;
11020 		ret = -ENODEV;
11021 #endif /* CONFIG_PCI */
11022 	}
11023 
11024 	if (ret)
11025 		goto err_unmap;
11026 
11027 	/*
11028 	 * Save the EEPROM configuration so that it can be displayed
11029 	 * from /proc/scsi/advansys/[0...].
11030 	 */
11031 	if (ASC_NARROW_BOARD(boardp)) {
11032 
11033 		ASCEEP_CONFIG *ep;
11034 
11035 		/*
11036 		 * Set the adapter's target id bit in the 'init_tidmask' field.
11037 		 */
11038 		boardp->init_tidmask |=
11039 		    ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
11040 
11041 		/*
11042 		 * Save EEPROM settings for the board.
11043 		 */
11044 		ep = &boardp->eep_config.asc_eep;
11045 
11046 		ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
11047 		ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
11048 		ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
11049 		ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed);
11050 		ep->start_motor = asc_dvc_varp->start_motor;
11051 		ep->cntl = asc_dvc_varp->dvc_cntl;
11052 		ep->no_scam = asc_dvc_varp->no_scam;
11053 		ep->max_total_qng = asc_dvc_varp->max_total_qng;
11054 		ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
11055 		/* 'max_tag_qng' is set to the same value for every device. */
11056 		ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
11057 		ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
11058 		ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
11059 		ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
11060 		ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
11061 		ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
11062 		ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
11063 
11064 		/*
11065 		 * Modify board configuration.
11066 		 */
11067 		ASC_DBG(2, "AscInitSetConfig()\n");
11068 		ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
11069 		if (ret)
11070 			goto err_unmap;
11071 	} else {
11072 		ADVEEP_3550_CONFIG *ep_3550;
11073 		ADVEEP_38C0800_CONFIG *ep_38C0800;
11074 		ADVEEP_38C1600_CONFIG *ep_38C1600;
11075 
11076 		/*
11077 		 * Save Wide EEP Configuration Information.
11078 		 */
11079 		if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
11080 			ep_3550 = &boardp->eep_config.adv_3550_eep;
11081 
11082 			ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
11083 			ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
11084 			ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11085 			ep_3550->termination = adv_dvc_varp->cfg->termination;
11086 			ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
11087 			ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
11088 			ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
11089 			ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
11090 			ep_3550->ultra_able = adv_dvc_varp->ultra_able;
11091 			ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
11092 			ep_3550->start_motor = adv_dvc_varp->start_motor;
11093 			ep_3550->scsi_reset_delay =
11094 			    adv_dvc_varp->scsi_reset_wait;
11095 			ep_3550->serial_number_word1 =
11096 			    adv_dvc_varp->cfg->serial1;
11097 			ep_3550->serial_number_word2 =
11098 			    adv_dvc_varp->cfg->serial2;
11099 			ep_3550->serial_number_word3 =
11100 			    adv_dvc_varp->cfg->serial3;
11101 		} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
11102 			ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
11103 
11104 			ep_38C0800->adapter_scsi_id =
11105 			    adv_dvc_varp->chip_scsi_id;
11106 			ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
11107 			ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11108 			ep_38C0800->termination_lvd =
11109 			    adv_dvc_varp->cfg->termination;
11110 			ep_38C0800->disc_enable =
11111 			    adv_dvc_varp->cfg->disc_enable;
11112 			ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
11113 			ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
11114 			ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11115 			ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11116 			ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11117 			ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11118 			ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11119 			ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11120 			ep_38C0800->start_motor = adv_dvc_varp->start_motor;
11121 			ep_38C0800->scsi_reset_delay =
11122 			    adv_dvc_varp->scsi_reset_wait;
11123 			ep_38C0800->serial_number_word1 =
11124 			    adv_dvc_varp->cfg->serial1;
11125 			ep_38C0800->serial_number_word2 =
11126 			    adv_dvc_varp->cfg->serial2;
11127 			ep_38C0800->serial_number_word3 =
11128 			    adv_dvc_varp->cfg->serial3;
11129 		} else {
11130 			ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
11131 
11132 			ep_38C1600->adapter_scsi_id =
11133 			    adv_dvc_varp->chip_scsi_id;
11134 			ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
11135 			ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11136 			ep_38C1600->termination_lvd =
11137 			    adv_dvc_varp->cfg->termination;
11138 			ep_38C1600->disc_enable =
11139 			    adv_dvc_varp->cfg->disc_enable;
11140 			ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
11141 			ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
11142 			ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11143 			ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11144 			ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11145 			ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11146 			ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11147 			ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11148 			ep_38C1600->start_motor = adv_dvc_varp->start_motor;
11149 			ep_38C1600->scsi_reset_delay =
11150 			    adv_dvc_varp->scsi_reset_wait;
11151 			ep_38C1600->serial_number_word1 =
11152 			    adv_dvc_varp->cfg->serial1;
11153 			ep_38C1600->serial_number_word2 =
11154 			    adv_dvc_varp->cfg->serial2;
11155 			ep_38C1600->serial_number_word3 =
11156 			    adv_dvc_varp->cfg->serial3;
11157 		}
11158 
11159 		/*
11160 		 * Set the adapter's target id bit in the 'init_tidmask' field.
11161 		 */
11162 		boardp->init_tidmask |=
11163 		    ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
11164 	}
11165 
11166 	/*
11167 	 * Channels are numbered beginning with 0. For AdvanSys one host
11168 	 * structure supports one channel. Multi-channel boards have a
11169 	 * separate host structure for each channel.
11170 	 */
11171 	shost->max_channel = 0;
11172 	if (ASC_NARROW_BOARD(boardp)) {
11173 		shost->max_id = ASC_MAX_TID + 1;
11174 		shost->max_lun = ASC_MAX_LUN + 1;
11175 		shost->max_cmd_len = ASC_MAX_CDB_LEN;
11176 
11177 		shost->io_port = asc_dvc_varp->iop_base;
11178 		boardp->asc_n_io_port = ASC_IOADR_GAP;
11179 		shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
11180 
11181 		/* Set maximum number of queues the adapter can handle. */
11182 		shost->can_queue = asc_dvc_varp->max_total_qng;
11183 	} else {
11184 		shost->max_id = ADV_MAX_TID + 1;
11185 		shost->max_lun = ADV_MAX_LUN + 1;
11186 		shost->max_cmd_len = ADV_MAX_CDB_LEN;
11187 
11188 		/*
11189 		 * Save the I/O Port address and length even though
11190 		 * I/O ports are not used to access Wide boards.
11191 		 * Instead the Wide boards are accessed with
11192 		 * PCI Memory Mapped I/O.
11193 		 */
11194 		shost->io_port = iop;
11195 
11196 		shost->this_id = adv_dvc_varp->chip_scsi_id;
11197 
11198 		/* Set maximum number of queues the adapter can handle. */
11199 		shost->can_queue = adv_dvc_varp->max_host_qng;
11200 	}
11201 
11202 	/*
11203 	 * Set the maximum number of scatter-gather elements the
11204 	 * adapter can handle.
11205 	 */
11206 	if (ASC_NARROW_BOARD(boardp)) {
11207 		/*
11208 		 * Allow two commands with 'sg_tablesize' scatter-gather
11209 		 * elements to be executed simultaneously. This value is
11210 		 * the theoretical hardware limit. It may be decreased
11211 		 * below.
11212 		 */
11213 		shost->sg_tablesize =
11214 		    (((asc_dvc_varp->max_total_qng - 2) / 2) *
11215 		     ASC_SG_LIST_PER_Q) + 1;
11216 	} else {
11217 		shost->sg_tablesize = ADV_MAX_SG_LIST;
11218 	}
11219 
11220 	/*
11221 	 * The value of 'sg_tablesize' can not exceed the SCSI
11222 	 * mid-level driver definition of SG_ALL. SG_ALL also
11223 	 * must not be exceeded, because it is used to define the
11224 	 * size of the scatter-gather table in 'struct asc_sg_head'.
11225 	 */
11226 	if (shost->sg_tablesize > SG_ALL) {
11227 		shost->sg_tablesize = SG_ALL;
11228 	}
11229 
11230 	ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
11231 
11232 	/* BIOS start address. */
11233 	if (ASC_NARROW_BOARD(boardp)) {
11234 		shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
11235 						    asc_dvc_varp->bus_type);
11236 	} else {
11237 		/*
11238 		 * Fill-in BIOS board variables. The Wide BIOS saves
11239 		 * information in LRAM that is used by the driver.
11240 		 */
11241 		AdvReadWordLram(adv_dvc_varp->iop_base,
11242 				BIOS_SIGNATURE, boardp->bios_signature);
11243 		AdvReadWordLram(adv_dvc_varp->iop_base,
11244 				BIOS_VERSION, boardp->bios_version);
11245 		AdvReadWordLram(adv_dvc_varp->iop_base,
11246 				BIOS_CODESEG, boardp->bios_codeseg);
11247 		AdvReadWordLram(adv_dvc_varp->iop_base,
11248 				BIOS_CODELEN, boardp->bios_codelen);
11249 
11250 		ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
11251 			 boardp->bios_signature, boardp->bios_version);
11252 
11253 		ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
11254 			 boardp->bios_codeseg, boardp->bios_codelen);
11255 
11256 		/*
11257 		 * If the BIOS saved a valid signature, then fill in
11258 		 * the BIOS code segment base address.
11259 		 */
11260 		if (boardp->bios_signature == 0x55AA) {
11261 			/*
11262 			 * Convert x86 realmode code segment to a linear
11263 			 * address by shifting left 4.
11264 			 */
11265 			shost->base = ((ulong)boardp->bios_codeseg << 4);
11266 		} else {
11267 			shost->base = 0;
11268 		}
11269 	}
11270 
11271 	/*
11272 	 * Register Board Resources - I/O Port, DMA, IRQ
11273 	 */
11274 
11275 	/* Register DMA Channel for Narrow boards. */
11276 	shost->dma_channel = NO_ISA_DMA;	/* Default to no ISA DMA. */
11277 #ifdef CONFIG_ISA
11278 	if (ASC_NARROW_BOARD(boardp)) {
11279 		/* Register DMA channel for ISA bus. */
11280 		if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
11281 			shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel;
11282 			ret = request_dma(shost->dma_channel, DRV_NAME);
11283 			if (ret) {
11284 				shost_printk(KERN_ERR, shost, "request_dma() "
11285 						"%d failed %d\n",
11286 						shost->dma_channel, ret);
11287 				goto err_unmap;
11288 			}
11289 			AscEnableIsaDma(shost->dma_channel);
11290 		}
11291 	}
11292 #endif /* CONFIG_ISA */
11293 
11294 	/* Register IRQ Number. */
11295 	ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
11296 
11297 	ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
11298 			  DRV_NAME, shost);
11299 
11300 	if (ret) {
11301 		if (ret == -EBUSY) {
11302 			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11303 					"already in use\n", boardp->irq);
11304 		} else if (ret == -EINVAL) {
11305 			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11306 					"not valid\n", boardp->irq);
11307 		} else {
11308 			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11309 					"failed with %d\n", boardp->irq, ret);
11310 		}
11311 		goto err_free_dma;
11312 	}
11313 
11314 	/*
11315 	 * Initialize board RISC chip and enable interrupts.
11316 	 */
11317 	if (ASC_NARROW_BOARD(boardp)) {
11318 		ASC_DBG(2, "AscInitAsc1000Driver()\n");
11319 
11320 		asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
11321 		if (!asc_dvc_varp->overrun_buf) {
11322 			ret = -ENOMEM;
11323 			goto err_free_irq;
11324 		}
11325 		warn_code = AscInitAsc1000Driver(asc_dvc_varp);
11326 
11327 		if (warn_code || asc_dvc_varp->err_code) {
11328 			shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
11329 					"warn 0x%x, error 0x%x\n",
11330 					asc_dvc_varp->init_state, warn_code,
11331 					asc_dvc_varp->err_code);
11332 			if (!asc_dvc_varp->overrun_dma) {
11333 				ret = -ENODEV;
11334 				goto err_free_mem;
11335 			}
11336 		}
11337 	} else {
11338 		if (advansys_wide_init_chip(shost)) {
11339 			ret = -ENODEV;
11340 			goto err_free_mem;
11341 		}
11342 	}
11343 
11344 	ASC_DBG_PRT_SCSI_HOST(2, shost);
11345 
11346 	ret = scsi_add_host(shost, boardp->dev);
11347 	if (ret)
11348 		goto err_free_mem;
11349 
11350 	scsi_scan_host(shost);
11351 	return 0;
11352 
11353  err_free_mem:
11354 	if (ASC_NARROW_BOARD(boardp)) {
11355 		if (asc_dvc_varp->overrun_dma)
11356 			dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma,
11357 					 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11358 		kfree(asc_dvc_varp->overrun_buf);
11359 	} else
11360 		advansys_wide_free_mem(boardp);
11361  err_free_irq:
11362 	free_irq(boardp->irq, shost);
11363  err_free_dma:
11364 #ifdef CONFIG_ISA
11365 	if (shost->dma_channel != NO_ISA_DMA)
11366 		free_dma(shost->dma_channel);
11367 #endif
11368  err_unmap:
11369 	if (boardp->ioremap_addr)
11370 		iounmap(boardp->ioremap_addr);
11371 #ifdef CONFIG_PCI
11372  err_shost:
11373 #endif
11374 	return ret;
11375 }
11376 
11377 /*
11378  * advansys_release()
11379  *
11380  * Release resources allocated for a single AdvanSys adapter.
11381  */
advansys_release(struct Scsi_Host * shost)11382 static int advansys_release(struct Scsi_Host *shost)
11383 {
11384 	struct asc_board *board = shost_priv(shost);
11385 	ASC_DBG(1, "begin\n");
11386 	scsi_remove_host(shost);
11387 	free_irq(board->irq, shost);
11388 #ifdef CONFIG_ISA
11389 	if (shost->dma_channel != NO_ISA_DMA) {
11390 		ASC_DBG(1, "free_dma()\n");
11391 		free_dma(shost->dma_channel);
11392 	}
11393 #endif
11394 	if (ASC_NARROW_BOARD(board)) {
11395 		dma_unmap_single(board->dev,
11396 					board->dvc_var.asc_dvc_var.overrun_dma,
11397 					ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11398 		kfree(board->dvc_var.asc_dvc_var.overrun_buf);
11399 	} else {
11400 		iounmap(board->ioremap_addr);
11401 		advansys_wide_free_mem(board);
11402 	}
11403 	scsi_host_put(shost);
11404 	ASC_DBG(1, "end\n");
11405 	return 0;
11406 }
11407 
11408 #define ASC_IOADR_TABLE_MAX_IX  11
11409 
11410 static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
11411 	0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
11412 	0x0210, 0x0230, 0x0250, 0x0330
11413 };
11414 
11415 /*
11416  * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw.  It decodes as:
11417  * 00: 10
11418  * 01: 11
11419  * 10: 12
11420  * 11: 15
11421  */
advansys_isa_irq_no(PortAddr iop_base)11422 static unsigned int advansys_isa_irq_no(PortAddr iop_base)
11423 {
11424 	unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11425 	unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10;
11426 	if (chip_irq == 13)
11427 		chip_irq = 15;
11428 	return chip_irq;
11429 }
11430 
advansys_isa_probe(struct device * dev,unsigned int id)11431 static int advansys_isa_probe(struct device *dev, unsigned int id)
11432 {
11433 	int err = -ENODEV;
11434 	PortAddr iop_base = _asc_def_iop_base[id];
11435 	struct Scsi_Host *shost;
11436 	struct asc_board *board;
11437 
11438 	if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11439 		ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11440 		return -ENODEV;
11441 	}
11442 	ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11443 	if (!AscFindSignature(iop_base))
11444 		goto release_region;
11445 	if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT))
11446 		goto release_region;
11447 
11448 	err = -ENOMEM;
11449 	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11450 	if (!shost)
11451 		goto release_region;
11452 
11453 	board = shost_priv(shost);
11454 	board->irq = advansys_isa_irq_no(iop_base);
11455 	board->dev = dev;
11456 	board->shost = shost;
11457 
11458 	err = advansys_board_found(shost, iop_base, ASC_IS_ISA);
11459 	if (err)
11460 		goto free_host;
11461 
11462 	dev_set_drvdata(dev, shost);
11463 	return 0;
11464 
11465  free_host:
11466 	scsi_host_put(shost);
11467  release_region:
11468 	release_region(iop_base, ASC_IOADR_GAP);
11469 	return err;
11470 }
11471 
advansys_isa_remove(struct device * dev,unsigned int id)11472 static int advansys_isa_remove(struct device *dev, unsigned int id)
11473 {
11474 	int ioport = _asc_def_iop_base[id];
11475 	advansys_release(dev_get_drvdata(dev));
11476 	release_region(ioport, ASC_IOADR_GAP);
11477 	return 0;
11478 }
11479 
11480 static struct isa_driver advansys_isa_driver = {
11481 	.probe		= advansys_isa_probe,
11482 	.remove		= advansys_isa_remove,
11483 	.driver = {
11484 		.owner	= THIS_MODULE,
11485 		.name	= DRV_NAME,
11486 	},
11487 };
11488 
11489 /*
11490  * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw.  It decodes as:
11491  * 000: invalid
11492  * 001: 10
11493  * 010: 11
11494  * 011: 12
11495  * 100: invalid
11496  * 101: 14
11497  * 110: 15
11498  * 111: invalid
11499  */
advansys_vlb_irq_no(PortAddr iop_base)11500 static unsigned int advansys_vlb_irq_no(PortAddr iop_base)
11501 {
11502 	unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11503 	unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
11504 	if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
11505 		return 0;
11506 	return chip_irq;
11507 }
11508 
advansys_vlb_probe(struct device * dev,unsigned int id)11509 static int advansys_vlb_probe(struct device *dev, unsigned int id)
11510 {
11511 	int err = -ENODEV;
11512 	PortAddr iop_base = _asc_def_iop_base[id];
11513 	struct Scsi_Host *shost;
11514 	struct asc_board *board;
11515 
11516 	if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11517 		ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11518 		return -ENODEV;
11519 	}
11520 	ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11521 	if (!AscFindSignature(iop_base))
11522 		goto release_region;
11523 	/*
11524 	 * I don't think this condition can actually happen, but the old
11525 	 * driver did it, and the chances of finding a VLB setup in 2007
11526 	 * to do testing with is slight to none.
11527 	 */
11528 	if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
11529 		goto release_region;
11530 
11531 	err = -ENOMEM;
11532 	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11533 	if (!shost)
11534 		goto release_region;
11535 
11536 	board = shost_priv(shost);
11537 	board->irq = advansys_vlb_irq_no(iop_base);
11538 	board->dev = dev;
11539 	board->shost = shost;
11540 
11541 	err = advansys_board_found(shost, iop_base, ASC_IS_VL);
11542 	if (err)
11543 		goto free_host;
11544 
11545 	dev_set_drvdata(dev, shost);
11546 	return 0;
11547 
11548  free_host:
11549 	scsi_host_put(shost);
11550  release_region:
11551 	release_region(iop_base, ASC_IOADR_GAP);
11552 	return -ENODEV;
11553 }
11554 
11555 static struct isa_driver advansys_vlb_driver = {
11556 	.probe		= advansys_vlb_probe,
11557 	.remove		= advansys_isa_remove,
11558 	.driver = {
11559 		.owner	= THIS_MODULE,
11560 		.name	= "advansys_vlb",
11561 	},
11562 };
11563 
11564 static struct eisa_device_id advansys_eisa_table[] = {
11565 	{ "ABP7401" },
11566 	{ "ABP7501" },
11567 	{ "" }
11568 };
11569 
11570 MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
11571 
11572 /*
11573  * EISA is a little more tricky than PCI; each EISA device may have two
11574  * channels, and this driver is written to make each channel its own Scsi_Host
11575  */
11576 struct eisa_scsi_data {
11577 	struct Scsi_Host *host[2];
11578 };
11579 
11580 /*
11581  * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw.  It decodes as:
11582  * 000: 10
11583  * 001: 11
11584  * 010: 12
11585  * 011: invalid
11586  * 100: 14
11587  * 101: 15
11588  * 110: invalid
11589  * 111: invalid
11590  */
advansys_eisa_irq_no(struct eisa_device * edev)11591 static unsigned int advansys_eisa_irq_no(struct eisa_device *edev)
11592 {
11593 	unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
11594 	unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
11595 	if ((chip_irq == 13) || (chip_irq > 15))
11596 		return 0;
11597 	return chip_irq;
11598 }
11599 
advansys_eisa_probe(struct device * dev)11600 static int advansys_eisa_probe(struct device *dev)
11601 {
11602 	int i, ioport, irq = 0;
11603 	int err;
11604 	struct eisa_device *edev = to_eisa_device(dev);
11605 	struct eisa_scsi_data *data;
11606 
11607 	err = -ENOMEM;
11608 	data = kzalloc(sizeof(*data), GFP_KERNEL);
11609 	if (!data)
11610 		goto fail;
11611 	ioport = edev->base_addr + 0xc30;
11612 
11613 	err = -ENODEV;
11614 	for (i = 0; i < 2; i++, ioport += 0x20) {
11615 		struct asc_board *board;
11616 		struct Scsi_Host *shost;
11617 		if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
11618 			printk(KERN_WARNING "Region %x-%x busy\n", ioport,
11619 			       ioport + ASC_IOADR_GAP - 1);
11620 			continue;
11621 		}
11622 		if (!AscFindSignature(ioport)) {
11623 			release_region(ioport, ASC_IOADR_GAP);
11624 			continue;
11625 		}
11626 
11627 		/*
11628 		 * I don't know why we need to do this for EISA chips, but
11629 		 * not for any others.  It looks to be equivalent to
11630 		 * AscGetChipCfgMsw, but I may have overlooked something,
11631 		 * so I'm not converting it until I get an EISA board to
11632 		 * test with.
11633 		 */
11634 		inw(ioport + 4);
11635 
11636 		if (!irq)
11637 			irq = advansys_eisa_irq_no(edev);
11638 
11639 		err = -ENOMEM;
11640 		shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11641 		if (!shost)
11642 			goto release_region;
11643 
11644 		board = shost_priv(shost);
11645 		board->irq = irq;
11646 		board->dev = dev;
11647 		board->shost = shost;
11648 
11649 		err = advansys_board_found(shost, ioport, ASC_IS_EISA);
11650 		if (!err) {
11651 			data->host[i] = shost;
11652 			continue;
11653 		}
11654 
11655 		scsi_host_put(shost);
11656  release_region:
11657 		release_region(ioport, ASC_IOADR_GAP);
11658 		break;
11659 	}
11660 
11661 	if (err)
11662 		goto free_data;
11663 	dev_set_drvdata(dev, data);
11664 	return 0;
11665 
11666  free_data:
11667 	kfree(data->host[0]);
11668 	kfree(data->host[1]);
11669 	kfree(data);
11670  fail:
11671 	return err;
11672 }
11673 
advansys_eisa_remove(struct device * dev)11674 static int advansys_eisa_remove(struct device *dev)
11675 {
11676 	int i;
11677 	struct eisa_scsi_data *data = dev_get_drvdata(dev);
11678 
11679 	for (i = 0; i < 2; i++) {
11680 		int ioport;
11681 		struct Scsi_Host *shost = data->host[i];
11682 		if (!shost)
11683 			continue;
11684 		ioport = shost->io_port;
11685 		advansys_release(shost);
11686 		release_region(ioport, ASC_IOADR_GAP);
11687 	}
11688 
11689 	kfree(data);
11690 	return 0;
11691 }
11692 
11693 static struct eisa_driver advansys_eisa_driver = {
11694 	.id_table =		advansys_eisa_table,
11695 	.driver = {
11696 		.name =		DRV_NAME,
11697 		.probe =	advansys_eisa_probe,
11698 		.remove =	advansys_eisa_remove,
11699 	}
11700 };
11701 
11702 /* PCI Devices supported by this driver */
11703 static struct pci_device_id advansys_pci_tbl[] = {
11704 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
11705 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11706 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
11707 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11708 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
11709 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11710 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
11711 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11712 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
11713 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11714 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
11715 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11716 	{}
11717 };
11718 
11719 MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
11720 
advansys_set_latency(struct pci_dev * pdev)11721 static void advansys_set_latency(struct pci_dev *pdev)
11722 {
11723 	if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
11724 	    (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
11725 		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
11726 	} else {
11727 		u8 latency;
11728 		pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
11729 		if (latency < 0x20)
11730 			pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
11731 	}
11732 }
11733 
advansys_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)11734 static int advansys_pci_probe(struct pci_dev *pdev,
11735 			      const struct pci_device_id *ent)
11736 {
11737 	int err, ioport;
11738 	struct Scsi_Host *shost;
11739 	struct asc_board *board;
11740 
11741 	err = pci_enable_device(pdev);
11742 	if (err)
11743 		goto fail;
11744 	err = pci_request_regions(pdev, DRV_NAME);
11745 	if (err)
11746 		goto disable_device;
11747 	pci_set_master(pdev);
11748 	advansys_set_latency(pdev);
11749 
11750 	err = -ENODEV;
11751 	if (pci_resource_len(pdev, 0) == 0)
11752 		goto release_region;
11753 
11754 	ioport = pci_resource_start(pdev, 0);
11755 
11756 	err = -ENOMEM;
11757 	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11758 	if (!shost)
11759 		goto release_region;
11760 
11761 	board = shost_priv(shost);
11762 	board->irq = pdev->irq;
11763 	board->dev = &pdev->dev;
11764 	board->shost = shost;
11765 
11766 	if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
11767 	    pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
11768 	    pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
11769 		board->flags |= ASC_IS_WIDE_BOARD;
11770 	}
11771 
11772 	err = advansys_board_found(shost, ioport, ASC_IS_PCI);
11773 	if (err)
11774 		goto free_host;
11775 
11776 	pci_set_drvdata(pdev, shost);
11777 	return 0;
11778 
11779  free_host:
11780 	scsi_host_put(shost);
11781  release_region:
11782 	pci_release_regions(pdev);
11783  disable_device:
11784 	pci_disable_device(pdev);
11785  fail:
11786 	return err;
11787 }
11788 
advansys_pci_remove(struct pci_dev * pdev)11789 static void advansys_pci_remove(struct pci_dev *pdev)
11790 {
11791 	advansys_release(pci_get_drvdata(pdev));
11792 	pci_release_regions(pdev);
11793 	pci_disable_device(pdev);
11794 }
11795 
11796 static struct pci_driver advansys_pci_driver = {
11797 	.name =		DRV_NAME,
11798 	.id_table =	advansys_pci_tbl,
11799 	.probe =	advansys_pci_probe,
11800 	.remove =	advansys_pci_remove,
11801 };
11802 
advansys_init(void)11803 static int __init advansys_init(void)
11804 {
11805 	int error;
11806 
11807 	error = isa_register_driver(&advansys_isa_driver,
11808 				    ASC_IOADR_TABLE_MAX_IX);
11809 	if (error)
11810 		goto fail;
11811 
11812 	error = isa_register_driver(&advansys_vlb_driver,
11813 				    ASC_IOADR_TABLE_MAX_IX);
11814 	if (error)
11815 		goto unregister_isa;
11816 
11817 	error = eisa_driver_register(&advansys_eisa_driver);
11818 	if (error)
11819 		goto unregister_vlb;
11820 
11821 	error = pci_register_driver(&advansys_pci_driver);
11822 	if (error)
11823 		goto unregister_eisa;
11824 
11825 	return 0;
11826 
11827  unregister_eisa:
11828 	eisa_driver_unregister(&advansys_eisa_driver);
11829  unregister_vlb:
11830 	isa_unregister_driver(&advansys_vlb_driver);
11831  unregister_isa:
11832 	isa_unregister_driver(&advansys_isa_driver);
11833  fail:
11834 	return error;
11835 }
11836 
advansys_exit(void)11837 static void __exit advansys_exit(void)
11838 {
11839 	pci_unregister_driver(&advansys_pci_driver);
11840 	eisa_driver_unregister(&advansys_eisa_driver);
11841 	isa_unregister_driver(&advansys_vlb_driver);
11842 	isa_unregister_driver(&advansys_isa_driver);
11843 }
11844 
11845 module_init(advansys_init);
11846 module_exit(advansys_exit);
11847 
11848 MODULE_LICENSE("GPL");
11849 MODULE_FIRMWARE("advansys/mcode.bin");
11850 MODULE_FIRMWARE("advansys/3550.bin");
11851 MODULE_FIRMWARE("advansys/38C0800.bin");
11852 MODULE_FIRMWARE("advansys/38C1600.bin");
11853