• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2007 Intel Corporation. All rights reserved.
4  * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
5  * Copyright(c) 2008 Mike Christie
6  *
7  * Maintained at www.Open-FCoE.org
8  */
9 
10 /*
11  * Fibre Channel exchange and sequence handling.
12  */
13 
14 #include <linux/timer.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/export.h>
18 #include <linux/log2.h>
19 
20 #include <scsi/fc/fc_fc2.h>
21 
22 #include <scsi/libfc.h>
23 #include <scsi/fc_encode.h>
24 
25 #include "fc_libfc.h"
26 
27 u16	fc_cpu_mask;		/* cpu mask for possible cpus */
28 EXPORT_SYMBOL(fc_cpu_mask);
29 static u16	fc_cpu_order;	/* 2's power to represent total possible cpus */
30 static struct kmem_cache *fc_em_cachep;	       /* cache for exchanges */
31 static struct workqueue_struct *fc_exch_workqueue;
32 
33 /*
34  * Structure and function definitions for managing Fibre Channel Exchanges
35  * and Sequences.
36  *
37  * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
38  *
39  * fc_exch_mgr holds the exchange state for an N port
40  *
41  * fc_exch holds state for one exchange and links to its active sequence.
42  *
43  * fc_seq holds the state for an individual sequence.
44  */
45 
46 /**
47  * struct fc_exch_pool - Per cpu exchange pool
48  * @next_index:	  Next possible free exchange index
49  * @total_exches: Total allocated exchanges
50  * @lock:	  Exch pool lock
51  * @ex_list:	  List of exchanges
52  * @left:	  Cache of free slot in exch array
53  * @right:	  Cache of free slot in exch array
54  *
55  * This structure manages per cpu exchanges in array of exchange pointers.
56  * This array is allocated followed by struct fc_exch_pool memory for
57  * assigned range of exchanges to per cpu pool.
58  */
59 struct fc_exch_pool {
60 	spinlock_t	 lock;
61 	struct list_head ex_list;
62 	u16		 next_index;
63 	u16		 total_exches;
64 
65 	u16		 left;
66 	u16		 right;
67 } ____cacheline_aligned_in_smp;
68 
69 /**
70  * struct fc_exch_mgr - The Exchange Manager (EM).
71  * @class:	    Default class for new sequences
72  * @kref:	    Reference counter
73  * @min_xid:	    Minimum exchange ID
74  * @max_xid:	    Maximum exchange ID
75  * @ep_pool:	    Reserved exchange pointers
76  * @pool_max_index: Max exch array index in exch pool
77  * @pool:	    Per cpu exch pool
78  * @lport:	    Local exchange port
79  * @stats:	    Statistics structure
80  *
81  * This structure is the center for creating exchanges and sequences.
82  * It manages the allocation of exchange IDs.
83  */
84 struct fc_exch_mgr {
85 	struct fc_exch_pool __percpu *pool;
86 	mempool_t	*ep_pool;
87 	struct fc_lport	*lport;
88 	enum fc_class	class;
89 	struct kref	kref;
90 	u16		min_xid;
91 	u16		max_xid;
92 	u16		pool_max_index;
93 
94 	struct {
95 		atomic_t no_free_exch;
96 		atomic_t no_free_exch_xid;
97 		atomic_t xid_not_found;
98 		atomic_t xid_busy;
99 		atomic_t seq_not_found;
100 		atomic_t non_bls_resp;
101 	} stats;
102 };
103 
104 /**
105  * struct fc_exch_mgr_anchor - primary structure for list of EMs
106  * @ema_list: Exchange Manager Anchor list
107  * @mp:	      Exchange Manager associated with this anchor
108  * @match:    Routine to determine if this anchor's EM should be used
109  *
110  * When walking the list of anchors the match routine will be called
111  * for each anchor to determine if that EM should be used. The last
112  * anchor in the list will always match to handle any exchanges not
113  * handled by other EMs. The non-default EMs would be added to the
114  * anchor list by HW that provides offloads.
115  */
116 struct fc_exch_mgr_anchor {
117 	struct list_head ema_list;
118 	struct fc_exch_mgr *mp;
119 	bool (*match)(struct fc_frame *);
120 };
121 
122 static void fc_exch_rrq(struct fc_exch *);
123 static void fc_seq_ls_acc(struct fc_frame *);
124 static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
125 			  enum fc_els_rjt_explan);
126 static void fc_exch_els_rec(struct fc_frame *);
127 static void fc_exch_els_rrq(struct fc_frame *);
128 
129 /*
130  * Internal implementation notes.
131  *
132  * The exchange manager is one by default in libfc but LLD may choose
133  * to have one per CPU. The sequence manager is one per exchange manager
134  * and currently never separated.
135  *
136  * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
137  * assigned by the Sequence Initiator that shall be unique for a specific
138  * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
139  * qualified by exchange ID, which one might think it would be.
140  * In practice this limits the number of open sequences and exchanges to 256
141  * per session.	 For most targets we could treat this limit as per exchange.
142  *
143  * The exchange and its sequence are freed when the last sequence is received.
144  * It's possible for the remote port to leave an exchange open without
145  * sending any sequences.
146  *
147  * Notes on reference counts:
148  *
149  * Exchanges are reference counted and exchange gets freed when the reference
150  * count becomes zero.
151  *
152  * Timeouts:
153  * Sequences are timed out for E_D_TOV and R_A_TOV.
154  *
155  * Sequence event handling:
156  *
157  * The following events may occur on initiator sequences:
158  *
159  *	Send.
160  *	    For now, the whole thing is sent.
161  *	Receive ACK
162  *	    This applies only to class F.
163  *	    The sequence is marked complete.
164  *	ULP completion.
165  *	    The upper layer calls fc_exch_done() when done
166  *	    with exchange and sequence tuple.
167  *	RX-inferred completion.
168  *	    When we receive the next sequence on the same exchange, we can
169  *	    retire the previous sequence ID.  (XXX not implemented).
170  *	Timeout.
171  *	    R_A_TOV frees the sequence ID.  If we're waiting for ACK,
172  *	    E_D_TOV causes abort and calls upper layer response handler
173  *	    with FC_EX_TIMEOUT error.
174  *	Receive RJT
175  *	    XXX defer.
176  *	Send ABTS
177  *	    On timeout.
178  *
179  * The following events may occur on recipient sequences:
180  *
181  *	Receive
182  *	    Allocate sequence for first frame received.
183  *	    Hold during receive handler.
184  *	    Release when final frame received.
185  *	    Keep status of last N of these for the ELS RES command.  XXX TBD.
186  *	Receive ABTS
187  *	    Deallocate sequence
188  *	Send RJT
189  *	    Deallocate
190  *
191  * For now, we neglect conditions where only part of a sequence was
192  * received or transmitted, or where out-of-order receipt is detected.
193  */
194 
195 /*
196  * Locking notes:
197  *
198  * The EM code run in a per-CPU worker thread.
199  *
200  * To protect against concurrency between a worker thread code and timers,
201  * sequence allocation and deallocation must be locked.
202  *  - exchange refcnt can be done atomicly without locks.
203  *  - sequence allocation must be locked by exch lock.
204  *  - If the EM pool lock and ex_lock must be taken at the same time, then the
205  *    EM pool lock must be taken before the ex_lock.
206  */
207 
208 /*
209  * opcode names for debugging.
210  */
211 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
212 
213 /**
214  * fc_exch_name_lookup() - Lookup name by opcode
215  * @op:	       Opcode to be looked up
216  * @table:     Opcode/name table
217  * @max_index: Index not to be exceeded
218  *
219  * This routine is used to determine a human-readable string identifying
220  * a R_CTL opcode.
221  */
fc_exch_name_lookup(unsigned int op,char ** table,unsigned int max_index)222 static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
223 					      unsigned int max_index)
224 {
225 	const char *name = NULL;
226 
227 	if (op < max_index)
228 		name = table[op];
229 	if (!name)
230 		name = "unknown";
231 	return name;
232 }
233 
234 /**
235  * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
236  * @op: The opcode to be looked up
237  */
fc_exch_rctl_name(unsigned int op)238 static const char *fc_exch_rctl_name(unsigned int op)
239 {
240 	return fc_exch_name_lookup(op, fc_exch_rctl_names,
241 				   ARRAY_SIZE(fc_exch_rctl_names));
242 }
243 
244 /**
245  * fc_exch_hold() - Increment an exchange's reference count
246  * @ep: Echange to be held
247  */
fc_exch_hold(struct fc_exch * ep)248 static inline void fc_exch_hold(struct fc_exch *ep)
249 {
250 	atomic_inc(&ep->ex_refcnt);
251 }
252 
253 /**
254  * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
255  *			 and determine SOF and EOF.
256  * @ep:	   The exchange to that will use the header
257  * @fp:	   The frame whose header is to be modified
258  * @f_ctl: F_CTL bits that will be used for the frame header
259  *
260  * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
261  * fh_seq_id, fh_seq_cnt and the SOF and EOF.
262  */
fc_exch_setup_hdr(struct fc_exch * ep,struct fc_frame * fp,u32 f_ctl)263 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
264 			      u32 f_ctl)
265 {
266 	struct fc_frame_header *fh = fc_frame_header_get(fp);
267 	u16 fill;
268 
269 	fr_sof(fp) = ep->class;
270 	if (ep->seq.cnt)
271 		fr_sof(fp) = fc_sof_normal(ep->class);
272 
273 	if (f_ctl & FC_FC_END_SEQ) {
274 		fr_eof(fp) = FC_EOF_T;
275 		if (fc_sof_needs_ack(ep->class))
276 			fr_eof(fp) = FC_EOF_N;
277 		/*
278 		 * From F_CTL.
279 		 * The number of fill bytes to make the length a 4-byte
280 		 * multiple is the low order 2-bits of the f_ctl.
281 		 * The fill itself will have been cleared by the frame
282 		 * allocation.
283 		 * After this, the length will be even, as expected by
284 		 * the transport.
285 		 */
286 		fill = fr_len(fp) & 3;
287 		if (fill) {
288 			fill = 4 - fill;
289 			/* TODO, this may be a problem with fragmented skb */
290 			skb_put(fp_skb(fp), fill);
291 			hton24(fh->fh_f_ctl, f_ctl | fill);
292 		}
293 	} else {
294 		WARN_ON(fr_len(fp) % 4 != 0);	/* no pad to non last frame */
295 		fr_eof(fp) = FC_EOF_N;
296 	}
297 
298 	/* Initialize remaining fh fields from fc_fill_fc_hdr */
299 	fh->fh_ox_id = htons(ep->oxid);
300 	fh->fh_rx_id = htons(ep->rxid);
301 	fh->fh_seq_id = ep->seq.id;
302 	fh->fh_seq_cnt = htons(ep->seq.cnt);
303 }
304 
305 /**
306  * fc_exch_release() - Decrement an exchange's reference count
307  * @ep: Exchange to be released
308  *
309  * If the reference count reaches zero and the exchange is complete,
310  * it is freed.
311  */
fc_exch_release(struct fc_exch * ep)312 static void fc_exch_release(struct fc_exch *ep)
313 {
314 	struct fc_exch_mgr *mp;
315 
316 	if (atomic_dec_and_test(&ep->ex_refcnt)) {
317 		mp = ep->em;
318 		if (ep->destructor)
319 			ep->destructor(&ep->seq, ep->arg);
320 		WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
321 		mempool_free(ep, mp->ep_pool);
322 	}
323 }
324 
325 /**
326  * fc_exch_timer_cancel() - cancel exch timer
327  * @ep:		The exchange whose timer to be canceled
328  */
fc_exch_timer_cancel(struct fc_exch * ep)329 static inline void fc_exch_timer_cancel(struct fc_exch *ep)
330 {
331 	if (cancel_delayed_work(&ep->timeout_work)) {
332 		FC_EXCH_DBG(ep, "Exchange timer canceled\n");
333 		atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
334 	}
335 }
336 
337 /**
338  * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
339  *				the exchange lock held
340  * @ep:		The exchange whose timer will start
341  * @timer_msec: The timeout period
342  *
343  * Used for upper level protocols to time out the exchange.
344  * The timer is cancelled when it fires or when the exchange completes.
345  */
fc_exch_timer_set_locked(struct fc_exch * ep,unsigned int timer_msec)346 static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
347 					    unsigned int timer_msec)
348 {
349 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
350 		return;
351 
352 	FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);
353 
354 	fc_exch_hold(ep);		/* hold for timer */
355 	if (!queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
356 				msecs_to_jiffies(timer_msec))) {
357 		FC_EXCH_DBG(ep, "Exchange already queued\n");
358 		fc_exch_release(ep);
359 	}
360 }
361 
362 /**
363  * fc_exch_timer_set() - Lock the exchange and set the timer
364  * @ep:		The exchange whose timer will start
365  * @timer_msec: The timeout period
366  */
fc_exch_timer_set(struct fc_exch * ep,unsigned int timer_msec)367 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
368 {
369 	spin_lock_bh(&ep->ex_lock);
370 	fc_exch_timer_set_locked(ep, timer_msec);
371 	spin_unlock_bh(&ep->ex_lock);
372 }
373 
374 /**
375  * fc_exch_done_locked() - Complete an exchange with the exchange lock held
376  * @ep: The exchange that is complete
377  *
378  * Note: May sleep if invoked from outside a response handler.
379  */
fc_exch_done_locked(struct fc_exch * ep)380 static int fc_exch_done_locked(struct fc_exch *ep)
381 {
382 	int rc = 1;
383 
384 	/*
385 	 * We must check for completion in case there are two threads
386 	 * tyring to complete this. But the rrq code will reuse the
387 	 * ep, and in that case we only clear the resp and set it as
388 	 * complete, so it can be reused by the timer to send the rrq.
389 	 */
390 	if (ep->state & FC_EX_DONE)
391 		return rc;
392 	ep->esb_stat |= ESB_ST_COMPLETE;
393 
394 	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
395 		ep->state |= FC_EX_DONE;
396 		fc_exch_timer_cancel(ep);
397 		rc = 0;
398 	}
399 	return rc;
400 }
401 
402 static struct fc_exch fc_quarantine_exch;
403 
404 /**
405  * fc_exch_ptr_get() - Return an exchange from an exchange pool
406  * @pool:  Exchange Pool to get an exchange from
407  * @index: Index of the exchange within the pool
408  *
409  * Use the index to get an exchange from within an exchange pool. exches
410  * will point to an array of exchange pointers. The index will select
411  * the exchange within the array.
412  */
fc_exch_ptr_get(struct fc_exch_pool * pool,u16 index)413 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
414 					      u16 index)
415 {
416 	struct fc_exch **exches = (struct fc_exch **)(pool + 1);
417 	return exches[index];
418 }
419 
420 /**
421  * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
422  * @pool:  The pool to assign the exchange to
423  * @index: The index in the pool where the exchange will be assigned
424  * @ep:	   The exchange to assign to the pool
425  */
fc_exch_ptr_set(struct fc_exch_pool * pool,u16 index,struct fc_exch * ep)426 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
427 				   struct fc_exch *ep)
428 {
429 	((struct fc_exch **)(pool + 1))[index] = ep;
430 }
431 
432 /**
433  * fc_exch_delete() - Delete an exchange
434  * @ep: The exchange to be deleted
435  */
fc_exch_delete(struct fc_exch * ep)436 static void fc_exch_delete(struct fc_exch *ep)
437 {
438 	struct fc_exch_pool *pool;
439 	u16 index;
440 
441 	pool = ep->pool;
442 	spin_lock_bh(&pool->lock);
443 	WARN_ON(pool->total_exches <= 0);
444 	pool->total_exches--;
445 
446 	/* update cache of free slot */
447 	index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
448 	if (!(ep->state & FC_EX_QUARANTINE)) {
449 		if (pool->left == FC_XID_UNKNOWN)
450 			pool->left = index;
451 		else if (pool->right == FC_XID_UNKNOWN)
452 			pool->right = index;
453 		else
454 			pool->next_index = index;
455 		fc_exch_ptr_set(pool, index, NULL);
456 	} else {
457 		fc_exch_ptr_set(pool, index, &fc_quarantine_exch);
458 	}
459 	list_del(&ep->ex_list);
460 	spin_unlock_bh(&pool->lock);
461 	fc_exch_release(ep);	/* drop hold for exch in mp */
462 }
463 
fc_seq_send_locked(struct fc_lport * lport,struct fc_seq * sp,struct fc_frame * fp)464 static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp,
465 			      struct fc_frame *fp)
466 {
467 	struct fc_exch *ep;
468 	struct fc_frame_header *fh = fc_frame_header_get(fp);
469 	int error = -ENXIO;
470 	u32 f_ctl;
471 	u8 fh_type = fh->fh_type;
472 
473 	ep = fc_seq_exch(sp);
474 
475 	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL)) {
476 		fc_frame_free(fp);
477 		goto out;
478 	}
479 
480 	WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT));
481 
482 	f_ctl = ntoh24(fh->fh_f_ctl);
483 	fc_exch_setup_hdr(ep, fp, f_ctl);
484 	fr_encaps(fp) = ep->encaps;
485 
486 	/*
487 	 * update sequence count if this frame is carrying
488 	 * multiple FC frames when sequence offload is enabled
489 	 * by LLD.
490 	 */
491 	if (fr_max_payload(fp))
492 		sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
493 					fr_max_payload(fp));
494 	else
495 		sp->cnt++;
496 
497 	/*
498 	 * Send the frame.
499 	 */
500 	error = lport->tt.frame_send(lport, fp);
501 
502 	if (fh_type == FC_TYPE_BLS)
503 		goto out;
504 
505 	/*
506 	 * Update the exchange and sequence flags,
507 	 * assuming all frames for the sequence have been sent.
508 	 * We can only be called to send once for each sequence.
509 	 */
510 	ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;	/* not first seq */
511 	if (f_ctl & FC_FC_SEQ_INIT)
512 		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
513 out:
514 	return error;
515 }
516 
517 /**
518  * fc_seq_send() - Send a frame using existing sequence/exchange pair
519  * @lport: The local port that the exchange will be sent on
520  * @sp:	   The sequence to be sent
521  * @fp:	   The frame to be sent on the exchange
522  *
523  * Note: The frame will be freed either by a direct call to fc_frame_free(fp)
524  * or indirectly by calling libfc_function_template.frame_send().
525  */
fc_seq_send(struct fc_lport * lport,struct fc_seq * sp,struct fc_frame * fp)526 int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp, struct fc_frame *fp)
527 {
528 	struct fc_exch *ep;
529 	int error;
530 	ep = fc_seq_exch(sp);
531 	spin_lock_bh(&ep->ex_lock);
532 	error = fc_seq_send_locked(lport, sp, fp);
533 	spin_unlock_bh(&ep->ex_lock);
534 	return error;
535 }
536 EXPORT_SYMBOL(fc_seq_send);
537 
538 /**
539  * fc_seq_alloc() - Allocate a sequence for a given exchange
540  * @ep:	    The exchange to allocate a new sequence for
541  * @seq_id: The sequence ID to be used
542  *
543  * We don't support multiple originated sequences on the same exchange.
544  * By implication, any previously originated sequence on this exchange
545  * is complete, and we reallocate the same sequence.
546  */
fc_seq_alloc(struct fc_exch * ep,u8 seq_id)547 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
548 {
549 	struct fc_seq *sp;
550 
551 	sp = &ep->seq;
552 	sp->ssb_stat = 0;
553 	sp->cnt = 0;
554 	sp->id = seq_id;
555 	return sp;
556 }
557 
558 /**
559  * fc_seq_start_next_locked() - Allocate a new sequence on the same
560  *				exchange as the supplied sequence
561  * @sp: The sequence/exchange to get a new sequence for
562  */
fc_seq_start_next_locked(struct fc_seq * sp)563 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
564 {
565 	struct fc_exch *ep = fc_seq_exch(sp);
566 
567 	sp = fc_seq_alloc(ep, ep->seq_id++);
568 	FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
569 		    ep->f_ctl, sp->id);
570 	return sp;
571 }
572 
573 /**
574  * fc_seq_start_next() - Lock the exchange and get a new sequence
575  *			 for a given sequence/exchange pair
576  * @sp: The sequence/exchange to get a new exchange for
577  */
fc_seq_start_next(struct fc_seq * sp)578 struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
579 {
580 	struct fc_exch *ep = fc_seq_exch(sp);
581 
582 	spin_lock_bh(&ep->ex_lock);
583 	sp = fc_seq_start_next_locked(sp);
584 	spin_unlock_bh(&ep->ex_lock);
585 
586 	return sp;
587 }
588 EXPORT_SYMBOL(fc_seq_start_next);
589 
590 /*
591  * Set the response handler for the exchange associated with a sequence.
592  *
593  * Note: May sleep if invoked from outside a response handler.
594  */
fc_seq_set_resp(struct fc_seq * sp,void (* resp)(struct fc_seq *,struct fc_frame *,void *),void * arg)595 void fc_seq_set_resp(struct fc_seq *sp,
596 		     void (*resp)(struct fc_seq *, struct fc_frame *, void *),
597 		     void *arg)
598 {
599 	struct fc_exch *ep = fc_seq_exch(sp);
600 	DEFINE_WAIT(wait);
601 
602 	spin_lock_bh(&ep->ex_lock);
603 	while (ep->resp_active && ep->resp_task != current) {
604 		prepare_to_wait(&ep->resp_wq, &wait, TASK_UNINTERRUPTIBLE);
605 		spin_unlock_bh(&ep->ex_lock);
606 
607 		schedule();
608 
609 		spin_lock_bh(&ep->ex_lock);
610 	}
611 	finish_wait(&ep->resp_wq, &wait);
612 	ep->resp = resp;
613 	ep->arg = arg;
614 	spin_unlock_bh(&ep->ex_lock);
615 }
616 EXPORT_SYMBOL(fc_seq_set_resp);
617 
618 /**
619  * fc_exch_abort_locked() - Abort an exchange
620  * @ep:	The exchange to be aborted
621  * @timer_msec: The period of time to wait before aborting
622  *
623  * Abort an exchange and sequence. Generally called because of a
624  * exchange timeout or an abort from the upper layer.
625  *
626  * A timer_msec can be specified for abort timeout, if non-zero
627  * timer_msec value is specified then exchange resp handler
628  * will be called with timeout error if no response to abort.
629  *
630  * Locking notes:  Called with exch lock held
631  *
632  * Return value: 0 on success else error code
633  */
fc_exch_abort_locked(struct fc_exch * ep,unsigned int timer_msec)634 static int fc_exch_abort_locked(struct fc_exch *ep,
635 				unsigned int timer_msec)
636 {
637 	struct fc_seq *sp;
638 	struct fc_frame *fp;
639 	int error;
640 
641 	FC_EXCH_DBG(ep, "exch: abort, time %d msecs\n", timer_msec);
642 	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
643 	    ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
644 		FC_EXCH_DBG(ep, "exch: already completed esb %x state %x\n",
645 			    ep->esb_stat, ep->state);
646 		return -ENXIO;
647 	}
648 
649 	/*
650 	 * Send the abort on a new sequence if possible.
651 	 */
652 	sp = fc_seq_start_next_locked(&ep->seq);
653 	if (!sp)
654 		return -ENOMEM;
655 
656 	if (timer_msec)
657 		fc_exch_timer_set_locked(ep, timer_msec);
658 
659 	if (ep->sid) {
660 		/*
661 		 * Send an abort for the sequence that timed out.
662 		 */
663 		fp = fc_frame_alloc(ep->lp, 0);
664 		if (fp) {
665 			ep->esb_stat |= ESB_ST_SEQ_INIT;
666 			fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
667 				       FC_TYPE_BLS, FC_FC_END_SEQ |
668 				       FC_FC_SEQ_INIT, 0);
669 			error = fc_seq_send_locked(ep->lp, sp, fp);
670 		} else {
671 			error = -ENOBUFS;
672 		}
673 	} else {
674 		/*
675 		 * If not logged into the fabric, don't send ABTS but leave
676 		 * sequence active until next timeout.
677 		 */
678 		error = 0;
679 	}
680 	ep->esb_stat |= ESB_ST_ABNORMAL;
681 	return error;
682 }
683 
684 /**
685  * fc_seq_exch_abort() - Abort an exchange and sequence
686  * @req_sp:	The sequence to be aborted
687  * @timer_msec: The period of time to wait before aborting
688  *
689  * Generally called because of a timeout or an abort from the upper layer.
690  *
691  * Return value: 0 on success else error code
692  */
fc_seq_exch_abort(const struct fc_seq * req_sp,unsigned int timer_msec)693 int fc_seq_exch_abort(const struct fc_seq *req_sp, unsigned int timer_msec)
694 {
695 	struct fc_exch *ep;
696 	int error;
697 
698 	ep = fc_seq_exch(req_sp);
699 	spin_lock_bh(&ep->ex_lock);
700 	error = fc_exch_abort_locked(ep, timer_msec);
701 	spin_unlock_bh(&ep->ex_lock);
702 	return error;
703 }
704 
705 /**
706  * fc_invoke_resp() - invoke ep->resp()
707  * @ep:	   The exchange to be operated on
708  * @fp:	   The frame pointer to pass through to ->resp()
709  * @sp:	   The sequence pointer to pass through to ->resp()
710  *
711  * Notes:
712  * It is assumed that after initialization finished (this means the
713  * first unlock of ex_lock after fc_exch_alloc()) ep->resp and ep->arg are
714  * modified only via fc_seq_set_resp(). This guarantees that none of these
715  * two variables changes if ep->resp_active > 0.
716  *
717  * If an fc_seq_set_resp() call is busy modifying ep->resp and ep->arg when
718  * this function is invoked, the first spin_lock_bh() call in this function
719  * will wait until fc_seq_set_resp() has finished modifying these variables.
720  *
721  * Since fc_exch_done() invokes fc_seq_set_resp() it is guaranteed that that
722  * ep->resp() won't be invoked after fc_exch_done() has returned.
723  *
724  * The response handler itself may invoke fc_exch_done(), which will clear the
725  * ep->resp pointer.
726  *
727  * Return value:
728  * Returns true if and only if ep->resp has been invoked.
729  */
fc_invoke_resp(struct fc_exch * ep,struct fc_seq * sp,struct fc_frame * fp)730 static bool fc_invoke_resp(struct fc_exch *ep, struct fc_seq *sp,
731 			   struct fc_frame *fp)
732 {
733 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
734 	void *arg;
735 	bool res = false;
736 
737 	spin_lock_bh(&ep->ex_lock);
738 	ep->resp_active++;
739 	if (ep->resp_task != current)
740 		ep->resp_task = !ep->resp_task ? current : NULL;
741 	resp = ep->resp;
742 	arg = ep->arg;
743 	spin_unlock_bh(&ep->ex_lock);
744 
745 	if (resp) {
746 		resp(sp, fp, arg);
747 		res = true;
748 	}
749 
750 	spin_lock_bh(&ep->ex_lock);
751 	if (--ep->resp_active == 0)
752 		ep->resp_task = NULL;
753 	spin_unlock_bh(&ep->ex_lock);
754 
755 	if (ep->resp_active == 0)
756 		wake_up(&ep->resp_wq);
757 
758 	return res;
759 }
760 
761 /**
762  * fc_exch_timeout() - Handle exchange timer expiration
763  * @work: The work_struct identifying the exchange that timed out
764  */
fc_exch_timeout(struct work_struct * work)765 static void fc_exch_timeout(struct work_struct *work)
766 {
767 	struct fc_exch *ep = container_of(work, struct fc_exch,
768 					  timeout_work.work);
769 	struct fc_seq *sp = &ep->seq;
770 	u32 e_stat;
771 	int rc = 1;
772 
773 	FC_EXCH_DBG(ep, "Exchange timed out state %x\n", ep->state);
774 
775 	spin_lock_bh(&ep->ex_lock);
776 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
777 		goto unlock;
778 
779 	e_stat = ep->esb_stat;
780 	if (e_stat & ESB_ST_COMPLETE) {
781 		ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
782 		spin_unlock_bh(&ep->ex_lock);
783 		if (e_stat & ESB_ST_REC_QUAL)
784 			fc_exch_rrq(ep);
785 		goto done;
786 	} else {
787 		if (e_stat & ESB_ST_ABNORMAL)
788 			rc = fc_exch_done_locked(ep);
789 		spin_unlock_bh(&ep->ex_lock);
790 		if (!rc)
791 			fc_exch_delete(ep);
792 		fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_TIMEOUT));
793 		fc_seq_set_resp(sp, NULL, ep->arg);
794 		fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
795 		goto done;
796 	}
797 unlock:
798 	spin_unlock_bh(&ep->ex_lock);
799 done:
800 	/*
801 	 * This release matches the hold taken when the timer was set.
802 	 */
803 	fc_exch_release(ep);
804 }
805 
806 /**
807  * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
808  * @lport: The local port that the exchange is for
809  * @mp:	   The exchange manager that will allocate the exchange
810  *
811  * Returns pointer to allocated fc_exch with exch lock held.
812  */
fc_exch_em_alloc(struct fc_lport * lport,struct fc_exch_mgr * mp)813 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
814 					struct fc_exch_mgr *mp)
815 {
816 	struct fc_exch *ep;
817 	unsigned int cpu;
818 	u16 index;
819 	struct fc_exch_pool *pool;
820 
821 	/* allocate memory for exchange */
822 	ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
823 	if (!ep) {
824 		atomic_inc(&mp->stats.no_free_exch);
825 		goto out;
826 	}
827 	memset(ep, 0, sizeof(*ep));
828 
829 	cpu = get_cpu();
830 	pool = per_cpu_ptr(mp->pool, cpu);
831 	spin_lock_bh(&pool->lock);
832 	put_cpu();
833 
834 	/* peek cache of free slot */
835 	if (pool->left != FC_XID_UNKNOWN) {
836 		if (!WARN_ON(fc_exch_ptr_get(pool, pool->left))) {
837 			index = pool->left;
838 			pool->left = FC_XID_UNKNOWN;
839 			goto hit;
840 		}
841 	}
842 	if (pool->right != FC_XID_UNKNOWN) {
843 		if (!WARN_ON(fc_exch_ptr_get(pool, pool->right))) {
844 			index = pool->right;
845 			pool->right = FC_XID_UNKNOWN;
846 			goto hit;
847 		}
848 	}
849 
850 	index = pool->next_index;
851 	/* allocate new exch from pool */
852 	while (fc_exch_ptr_get(pool, index)) {
853 		index = index == mp->pool_max_index ? 0 : index + 1;
854 		if (index == pool->next_index)
855 			goto err;
856 	}
857 	pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
858 hit:
859 	fc_exch_hold(ep);	/* hold for exch in mp */
860 	spin_lock_init(&ep->ex_lock);
861 	/*
862 	 * Hold exch lock for caller to prevent fc_exch_reset()
863 	 * from releasing exch	while fc_exch_alloc() caller is
864 	 * still working on exch.
865 	 */
866 	spin_lock_bh(&ep->ex_lock);
867 
868 	fc_exch_ptr_set(pool, index, ep);
869 	list_add_tail(&ep->ex_list, &pool->ex_list);
870 	fc_seq_alloc(ep, ep->seq_id++);
871 	pool->total_exches++;
872 	spin_unlock_bh(&pool->lock);
873 
874 	/*
875 	 *  update exchange
876 	 */
877 	ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
878 	ep->em = mp;
879 	ep->pool = pool;
880 	ep->lp = lport;
881 	ep->f_ctl = FC_FC_FIRST_SEQ;	/* next seq is first seq */
882 	ep->rxid = FC_XID_UNKNOWN;
883 	ep->class = mp->class;
884 	ep->resp_active = 0;
885 	init_waitqueue_head(&ep->resp_wq);
886 	INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
887 out:
888 	return ep;
889 err:
890 	spin_unlock_bh(&pool->lock);
891 	atomic_inc(&mp->stats.no_free_exch_xid);
892 	mempool_free(ep, mp->ep_pool);
893 	return NULL;
894 }
895 
896 /**
897  * fc_exch_alloc() - Allocate an exchange from an EM on a
898  *		     local port's list of EMs.
899  * @lport: The local port that will own the exchange
900  * @fp:	   The FC frame that the exchange will be for
901  *
902  * This function walks the list of exchange manager(EM)
903  * anchors to select an EM for a new exchange allocation. The
904  * EM is selected when a NULL match function pointer is encountered
905  * or when a call to a match function returns true.
906  */
fc_exch_alloc(struct fc_lport * lport,struct fc_frame * fp)907 static struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
908 				     struct fc_frame *fp)
909 {
910 	struct fc_exch_mgr_anchor *ema;
911 	struct fc_exch *ep;
912 
913 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
914 		if (!ema->match || ema->match(fp)) {
915 			ep = fc_exch_em_alloc(lport, ema->mp);
916 			if (ep)
917 				return ep;
918 		}
919 	}
920 	return NULL;
921 }
922 
923 /**
924  * fc_exch_find() - Lookup and hold an exchange
925  * @mp:	 The exchange manager to lookup the exchange from
926  * @xid: The XID of the exchange to look up
927  */
fc_exch_find(struct fc_exch_mgr * mp,u16 xid)928 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
929 {
930 	struct fc_lport *lport = mp->lport;
931 	struct fc_exch_pool *pool;
932 	struct fc_exch *ep = NULL;
933 	u16 cpu = xid & fc_cpu_mask;
934 
935 	if (xid == FC_XID_UNKNOWN)
936 		return NULL;
937 
938 	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
939 		pr_err("host%u: lport %6.6x: xid %d invalid CPU %d\n:",
940 		       lport->host->host_no, lport->port_id, xid, cpu);
941 		return NULL;
942 	}
943 
944 	if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
945 		pool = per_cpu_ptr(mp->pool, cpu);
946 		spin_lock_bh(&pool->lock);
947 		ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
948 		if (ep == &fc_quarantine_exch) {
949 			FC_LPORT_DBG(lport, "xid %x quarantined\n", xid);
950 			ep = NULL;
951 		}
952 		if (ep) {
953 			WARN_ON(ep->xid != xid);
954 			fc_exch_hold(ep);
955 		}
956 		spin_unlock_bh(&pool->lock);
957 	}
958 	return ep;
959 }
960 
961 
962 /**
963  * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
964  *		    the memory allocated for the related objects may be freed.
965  * @sp: The sequence that has completed
966  *
967  * Note: May sleep if invoked from outside a response handler.
968  */
fc_exch_done(struct fc_seq * sp)969 void fc_exch_done(struct fc_seq *sp)
970 {
971 	struct fc_exch *ep = fc_seq_exch(sp);
972 	int rc;
973 
974 	spin_lock_bh(&ep->ex_lock);
975 	rc = fc_exch_done_locked(ep);
976 	spin_unlock_bh(&ep->ex_lock);
977 
978 	fc_seq_set_resp(sp, NULL, ep->arg);
979 	if (!rc)
980 		fc_exch_delete(ep);
981 }
982 EXPORT_SYMBOL(fc_exch_done);
983 
984 /**
985  * fc_exch_resp() - Allocate a new exchange for a response frame
986  * @lport: The local port that the exchange was for
987  * @mp:	   The exchange manager to allocate the exchange from
988  * @fp:	   The response frame
989  *
990  * Sets the responder ID in the frame header.
991  */
fc_exch_resp(struct fc_lport * lport,struct fc_exch_mgr * mp,struct fc_frame * fp)992 static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
993 				    struct fc_exch_mgr *mp,
994 				    struct fc_frame *fp)
995 {
996 	struct fc_exch *ep;
997 	struct fc_frame_header *fh;
998 
999 	ep = fc_exch_alloc(lport, fp);
1000 	if (ep) {
1001 		ep->class = fc_frame_class(fp);
1002 
1003 		/*
1004 		 * Set EX_CTX indicating we're responding on this exchange.
1005 		 */
1006 		ep->f_ctl |= FC_FC_EX_CTX;	/* we're responding */
1007 		ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not new */
1008 		fh = fc_frame_header_get(fp);
1009 		ep->sid = ntoh24(fh->fh_d_id);
1010 		ep->did = ntoh24(fh->fh_s_id);
1011 		ep->oid = ep->did;
1012 
1013 		/*
1014 		 * Allocated exchange has placed the XID in the
1015 		 * originator field. Move it to the responder field,
1016 		 * and set the originator XID from the frame.
1017 		 */
1018 		ep->rxid = ep->xid;
1019 		ep->oxid = ntohs(fh->fh_ox_id);
1020 		ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
1021 		if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
1022 			ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1023 
1024 		fc_exch_hold(ep);	/* hold for caller */
1025 		spin_unlock_bh(&ep->ex_lock);	/* lock from fc_exch_alloc */
1026 	}
1027 	return ep;
1028 }
1029 
1030 /**
1031  * fc_seq_lookup_recip() - Find a sequence where the other end
1032  *			   originated the sequence
1033  * @lport: The local port that the frame was sent to
1034  * @mp:	   The Exchange Manager to lookup the exchange from
1035  * @fp:	   The frame associated with the sequence we're looking for
1036  *
1037  * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
1038  * on the ep that should be released by the caller.
1039  */
fc_seq_lookup_recip(struct fc_lport * lport,struct fc_exch_mgr * mp,struct fc_frame * fp)1040 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
1041 						 struct fc_exch_mgr *mp,
1042 						 struct fc_frame *fp)
1043 {
1044 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1045 	struct fc_exch *ep = NULL;
1046 	struct fc_seq *sp = NULL;
1047 	enum fc_pf_rjt_reason reject = FC_RJT_NONE;
1048 	u32 f_ctl;
1049 	u16 xid;
1050 
1051 	f_ctl = ntoh24(fh->fh_f_ctl);
1052 	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
1053 
1054 	/*
1055 	 * Lookup or create the exchange if we will be creating the sequence.
1056 	 */
1057 	if (f_ctl & FC_FC_EX_CTX) {
1058 		xid = ntohs(fh->fh_ox_id);	/* we originated exch */
1059 		ep = fc_exch_find(mp, xid);
1060 		if (!ep) {
1061 			atomic_inc(&mp->stats.xid_not_found);
1062 			reject = FC_RJT_OX_ID;
1063 			goto out;
1064 		}
1065 		if (ep->rxid == FC_XID_UNKNOWN)
1066 			ep->rxid = ntohs(fh->fh_rx_id);
1067 		else if (ep->rxid != ntohs(fh->fh_rx_id)) {
1068 			reject = FC_RJT_OX_ID;
1069 			goto rel;
1070 		}
1071 	} else {
1072 		xid = ntohs(fh->fh_rx_id);	/* we are the responder */
1073 
1074 		/*
1075 		 * Special case for MDS issuing an ELS TEST with a
1076 		 * bad rxid of 0.
1077 		 * XXX take this out once we do the proper reject.
1078 		 */
1079 		if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
1080 		    fc_frame_payload_op(fp) == ELS_TEST) {
1081 			fh->fh_rx_id = htons(FC_XID_UNKNOWN);
1082 			xid = FC_XID_UNKNOWN;
1083 		}
1084 
1085 		/*
1086 		 * new sequence - find the exchange
1087 		 */
1088 		ep = fc_exch_find(mp, xid);
1089 		if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
1090 			if (ep) {
1091 				atomic_inc(&mp->stats.xid_busy);
1092 				reject = FC_RJT_RX_ID;
1093 				goto rel;
1094 			}
1095 			ep = fc_exch_resp(lport, mp, fp);
1096 			if (!ep) {
1097 				reject = FC_RJT_EXCH_EST;	/* XXX */
1098 				goto out;
1099 			}
1100 			xid = ep->xid;	/* get our XID */
1101 		} else if (!ep) {
1102 			atomic_inc(&mp->stats.xid_not_found);
1103 			reject = FC_RJT_RX_ID;	/* XID not found */
1104 			goto out;
1105 		}
1106 	}
1107 
1108 	spin_lock_bh(&ep->ex_lock);
1109 	/*
1110 	 * At this point, we have the exchange held.
1111 	 * Find or create the sequence.
1112 	 */
1113 	if (fc_sof_is_init(fr_sof(fp))) {
1114 		sp = &ep->seq;
1115 		sp->ssb_stat |= SSB_ST_RESP;
1116 		sp->id = fh->fh_seq_id;
1117 	} else {
1118 		sp = &ep->seq;
1119 		if (sp->id != fh->fh_seq_id) {
1120 			atomic_inc(&mp->stats.seq_not_found);
1121 			if (f_ctl & FC_FC_END_SEQ) {
1122 				/*
1123 				 * Update sequence_id based on incoming last
1124 				 * frame of sequence exchange. This is needed
1125 				 * for FC target where DDP has been used
1126 				 * on target where, stack is indicated only
1127 				 * about last frame's (payload _header) header.
1128 				 * Whereas "seq_id" which is part of
1129 				 * frame_header is allocated by initiator
1130 				 * which is totally different from "seq_id"
1131 				 * allocated when XFER_RDY was sent by target.
1132 				 * To avoid false -ve which results into not
1133 				 * sending RSP, hence write request on other
1134 				 * end never finishes.
1135 				 */
1136 				sp->ssb_stat |= SSB_ST_RESP;
1137 				sp->id = fh->fh_seq_id;
1138 			} else {
1139 				spin_unlock_bh(&ep->ex_lock);
1140 
1141 				/* sequence/exch should exist */
1142 				reject = FC_RJT_SEQ_ID;
1143 				goto rel;
1144 			}
1145 		}
1146 	}
1147 	WARN_ON(ep != fc_seq_exch(sp));
1148 
1149 	if (f_ctl & FC_FC_SEQ_INIT)
1150 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1151 	spin_unlock_bh(&ep->ex_lock);
1152 
1153 	fr_seq(fp) = sp;
1154 out:
1155 	return reject;
1156 rel:
1157 	fc_exch_done(&ep->seq);
1158 	fc_exch_release(ep);	/* hold from fc_exch_find/fc_exch_resp */
1159 	return reject;
1160 }
1161 
1162 /**
1163  * fc_seq_lookup_orig() - Find a sequence where this end
1164  *			  originated the sequence
1165  * @mp:	   The Exchange Manager to lookup the exchange from
1166  * @fp:	   The frame associated with the sequence we're looking for
1167  *
1168  * Does not hold the sequence for the caller.
1169  */
fc_seq_lookup_orig(struct fc_exch_mgr * mp,struct fc_frame * fp)1170 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1171 					 struct fc_frame *fp)
1172 {
1173 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1174 	struct fc_exch *ep;
1175 	struct fc_seq *sp = NULL;
1176 	u32 f_ctl;
1177 	u16 xid;
1178 
1179 	f_ctl = ntoh24(fh->fh_f_ctl);
1180 	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1181 	xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1182 	ep = fc_exch_find(mp, xid);
1183 	if (!ep)
1184 		return NULL;
1185 	if (ep->seq.id == fh->fh_seq_id) {
1186 		/*
1187 		 * Save the RX_ID if we didn't previously know it.
1188 		 */
1189 		sp = &ep->seq;
1190 		if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1191 		    ep->rxid == FC_XID_UNKNOWN) {
1192 			ep->rxid = ntohs(fh->fh_rx_id);
1193 		}
1194 	}
1195 	fc_exch_release(ep);
1196 	return sp;
1197 }
1198 
1199 /**
1200  * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1201  * @ep:	     The exchange to set the addresses for
1202  * @orig_id: The originator's ID
1203  * @resp_id: The responder's ID
1204  *
1205  * Note this must be done before the first sequence of the exchange is sent.
1206  */
fc_exch_set_addr(struct fc_exch * ep,u32 orig_id,u32 resp_id)1207 static void fc_exch_set_addr(struct fc_exch *ep,
1208 			     u32 orig_id, u32 resp_id)
1209 {
1210 	ep->oid = orig_id;
1211 	if (ep->esb_stat & ESB_ST_RESP) {
1212 		ep->sid = resp_id;
1213 		ep->did = orig_id;
1214 	} else {
1215 		ep->sid = orig_id;
1216 		ep->did = resp_id;
1217 	}
1218 }
1219 
1220 /**
1221  * fc_seq_els_rsp_send() - Send an ELS response using information from
1222  *			   the existing sequence/exchange.
1223  * @fp:	      The received frame
1224  * @els_cmd:  The ELS command to be sent
1225  * @els_data: The ELS data to be sent
1226  *
1227  * The received frame is not freed.
1228  */
fc_seq_els_rsp_send(struct fc_frame * fp,enum fc_els_cmd els_cmd,struct fc_seq_els_data * els_data)1229 void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1230 			 struct fc_seq_els_data *els_data)
1231 {
1232 	switch (els_cmd) {
1233 	case ELS_LS_RJT:
1234 		fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1235 		break;
1236 	case ELS_LS_ACC:
1237 		fc_seq_ls_acc(fp);
1238 		break;
1239 	case ELS_RRQ:
1240 		fc_exch_els_rrq(fp);
1241 		break;
1242 	case ELS_REC:
1243 		fc_exch_els_rec(fp);
1244 		break;
1245 	default:
1246 		FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1247 	}
1248 }
1249 EXPORT_SYMBOL_GPL(fc_seq_els_rsp_send);
1250 
1251 /**
1252  * fc_seq_send_last() - Send a sequence that is the last in the exchange
1253  * @sp:	     The sequence that is to be sent
1254  * @fp:	     The frame that will be sent on the sequence
1255  * @rctl:    The R_CTL information to be sent
1256  * @fh_type: The frame header type
1257  */
fc_seq_send_last(struct fc_seq * sp,struct fc_frame * fp,enum fc_rctl rctl,enum fc_fh_type fh_type)1258 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1259 			     enum fc_rctl rctl, enum fc_fh_type fh_type)
1260 {
1261 	u32 f_ctl;
1262 	struct fc_exch *ep = fc_seq_exch(sp);
1263 
1264 	f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1265 	f_ctl |= ep->f_ctl;
1266 	fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1267 	fc_seq_send_locked(ep->lp, sp, fp);
1268 }
1269 
1270 /**
1271  * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1272  * @sp:	   The sequence to send the ACK on
1273  * @rx_fp: The received frame that is being acknoledged
1274  *
1275  * Send ACK_1 (or equiv.) indicating we received something.
1276  */
fc_seq_send_ack(struct fc_seq * sp,const struct fc_frame * rx_fp)1277 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1278 {
1279 	struct fc_frame *fp;
1280 	struct fc_frame_header *rx_fh;
1281 	struct fc_frame_header *fh;
1282 	struct fc_exch *ep = fc_seq_exch(sp);
1283 	struct fc_lport *lport = ep->lp;
1284 	unsigned int f_ctl;
1285 
1286 	/*
1287 	 * Don't send ACKs for class 3.
1288 	 */
1289 	if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1290 		fp = fc_frame_alloc(lport, 0);
1291 		if (!fp) {
1292 			FC_EXCH_DBG(ep, "Drop ACK request, out of memory\n");
1293 			return;
1294 		}
1295 
1296 		fh = fc_frame_header_get(fp);
1297 		fh->fh_r_ctl = FC_RCTL_ACK_1;
1298 		fh->fh_type = FC_TYPE_BLS;
1299 
1300 		/*
1301 		 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1302 		 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1303 		 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1304 		 * Last ACK uses bits 7-6 (continue sequence),
1305 		 * bits 5-4 are meaningful (what kind of ACK to use).
1306 		 */
1307 		rx_fh = fc_frame_header_get(rx_fp);
1308 		f_ctl = ntoh24(rx_fh->fh_f_ctl);
1309 		f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1310 			FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1311 			FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1312 			FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1313 		f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1314 		hton24(fh->fh_f_ctl, f_ctl);
1315 
1316 		fc_exch_setup_hdr(ep, fp, f_ctl);
1317 		fh->fh_seq_id = rx_fh->fh_seq_id;
1318 		fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1319 		fh->fh_parm_offset = htonl(1);	/* ack single frame */
1320 
1321 		fr_sof(fp) = fr_sof(rx_fp);
1322 		if (f_ctl & FC_FC_END_SEQ)
1323 			fr_eof(fp) = FC_EOF_T;
1324 		else
1325 			fr_eof(fp) = FC_EOF_N;
1326 
1327 		lport->tt.frame_send(lport, fp);
1328 	}
1329 }
1330 
1331 /**
1332  * fc_exch_send_ba_rjt() - Send BLS Reject
1333  * @rx_fp:  The frame being rejected
1334  * @reason: The reason the frame is being rejected
1335  * @explan: The explanation for the rejection
1336  *
1337  * This is for rejecting BA_ABTS only.
1338  */
fc_exch_send_ba_rjt(struct fc_frame * rx_fp,enum fc_ba_rjt_reason reason,enum fc_ba_rjt_explan explan)1339 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1340 				enum fc_ba_rjt_reason reason,
1341 				enum fc_ba_rjt_explan explan)
1342 {
1343 	struct fc_frame *fp;
1344 	struct fc_frame_header *rx_fh;
1345 	struct fc_frame_header *fh;
1346 	struct fc_ba_rjt *rp;
1347 	struct fc_seq *sp;
1348 	struct fc_lport *lport;
1349 	unsigned int f_ctl;
1350 
1351 	lport = fr_dev(rx_fp);
1352 	sp = fr_seq(rx_fp);
1353 	fp = fc_frame_alloc(lport, sizeof(*rp));
1354 	if (!fp) {
1355 		FC_EXCH_DBG(fc_seq_exch(sp),
1356 			     "Drop BA_RJT request, out of memory\n");
1357 		return;
1358 	}
1359 	fh = fc_frame_header_get(fp);
1360 	rx_fh = fc_frame_header_get(rx_fp);
1361 
1362 	memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1363 
1364 	rp = fc_frame_payload_get(fp, sizeof(*rp));
1365 	rp->br_reason = reason;
1366 	rp->br_explan = explan;
1367 
1368 	/*
1369 	 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1370 	 */
1371 	memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1372 	memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1373 	fh->fh_ox_id = rx_fh->fh_ox_id;
1374 	fh->fh_rx_id = rx_fh->fh_rx_id;
1375 	fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1376 	fh->fh_r_ctl = FC_RCTL_BA_RJT;
1377 	fh->fh_type = FC_TYPE_BLS;
1378 
1379 	/*
1380 	 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1381 	 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1382 	 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1383 	 * Last ACK uses bits 7-6 (continue sequence),
1384 	 * bits 5-4 are meaningful (what kind of ACK to use).
1385 	 * Always set LAST_SEQ, END_SEQ.
1386 	 */
1387 	f_ctl = ntoh24(rx_fh->fh_f_ctl);
1388 	f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1389 		FC_FC_END_CONN | FC_FC_SEQ_INIT |
1390 		FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1391 	f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1392 	f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1393 	f_ctl &= ~FC_FC_FIRST_SEQ;
1394 	hton24(fh->fh_f_ctl, f_ctl);
1395 
1396 	fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1397 	fr_eof(fp) = FC_EOF_T;
1398 	if (fc_sof_needs_ack(fr_sof(fp)))
1399 		fr_eof(fp) = FC_EOF_N;
1400 
1401 	lport->tt.frame_send(lport, fp);
1402 }
1403 
1404 /**
1405  * fc_exch_recv_abts() - Handle an incoming ABTS
1406  * @ep:	   The exchange the abort was on
1407  * @rx_fp: The ABTS frame
1408  *
1409  * This would be for target mode usually, but could be due to lost
1410  * FCP transfer ready, confirm or RRQ. We always handle this as an
1411  * exchange abort, ignoring the parameter.
1412  */
fc_exch_recv_abts(struct fc_exch * ep,struct fc_frame * rx_fp)1413 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1414 {
1415 	struct fc_frame *fp;
1416 	struct fc_ba_acc *ap;
1417 	struct fc_frame_header *fh;
1418 	struct fc_seq *sp;
1419 
1420 	if (!ep)
1421 		goto reject;
1422 
1423 	FC_EXCH_DBG(ep, "exch: ABTS received\n");
1424 	fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1425 	if (!fp) {
1426 		FC_EXCH_DBG(ep, "Drop ABTS request, out of memory\n");
1427 		goto free;
1428 	}
1429 
1430 	spin_lock_bh(&ep->ex_lock);
1431 	if (ep->esb_stat & ESB_ST_COMPLETE) {
1432 		spin_unlock_bh(&ep->ex_lock);
1433 		FC_EXCH_DBG(ep, "exch: ABTS rejected, exchange complete\n");
1434 		fc_frame_free(fp);
1435 		goto reject;
1436 	}
1437 	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
1438 		ep->esb_stat |= ESB_ST_REC_QUAL;
1439 		fc_exch_hold(ep);		/* hold for REC_QUAL */
1440 	}
1441 	fc_exch_timer_set_locked(ep, ep->r_a_tov);
1442 	fh = fc_frame_header_get(fp);
1443 	ap = fc_frame_payload_get(fp, sizeof(*ap));
1444 	memset(ap, 0, sizeof(*ap));
1445 	sp = &ep->seq;
1446 	ap->ba_high_seq_cnt = htons(0xffff);
1447 	if (sp->ssb_stat & SSB_ST_RESP) {
1448 		ap->ba_seq_id = sp->id;
1449 		ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1450 		ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1451 		ap->ba_low_seq_cnt = htons(sp->cnt);
1452 	}
1453 	sp = fc_seq_start_next_locked(sp);
1454 	fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1455 	ep->esb_stat |= ESB_ST_ABNORMAL;
1456 	spin_unlock_bh(&ep->ex_lock);
1457 
1458 free:
1459 	fc_frame_free(rx_fp);
1460 	return;
1461 
1462 reject:
1463 	fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1464 	goto free;
1465 }
1466 
1467 /**
1468  * fc_seq_assign() - Assign exchange and sequence for incoming request
1469  * @lport: The local port that received the request
1470  * @fp:    The request frame
1471  *
1472  * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1473  * A reference will be held on the exchange/sequence for the caller, which
1474  * must call fc_seq_release().
1475  */
fc_seq_assign(struct fc_lport * lport,struct fc_frame * fp)1476 struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1477 {
1478 	struct fc_exch_mgr_anchor *ema;
1479 
1480 	WARN_ON(lport != fr_dev(fp));
1481 	WARN_ON(fr_seq(fp));
1482 	fr_seq(fp) = NULL;
1483 
1484 	list_for_each_entry(ema, &lport->ema_list, ema_list)
1485 		if ((!ema->match || ema->match(fp)) &&
1486 		    fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1487 			break;
1488 	return fr_seq(fp);
1489 }
1490 EXPORT_SYMBOL(fc_seq_assign);
1491 
1492 /**
1493  * fc_seq_release() - Release the hold
1494  * @sp:    The sequence.
1495  */
fc_seq_release(struct fc_seq * sp)1496 void fc_seq_release(struct fc_seq *sp)
1497 {
1498 	fc_exch_release(fc_seq_exch(sp));
1499 }
1500 EXPORT_SYMBOL(fc_seq_release);
1501 
1502 /**
1503  * fc_exch_recv_req() - Handler for an incoming request
1504  * @lport: The local port that received the request
1505  * @mp:	   The EM that the exchange is on
1506  * @fp:	   The request frame
1507  *
1508  * This is used when the other end is originating the exchange
1509  * and the sequence.
1510  */
fc_exch_recv_req(struct fc_lport * lport,struct fc_exch_mgr * mp,struct fc_frame * fp)1511 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1512 			     struct fc_frame *fp)
1513 {
1514 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1515 	struct fc_seq *sp = NULL;
1516 	struct fc_exch *ep = NULL;
1517 	enum fc_pf_rjt_reason reject;
1518 
1519 	/* We can have the wrong fc_lport at this point with NPIV, which is a
1520 	 * problem now that we know a new exchange needs to be allocated
1521 	 */
1522 	lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1523 	if (!lport) {
1524 		fc_frame_free(fp);
1525 		return;
1526 	}
1527 	fr_dev(fp) = lport;
1528 
1529 	BUG_ON(fr_seq(fp));		/* XXX remove later */
1530 
1531 	/*
1532 	 * If the RX_ID is 0xffff, don't allocate an exchange.
1533 	 * The upper-level protocol may request one later, if needed.
1534 	 */
1535 	if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1536 		return fc_lport_recv(lport, fp);
1537 
1538 	reject = fc_seq_lookup_recip(lport, mp, fp);
1539 	if (reject == FC_RJT_NONE) {
1540 		sp = fr_seq(fp);	/* sequence will be held */
1541 		ep = fc_seq_exch(sp);
1542 		fc_seq_send_ack(sp, fp);
1543 		ep->encaps = fr_encaps(fp);
1544 
1545 		/*
1546 		 * Call the receive function.
1547 		 *
1548 		 * The receive function may allocate a new sequence
1549 		 * over the old one, so we shouldn't change the
1550 		 * sequence after this.
1551 		 *
1552 		 * The frame will be freed by the receive function.
1553 		 * If new exch resp handler is valid then call that
1554 		 * first.
1555 		 */
1556 		if (!fc_invoke_resp(ep, sp, fp))
1557 			fc_lport_recv(lport, fp);
1558 		fc_exch_release(ep);	/* release from lookup */
1559 	} else {
1560 		FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1561 			     reject);
1562 		fc_frame_free(fp);
1563 	}
1564 }
1565 
1566 /**
1567  * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1568  *			     end is the originator of the sequence that is a
1569  *			     response to our initial exchange
1570  * @mp: The EM that the exchange is on
1571  * @fp: The response frame
1572  */
fc_exch_recv_seq_resp(struct fc_exch_mgr * mp,struct fc_frame * fp)1573 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1574 {
1575 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1576 	struct fc_seq *sp;
1577 	struct fc_exch *ep;
1578 	enum fc_sof sof;
1579 	u32 f_ctl;
1580 	int rc;
1581 
1582 	ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1583 	if (!ep) {
1584 		atomic_inc(&mp->stats.xid_not_found);
1585 		goto out;
1586 	}
1587 	if (ep->esb_stat & ESB_ST_COMPLETE) {
1588 		atomic_inc(&mp->stats.xid_not_found);
1589 		goto rel;
1590 	}
1591 	if (ep->rxid == FC_XID_UNKNOWN)
1592 		ep->rxid = ntohs(fh->fh_rx_id);
1593 	if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1594 		atomic_inc(&mp->stats.xid_not_found);
1595 		goto rel;
1596 	}
1597 	if (ep->did != ntoh24(fh->fh_s_id) &&
1598 	    ep->did != FC_FID_FLOGI) {
1599 		atomic_inc(&mp->stats.xid_not_found);
1600 		goto rel;
1601 	}
1602 	sof = fr_sof(fp);
1603 	sp = &ep->seq;
1604 	if (fc_sof_is_init(sof)) {
1605 		sp->ssb_stat |= SSB_ST_RESP;
1606 		sp->id = fh->fh_seq_id;
1607 	}
1608 
1609 	f_ctl = ntoh24(fh->fh_f_ctl);
1610 	fr_seq(fp) = sp;
1611 
1612 	spin_lock_bh(&ep->ex_lock);
1613 	if (f_ctl & FC_FC_SEQ_INIT)
1614 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1615 	spin_unlock_bh(&ep->ex_lock);
1616 
1617 	if (fc_sof_needs_ack(sof))
1618 		fc_seq_send_ack(sp, fp);
1619 
1620 	if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1621 	    (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1622 	    (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1623 		spin_lock_bh(&ep->ex_lock);
1624 		rc = fc_exch_done_locked(ep);
1625 		WARN_ON(fc_seq_exch(sp) != ep);
1626 		spin_unlock_bh(&ep->ex_lock);
1627 		if (!rc) {
1628 			fc_exch_delete(ep);
1629 		} else {
1630 			FC_EXCH_DBG(ep, "ep is completed already,"
1631 					"hence skip calling the resp\n");
1632 			goto skip_resp;
1633 		}
1634 	}
1635 
1636 	/*
1637 	 * Call the receive function.
1638 	 * The sequence is held (has a refcnt) for us,
1639 	 * but not for the receive function.
1640 	 *
1641 	 * The receive function may allocate a new sequence
1642 	 * over the old one, so we shouldn't change the
1643 	 * sequence after this.
1644 	 *
1645 	 * The frame will be freed by the receive function.
1646 	 * If new exch resp handler is valid then call that
1647 	 * first.
1648 	 */
1649 	if (!fc_invoke_resp(ep, sp, fp))
1650 		fc_frame_free(fp);
1651 
1652 skip_resp:
1653 	fc_exch_release(ep);
1654 	return;
1655 rel:
1656 	fc_exch_release(ep);
1657 out:
1658 	fc_frame_free(fp);
1659 }
1660 
1661 /**
1662  * fc_exch_recv_resp() - Handler for a sequence where other end is
1663  *			 responding to our sequence
1664  * @mp: The EM that the exchange is on
1665  * @fp: The response frame
1666  */
fc_exch_recv_resp(struct fc_exch_mgr * mp,struct fc_frame * fp)1667 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1668 {
1669 	struct fc_seq *sp;
1670 
1671 	sp = fc_seq_lookup_orig(mp, fp);	/* doesn't hold sequence */
1672 
1673 	if (!sp)
1674 		atomic_inc(&mp->stats.xid_not_found);
1675 	else
1676 		atomic_inc(&mp->stats.non_bls_resp);
1677 
1678 	fc_frame_free(fp);
1679 }
1680 
1681 /**
1682  * fc_exch_abts_resp() - Handler for a response to an ABT
1683  * @ep: The exchange that the frame is on
1684  * @fp: The response frame
1685  *
1686  * This response would be to an ABTS cancelling an exchange or sequence.
1687  * The response can be either BA_ACC or BA_RJT
1688  */
fc_exch_abts_resp(struct fc_exch * ep,struct fc_frame * fp)1689 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1690 {
1691 	struct fc_frame_header *fh;
1692 	struct fc_ba_acc *ap;
1693 	struct fc_seq *sp;
1694 	u16 low;
1695 	u16 high;
1696 	int rc = 1, has_rec = 0;
1697 
1698 	fh = fc_frame_header_get(fp);
1699 	FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1700 		    fc_exch_rctl_name(fh->fh_r_ctl));
1701 
1702 	if (cancel_delayed_work_sync(&ep->timeout_work)) {
1703 		FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n");
1704 		fc_exch_release(ep);	/* release from pending timer hold */
1705 		return;
1706 	}
1707 
1708 	spin_lock_bh(&ep->ex_lock);
1709 	switch (fh->fh_r_ctl) {
1710 	case FC_RCTL_BA_ACC:
1711 		ap = fc_frame_payload_get(fp, sizeof(*ap));
1712 		if (!ap)
1713 			break;
1714 
1715 		/*
1716 		 * Decide whether to establish a Recovery Qualifier.
1717 		 * We do this if there is a non-empty SEQ_CNT range and
1718 		 * SEQ_ID is the same as the one we aborted.
1719 		 */
1720 		low = ntohs(ap->ba_low_seq_cnt);
1721 		high = ntohs(ap->ba_high_seq_cnt);
1722 		if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1723 		    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1724 		     ap->ba_seq_id == ep->seq_id) && low != high) {
1725 			ep->esb_stat |= ESB_ST_REC_QUAL;
1726 			fc_exch_hold(ep);  /* hold for recovery qualifier */
1727 			has_rec = 1;
1728 		}
1729 		break;
1730 	case FC_RCTL_BA_RJT:
1731 		break;
1732 	default:
1733 		break;
1734 	}
1735 
1736 	/* do we need to do some other checks here. Can we reuse more of
1737 	 * fc_exch_recv_seq_resp
1738 	 */
1739 	sp = &ep->seq;
1740 	/*
1741 	 * do we want to check END_SEQ as well as LAST_SEQ here?
1742 	 */
1743 	if (ep->fh_type != FC_TYPE_FCP &&
1744 	    ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1745 		rc = fc_exch_done_locked(ep);
1746 	spin_unlock_bh(&ep->ex_lock);
1747 
1748 	fc_exch_hold(ep);
1749 	if (!rc)
1750 		fc_exch_delete(ep);
1751 	if (!fc_invoke_resp(ep, sp, fp))
1752 		fc_frame_free(fp);
1753 	if (has_rec)
1754 		fc_exch_timer_set(ep, ep->r_a_tov);
1755 	fc_exch_release(ep);
1756 }
1757 
1758 /**
1759  * fc_exch_recv_bls() - Handler for a BLS sequence
1760  * @mp: The EM that the exchange is on
1761  * @fp: The request frame
1762  *
1763  * The BLS frame is always a sequence initiated by the remote side.
1764  * We may be either the originator or recipient of the exchange.
1765  */
fc_exch_recv_bls(struct fc_exch_mgr * mp,struct fc_frame * fp)1766 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1767 {
1768 	struct fc_frame_header *fh;
1769 	struct fc_exch *ep;
1770 	u32 f_ctl;
1771 
1772 	fh = fc_frame_header_get(fp);
1773 	f_ctl = ntoh24(fh->fh_f_ctl);
1774 	fr_seq(fp) = NULL;
1775 
1776 	ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1777 			  ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1778 	if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1779 		spin_lock_bh(&ep->ex_lock);
1780 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1781 		spin_unlock_bh(&ep->ex_lock);
1782 	}
1783 	if (f_ctl & FC_FC_SEQ_CTX) {
1784 		/*
1785 		 * A response to a sequence we initiated.
1786 		 * This should only be ACKs for class 2 or F.
1787 		 */
1788 		switch (fh->fh_r_ctl) {
1789 		case FC_RCTL_ACK_1:
1790 		case FC_RCTL_ACK_0:
1791 			break;
1792 		default:
1793 			if (ep)
1794 				FC_EXCH_DBG(ep, "BLS rctl %x - %s received\n",
1795 					    fh->fh_r_ctl,
1796 					    fc_exch_rctl_name(fh->fh_r_ctl));
1797 			break;
1798 		}
1799 		fc_frame_free(fp);
1800 	} else {
1801 		switch (fh->fh_r_ctl) {
1802 		case FC_RCTL_BA_RJT:
1803 		case FC_RCTL_BA_ACC:
1804 			if (ep)
1805 				fc_exch_abts_resp(ep, fp);
1806 			else
1807 				fc_frame_free(fp);
1808 			break;
1809 		case FC_RCTL_BA_ABTS:
1810 			if (ep)
1811 				fc_exch_recv_abts(ep, fp);
1812 			else
1813 				fc_frame_free(fp);
1814 			break;
1815 		default:			/* ignore junk */
1816 			fc_frame_free(fp);
1817 			break;
1818 		}
1819 	}
1820 	if (ep)
1821 		fc_exch_release(ep);	/* release hold taken by fc_exch_find */
1822 }
1823 
1824 /**
1825  * fc_seq_ls_acc() - Accept sequence with LS_ACC
1826  * @rx_fp: The received frame, not freed here.
1827  *
1828  * If this fails due to allocation or transmit congestion, assume the
1829  * originator will repeat the sequence.
1830  */
fc_seq_ls_acc(struct fc_frame * rx_fp)1831 static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1832 {
1833 	struct fc_lport *lport;
1834 	struct fc_els_ls_acc *acc;
1835 	struct fc_frame *fp;
1836 	struct fc_seq *sp;
1837 
1838 	lport = fr_dev(rx_fp);
1839 	sp = fr_seq(rx_fp);
1840 	fp = fc_frame_alloc(lport, sizeof(*acc));
1841 	if (!fp) {
1842 		FC_EXCH_DBG(fc_seq_exch(sp),
1843 			    "exch: drop LS_ACC, out of memory\n");
1844 		return;
1845 	}
1846 	acc = fc_frame_payload_get(fp, sizeof(*acc));
1847 	memset(acc, 0, sizeof(*acc));
1848 	acc->la_cmd = ELS_LS_ACC;
1849 	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1850 	lport->tt.frame_send(lport, fp);
1851 }
1852 
1853 /**
1854  * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1855  * @rx_fp: The received frame, not freed here.
1856  * @reason: The reason the sequence is being rejected
1857  * @explan: The explanation for the rejection
1858  *
1859  * If this fails due to allocation or transmit congestion, assume the
1860  * originator will repeat the sequence.
1861  */
fc_seq_ls_rjt(struct fc_frame * rx_fp,enum fc_els_rjt_reason reason,enum fc_els_rjt_explan explan)1862 static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1863 			  enum fc_els_rjt_explan explan)
1864 {
1865 	struct fc_lport *lport;
1866 	struct fc_els_ls_rjt *rjt;
1867 	struct fc_frame *fp;
1868 	struct fc_seq *sp;
1869 
1870 	lport = fr_dev(rx_fp);
1871 	sp = fr_seq(rx_fp);
1872 	fp = fc_frame_alloc(lport, sizeof(*rjt));
1873 	if (!fp) {
1874 		FC_EXCH_DBG(fc_seq_exch(sp),
1875 			    "exch: drop LS_ACC, out of memory\n");
1876 		return;
1877 	}
1878 	rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1879 	memset(rjt, 0, sizeof(*rjt));
1880 	rjt->er_cmd = ELS_LS_RJT;
1881 	rjt->er_reason = reason;
1882 	rjt->er_explan = explan;
1883 	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1884 	lport->tt.frame_send(lport, fp);
1885 }
1886 
1887 /**
1888  * fc_exch_reset() - Reset an exchange
1889  * @ep: The exchange to be reset
1890  *
1891  * Note: May sleep if invoked from outside a response handler.
1892  */
fc_exch_reset(struct fc_exch * ep)1893 static void fc_exch_reset(struct fc_exch *ep)
1894 {
1895 	struct fc_seq *sp;
1896 	int rc = 1;
1897 
1898 	spin_lock_bh(&ep->ex_lock);
1899 	ep->state |= FC_EX_RST_CLEANUP;
1900 	fc_exch_timer_cancel(ep);
1901 	if (ep->esb_stat & ESB_ST_REC_QUAL)
1902 		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec_qual */
1903 	ep->esb_stat &= ~ESB_ST_REC_QUAL;
1904 	sp = &ep->seq;
1905 	rc = fc_exch_done_locked(ep);
1906 	spin_unlock_bh(&ep->ex_lock);
1907 
1908 	fc_exch_hold(ep);
1909 
1910 	if (!rc) {
1911 		fc_exch_delete(ep);
1912 	} else {
1913 		FC_EXCH_DBG(ep, "ep is completed already,"
1914 				"hence skip calling the resp\n");
1915 		goto skip_resp;
1916 	}
1917 
1918 	fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_CLOSED));
1919 skip_resp:
1920 	fc_seq_set_resp(sp, NULL, ep->arg);
1921 	fc_exch_release(ep);
1922 }
1923 
1924 /**
1925  * fc_exch_pool_reset() - Reset a per cpu exchange pool
1926  * @lport: The local port that the exchange pool is on
1927  * @pool:  The exchange pool to be reset
1928  * @sid:   The source ID
1929  * @did:   The destination ID
1930  *
1931  * Resets a per cpu exches pool, releasing all of its sequences
1932  * and exchanges. If sid is non-zero then reset only exchanges
1933  * we sourced from the local port's FID. If did is non-zero then
1934  * only reset exchanges destined for the local port's FID.
1935  */
fc_exch_pool_reset(struct fc_lport * lport,struct fc_exch_pool * pool,u32 sid,u32 did)1936 static void fc_exch_pool_reset(struct fc_lport *lport,
1937 			       struct fc_exch_pool *pool,
1938 			       u32 sid, u32 did)
1939 {
1940 	struct fc_exch *ep;
1941 	struct fc_exch *next;
1942 
1943 	spin_lock_bh(&pool->lock);
1944 restart:
1945 	list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1946 		if ((lport == ep->lp) &&
1947 		    (sid == 0 || sid == ep->sid) &&
1948 		    (did == 0 || did == ep->did)) {
1949 			fc_exch_hold(ep);
1950 			spin_unlock_bh(&pool->lock);
1951 
1952 			fc_exch_reset(ep);
1953 
1954 			fc_exch_release(ep);
1955 			spin_lock_bh(&pool->lock);
1956 
1957 			/*
1958 			 * must restart loop incase while lock
1959 			 * was down multiple eps were released.
1960 			 */
1961 			goto restart;
1962 		}
1963 	}
1964 	pool->next_index = 0;
1965 	pool->left = FC_XID_UNKNOWN;
1966 	pool->right = FC_XID_UNKNOWN;
1967 	spin_unlock_bh(&pool->lock);
1968 }
1969 
1970 /**
1971  * fc_exch_mgr_reset() - Reset all EMs of a local port
1972  * @lport: The local port whose EMs are to be reset
1973  * @sid:   The source ID
1974  * @did:   The destination ID
1975  *
1976  * Reset all EMs associated with a given local port. Release all
1977  * sequences and exchanges. If sid is non-zero then reset only the
1978  * exchanges sent from the local port's FID. If did is non-zero then
1979  * reset only exchanges destined for the local port's FID.
1980  */
fc_exch_mgr_reset(struct fc_lport * lport,u32 sid,u32 did)1981 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1982 {
1983 	struct fc_exch_mgr_anchor *ema;
1984 	unsigned int cpu;
1985 
1986 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
1987 		for_each_possible_cpu(cpu)
1988 			fc_exch_pool_reset(lport,
1989 					   per_cpu_ptr(ema->mp->pool, cpu),
1990 					   sid, did);
1991 	}
1992 }
1993 EXPORT_SYMBOL(fc_exch_mgr_reset);
1994 
1995 /**
1996  * fc_exch_lookup() - find an exchange
1997  * @lport: The local port
1998  * @xid: The exchange ID
1999  *
2000  * Returns exchange pointer with hold for caller, or NULL if not found.
2001  */
fc_exch_lookup(struct fc_lport * lport,u32 xid)2002 static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
2003 {
2004 	struct fc_exch_mgr_anchor *ema;
2005 
2006 	list_for_each_entry(ema, &lport->ema_list, ema_list)
2007 		if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
2008 			return fc_exch_find(ema->mp, xid);
2009 	return NULL;
2010 }
2011 
2012 /**
2013  * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
2014  * @rfp: The REC frame, not freed here.
2015  *
2016  * Note that the requesting port may be different than the S_ID in the request.
2017  */
fc_exch_els_rec(struct fc_frame * rfp)2018 static void fc_exch_els_rec(struct fc_frame *rfp)
2019 {
2020 	struct fc_lport *lport;
2021 	struct fc_frame *fp;
2022 	struct fc_exch *ep;
2023 	struct fc_els_rec *rp;
2024 	struct fc_els_rec_acc *acc;
2025 	enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
2026 	enum fc_els_rjt_explan explan;
2027 	u32 sid;
2028 	u16 xid, rxid, oxid;
2029 
2030 	lport = fr_dev(rfp);
2031 	rp = fc_frame_payload_get(rfp, sizeof(*rp));
2032 	explan = ELS_EXPL_INV_LEN;
2033 	if (!rp)
2034 		goto reject;
2035 	sid = ntoh24(rp->rec_s_id);
2036 	rxid = ntohs(rp->rec_rx_id);
2037 	oxid = ntohs(rp->rec_ox_id);
2038 
2039 	explan = ELS_EXPL_OXID_RXID;
2040 	if (sid == fc_host_port_id(lport->host))
2041 		xid = oxid;
2042 	else
2043 		xid = rxid;
2044 	if (xid == FC_XID_UNKNOWN) {
2045 		FC_LPORT_DBG(lport,
2046 			     "REC request from %x: invalid rxid %x oxid %x\n",
2047 			     sid, rxid, oxid);
2048 		goto reject;
2049 	}
2050 	ep = fc_exch_lookup(lport, xid);
2051 	if (!ep) {
2052 		FC_LPORT_DBG(lport,
2053 			     "REC request from %x: rxid %x oxid %x not found\n",
2054 			     sid, rxid, oxid);
2055 		goto reject;
2056 	}
2057 	FC_EXCH_DBG(ep, "REC request from %x: rxid %x oxid %x\n",
2058 		    sid, rxid, oxid);
2059 	if (ep->oid != sid || oxid != ep->oxid)
2060 		goto rel;
2061 	if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
2062 		goto rel;
2063 	fp = fc_frame_alloc(lport, sizeof(*acc));
2064 	if (!fp) {
2065 		FC_EXCH_DBG(ep, "Drop REC request, out of memory\n");
2066 		goto out;
2067 	}
2068 
2069 	acc = fc_frame_payload_get(fp, sizeof(*acc));
2070 	memset(acc, 0, sizeof(*acc));
2071 	acc->reca_cmd = ELS_LS_ACC;
2072 	acc->reca_ox_id = rp->rec_ox_id;
2073 	memcpy(acc->reca_ofid, rp->rec_s_id, 3);
2074 	acc->reca_rx_id = htons(ep->rxid);
2075 	if (ep->sid == ep->oid)
2076 		hton24(acc->reca_rfid, ep->did);
2077 	else
2078 		hton24(acc->reca_rfid, ep->sid);
2079 	acc->reca_fc4value = htonl(ep->seq.rec_data);
2080 	acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
2081 						 ESB_ST_SEQ_INIT |
2082 						 ESB_ST_COMPLETE));
2083 	fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
2084 	lport->tt.frame_send(lport, fp);
2085 out:
2086 	fc_exch_release(ep);
2087 	return;
2088 
2089 rel:
2090 	fc_exch_release(ep);
2091 reject:
2092 	fc_seq_ls_rjt(rfp, reason, explan);
2093 }
2094 
2095 /**
2096  * fc_exch_rrq_resp() - Handler for RRQ responses
2097  * @sp:	 The sequence that the RRQ is on
2098  * @fp:	 The RRQ frame
2099  * @arg: The exchange that the RRQ is on
2100  *
2101  * TODO: fix error handler.
2102  */
fc_exch_rrq_resp(struct fc_seq * sp,struct fc_frame * fp,void * arg)2103 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
2104 {
2105 	struct fc_exch *aborted_ep = arg;
2106 	unsigned int op;
2107 
2108 	if (IS_ERR(fp)) {
2109 		int err = PTR_ERR(fp);
2110 
2111 		if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
2112 			goto cleanup;
2113 		FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
2114 			    "frame error %d\n", err);
2115 		return;
2116 	}
2117 
2118 	op = fc_frame_payload_op(fp);
2119 	fc_frame_free(fp);
2120 
2121 	switch (op) {
2122 	case ELS_LS_RJT:
2123 		FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ\n");
2124 		fallthrough;
2125 	case ELS_LS_ACC:
2126 		goto cleanup;
2127 	default:
2128 		FC_EXCH_DBG(aborted_ep, "unexpected response op %x for RRQ\n",
2129 			    op);
2130 		return;
2131 	}
2132 
2133 cleanup:
2134 	fc_exch_done(&aborted_ep->seq);
2135 	/* drop hold for rec qual */
2136 	fc_exch_release(aborted_ep);
2137 }
2138 
2139 
2140 /**
2141  * fc_exch_seq_send() - Send a frame using a new exchange and sequence
2142  * @lport:	The local port to send the frame on
2143  * @fp:		The frame to be sent
2144  * @resp:	The response handler for this request
2145  * @destructor: The destructor for the exchange
2146  * @arg:	The argument to be passed to the response handler
2147  * @timer_msec: The timeout period for the exchange
2148  *
2149  * The exchange response handler is set in this routine to resp()
2150  * function pointer. It can be called in two scenarios: if a timeout
2151  * occurs or if a response frame is received for the exchange. The
2152  * fc_frame pointer in response handler will also indicate timeout
2153  * as error using IS_ERR related macros.
2154  *
2155  * The exchange destructor handler is also set in this routine.
2156  * The destructor handler is invoked by EM layer when exchange
2157  * is about to free, this can be used by caller to free its
2158  * resources along with exchange free.
2159  *
2160  * The arg is passed back to resp and destructor handler.
2161  *
2162  * The timeout value (in msec) for an exchange is set if non zero
2163  * timer_msec argument is specified. The timer is canceled when
2164  * it fires or when the exchange is done. The exchange timeout handler
2165  * is registered by EM layer.
2166  *
2167  * The frame pointer with some of the header's fields must be
2168  * filled before calling this routine, those fields are:
2169  *
2170  * - routing control
2171  * - FC port did
2172  * - FC port sid
2173  * - FC header type
2174  * - frame control
2175  * - parameter or relative offset
2176  */
fc_exch_seq_send(struct fc_lport * lport,struct fc_frame * fp,void (* resp)(struct fc_seq *,struct fc_frame * fp,void * arg),void (* destructor)(struct fc_seq *,void *),void * arg,u32 timer_msec)2177 struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
2178 				struct fc_frame *fp,
2179 				void (*resp)(struct fc_seq *,
2180 					     struct fc_frame *fp,
2181 					     void *arg),
2182 				void (*destructor)(struct fc_seq *, void *),
2183 				void *arg, u32 timer_msec)
2184 {
2185 	struct fc_exch *ep;
2186 	struct fc_seq *sp = NULL;
2187 	struct fc_frame_header *fh;
2188 	struct fc_fcp_pkt *fsp = NULL;
2189 	int rc = 1;
2190 
2191 	ep = fc_exch_alloc(lport, fp);
2192 	if (!ep) {
2193 		fc_frame_free(fp);
2194 		return NULL;
2195 	}
2196 	ep->esb_stat |= ESB_ST_SEQ_INIT;
2197 	fh = fc_frame_header_get(fp);
2198 	fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2199 	ep->resp = resp;
2200 	ep->destructor = destructor;
2201 	ep->arg = arg;
2202 	ep->r_a_tov = lport->r_a_tov;
2203 	ep->lp = lport;
2204 	sp = &ep->seq;
2205 
2206 	ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2207 	ep->f_ctl = ntoh24(fh->fh_f_ctl);
2208 	fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2209 	sp->cnt++;
2210 
2211 	if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2212 		fsp = fr_fsp(fp);
2213 		fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2214 	}
2215 
2216 	if (unlikely(lport->tt.frame_send(lport, fp)))
2217 		goto err;
2218 
2219 	if (timer_msec)
2220 		fc_exch_timer_set_locked(ep, timer_msec);
2221 	ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not first seq */
2222 
2223 	if (ep->f_ctl & FC_FC_SEQ_INIT)
2224 		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2225 	spin_unlock_bh(&ep->ex_lock);
2226 	return sp;
2227 err:
2228 	if (fsp)
2229 		fc_fcp_ddp_done(fsp);
2230 	rc = fc_exch_done_locked(ep);
2231 	spin_unlock_bh(&ep->ex_lock);
2232 	if (!rc)
2233 		fc_exch_delete(ep);
2234 	return NULL;
2235 }
2236 EXPORT_SYMBOL(fc_exch_seq_send);
2237 
2238 /**
2239  * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2240  * @ep: The exchange to send the RRQ on
2241  *
2242  * This tells the remote port to stop blocking the use of
2243  * the exchange and the seq_cnt range.
2244  */
fc_exch_rrq(struct fc_exch * ep)2245 static void fc_exch_rrq(struct fc_exch *ep)
2246 {
2247 	struct fc_lport *lport;
2248 	struct fc_els_rrq *rrq;
2249 	struct fc_frame *fp;
2250 	u32 did;
2251 
2252 	lport = ep->lp;
2253 
2254 	fp = fc_frame_alloc(lport, sizeof(*rrq));
2255 	if (!fp)
2256 		goto retry;
2257 
2258 	rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2259 	memset(rrq, 0, sizeof(*rrq));
2260 	rrq->rrq_cmd = ELS_RRQ;
2261 	hton24(rrq->rrq_s_id, ep->sid);
2262 	rrq->rrq_ox_id = htons(ep->oxid);
2263 	rrq->rrq_rx_id = htons(ep->rxid);
2264 
2265 	did = ep->did;
2266 	if (ep->esb_stat & ESB_ST_RESP)
2267 		did = ep->sid;
2268 
2269 	fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2270 		       lport->port_id, FC_TYPE_ELS,
2271 		       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2272 
2273 	if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2274 			     lport->e_d_tov))
2275 		return;
2276 
2277 retry:
2278 	FC_EXCH_DBG(ep, "exch: RRQ send failed\n");
2279 	spin_lock_bh(&ep->ex_lock);
2280 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2281 		spin_unlock_bh(&ep->ex_lock);
2282 		/* drop hold for rec qual */
2283 		fc_exch_release(ep);
2284 		return;
2285 	}
2286 	ep->esb_stat |= ESB_ST_REC_QUAL;
2287 	fc_exch_timer_set_locked(ep, ep->r_a_tov);
2288 	spin_unlock_bh(&ep->ex_lock);
2289 }
2290 
2291 /**
2292  * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2293  * @fp: The RRQ frame, not freed here.
2294  */
fc_exch_els_rrq(struct fc_frame * fp)2295 static void fc_exch_els_rrq(struct fc_frame *fp)
2296 {
2297 	struct fc_lport *lport;
2298 	struct fc_exch *ep = NULL;	/* request or subject exchange */
2299 	struct fc_els_rrq *rp;
2300 	u32 sid;
2301 	u16 xid;
2302 	enum fc_els_rjt_explan explan;
2303 
2304 	lport = fr_dev(fp);
2305 	rp = fc_frame_payload_get(fp, sizeof(*rp));
2306 	explan = ELS_EXPL_INV_LEN;
2307 	if (!rp)
2308 		goto reject;
2309 
2310 	/*
2311 	 * lookup subject exchange.
2312 	 */
2313 	sid = ntoh24(rp->rrq_s_id);		/* subject source */
2314 	xid = fc_host_port_id(lport->host) == sid ?
2315 			ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2316 	ep = fc_exch_lookup(lport, xid);
2317 	explan = ELS_EXPL_OXID_RXID;
2318 	if (!ep)
2319 		goto reject;
2320 	spin_lock_bh(&ep->ex_lock);
2321 	FC_EXCH_DBG(ep, "RRQ request from %x: xid %x rxid %x oxid %x\n",
2322 		    sid, xid, ntohs(rp->rrq_rx_id), ntohs(rp->rrq_ox_id));
2323 	if (ep->oxid != ntohs(rp->rrq_ox_id))
2324 		goto unlock_reject;
2325 	if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2326 	    ep->rxid != FC_XID_UNKNOWN)
2327 		goto unlock_reject;
2328 	explan = ELS_EXPL_SID;
2329 	if (ep->sid != sid)
2330 		goto unlock_reject;
2331 
2332 	/*
2333 	 * Clear Recovery Qualifier state, and cancel timer if complete.
2334 	 */
2335 	if (ep->esb_stat & ESB_ST_REC_QUAL) {
2336 		ep->esb_stat &= ~ESB_ST_REC_QUAL;
2337 		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec qual */
2338 	}
2339 	if (ep->esb_stat & ESB_ST_COMPLETE)
2340 		fc_exch_timer_cancel(ep);
2341 
2342 	spin_unlock_bh(&ep->ex_lock);
2343 
2344 	/*
2345 	 * Send LS_ACC.
2346 	 */
2347 	fc_seq_ls_acc(fp);
2348 	goto out;
2349 
2350 unlock_reject:
2351 	spin_unlock_bh(&ep->ex_lock);
2352 reject:
2353 	fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2354 out:
2355 	if (ep)
2356 		fc_exch_release(ep);	/* drop hold from fc_exch_find */
2357 }
2358 
2359 /**
2360  * fc_exch_update_stats() - update exches stats to lport
2361  * @lport: The local port to update exchange manager stats
2362  */
fc_exch_update_stats(struct fc_lport * lport)2363 void fc_exch_update_stats(struct fc_lport *lport)
2364 {
2365 	struct fc_host_statistics *st;
2366 	struct fc_exch_mgr_anchor *ema;
2367 	struct fc_exch_mgr *mp;
2368 
2369 	st = &lport->host_stats;
2370 
2371 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2372 		mp = ema->mp;
2373 		st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
2374 		st->fc_no_free_exch_xid +=
2375 				atomic_read(&mp->stats.no_free_exch_xid);
2376 		st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
2377 		st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
2378 		st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
2379 		st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
2380 	}
2381 }
2382 EXPORT_SYMBOL(fc_exch_update_stats);
2383 
2384 /**
2385  * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2386  * @lport: The local port to add the exchange manager to
2387  * @mp:	   The exchange manager to be added to the local port
2388  * @match: The match routine that indicates when this EM should be used
2389  */
fc_exch_mgr_add(struct fc_lport * lport,struct fc_exch_mgr * mp,bool (* match)(struct fc_frame *))2390 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2391 					   struct fc_exch_mgr *mp,
2392 					   bool (*match)(struct fc_frame *))
2393 {
2394 	struct fc_exch_mgr_anchor *ema;
2395 
2396 	ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2397 	if (!ema)
2398 		return ema;
2399 
2400 	ema->mp = mp;
2401 	ema->match = match;
2402 	/* add EM anchor to EM anchors list */
2403 	list_add_tail(&ema->ema_list, &lport->ema_list);
2404 	kref_get(&mp->kref);
2405 	return ema;
2406 }
2407 EXPORT_SYMBOL(fc_exch_mgr_add);
2408 
2409 /**
2410  * fc_exch_mgr_destroy() - Destroy an exchange manager
2411  * @kref: The reference to the EM to be destroyed
2412  */
fc_exch_mgr_destroy(struct kref * kref)2413 static void fc_exch_mgr_destroy(struct kref *kref)
2414 {
2415 	struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2416 
2417 	mempool_destroy(mp->ep_pool);
2418 	free_percpu(mp->pool);
2419 	kfree(mp);
2420 }
2421 
2422 /**
2423  * fc_exch_mgr_del() - Delete an EM from a local port's list
2424  * @ema: The exchange manager anchor identifying the EM to be deleted
2425  */
fc_exch_mgr_del(struct fc_exch_mgr_anchor * ema)2426 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2427 {
2428 	/* remove EM anchor from EM anchors list */
2429 	list_del(&ema->ema_list);
2430 	kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2431 	kfree(ema);
2432 }
2433 EXPORT_SYMBOL(fc_exch_mgr_del);
2434 
2435 /**
2436  * fc_exch_mgr_list_clone() - Share all exchange manager objects
2437  * @src: Source lport to clone exchange managers from
2438  * @dst: New lport that takes references to all the exchange managers
2439  */
fc_exch_mgr_list_clone(struct fc_lport * src,struct fc_lport * dst)2440 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2441 {
2442 	struct fc_exch_mgr_anchor *ema, *tmp;
2443 
2444 	list_for_each_entry(ema, &src->ema_list, ema_list) {
2445 		if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2446 			goto err;
2447 	}
2448 	return 0;
2449 err:
2450 	list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2451 		fc_exch_mgr_del(ema);
2452 	return -ENOMEM;
2453 }
2454 EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2455 
2456 /**
2457  * fc_exch_mgr_alloc() - Allocate an exchange manager
2458  * @lport:   The local port that the new EM will be associated with
2459  * @class:   The default FC class for new exchanges
2460  * @min_xid: The minimum XID for exchanges from the new EM
2461  * @max_xid: The maximum XID for exchanges from the new EM
2462  * @match:   The match routine for the new EM
2463  */
fc_exch_mgr_alloc(struct fc_lport * lport,enum fc_class class,u16 min_xid,u16 max_xid,bool (* match)(struct fc_frame *))2464 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2465 				      enum fc_class class,
2466 				      u16 min_xid, u16 max_xid,
2467 				      bool (*match)(struct fc_frame *))
2468 {
2469 	struct fc_exch_mgr *mp;
2470 	u16 pool_exch_range;
2471 	size_t pool_size;
2472 	unsigned int cpu;
2473 	struct fc_exch_pool *pool;
2474 
2475 	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2476 	    (min_xid & fc_cpu_mask) != 0) {
2477 		FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2478 			     min_xid, max_xid);
2479 		return NULL;
2480 	}
2481 
2482 	/*
2483 	 * allocate memory for EM
2484 	 */
2485 	mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2486 	if (!mp)
2487 		return NULL;
2488 
2489 	mp->class = class;
2490 	mp->lport = lport;
2491 	/* adjust em exch xid range for offload */
2492 	mp->min_xid = min_xid;
2493 
2494        /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2495 	pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2496 		sizeof(struct fc_exch *);
2497 	if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2498 		mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2499 			min_xid - 1;
2500 	} else {
2501 		mp->max_xid = max_xid;
2502 		pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2503 			(fc_cpu_mask + 1);
2504 	}
2505 
2506 	mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2507 	if (!mp->ep_pool)
2508 		goto free_mp;
2509 
2510 	/*
2511 	 * Setup per cpu exch pool with entire exchange id range equally
2512 	 * divided across all cpus. The exch pointers array memory is
2513 	 * allocated for exch range per pool.
2514 	 */
2515 	mp->pool_max_index = pool_exch_range - 1;
2516 
2517 	/*
2518 	 * Allocate and initialize per cpu exch pool
2519 	 */
2520 	pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2521 	mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2522 	if (!mp->pool)
2523 		goto free_mempool;
2524 	for_each_possible_cpu(cpu) {
2525 		pool = per_cpu_ptr(mp->pool, cpu);
2526 		pool->next_index = 0;
2527 		pool->left = FC_XID_UNKNOWN;
2528 		pool->right = FC_XID_UNKNOWN;
2529 		spin_lock_init(&pool->lock);
2530 		INIT_LIST_HEAD(&pool->ex_list);
2531 	}
2532 
2533 	kref_init(&mp->kref);
2534 	if (!fc_exch_mgr_add(lport, mp, match)) {
2535 		free_percpu(mp->pool);
2536 		goto free_mempool;
2537 	}
2538 
2539 	/*
2540 	 * Above kref_init() sets mp->kref to 1 and then
2541 	 * call to fc_exch_mgr_add incremented mp->kref again,
2542 	 * so adjust that extra increment.
2543 	 */
2544 	kref_put(&mp->kref, fc_exch_mgr_destroy);
2545 	return mp;
2546 
2547 free_mempool:
2548 	mempool_destroy(mp->ep_pool);
2549 free_mp:
2550 	kfree(mp);
2551 	return NULL;
2552 }
2553 EXPORT_SYMBOL(fc_exch_mgr_alloc);
2554 
2555 /**
2556  * fc_exch_mgr_free() - Free all exchange managers on a local port
2557  * @lport: The local port whose EMs are to be freed
2558  */
fc_exch_mgr_free(struct fc_lport * lport)2559 void fc_exch_mgr_free(struct fc_lport *lport)
2560 {
2561 	struct fc_exch_mgr_anchor *ema, *next;
2562 
2563 	flush_workqueue(fc_exch_workqueue);
2564 	list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2565 		fc_exch_mgr_del(ema);
2566 }
2567 EXPORT_SYMBOL(fc_exch_mgr_free);
2568 
2569 /**
2570  * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2571  * upon 'xid'.
2572  * @f_ctl: f_ctl
2573  * @lport: The local port the frame was received on
2574  * @fh: The received frame header
2575  */
fc_find_ema(u32 f_ctl,struct fc_lport * lport,struct fc_frame_header * fh)2576 static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2577 					      struct fc_lport *lport,
2578 					      struct fc_frame_header *fh)
2579 {
2580 	struct fc_exch_mgr_anchor *ema;
2581 	u16 xid;
2582 
2583 	if (f_ctl & FC_FC_EX_CTX)
2584 		xid = ntohs(fh->fh_ox_id);
2585 	else {
2586 		xid = ntohs(fh->fh_rx_id);
2587 		if (xid == FC_XID_UNKNOWN)
2588 			return list_entry(lport->ema_list.prev,
2589 					  typeof(*ema), ema_list);
2590 	}
2591 
2592 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2593 		if ((xid >= ema->mp->min_xid) &&
2594 		    (xid <= ema->mp->max_xid))
2595 			return ema;
2596 	}
2597 	return NULL;
2598 }
2599 /**
2600  * fc_exch_recv() - Handler for received frames
2601  * @lport: The local port the frame was received on
2602  * @fp:	The received frame
2603  */
fc_exch_recv(struct fc_lport * lport,struct fc_frame * fp)2604 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2605 {
2606 	struct fc_frame_header *fh = fc_frame_header_get(fp);
2607 	struct fc_exch_mgr_anchor *ema;
2608 	u32 f_ctl;
2609 
2610 	/* lport lock ? */
2611 	if (!lport || lport->state == LPORT_ST_DISABLED) {
2612 		FC_LIBFC_DBG("Receiving frames for an lport that "
2613 			     "has not been initialized correctly\n");
2614 		fc_frame_free(fp);
2615 		return;
2616 	}
2617 
2618 	f_ctl = ntoh24(fh->fh_f_ctl);
2619 	ema = fc_find_ema(f_ctl, lport, fh);
2620 	if (!ema) {
2621 		FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2622 				    "fc_ctl <0x%x>, xid <0x%x>\n",
2623 				     f_ctl,
2624 				     (f_ctl & FC_FC_EX_CTX) ?
2625 				     ntohs(fh->fh_ox_id) :
2626 				     ntohs(fh->fh_rx_id));
2627 		fc_frame_free(fp);
2628 		return;
2629 	}
2630 
2631 	/*
2632 	 * If frame is marked invalid, just drop it.
2633 	 */
2634 	switch (fr_eof(fp)) {
2635 	case FC_EOF_T:
2636 		if (f_ctl & FC_FC_END_SEQ)
2637 			skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2638 		fallthrough;
2639 	case FC_EOF_N:
2640 		if (fh->fh_type == FC_TYPE_BLS)
2641 			fc_exch_recv_bls(ema->mp, fp);
2642 		else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2643 			 FC_FC_EX_CTX)
2644 			fc_exch_recv_seq_resp(ema->mp, fp);
2645 		else if (f_ctl & FC_FC_SEQ_CTX)
2646 			fc_exch_recv_resp(ema->mp, fp);
2647 		else	/* no EX_CTX and no SEQ_CTX */
2648 			fc_exch_recv_req(lport, ema->mp, fp);
2649 		break;
2650 	default:
2651 		FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2652 			     fr_eof(fp));
2653 		fc_frame_free(fp);
2654 	}
2655 }
2656 EXPORT_SYMBOL(fc_exch_recv);
2657 
2658 /**
2659  * fc_exch_init() - Initialize the exchange layer for a local port
2660  * @lport: The local port to initialize the exchange layer for
2661  */
fc_exch_init(struct fc_lport * lport)2662 int fc_exch_init(struct fc_lport *lport)
2663 {
2664 	if (!lport->tt.exch_mgr_reset)
2665 		lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2666 
2667 	return 0;
2668 }
2669 EXPORT_SYMBOL(fc_exch_init);
2670 
2671 /**
2672  * fc_setup_exch_mgr() - Setup an exchange manager
2673  */
fc_setup_exch_mgr(void)2674 int fc_setup_exch_mgr(void)
2675 {
2676 	fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2677 					 0, SLAB_HWCACHE_ALIGN, NULL);
2678 	if (!fc_em_cachep)
2679 		return -ENOMEM;
2680 
2681 	/*
2682 	 * Initialize fc_cpu_mask and fc_cpu_order. The
2683 	 * fc_cpu_mask is set for nr_cpu_ids rounded up
2684 	 * to order of 2's * power and order is stored
2685 	 * in fc_cpu_order as this is later required in
2686 	 * mapping between an exch id and exch array index
2687 	 * in per cpu exch pool.
2688 	 *
2689 	 * This round up is required to align fc_cpu_mask
2690 	 * to exchange id's lower bits such that all incoming
2691 	 * frames of an exchange gets delivered to the same
2692 	 * cpu on which exchange originated by simple bitwise
2693 	 * AND operation between fc_cpu_mask and exchange id.
2694 	 */
2695 	fc_cpu_order = ilog2(roundup_pow_of_two(nr_cpu_ids));
2696 	fc_cpu_mask = (1 << fc_cpu_order) - 1;
2697 
2698 	fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2699 	if (!fc_exch_workqueue)
2700 		goto err;
2701 	return 0;
2702 err:
2703 	kmem_cache_destroy(fc_em_cachep);
2704 	return -ENOMEM;
2705 }
2706 
2707 /**
2708  * fc_destroy_exch_mgr() - Destroy an exchange manager
2709  */
fc_destroy_exch_mgr(void)2710 void fc_destroy_exch_mgr(void)
2711 {
2712 	destroy_workqueue(fc_exch_workqueue);
2713 	kmem_cache_destroy(fc_em_cachep);
2714 }
2715