• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Atmel AT32 and AT91 SPI Controllers
4  *
5  * Copyright (C) 2006 Atmel Corporation
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 
21 #include <linux/io.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/pm_runtime.h>
25 #include <trace/events/spi.h>
26 
27 /* SPI register offsets */
28 #define SPI_CR					0x0000
29 #define SPI_MR					0x0004
30 #define SPI_RDR					0x0008
31 #define SPI_TDR					0x000c
32 #define SPI_SR					0x0010
33 #define SPI_IER					0x0014
34 #define SPI_IDR					0x0018
35 #define SPI_IMR					0x001c
36 #define SPI_CSR0				0x0030
37 #define SPI_CSR1				0x0034
38 #define SPI_CSR2				0x0038
39 #define SPI_CSR3				0x003c
40 #define SPI_FMR					0x0040
41 #define SPI_FLR					0x0044
42 #define SPI_VERSION				0x00fc
43 #define SPI_RPR					0x0100
44 #define SPI_RCR					0x0104
45 #define SPI_TPR					0x0108
46 #define SPI_TCR					0x010c
47 #define SPI_RNPR				0x0110
48 #define SPI_RNCR				0x0114
49 #define SPI_TNPR				0x0118
50 #define SPI_TNCR				0x011c
51 #define SPI_PTCR				0x0120
52 #define SPI_PTSR				0x0124
53 
54 /* Bitfields in CR */
55 #define SPI_SPIEN_OFFSET			0
56 #define SPI_SPIEN_SIZE				1
57 #define SPI_SPIDIS_OFFSET			1
58 #define SPI_SPIDIS_SIZE				1
59 #define SPI_SWRST_OFFSET			7
60 #define SPI_SWRST_SIZE				1
61 #define SPI_LASTXFER_OFFSET			24
62 #define SPI_LASTXFER_SIZE			1
63 #define SPI_TXFCLR_OFFSET			16
64 #define SPI_TXFCLR_SIZE				1
65 #define SPI_RXFCLR_OFFSET			17
66 #define SPI_RXFCLR_SIZE				1
67 #define SPI_FIFOEN_OFFSET			30
68 #define SPI_FIFOEN_SIZE				1
69 #define SPI_FIFODIS_OFFSET			31
70 #define SPI_FIFODIS_SIZE			1
71 
72 /* Bitfields in MR */
73 #define SPI_MSTR_OFFSET				0
74 #define SPI_MSTR_SIZE				1
75 #define SPI_PS_OFFSET				1
76 #define SPI_PS_SIZE				1
77 #define SPI_PCSDEC_OFFSET			2
78 #define SPI_PCSDEC_SIZE				1
79 #define SPI_FDIV_OFFSET				3
80 #define SPI_FDIV_SIZE				1
81 #define SPI_MODFDIS_OFFSET			4
82 #define SPI_MODFDIS_SIZE			1
83 #define SPI_WDRBT_OFFSET			5
84 #define SPI_WDRBT_SIZE				1
85 #define SPI_LLB_OFFSET				7
86 #define SPI_LLB_SIZE				1
87 #define SPI_PCS_OFFSET				16
88 #define SPI_PCS_SIZE				4
89 #define SPI_DLYBCS_OFFSET			24
90 #define SPI_DLYBCS_SIZE				8
91 
92 /* Bitfields in RDR */
93 #define SPI_RD_OFFSET				0
94 #define SPI_RD_SIZE				16
95 
96 /* Bitfields in TDR */
97 #define SPI_TD_OFFSET				0
98 #define SPI_TD_SIZE				16
99 
100 /* Bitfields in SR */
101 #define SPI_RDRF_OFFSET				0
102 #define SPI_RDRF_SIZE				1
103 #define SPI_TDRE_OFFSET				1
104 #define SPI_TDRE_SIZE				1
105 #define SPI_MODF_OFFSET				2
106 #define SPI_MODF_SIZE				1
107 #define SPI_OVRES_OFFSET			3
108 #define SPI_OVRES_SIZE				1
109 #define SPI_ENDRX_OFFSET			4
110 #define SPI_ENDRX_SIZE				1
111 #define SPI_ENDTX_OFFSET			5
112 #define SPI_ENDTX_SIZE				1
113 #define SPI_RXBUFF_OFFSET			6
114 #define SPI_RXBUFF_SIZE				1
115 #define SPI_TXBUFE_OFFSET			7
116 #define SPI_TXBUFE_SIZE				1
117 #define SPI_NSSR_OFFSET				8
118 #define SPI_NSSR_SIZE				1
119 #define SPI_TXEMPTY_OFFSET			9
120 #define SPI_TXEMPTY_SIZE			1
121 #define SPI_SPIENS_OFFSET			16
122 #define SPI_SPIENS_SIZE				1
123 #define SPI_TXFEF_OFFSET			24
124 #define SPI_TXFEF_SIZE				1
125 #define SPI_TXFFF_OFFSET			25
126 #define SPI_TXFFF_SIZE				1
127 #define SPI_TXFTHF_OFFSET			26
128 #define SPI_TXFTHF_SIZE				1
129 #define SPI_RXFEF_OFFSET			27
130 #define SPI_RXFEF_SIZE				1
131 #define SPI_RXFFF_OFFSET			28
132 #define SPI_RXFFF_SIZE				1
133 #define SPI_RXFTHF_OFFSET			29
134 #define SPI_RXFTHF_SIZE				1
135 #define SPI_TXFPTEF_OFFSET			30
136 #define SPI_TXFPTEF_SIZE			1
137 #define SPI_RXFPTEF_OFFSET			31
138 #define SPI_RXFPTEF_SIZE			1
139 
140 /* Bitfields in CSR0 */
141 #define SPI_CPOL_OFFSET				0
142 #define SPI_CPOL_SIZE				1
143 #define SPI_NCPHA_OFFSET			1
144 #define SPI_NCPHA_SIZE				1
145 #define SPI_CSAAT_OFFSET			3
146 #define SPI_CSAAT_SIZE				1
147 #define SPI_BITS_OFFSET				4
148 #define SPI_BITS_SIZE				4
149 #define SPI_SCBR_OFFSET				8
150 #define SPI_SCBR_SIZE				8
151 #define SPI_DLYBS_OFFSET			16
152 #define SPI_DLYBS_SIZE				8
153 #define SPI_DLYBCT_OFFSET			24
154 #define SPI_DLYBCT_SIZE				8
155 
156 /* Bitfields in RCR */
157 #define SPI_RXCTR_OFFSET			0
158 #define SPI_RXCTR_SIZE				16
159 
160 /* Bitfields in TCR */
161 #define SPI_TXCTR_OFFSET			0
162 #define SPI_TXCTR_SIZE				16
163 
164 /* Bitfields in RNCR */
165 #define SPI_RXNCR_OFFSET			0
166 #define SPI_RXNCR_SIZE				16
167 
168 /* Bitfields in TNCR */
169 #define SPI_TXNCR_OFFSET			0
170 #define SPI_TXNCR_SIZE				16
171 
172 /* Bitfields in PTCR */
173 #define SPI_RXTEN_OFFSET			0
174 #define SPI_RXTEN_SIZE				1
175 #define SPI_RXTDIS_OFFSET			1
176 #define SPI_RXTDIS_SIZE				1
177 #define SPI_TXTEN_OFFSET			8
178 #define SPI_TXTEN_SIZE				1
179 #define SPI_TXTDIS_OFFSET			9
180 #define SPI_TXTDIS_SIZE				1
181 
182 /* Bitfields in FMR */
183 #define SPI_TXRDYM_OFFSET			0
184 #define SPI_TXRDYM_SIZE				2
185 #define SPI_RXRDYM_OFFSET			4
186 #define SPI_RXRDYM_SIZE				2
187 #define SPI_TXFTHRES_OFFSET			16
188 #define SPI_TXFTHRES_SIZE			6
189 #define SPI_RXFTHRES_OFFSET			24
190 #define SPI_RXFTHRES_SIZE			6
191 
192 /* Bitfields in FLR */
193 #define SPI_TXFL_OFFSET				0
194 #define SPI_TXFL_SIZE				6
195 #define SPI_RXFL_OFFSET				16
196 #define SPI_RXFL_SIZE				6
197 
198 /* Constants for BITS */
199 #define SPI_BITS_8_BPT				0
200 #define SPI_BITS_9_BPT				1
201 #define SPI_BITS_10_BPT				2
202 #define SPI_BITS_11_BPT				3
203 #define SPI_BITS_12_BPT				4
204 #define SPI_BITS_13_BPT				5
205 #define SPI_BITS_14_BPT				6
206 #define SPI_BITS_15_BPT				7
207 #define SPI_BITS_16_BPT				8
208 #define SPI_ONE_DATA				0
209 #define SPI_TWO_DATA				1
210 #define SPI_FOUR_DATA				2
211 
212 /* Bit manipulation macros */
213 #define SPI_BIT(name) \
214 	(1 << SPI_##name##_OFFSET)
215 #define SPI_BF(name, value) \
216 	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
217 #define SPI_BFEXT(name, value) \
218 	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
219 #define SPI_BFINS(name, value, old) \
220 	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
221 	  | SPI_BF(name, value))
222 
223 /* Register access macros */
224 #define spi_readl(port, reg) \
225 	readl_relaxed((port)->regs + SPI_##reg)
226 #define spi_writel(port, reg, value) \
227 	writel_relaxed((value), (port)->regs + SPI_##reg)
228 #define spi_writew(port, reg, value) \
229 	writew_relaxed((value), (port)->regs + SPI_##reg)
230 
231 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
232  * cache operations; better heuristics consider wordsize and bitrate.
233  */
234 #define DMA_MIN_BYTES	16
235 
236 #define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
237 
238 #define AUTOSUSPEND_TIMEOUT	2000
239 
240 struct atmel_spi_caps {
241 	bool	is_spi2;
242 	bool	has_wdrbt;
243 	bool	has_dma_support;
244 	bool	has_pdc_support;
245 };
246 
247 /*
248  * The core SPI transfer engine just talks to a register bank to set up
249  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
250  * framework provides the base clock, subdivided for each spi_device.
251  */
252 struct atmel_spi {
253 	spinlock_t		lock;
254 	unsigned long		flags;
255 
256 	phys_addr_t		phybase;
257 	void __iomem		*regs;
258 	int			irq;
259 	struct clk		*clk;
260 	struct platform_device	*pdev;
261 	unsigned long		spi_clk;
262 
263 	struct spi_transfer	*current_transfer;
264 	int			current_remaining_bytes;
265 	int			done_status;
266 	dma_addr_t		dma_addr_rx_bbuf;
267 	dma_addr_t		dma_addr_tx_bbuf;
268 	void			*addr_rx_bbuf;
269 	void			*addr_tx_bbuf;
270 
271 	struct completion	xfer_completion;
272 
273 	struct atmel_spi_caps	caps;
274 
275 	bool			use_dma;
276 	bool			use_pdc;
277 
278 	bool			keep_cs;
279 
280 	u32			fifo_size;
281 	u8			native_cs_free;
282 	u8			native_cs_for_gpio;
283 };
284 
285 /* Controller-specific per-slave state */
286 struct atmel_spi_device {
287 	u32			csr;
288 };
289 
290 #define SPI_MAX_DMA_XFER	65535 /* true for both PDC and DMA */
291 #define INVALID_DMA_ADDRESS	0xffffffff
292 
293 /*
294  * Version 2 of the SPI controller has
295  *  - CR.LASTXFER
296  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
297  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
298  *  - SPI_CSRx.CSAAT
299  *  - SPI_CSRx.SBCR allows faster clocking
300  */
atmel_spi_is_v2(struct atmel_spi * as)301 static bool atmel_spi_is_v2(struct atmel_spi *as)
302 {
303 	return as->caps.is_spi2;
304 }
305 
306 /*
307  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
308  * they assume that spi slave device state will not change on deselect, so
309  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
310  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
311  * controllers have CSAAT and friends.
312  *
313  * Even controller newer than ar91rm9200, using GPIOs can make sens as
314  * it lets us support active-high chipselects despite the controller's
315  * belief that only active-low devices/systems exists.
316  *
317  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
318  * right when driven with GPIO.  ("Mode Fault does not allow more than one
319  * Master on Chip Select 0.")  No workaround exists for that ... so for
320  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
321  * and (c) will trigger that first erratum in some cases.
322  */
323 
cs_activate(struct atmel_spi * as,struct spi_device * spi)324 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
325 {
326 	struct atmel_spi_device *asd = spi->controller_state;
327 	int chip_select;
328 	u32 mr;
329 
330 	if (spi->cs_gpiod)
331 		chip_select = as->native_cs_for_gpio;
332 	else
333 		chip_select = spi->chip_select;
334 
335 	if (atmel_spi_is_v2(as)) {
336 		spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
337 		/* For the low SPI version, there is a issue that PDC transfer
338 		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
339 		 */
340 		spi_writel(as, CSR0, asd->csr);
341 		if (as->caps.has_wdrbt) {
342 			spi_writel(as, MR,
343 					SPI_BF(PCS, ~(0x01 << chip_select))
344 					| SPI_BIT(WDRBT)
345 					| SPI_BIT(MODFDIS)
346 					| SPI_BIT(MSTR));
347 		} else {
348 			spi_writel(as, MR,
349 					SPI_BF(PCS, ~(0x01 << chip_select))
350 					| SPI_BIT(MODFDIS)
351 					| SPI_BIT(MSTR));
352 		}
353 
354 		mr = spi_readl(as, MR);
355 	} else {
356 		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
357 		int i;
358 		u32 csr;
359 
360 		/* Make sure clock polarity is correct */
361 		for (i = 0; i < spi->master->num_chipselect; i++) {
362 			csr = spi_readl(as, CSR0 + 4 * i);
363 			if ((csr ^ cpol) & SPI_BIT(CPOL))
364 				spi_writel(as, CSR0 + 4 * i,
365 						csr ^ SPI_BIT(CPOL));
366 		}
367 
368 		mr = spi_readl(as, MR);
369 		mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
370 		spi_writel(as, MR, mr);
371 	}
372 
373 	dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
374 }
375 
cs_deactivate(struct atmel_spi * as,struct spi_device * spi)376 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
377 {
378 	int chip_select;
379 	u32 mr;
380 
381 	if (spi->cs_gpiod)
382 		chip_select = as->native_cs_for_gpio;
383 	else
384 		chip_select = spi->chip_select;
385 
386 	/* only deactivate *this* device; sometimes transfers to
387 	 * another device may be active when this routine is called.
388 	 */
389 	mr = spi_readl(as, MR);
390 	if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
391 		mr = SPI_BFINS(PCS, 0xf, mr);
392 		spi_writel(as, MR, mr);
393 	}
394 
395 	dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
396 
397 	if (!spi->cs_gpiod)
398 		spi_writel(as, CR, SPI_BIT(LASTXFER));
399 }
400 
atmel_spi_lock(struct atmel_spi * as)401 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
402 {
403 	spin_lock_irqsave(&as->lock, as->flags);
404 }
405 
atmel_spi_unlock(struct atmel_spi * as)406 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
407 {
408 	spin_unlock_irqrestore(&as->lock, as->flags);
409 }
410 
atmel_spi_is_vmalloc_xfer(struct spi_transfer * xfer)411 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
412 {
413 	return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
414 }
415 
atmel_spi_use_dma(struct atmel_spi * as,struct spi_transfer * xfer)416 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
417 				struct spi_transfer *xfer)
418 {
419 	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
420 }
421 
atmel_spi_can_dma(struct spi_master * master,struct spi_device * spi,struct spi_transfer * xfer)422 static bool atmel_spi_can_dma(struct spi_master *master,
423 			      struct spi_device *spi,
424 			      struct spi_transfer *xfer)
425 {
426 	struct atmel_spi *as = spi_master_get_devdata(master);
427 
428 	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
429 		return atmel_spi_use_dma(as, xfer) &&
430 			!atmel_spi_is_vmalloc_xfer(xfer);
431 	else
432 		return atmel_spi_use_dma(as, xfer);
433 
434 }
435 
atmel_spi_dma_slave_config(struct atmel_spi * as,struct dma_slave_config * slave_config,u8 bits_per_word)436 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
437 				struct dma_slave_config *slave_config,
438 				u8 bits_per_word)
439 {
440 	struct spi_master *master = platform_get_drvdata(as->pdev);
441 	int err = 0;
442 
443 	if (bits_per_word > 8) {
444 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
445 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
446 	} else {
447 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
448 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
449 	}
450 
451 	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
452 	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
453 	slave_config->src_maxburst = 1;
454 	slave_config->dst_maxburst = 1;
455 	slave_config->device_fc = false;
456 
457 	/*
458 	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
459 	 * the Mode Register).
460 	 * So according to the datasheet, when FIFOs are available (and
461 	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
462 	 * In this mode, up to 2 data, not 4, can be written into the Transmit
463 	 * Data Register in a single access.
464 	 * However, the first data has to be written into the lowest 16 bits and
465 	 * the second data into the highest 16 bits of the Transmit
466 	 * Data Register. For 8bit data (the most frequent case), it would
467 	 * require to rework tx_buf so each data would actualy fit 16 bits.
468 	 * So we'd rather write only one data at the time. Hence the transmit
469 	 * path works the same whether FIFOs are available (and enabled) or not.
470 	 */
471 	slave_config->direction = DMA_MEM_TO_DEV;
472 	if (dmaengine_slave_config(master->dma_tx, slave_config)) {
473 		dev_err(&as->pdev->dev,
474 			"failed to configure tx dma channel\n");
475 		err = -EINVAL;
476 	}
477 
478 	/*
479 	 * This driver configures the spi controller for master mode (MSTR bit
480 	 * set to '1' in the Mode Register).
481 	 * So according to the datasheet, when FIFOs are available (and
482 	 * enabled), the Receive FIFO operates in Single Data Mode.
483 	 * So the receive path works the same whether FIFOs are available (and
484 	 * enabled) or not.
485 	 */
486 	slave_config->direction = DMA_DEV_TO_MEM;
487 	if (dmaengine_slave_config(master->dma_rx, slave_config)) {
488 		dev_err(&as->pdev->dev,
489 			"failed to configure rx dma channel\n");
490 		err = -EINVAL;
491 	}
492 
493 	return err;
494 }
495 
atmel_spi_configure_dma(struct spi_master * master,struct atmel_spi * as)496 static int atmel_spi_configure_dma(struct spi_master *master,
497 				   struct atmel_spi *as)
498 {
499 	struct dma_slave_config	slave_config;
500 	struct device *dev = &as->pdev->dev;
501 	int err;
502 
503 	dma_cap_mask_t mask;
504 	dma_cap_zero(mask);
505 	dma_cap_set(DMA_SLAVE, mask);
506 
507 	master->dma_tx = dma_request_chan(dev, "tx");
508 	if (IS_ERR(master->dma_tx)) {
509 		err = dev_err_probe(dev, PTR_ERR(master->dma_tx),
510 				    "No TX DMA channel, DMA is disabled\n");
511 		goto error_clear;
512 	}
513 
514 	master->dma_rx = dma_request_chan(dev, "rx");
515 	if (IS_ERR(master->dma_rx)) {
516 		err = PTR_ERR(master->dma_rx);
517 		/*
518 		 * No reason to check EPROBE_DEFER here since we have already
519 		 * requested tx channel.
520 		 */
521 		dev_err(dev, "No RX DMA channel, DMA is disabled\n");
522 		goto error;
523 	}
524 
525 	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
526 	if (err)
527 		goto error;
528 
529 	dev_info(&as->pdev->dev,
530 			"Using %s (tx) and %s (rx) for DMA transfers\n",
531 			dma_chan_name(master->dma_tx),
532 			dma_chan_name(master->dma_rx));
533 
534 	return 0;
535 error:
536 	if (!IS_ERR(master->dma_rx))
537 		dma_release_channel(master->dma_rx);
538 	if (!IS_ERR(master->dma_tx))
539 		dma_release_channel(master->dma_tx);
540 error_clear:
541 	master->dma_tx = master->dma_rx = NULL;
542 	return err;
543 }
544 
atmel_spi_stop_dma(struct spi_master * master)545 static void atmel_spi_stop_dma(struct spi_master *master)
546 {
547 	if (master->dma_rx)
548 		dmaengine_terminate_all(master->dma_rx);
549 	if (master->dma_tx)
550 		dmaengine_terminate_all(master->dma_tx);
551 }
552 
atmel_spi_release_dma(struct spi_master * master)553 static void atmel_spi_release_dma(struct spi_master *master)
554 {
555 	if (master->dma_rx) {
556 		dma_release_channel(master->dma_rx);
557 		master->dma_rx = NULL;
558 	}
559 	if (master->dma_tx) {
560 		dma_release_channel(master->dma_tx);
561 		master->dma_tx = NULL;
562 	}
563 }
564 
565 /* This function is called by the DMA driver from tasklet context */
dma_callback(void * data)566 static void dma_callback(void *data)
567 {
568 	struct spi_master	*master = data;
569 	struct atmel_spi	*as = spi_master_get_devdata(master);
570 
571 	if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
572 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
573 		memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
574 		       as->current_transfer->len);
575 	}
576 	complete(&as->xfer_completion);
577 }
578 
579 /*
580  * Next transfer using PIO without FIFO.
581  */
atmel_spi_next_xfer_single(struct spi_master * master,struct spi_transfer * xfer)582 static void atmel_spi_next_xfer_single(struct spi_master *master,
583 				       struct spi_transfer *xfer)
584 {
585 	struct atmel_spi	*as = spi_master_get_devdata(master);
586 	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
587 
588 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
589 
590 	/* Make sure data is not remaining in RDR */
591 	spi_readl(as, RDR);
592 	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
593 		spi_readl(as, RDR);
594 		cpu_relax();
595 	}
596 
597 	if (xfer->bits_per_word > 8)
598 		spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
599 	else
600 		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
601 
602 	dev_dbg(master->dev.parent,
603 		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
604 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
605 		xfer->bits_per_word);
606 
607 	/* Enable relevant interrupts */
608 	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
609 }
610 
611 /*
612  * Next transfer using PIO with FIFO.
613  */
atmel_spi_next_xfer_fifo(struct spi_master * master,struct spi_transfer * xfer)614 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
615 				     struct spi_transfer *xfer)
616 {
617 	struct atmel_spi *as = spi_master_get_devdata(master);
618 	u32 current_remaining_data, num_data;
619 	u32 offset = xfer->len - as->current_remaining_bytes;
620 	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
621 	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
622 	u16 td0, td1;
623 	u32 fifomr;
624 
625 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
626 
627 	/* Compute the number of data to transfer in the current iteration */
628 	current_remaining_data = ((xfer->bits_per_word > 8) ?
629 				  ((u32)as->current_remaining_bytes >> 1) :
630 				  (u32)as->current_remaining_bytes);
631 	num_data = min(current_remaining_data, as->fifo_size);
632 
633 	/* Flush RX and TX FIFOs */
634 	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
635 	while (spi_readl(as, FLR))
636 		cpu_relax();
637 
638 	/* Set RX FIFO Threshold to the number of data to transfer */
639 	fifomr = spi_readl(as, FMR);
640 	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
641 
642 	/* Clear FIFO flags in the Status Register, especially RXFTHF */
643 	(void)spi_readl(as, SR);
644 
645 	/* Fill TX FIFO */
646 	while (num_data >= 2) {
647 		if (xfer->bits_per_word > 8) {
648 			td0 = *words++;
649 			td1 = *words++;
650 		} else {
651 			td0 = *bytes++;
652 			td1 = *bytes++;
653 		}
654 
655 		spi_writel(as, TDR, (td1 << 16) | td0);
656 		num_data -= 2;
657 	}
658 
659 	if (num_data) {
660 		if (xfer->bits_per_word > 8)
661 			td0 = *words++;
662 		else
663 			td0 = *bytes++;
664 
665 		spi_writew(as, TDR, td0);
666 		num_data--;
667 	}
668 
669 	dev_dbg(master->dev.parent,
670 		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
671 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
672 		xfer->bits_per_word);
673 
674 	/*
675 	 * Enable RX FIFO Threshold Flag interrupt to be notified about
676 	 * transfer completion.
677 	 */
678 	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
679 }
680 
681 /*
682  * Next transfer using PIO.
683  */
atmel_spi_next_xfer_pio(struct spi_master * master,struct spi_transfer * xfer)684 static void atmel_spi_next_xfer_pio(struct spi_master *master,
685 				    struct spi_transfer *xfer)
686 {
687 	struct atmel_spi *as = spi_master_get_devdata(master);
688 
689 	if (as->fifo_size)
690 		atmel_spi_next_xfer_fifo(master, xfer);
691 	else
692 		atmel_spi_next_xfer_single(master, xfer);
693 }
694 
695 /*
696  * Submit next transfer for DMA.
697  */
atmel_spi_next_xfer_dma_submit(struct spi_master * master,struct spi_transfer * xfer,u32 * plen)698 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
699 				struct spi_transfer *xfer,
700 				u32 *plen)
701 	__must_hold(&as->lock)
702 {
703 	struct atmel_spi	*as = spi_master_get_devdata(master);
704 	struct dma_chan		*rxchan = master->dma_rx;
705 	struct dma_chan		*txchan = master->dma_tx;
706 	struct dma_async_tx_descriptor *rxdesc;
707 	struct dma_async_tx_descriptor *txdesc;
708 	struct dma_slave_config	slave_config;
709 	dma_cookie_t		cookie;
710 
711 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
712 
713 	/* Check that the channels are available */
714 	if (!rxchan || !txchan)
715 		return -ENODEV;
716 
717 	/* release lock for DMA operations */
718 	atmel_spi_unlock(as);
719 
720 	*plen = xfer->len;
721 
722 	if (atmel_spi_dma_slave_config(as, &slave_config,
723 				       xfer->bits_per_word))
724 		goto err_exit;
725 
726 	/* Send both scatterlists */
727 	if (atmel_spi_is_vmalloc_xfer(xfer) &&
728 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
729 		rxdesc = dmaengine_prep_slave_single(rxchan,
730 						     as->dma_addr_rx_bbuf,
731 						     xfer->len,
732 						     DMA_DEV_TO_MEM,
733 						     DMA_PREP_INTERRUPT |
734 						     DMA_CTRL_ACK);
735 	} else {
736 		rxdesc = dmaengine_prep_slave_sg(rxchan,
737 						 xfer->rx_sg.sgl,
738 						 xfer->rx_sg.nents,
739 						 DMA_DEV_TO_MEM,
740 						 DMA_PREP_INTERRUPT |
741 						 DMA_CTRL_ACK);
742 	}
743 	if (!rxdesc)
744 		goto err_dma;
745 
746 	if (atmel_spi_is_vmalloc_xfer(xfer) &&
747 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
748 		memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
749 		txdesc = dmaengine_prep_slave_single(txchan,
750 						     as->dma_addr_tx_bbuf,
751 						     xfer->len, DMA_MEM_TO_DEV,
752 						     DMA_PREP_INTERRUPT |
753 						     DMA_CTRL_ACK);
754 	} else {
755 		txdesc = dmaengine_prep_slave_sg(txchan,
756 						 xfer->tx_sg.sgl,
757 						 xfer->tx_sg.nents,
758 						 DMA_MEM_TO_DEV,
759 						 DMA_PREP_INTERRUPT |
760 						 DMA_CTRL_ACK);
761 	}
762 	if (!txdesc)
763 		goto err_dma;
764 
765 	dev_dbg(master->dev.parent,
766 		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
767 		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
768 		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
769 
770 	/* Enable relevant interrupts */
771 	spi_writel(as, IER, SPI_BIT(OVRES));
772 
773 	/* Put the callback on the RX transfer only, that should finish last */
774 	rxdesc->callback = dma_callback;
775 	rxdesc->callback_param = master;
776 
777 	/* Submit and fire RX and TX with TX last so we're ready to read! */
778 	cookie = rxdesc->tx_submit(rxdesc);
779 	if (dma_submit_error(cookie))
780 		goto err_dma;
781 	cookie = txdesc->tx_submit(txdesc);
782 	if (dma_submit_error(cookie))
783 		goto err_dma;
784 	rxchan->device->device_issue_pending(rxchan);
785 	txchan->device->device_issue_pending(txchan);
786 
787 	/* take back lock */
788 	atmel_spi_lock(as);
789 	return 0;
790 
791 err_dma:
792 	spi_writel(as, IDR, SPI_BIT(OVRES));
793 	atmel_spi_stop_dma(master);
794 err_exit:
795 	atmel_spi_lock(as);
796 	return -ENOMEM;
797 }
798 
atmel_spi_next_xfer_data(struct spi_master * master,struct spi_transfer * xfer,dma_addr_t * tx_dma,dma_addr_t * rx_dma,u32 * plen)799 static void atmel_spi_next_xfer_data(struct spi_master *master,
800 				struct spi_transfer *xfer,
801 				dma_addr_t *tx_dma,
802 				dma_addr_t *rx_dma,
803 				u32 *plen)
804 {
805 	*rx_dma = xfer->rx_dma + xfer->len - *plen;
806 	*tx_dma = xfer->tx_dma + xfer->len - *plen;
807 	if (*plen > master->max_dma_len)
808 		*plen = master->max_dma_len;
809 }
810 
atmel_spi_set_xfer_speed(struct atmel_spi * as,struct spi_device * spi,struct spi_transfer * xfer)811 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
812 				    struct spi_device *spi,
813 				    struct spi_transfer *xfer)
814 {
815 	u32			scbr, csr;
816 	unsigned long		bus_hz;
817 	int chip_select;
818 
819 	if (spi->cs_gpiod)
820 		chip_select = as->native_cs_for_gpio;
821 	else
822 		chip_select = spi->chip_select;
823 
824 	/* v1 chips start out at half the peripheral bus speed. */
825 	bus_hz = as->spi_clk;
826 	if (!atmel_spi_is_v2(as))
827 		bus_hz /= 2;
828 
829 	/*
830 	 * Calculate the lowest divider that satisfies the
831 	 * constraint, assuming div32/fdiv/mbz == 0.
832 	 */
833 	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
834 
835 	/*
836 	 * If the resulting divider doesn't fit into the
837 	 * register bitfield, we can't satisfy the constraint.
838 	 */
839 	if (scbr >= (1 << SPI_SCBR_SIZE)) {
840 		dev_err(&spi->dev,
841 			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
842 			xfer->speed_hz, scbr, bus_hz/255);
843 		return -EINVAL;
844 	}
845 	if (scbr == 0) {
846 		dev_err(&spi->dev,
847 			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
848 			xfer->speed_hz, scbr, bus_hz);
849 		return -EINVAL;
850 	}
851 	csr = spi_readl(as, CSR0 + 4 * chip_select);
852 	csr = SPI_BFINS(SCBR, scbr, csr);
853 	spi_writel(as, CSR0 + 4 * chip_select, csr);
854 	xfer->effective_speed_hz = bus_hz / scbr;
855 
856 	return 0;
857 }
858 
859 /*
860  * Submit next transfer for PDC.
861  * lock is held, spi irq is blocked
862  */
atmel_spi_pdc_next_xfer(struct spi_master * master,struct spi_transfer * xfer)863 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
864 					struct spi_transfer *xfer)
865 {
866 	struct atmel_spi	*as = spi_master_get_devdata(master);
867 	u32			len;
868 	dma_addr_t		tx_dma, rx_dma;
869 
870 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
871 
872 	len = as->current_remaining_bytes;
873 	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
874 	as->current_remaining_bytes -= len;
875 
876 	spi_writel(as, RPR, rx_dma);
877 	spi_writel(as, TPR, tx_dma);
878 
879 	if (xfer->bits_per_word > 8)
880 		len >>= 1;
881 	spi_writel(as, RCR, len);
882 	spi_writel(as, TCR, len);
883 
884 	dev_dbg(&master->dev,
885 		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
886 		xfer, xfer->len, xfer->tx_buf,
887 		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
888 		(unsigned long long)xfer->rx_dma);
889 
890 	if (as->current_remaining_bytes) {
891 		len = as->current_remaining_bytes;
892 		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
893 		as->current_remaining_bytes -= len;
894 
895 		spi_writel(as, RNPR, rx_dma);
896 		spi_writel(as, TNPR, tx_dma);
897 
898 		if (xfer->bits_per_word > 8)
899 			len >>= 1;
900 		spi_writel(as, RNCR, len);
901 		spi_writel(as, TNCR, len);
902 
903 		dev_dbg(&master->dev,
904 			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
905 			xfer, xfer->len, xfer->tx_buf,
906 			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
907 			(unsigned long long)xfer->rx_dma);
908 	}
909 
910 	/* REVISIT: We're waiting for RXBUFF before we start the next
911 	 * transfer because we need to handle some difficult timing
912 	 * issues otherwise. If we wait for TXBUFE in one transfer and
913 	 * then starts waiting for RXBUFF in the next, it's difficult
914 	 * to tell the difference between the RXBUFF interrupt we're
915 	 * actually waiting for and the RXBUFF interrupt of the
916 	 * previous transfer.
917 	 *
918 	 * It should be doable, though. Just not now...
919 	 */
920 	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
921 	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
922 }
923 
924 /*
925  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
926  *  - The buffer is either valid for CPU access, else NULL
927  *  - If the buffer is valid, so is its DMA address
928  *
929  * This driver manages the dma address unless message->is_dma_mapped.
930  */
931 static int
atmel_spi_dma_map_xfer(struct atmel_spi * as,struct spi_transfer * xfer)932 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
933 {
934 	struct device	*dev = &as->pdev->dev;
935 
936 	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
937 	if (xfer->tx_buf) {
938 		/* tx_buf is a const void* where we need a void * for the dma
939 		 * mapping */
940 		void *nonconst_tx = (void *)xfer->tx_buf;
941 
942 		xfer->tx_dma = dma_map_single(dev,
943 				nonconst_tx, xfer->len,
944 				DMA_TO_DEVICE);
945 		if (dma_mapping_error(dev, xfer->tx_dma))
946 			return -ENOMEM;
947 	}
948 	if (xfer->rx_buf) {
949 		xfer->rx_dma = dma_map_single(dev,
950 				xfer->rx_buf, xfer->len,
951 				DMA_FROM_DEVICE);
952 		if (dma_mapping_error(dev, xfer->rx_dma)) {
953 			if (xfer->tx_buf)
954 				dma_unmap_single(dev,
955 						xfer->tx_dma, xfer->len,
956 						DMA_TO_DEVICE);
957 			return -ENOMEM;
958 		}
959 	}
960 	return 0;
961 }
962 
atmel_spi_dma_unmap_xfer(struct spi_master * master,struct spi_transfer * xfer)963 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
964 				     struct spi_transfer *xfer)
965 {
966 	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
967 		dma_unmap_single(master->dev.parent, xfer->tx_dma,
968 				 xfer->len, DMA_TO_DEVICE);
969 	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
970 		dma_unmap_single(master->dev.parent, xfer->rx_dma,
971 				 xfer->len, DMA_FROM_DEVICE);
972 }
973 
atmel_spi_disable_pdc_transfer(struct atmel_spi * as)974 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
975 {
976 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
977 }
978 
979 static void
atmel_spi_pump_single_data(struct atmel_spi * as,struct spi_transfer * xfer)980 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
981 {
982 	u8		*rxp;
983 	u16		*rxp16;
984 	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
985 
986 	if (xfer->bits_per_word > 8) {
987 		rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
988 		*rxp16 = spi_readl(as, RDR);
989 	} else {
990 		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
991 		*rxp = spi_readl(as, RDR);
992 	}
993 	if (xfer->bits_per_word > 8) {
994 		if (as->current_remaining_bytes > 2)
995 			as->current_remaining_bytes -= 2;
996 		else
997 			as->current_remaining_bytes = 0;
998 	} else {
999 		as->current_remaining_bytes--;
1000 	}
1001 }
1002 
1003 static void
atmel_spi_pump_fifo_data(struct atmel_spi * as,struct spi_transfer * xfer)1004 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1005 {
1006 	u32 fifolr = spi_readl(as, FLR);
1007 	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1008 	u32 offset = xfer->len - as->current_remaining_bytes;
1009 	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1010 	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1011 	u16 rd; /* RD field is the lowest 16 bits of RDR */
1012 
1013 	/* Update the number of remaining bytes to transfer */
1014 	num_bytes = ((xfer->bits_per_word > 8) ?
1015 		     (num_data << 1) :
1016 		     num_data);
1017 
1018 	if (as->current_remaining_bytes > num_bytes)
1019 		as->current_remaining_bytes -= num_bytes;
1020 	else
1021 		as->current_remaining_bytes = 0;
1022 
1023 	/* Handle odd number of bytes when data are more than 8bit width */
1024 	if (xfer->bits_per_word > 8)
1025 		as->current_remaining_bytes &= ~0x1;
1026 
1027 	/* Read data */
1028 	while (num_data) {
1029 		rd = spi_readl(as, RDR);
1030 		if (xfer->bits_per_word > 8)
1031 			*words++ = rd;
1032 		else
1033 			*bytes++ = rd;
1034 		num_data--;
1035 	}
1036 }
1037 
1038 /* Called from IRQ
1039  *
1040  * Must update "current_remaining_bytes" to keep track of data
1041  * to transfer.
1042  */
1043 static void
atmel_spi_pump_pio_data(struct atmel_spi * as,struct spi_transfer * xfer)1044 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1045 {
1046 	if (as->fifo_size)
1047 		atmel_spi_pump_fifo_data(as, xfer);
1048 	else
1049 		atmel_spi_pump_single_data(as, xfer);
1050 }
1051 
1052 /* Interrupt
1053  *
1054  * No need for locking in this Interrupt handler: done_status is the
1055  * only information modified.
1056  */
1057 static irqreturn_t
atmel_spi_pio_interrupt(int irq,void * dev_id)1058 atmel_spi_pio_interrupt(int irq, void *dev_id)
1059 {
1060 	struct spi_master	*master = dev_id;
1061 	struct atmel_spi	*as = spi_master_get_devdata(master);
1062 	u32			status, pending, imr;
1063 	struct spi_transfer	*xfer;
1064 	int			ret = IRQ_NONE;
1065 
1066 	imr = spi_readl(as, IMR);
1067 	status = spi_readl(as, SR);
1068 	pending = status & imr;
1069 
1070 	if (pending & SPI_BIT(OVRES)) {
1071 		ret = IRQ_HANDLED;
1072 		spi_writel(as, IDR, SPI_BIT(OVRES));
1073 		dev_warn(master->dev.parent, "overrun\n");
1074 
1075 		/*
1076 		 * When we get an overrun, we disregard the current
1077 		 * transfer. Data will not be copied back from any
1078 		 * bounce buffer and msg->actual_len will not be
1079 		 * updated with the last xfer.
1080 		 *
1081 		 * We will also not process any remaning transfers in
1082 		 * the message.
1083 		 */
1084 		as->done_status = -EIO;
1085 		smp_wmb();
1086 
1087 		/* Clear any overrun happening while cleaning up */
1088 		spi_readl(as, SR);
1089 
1090 		complete(&as->xfer_completion);
1091 
1092 	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1093 		atmel_spi_lock(as);
1094 
1095 		if (as->current_remaining_bytes) {
1096 			ret = IRQ_HANDLED;
1097 			xfer = as->current_transfer;
1098 			atmel_spi_pump_pio_data(as, xfer);
1099 			if (!as->current_remaining_bytes)
1100 				spi_writel(as, IDR, pending);
1101 
1102 			complete(&as->xfer_completion);
1103 		}
1104 
1105 		atmel_spi_unlock(as);
1106 	} else {
1107 		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1108 		ret = IRQ_HANDLED;
1109 		spi_writel(as, IDR, pending);
1110 	}
1111 
1112 	return ret;
1113 }
1114 
1115 static irqreturn_t
atmel_spi_pdc_interrupt(int irq,void * dev_id)1116 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1117 {
1118 	struct spi_master	*master = dev_id;
1119 	struct atmel_spi	*as = spi_master_get_devdata(master);
1120 	u32			status, pending, imr;
1121 	int			ret = IRQ_NONE;
1122 
1123 	imr = spi_readl(as, IMR);
1124 	status = spi_readl(as, SR);
1125 	pending = status & imr;
1126 
1127 	if (pending & SPI_BIT(OVRES)) {
1128 
1129 		ret = IRQ_HANDLED;
1130 
1131 		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1132 				     | SPI_BIT(OVRES)));
1133 
1134 		/* Clear any overrun happening while cleaning up */
1135 		spi_readl(as, SR);
1136 
1137 		as->done_status = -EIO;
1138 
1139 		complete(&as->xfer_completion);
1140 
1141 	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1142 		ret = IRQ_HANDLED;
1143 
1144 		spi_writel(as, IDR, pending);
1145 
1146 		complete(&as->xfer_completion);
1147 	}
1148 
1149 	return ret;
1150 }
1151 
atmel_word_delay_csr(struct spi_device * spi,struct atmel_spi * as)1152 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1153 {
1154 	struct spi_delay *delay = &spi->word_delay;
1155 	u32 value = delay->value;
1156 
1157 	switch (delay->unit) {
1158 	case SPI_DELAY_UNIT_NSECS:
1159 		value /= 1000;
1160 		break;
1161 	case SPI_DELAY_UNIT_USECS:
1162 		break;
1163 	default:
1164 		return -EINVAL;
1165 	}
1166 
1167 	return (as->spi_clk / 1000000 * value) >> 5;
1168 }
1169 
initialize_native_cs_for_gpio(struct atmel_spi * as)1170 static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1171 {
1172 	int i;
1173 	struct spi_master *master = platform_get_drvdata(as->pdev);
1174 
1175 	if (!as->native_cs_free)
1176 		return; /* already initialized */
1177 
1178 	if (!master->cs_gpiods)
1179 		return; /* No CS GPIO */
1180 
1181 	/*
1182 	 * On the first version of the controller (AT91RM9200), CS0
1183 	 * can't be used associated with GPIO
1184 	 */
1185 	if (atmel_spi_is_v2(as))
1186 		i = 0;
1187 	else
1188 		i = 1;
1189 
1190 	for (; i < 4; i++)
1191 		if (master->cs_gpiods[i])
1192 			as->native_cs_free |= BIT(i);
1193 
1194 	if (as->native_cs_free)
1195 		as->native_cs_for_gpio = ffs(as->native_cs_free);
1196 }
1197 
atmel_spi_setup(struct spi_device * spi)1198 static int atmel_spi_setup(struct spi_device *spi)
1199 {
1200 	struct atmel_spi	*as;
1201 	struct atmel_spi_device	*asd;
1202 	u32			csr;
1203 	unsigned int		bits = spi->bits_per_word;
1204 	int chip_select;
1205 	int			word_delay_csr;
1206 
1207 	as = spi_master_get_devdata(spi->master);
1208 
1209 	/* see notes above re chipselect */
1210 	if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) {
1211 		dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1212 		return -EINVAL;
1213 	}
1214 
1215 	/* Setup() is called during spi_register_controller(aka
1216 	 * spi_register_master) but after all membmers of the cs_gpiod
1217 	 * array have been filled, so we can looked for which native
1218 	 * CS will be free for using with GPIO
1219 	 */
1220 	initialize_native_cs_for_gpio(as);
1221 
1222 	if (spi->cs_gpiod && as->native_cs_free) {
1223 		dev_err(&spi->dev,
1224 			"No native CS available to support this GPIO CS\n");
1225 		return -EBUSY;
1226 	}
1227 
1228 	if (spi->cs_gpiod)
1229 		chip_select = as->native_cs_for_gpio;
1230 	else
1231 		chip_select = spi->chip_select;
1232 
1233 	csr = SPI_BF(BITS, bits - 8);
1234 	if (spi->mode & SPI_CPOL)
1235 		csr |= SPI_BIT(CPOL);
1236 	if (!(spi->mode & SPI_CPHA))
1237 		csr |= SPI_BIT(NCPHA);
1238 
1239 	if (!spi->cs_gpiod)
1240 		csr |= SPI_BIT(CSAAT);
1241 	csr |= SPI_BF(DLYBS, 0);
1242 
1243 	word_delay_csr = atmel_word_delay_csr(spi, as);
1244 	if (word_delay_csr < 0)
1245 		return word_delay_csr;
1246 
1247 	/* DLYBCT adds delays between words.  This is useful for slow devices
1248 	 * that need a bit of time to setup the next transfer.
1249 	 */
1250 	csr |= SPI_BF(DLYBCT, word_delay_csr);
1251 
1252 	asd = spi->controller_state;
1253 	if (!asd) {
1254 		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1255 		if (!asd)
1256 			return -ENOMEM;
1257 
1258 		spi->controller_state = asd;
1259 	}
1260 
1261 	asd->csr = csr;
1262 
1263 	dev_dbg(&spi->dev,
1264 		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1265 		bits, spi->mode, spi->chip_select, csr);
1266 
1267 	if (!atmel_spi_is_v2(as))
1268 		spi_writel(as, CSR0 + 4 * chip_select, csr);
1269 
1270 	return 0;
1271 }
1272 
atmel_spi_set_cs(struct spi_device * spi,bool enable)1273 static void atmel_spi_set_cs(struct spi_device *spi, bool enable)
1274 {
1275 	struct atmel_spi *as = spi_master_get_devdata(spi->master);
1276 	/* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
1277 	 * since we already have routines for activate/deactivate translate
1278 	 * high/low to active/inactive
1279 	 */
1280 	enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
1281 
1282 	if (enable) {
1283 		cs_activate(as, spi);
1284 	} else {
1285 		cs_deactivate(as, spi);
1286 	}
1287 
1288 }
1289 
atmel_spi_one_transfer(struct spi_master * master,struct spi_device * spi,struct spi_transfer * xfer)1290 static int atmel_spi_one_transfer(struct spi_master *master,
1291 					struct spi_device *spi,
1292 					struct spi_transfer *xfer)
1293 {
1294 	struct atmel_spi	*as;
1295 	u8			bits;
1296 	u32			len;
1297 	struct atmel_spi_device	*asd;
1298 	int			timeout;
1299 	int			ret;
1300 	unsigned long		dma_timeout;
1301 
1302 	as = spi_master_get_devdata(master);
1303 	/* This lock was orignally taken in atmel_spi_trasfer_one_message */
1304 	atmel_spi_lock(as);
1305 
1306 	asd = spi->controller_state;
1307 	bits = (asd->csr >> 4) & 0xf;
1308 	if (bits != xfer->bits_per_word - 8) {
1309 		dev_dbg(&spi->dev,
1310 			"you can't yet change bits_per_word in transfers\n");
1311 		return -ENOPROTOOPT;
1312 	}
1313 
1314 	/*
1315 	 * DMA map early, for performance (empties dcache ASAP) and
1316 	 * better fault reporting.
1317 	 */
1318 	if ((!master->cur_msg->is_dma_mapped)
1319 		&& as->use_pdc) {
1320 		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1321 			return -ENOMEM;
1322 	}
1323 
1324 	atmel_spi_set_xfer_speed(as, spi, xfer);
1325 
1326 	as->done_status = 0;
1327 	as->current_transfer = xfer;
1328 	as->current_remaining_bytes = xfer->len;
1329 	while (as->current_remaining_bytes) {
1330 		reinit_completion(&as->xfer_completion);
1331 
1332 		if (as->use_pdc) {
1333 			atmel_spi_pdc_next_xfer(master, xfer);
1334 		} else if (atmel_spi_use_dma(as, xfer)) {
1335 			len = as->current_remaining_bytes;
1336 			ret = atmel_spi_next_xfer_dma_submit(master,
1337 								xfer, &len);
1338 			if (ret) {
1339 				dev_err(&spi->dev,
1340 					"unable to use DMA, fallback to PIO\n");
1341 				as->done_status = ret;
1342 				break;
1343 			} else {
1344 				as->current_remaining_bytes -= len;
1345 				if (as->current_remaining_bytes < 0)
1346 					as->current_remaining_bytes = 0;
1347 			}
1348 		} else {
1349 			atmel_spi_next_xfer_pio(master, xfer);
1350 		}
1351 
1352 		/* interrupts are disabled, so free the lock for schedule */
1353 		atmel_spi_unlock(as);
1354 		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1355 							  SPI_DMA_TIMEOUT);
1356 		atmel_spi_lock(as);
1357 		if (WARN_ON(dma_timeout == 0)) {
1358 			dev_err(&spi->dev, "spi transfer timeout\n");
1359 			as->done_status = -EIO;
1360 		}
1361 
1362 		if (as->done_status)
1363 			break;
1364 	}
1365 
1366 	if (as->done_status) {
1367 		if (as->use_pdc) {
1368 			dev_warn(master->dev.parent,
1369 				"overrun (%u/%u remaining)\n",
1370 				spi_readl(as, TCR), spi_readl(as, RCR));
1371 
1372 			/*
1373 			 * Clean up DMA registers and make sure the data
1374 			 * registers are empty.
1375 			 */
1376 			spi_writel(as, RNCR, 0);
1377 			spi_writel(as, TNCR, 0);
1378 			spi_writel(as, RCR, 0);
1379 			spi_writel(as, TCR, 0);
1380 			for (timeout = 1000; timeout; timeout--)
1381 				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1382 					break;
1383 			if (!timeout)
1384 				dev_warn(master->dev.parent,
1385 					 "timeout waiting for TXEMPTY");
1386 			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1387 				spi_readl(as, RDR);
1388 
1389 			/* Clear any overrun happening while cleaning up */
1390 			spi_readl(as, SR);
1391 
1392 		} else if (atmel_spi_use_dma(as, xfer)) {
1393 			atmel_spi_stop_dma(master);
1394 		}
1395 	}
1396 
1397 	if (!master->cur_msg->is_dma_mapped
1398 		&& as->use_pdc)
1399 		atmel_spi_dma_unmap_xfer(master, xfer);
1400 
1401 	if (as->use_pdc)
1402 		atmel_spi_disable_pdc_transfer(as);
1403 
1404 	atmel_spi_unlock(as);
1405 
1406 	return as->done_status;
1407 }
1408 
atmel_spi_cleanup(struct spi_device * spi)1409 static void atmel_spi_cleanup(struct spi_device *spi)
1410 {
1411 	struct atmel_spi_device	*asd = spi->controller_state;
1412 
1413 	if (!asd)
1414 		return;
1415 
1416 	spi->controller_state = NULL;
1417 	kfree(asd);
1418 }
1419 
atmel_get_version(struct atmel_spi * as)1420 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1421 {
1422 	return spi_readl(as, VERSION) & 0x00000fff;
1423 }
1424 
atmel_get_caps(struct atmel_spi * as)1425 static void atmel_get_caps(struct atmel_spi *as)
1426 {
1427 	unsigned int version;
1428 
1429 	version = atmel_get_version(as);
1430 
1431 	as->caps.is_spi2 = version > 0x121;
1432 	as->caps.has_wdrbt = version >= 0x210;
1433 	as->caps.has_dma_support = version >= 0x212;
1434 	as->caps.has_pdc_support = version < 0x212;
1435 }
1436 
atmel_spi_init(struct atmel_spi * as)1437 static void atmel_spi_init(struct atmel_spi *as)
1438 {
1439 	spi_writel(as, CR, SPI_BIT(SWRST));
1440 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1441 
1442 	/* It is recommended to enable FIFOs first thing after reset */
1443 	if (as->fifo_size)
1444 		spi_writel(as, CR, SPI_BIT(FIFOEN));
1445 
1446 	if (as->caps.has_wdrbt) {
1447 		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1448 				| SPI_BIT(MSTR));
1449 	} else {
1450 		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1451 	}
1452 
1453 	if (as->use_pdc)
1454 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1455 	spi_writel(as, CR, SPI_BIT(SPIEN));
1456 }
1457 
atmel_spi_probe(struct platform_device * pdev)1458 static int atmel_spi_probe(struct platform_device *pdev)
1459 {
1460 	struct resource		*regs;
1461 	int			irq;
1462 	struct clk		*clk;
1463 	int			ret;
1464 	struct spi_master	*master;
1465 	struct atmel_spi	*as;
1466 
1467 	/* Select default pin state */
1468 	pinctrl_pm_select_default_state(&pdev->dev);
1469 
1470 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1471 	if (!regs)
1472 		return -ENXIO;
1473 
1474 	irq = platform_get_irq(pdev, 0);
1475 	if (irq < 0)
1476 		return irq;
1477 
1478 	clk = devm_clk_get(&pdev->dev, "spi_clk");
1479 	if (IS_ERR(clk))
1480 		return PTR_ERR(clk);
1481 
1482 	/* setup spi core then atmel-specific driver state */
1483 	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1484 	if (!master)
1485 		return -ENOMEM;
1486 
1487 	/* the spi->mode bits understood by this driver: */
1488 	master->use_gpio_descriptors = true;
1489 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1490 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1491 	master->dev.of_node = pdev->dev.of_node;
1492 	master->bus_num = pdev->id;
1493 	master->num_chipselect = 4;
1494 	master->setup = atmel_spi_setup;
1495 	master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX |
1496 			SPI_MASTER_GPIO_SS);
1497 	master->transfer_one = atmel_spi_one_transfer;
1498 	master->set_cs = atmel_spi_set_cs;
1499 	master->cleanup = atmel_spi_cleanup;
1500 	master->auto_runtime_pm = true;
1501 	master->max_dma_len = SPI_MAX_DMA_XFER;
1502 	master->can_dma = atmel_spi_can_dma;
1503 	platform_set_drvdata(pdev, master);
1504 
1505 	as = spi_master_get_devdata(master);
1506 
1507 	spin_lock_init(&as->lock);
1508 
1509 	as->pdev = pdev;
1510 	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1511 	if (IS_ERR(as->regs)) {
1512 		ret = PTR_ERR(as->regs);
1513 		goto out_unmap_regs;
1514 	}
1515 	as->phybase = regs->start;
1516 	as->irq = irq;
1517 	as->clk = clk;
1518 
1519 	init_completion(&as->xfer_completion);
1520 
1521 	atmel_get_caps(as);
1522 
1523 	as->use_dma = false;
1524 	as->use_pdc = false;
1525 	if (as->caps.has_dma_support) {
1526 		ret = atmel_spi_configure_dma(master, as);
1527 		if (ret == 0) {
1528 			as->use_dma = true;
1529 		} else if (ret == -EPROBE_DEFER) {
1530 			goto out_unmap_regs;
1531 		}
1532 	} else if (as->caps.has_pdc_support) {
1533 		as->use_pdc = true;
1534 	}
1535 
1536 	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1537 		as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1538 						      SPI_MAX_DMA_XFER,
1539 						      &as->dma_addr_rx_bbuf,
1540 						      GFP_KERNEL | GFP_DMA);
1541 		if (!as->addr_rx_bbuf) {
1542 			as->use_dma = false;
1543 		} else {
1544 			as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1545 					SPI_MAX_DMA_XFER,
1546 					&as->dma_addr_tx_bbuf,
1547 					GFP_KERNEL | GFP_DMA);
1548 			if (!as->addr_tx_bbuf) {
1549 				as->use_dma = false;
1550 				dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1551 						  as->addr_rx_bbuf,
1552 						  as->dma_addr_rx_bbuf);
1553 			}
1554 		}
1555 		if (!as->use_dma)
1556 			dev_info(master->dev.parent,
1557 				 "  can not allocate dma coherent memory\n");
1558 	}
1559 
1560 	if (as->caps.has_dma_support && !as->use_dma)
1561 		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1562 
1563 	if (as->use_pdc) {
1564 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1565 					0, dev_name(&pdev->dev), master);
1566 	} else {
1567 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1568 					0, dev_name(&pdev->dev), master);
1569 	}
1570 	if (ret)
1571 		goto out_unmap_regs;
1572 
1573 	/* Initialize the hardware */
1574 	ret = clk_prepare_enable(clk);
1575 	if (ret)
1576 		goto out_free_irq;
1577 
1578 	as->spi_clk = clk_get_rate(clk);
1579 
1580 	as->fifo_size = 0;
1581 	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1582 				  &as->fifo_size)) {
1583 		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1584 	}
1585 
1586 	atmel_spi_init(as);
1587 
1588 	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1589 	pm_runtime_use_autosuspend(&pdev->dev);
1590 	pm_runtime_set_active(&pdev->dev);
1591 	pm_runtime_enable(&pdev->dev);
1592 
1593 	ret = devm_spi_register_master(&pdev->dev, master);
1594 	if (ret)
1595 		goto out_free_dma;
1596 
1597 	/* go! */
1598 	dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1599 			atmel_get_version(as), (unsigned long)regs->start,
1600 			irq);
1601 
1602 	return 0;
1603 
1604 out_free_dma:
1605 	pm_runtime_disable(&pdev->dev);
1606 	pm_runtime_set_suspended(&pdev->dev);
1607 
1608 	if (as->use_dma)
1609 		atmel_spi_release_dma(master);
1610 
1611 	spi_writel(as, CR, SPI_BIT(SWRST));
1612 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1613 	clk_disable_unprepare(clk);
1614 out_free_irq:
1615 out_unmap_regs:
1616 	spi_master_put(master);
1617 	return ret;
1618 }
1619 
atmel_spi_remove(struct platform_device * pdev)1620 static int atmel_spi_remove(struct platform_device *pdev)
1621 {
1622 	struct spi_master	*master = platform_get_drvdata(pdev);
1623 	struct atmel_spi	*as = spi_master_get_devdata(master);
1624 
1625 	pm_runtime_get_sync(&pdev->dev);
1626 
1627 	/* reset the hardware and block queue progress */
1628 	if (as->use_dma) {
1629 		atmel_spi_stop_dma(master);
1630 		atmel_spi_release_dma(master);
1631 		if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1632 			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1633 					  as->addr_tx_bbuf,
1634 					  as->dma_addr_tx_bbuf);
1635 			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1636 					  as->addr_rx_bbuf,
1637 					  as->dma_addr_rx_bbuf);
1638 		}
1639 	}
1640 
1641 	spin_lock_irq(&as->lock);
1642 	spi_writel(as, CR, SPI_BIT(SWRST));
1643 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1644 	spi_readl(as, SR);
1645 	spin_unlock_irq(&as->lock);
1646 
1647 	clk_disable_unprepare(as->clk);
1648 
1649 	pm_runtime_put_noidle(&pdev->dev);
1650 	pm_runtime_disable(&pdev->dev);
1651 
1652 	return 0;
1653 }
1654 
1655 #ifdef CONFIG_PM
atmel_spi_runtime_suspend(struct device * dev)1656 static int atmel_spi_runtime_suspend(struct device *dev)
1657 {
1658 	struct spi_master *master = dev_get_drvdata(dev);
1659 	struct atmel_spi *as = spi_master_get_devdata(master);
1660 
1661 	clk_disable_unprepare(as->clk);
1662 	pinctrl_pm_select_sleep_state(dev);
1663 
1664 	return 0;
1665 }
1666 
atmel_spi_runtime_resume(struct device * dev)1667 static int atmel_spi_runtime_resume(struct device *dev)
1668 {
1669 	struct spi_master *master = dev_get_drvdata(dev);
1670 	struct atmel_spi *as = spi_master_get_devdata(master);
1671 
1672 	pinctrl_pm_select_default_state(dev);
1673 
1674 	return clk_prepare_enable(as->clk);
1675 }
1676 
1677 #ifdef CONFIG_PM_SLEEP
atmel_spi_suspend(struct device * dev)1678 static int atmel_spi_suspend(struct device *dev)
1679 {
1680 	struct spi_master *master = dev_get_drvdata(dev);
1681 	int ret;
1682 
1683 	/* Stop the queue running */
1684 	ret = spi_master_suspend(master);
1685 	if (ret)
1686 		return ret;
1687 
1688 	if (!pm_runtime_suspended(dev))
1689 		atmel_spi_runtime_suspend(dev);
1690 
1691 	return 0;
1692 }
1693 
atmel_spi_resume(struct device * dev)1694 static int atmel_spi_resume(struct device *dev)
1695 {
1696 	struct spi_master *master = dev_get_drvdata(dev);
1697 	struct atmel_spi *as = spi_master_get_devdata(master);
1698 	int ret;
1699 
1700 	ret = clk_prepare_enable(as->clk);
1701 	if (ret)
1702 		return ret;
1703 
1704 	atmel_spi_init(as);
1705 
1706 	clk_disable_unprepare(as->clk);
1707 
1708 	if (!pm_runtime_suspended(dev)) {
1709 		ret = atmel_spi_runtime_resume(dev);
1710 		if (ret)
1711 			return ret;
1712 	}
1713 
1714 	/* Start the queue running */
1715 	return spi_master_resume(master);
1716 }
1717 #endif
1718 
1719 static const struct dev_pm_ops atmel_spi_pm_ops = {
1720 	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1721 	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1722 			   atmel_spi_runtime_resume, NULL)
1723 };
1724 #define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1725 #else
1726 #define ATMEL_SPI_PM_OPS	NULL
1727 #endif
1728 
1729 static const struct of_device_id atmel_spi_dt_ids[] = {
1730 	{ .compatible = "atmel,at91rm9200-spi" },
1731 	{ /* sentinel */ }
1732 };
1733 
1734 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1735 
1736 static struct platform_driver atmel_spi_driver = {
1737 	.driver		= {
1738 		.name	= "atmel_spi",
1739 		.pm	= ATMEL_SPI_PM_OPS,
1740 		.of_match_table	= atmel_spi_dt_ids,
1741 	},
1742 	.probe		= atmel_spi_probe,
1743 	.remove		= atmel_spi_remove,
1744 };
1745 module_platform_driver(atmel_spi_driver);
1746 
1747 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1748 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1749 MODULE_LICENSE("GPL");
1750 MODULE_ALIAS("platform:atmel_spi");
1751