1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2018 Exceet Electronics GmbH
4 * Copyright (C) 2018 Bootlin
5 *
6 * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7 */
8 #include <linux/dmaengine.h>
9 #include <linux/pm_runtime.h>
10 #include <linux/spi/spi.h>
11 #include <linux/spi/spi-mem.h>
12
13 #include "internals.h"
14
15 #define SPI_MEM_MAX_BUSWIDTH 8
16
17 /**
18 * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
19 * memory operation
20 * @ctlr: the SPI controller requesting this dma_map()
21 * @op: the memory operation containing the buffer to map
22 * @sgt: a pointer to a non-initialized sg_table that will be filled by this
23 * function
24 *
25 * Some controllers might want to do DMA on the data buffer embedded in @op.
26 * This helper prepares everything for you and provides a ready-to-use
27 * sg_table. This function is not intended to be called from spi drivers.
28 * Only SPI controller drivers should use it.
29 * Note that the caller must ensure the memory region pointed by
30 * op->data.buf.{in,out} is DMA-able before calling this function.
31 *
32 * Return: 0 in case of success, a negative error code otherwise.
33 */
spi_controller_dma_map_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sgt)34 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
35 const struct spi_mem_op *op,
36 struct sg_table *sgt)
37 {
38 struct device *dmadev;
39
40 if (!op->data.nbytes)
41 return -EINVAL;
42
43 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
44 dmadev = ctlr->dma_tx->device->dev;
45 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
46 dmadev = ctlr->dma_rx->device->dev;
47 else
48 dmadev = ctlr->dev.parent;
49
50 if (!dmadev)
51 return -EINVAL;
52
53 return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
54 op->data.dir == SPI_MEM_DATA_IN ?
55 DMA_FROM_DEVICE : DMA_TO_DEVICE);
56 }
57 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
58
59 /**
60 * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
61 * memory operation
62 * @ctlr: the SPI controller requesting this dma_unmap()
63 * @op: the memory operation containing the buffer to unmap
64 * @sgt: a pointer to an sg_table previously initialized by
65 * spi_controller_dma_map_mem_op_data()
66 *
67 * Some controllers might want to do DMA on the data buffer embedded in @op.
68 * This helper prepares things so that the CPU can access the
69 * op->data.buf.{in,out} buffer again.
70 *
71 * This function is not intended to be called from SPI drivers. Only SPI
72 * controller drivers should use it.
73 *
74 * This function should be called after the DMA operation has finished and is
75 * only valid if the previous spi_controller_dma_map_mem_op_data() call
76 * returned 0.
77 *
78 * Return: 0 in case of success, a negative error code otherwise.
79 */
spi_controller_dma_unmap_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sgt)80 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
81 const struct spi_mem_op *op,
82 struct sg_table *sgt)
83 {
84 struct device *dmadev;
85
86 if (!op->data.nbytes)
87 return;
88
89 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
90 dmadev = ctlr->dma_tx->device->dev;
91 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
92 dmadev = ctlr->dma_rx->device->dev;
93 else
94 dmadev = ctlr->dev.parent;
95
96 spi_unmap_buf(ctlr, dmadev, sgt,
97 op->data.dir == SPI_MEM_DATA_IN ?
98 DMA_FROM_DEVICE : DMA_TO_DEVICE);
99 }
100 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
101
spi_check_buswidth_req(struct spi_mem * mem,u8 buswidth,bool tx)102 static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
103 {
104 u32 mode = mem->spi->mode;
105
106 switch (buswidth) {
107 case 1:
108 return 0;
109
110 case 2:
111 if ((tx &&
112 (mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) ||
113 (!tx &&
114 (mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))))
115 return 0;
116
117 break;
118
119 case 4:
120 if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) ||
121 (!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL))))
122 return 0;
123
124 break;
125
126 case 8:
127 if ((tx && (mode & SPI_TX_OCTAL)) ||
128 (!tx && (mode & SPI_RX_OCTAL)))
129 return 0;
130
131 break;
132
133 default:
134 break;
135 }
136
137 return -ENOTSUPP;
138 }
139
spi_mem_check_buswidth(struct spi_mem * mem,const struct spi_mem_op * op)140 static bool spi_mem_check_buswidth(struct spi_mem *mem,
141 const struct spi_mem_op *op)
142 {
143 if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
144 return false;
145
146 if (op->addr.nbytes &&
147 spi_check_buswidth_req(mem, op->addr.buswidth, true))
148 return false;
149
150 if (op->dummy.nbytes &&
151 spi_check_buswidth_req(mem, op->dummy.buswidth, true))
152 return false;
153
154 if (op->data.dir != SPI_MEM_NO_DATA &&
155 spi_check_buswidth_req(mem, op->data.buswidth,
156 op->data.dir == SPI_MEM_DATA_OUT))
157 return false;
158
159 return true;
160 }
161
spi_mem_dtr_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)162 bool spi_mem_dtr_supports_op(struct spi_mem *mem,
163 const struct spi_mem_op *op)
164 {
165 if (op->cmd.nbytes != 2)
166 return false;
167
168 return spi_mem_check_buswidth(mem, op);
169 }
170 EXPORT_SYMBOL_GPL(spi_mem_dtr_supports_op);
171
spi_mem_default_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)172 bool spi_mem_default_supports_op(struct spi_mem *mem,
173 const struct spi_mem_op *op)
174 {
175 if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr)
176 return false;
177
178 if (op->cmd.nbytes != 1)
179 return false;
180
181 return spi_mem_check_buswidth(mem, op);
182 }
183 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
184
spi_mem_buswidth_is_valid(u8 buswidth)185 static bool spi_mem_buswidth_is_valid(u8 buswidth)
186 {
187 if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH)
188 return false;
189
190 return true;
191 }
192
spi_mem_check_op(const struct spi_mem_op * op)193 static int spi_mem_check_op(const struct spi_mem_op *op)
194 {
195 if (!op->cmd.buswidth || !op->cmd.nbytes)
196 return -EINVAL;
197
198 if ((op->addr.nbytes && !op->addr.buswidth) ||
199 (op->dummy.nbytes && !op->dummy.buswidth) ||
200 (op->data.nbytes && !op->data.buswidth))
201 return -EINVAL;
202
203 if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) ||
204 !spi_mem_buswidth_is_valid(op->addr.buswidth) ||
205 !spi_mem_buswidth_is_valid(op->dummy.buswidth) ||
206 !spi_mem_buswidth_is_valid(op->data.buswidth))
207 return -EINVAL;
208
209 return 0;
210 }
211
spi_mem_internal_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)212 static bool spi_mem_internal_supports_op(struct spi_mem *mem,
213 const struct spi_mem_op *op)
214 {
215 struct spi_controller *ctlr = mem->spi->controller;
216
217 if (ctlr->mem_ops && ctlr->mem_ops->supports_op)
218 return ctlr->mem_ops->supports_op(mem, op);
219
220 return spi_mem_default_supports_op(mem, op);
221 }
222
223 /**
224 * spi_mem_supports_op() - Check if a memory device and the controller it is
225 * connected to support a specific memory operation
226 * @mem: the SPI memory
227 * @op: the memory operation to check
228 *
229 * Some controllers are only supporting Single or Dual IOs, others might only
230 * support specific opcodes, or it can even be that the controller and device
231 * both support Quad IOs but the hardware prevents you from using it because
232 * only 2 IO lines are connected.
233 *
234 * This function checks whether a specific operation is supported.
235 *
236 * Return: true if @op is supported, false otherwise.
237 */
spi_mem_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)238 bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
239 {
240 if (spi_mem_check_op(op))
241 return false;
242
243 return spi_mem_internal_supports_op(mem, op);
244 }
245 EXPORT_SYMBOL_GPL(spi_mem_supports_op);
246
spi_mem_access_start(struct spi_mem * mem)247 static int spi_mem_access_start(struct spi_mem *mem)
248 {
249 struct spi_controller *ctlr = mem->spi->controller;
250
251 /*
252 * Flush the message queue before executing our SPI memory
253 * operation to prevent preemption of regular SPI transfers.
254 */
255 spi_flush_queue(ctlr);
256
257 if (ctlr->auto_runtime_pm) {
258 int ret;
259
260 ret = pm_runtime_get_sync(ctlr->dev.parent);
261 if (ret < 0) {
262 pm_runtime_put_noidle(ctlr->dev.parent);
263 dev_err(&ctlr->dev, "Failed to power device: %d\n",
264 ret);
265 return ret;
266 }
267 }
268
269 mutex_lock(&ctlr->bus_lock_mutex);
270 mutex_lock(&ctlr->io_mutex);
271
272 return 0;
273 }
274
spi_mem_access_end(struct spi_mem * mem)275 static void spi_mem_access_end(struct spi_mem *mem)
276 {
277 struct spi_controller *ctlr = mem->spi->controller;
278
279 mutex_unlock(&ctlr->io_mutex);
280 mutex_unlock(&ctlr->bus_lock_mutex);
281
282 if (ctlr->auto_runtime_pm)
283 pm_runtime_put(ctlr->dev.parent);
284 }
285
286 /**
287 * spi_mem_exec_op() - Execute a memory operation
288 * @mem: the SPI memory
289 * @op: the memory operation to execute
290 *
291 * Executes a memory operation.
292 *
293 * This function first checks that @op is supported and then tries to execute
294 * it.
295 *
296 * Return: 0 in case of success, a negative error code otherwise.
297 */
spi_mem_exec_op(struct spi_mem * mem,const struct spi_mem_op * op)298 int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
299 {
300 unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0;
301 struct spi_controller *ctlr = mem->spi->controller;
302 struct spi_transfer xfers[4] = { };
303 struct spi_message msg;
304 u8 *tmpbuf;
305 int ret;
306
307 ret = spi_mem_check_op(op);
308 if (ret)
309 return ret;
310
311 if (!spi_mem_internal_supports_op(mem, op))
312 return -ENOTSUPP;
313
314 if (ctlr->mem_ops && !mem->spi->cs_gpiod) {
315 ret = spi_mem_access_start(mem);
316 if (ret)
317 return ret;
318
319 ret = ctlr->mem_ops->exec_op(mem, op);
320
321 spi_mem_access_end(mem);
322
323 /*
324 * Some controllers only optimize specific paths (typically the
325 * read path) and expect the core to use the regular SPI
326 * interface in other cases.
327 */
328 if (!ret || ret != -ENOTSUPP)
329 return ret;
330 }
331
332 tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
333
334 /*
335 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
336 * we're guaranteed that this buffer is DMA-able, as required by the
337 * SPI layer.
338 */
339 tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
340 if (!tmpbuf)
341 return -ENOMEM;
342
343 spi_message_init(&msg);
344
345 tmpbuf[0] = op->cmd.opcode;
346 xfers[xferpos].tx_buf = tmpbuf;
347 xfers[xferpos].len = op->cmd.nbytes;
348 xfers[xferpos].tx_nbits = op->cmd.buswidth;
349 spi_message_add_tail(&xfers[xferpos], &msg);
350 xferpos++;
351 totalxferlen++;
352
353 if (op->addr.nbytes) {
354 int i;
355
356 for (i = 0; i < op->addr.nbytes; i++)
357 tmpbuf[i + 1] = op->addr.val >>
358 (8 * (op->addr.nbytes - i - 1));
359
360 xfers[xferpos].tx_buf = tmpbuf + 1;
361 xfers[xferpos].len = op->addr.nbytes;
362 xfers[xferpos].tx_nbits = op->addr.buswidth;
363 spi_message_add_tail(&xfers[xferpos], &msg);
364 xferpos++;
365 totalxferlen += op->addr.nbytes;
366 }
367
368 if (op->dummy.nbytes) {
369 memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
370 xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
371 xfers[xferpos].len = op->dummy.nbytes;
372 xfers[xferpos].tx_nbits = op->dummy.buswidth;
373 spi_message_add_tail(&xfers[xferpos], &msg);
374 xferpos++;
375 totalxferlen += op->dummy.nbytes;
376 }
377
378 if (op->data.nbytes) {
379 if (op->data.dir == SPI_MEM_DATA_IN) {
380 xfers[xferpos].rx_buf = op->data.buf.in;
381 xfers[xferpos].rx_nbits = op->data.buswidth;
382 } else {
383 xfers[xferpos].tx_buf = op->data.buf.out;
384 xfers[xferpos].tx_nbits = op->data.buswidth;
385 }
386
387 xfers[xferpos].len = op->data.nbytes;
388 spi_message_add_tail(&xfers[xferpos], &msg);
389 xferpos++;
390 totalxferlen += op->data.nbytes;
391 }
392
393 ret = spi_sync(mem->spi, &msg);
394
395 kfree(tmpbuf);
396
397 if (ret)
398 return ret;
399
400 if (msg.actual_length != totalxferlen)
401 return -EIO;
402
403 return 0;
404 }
405 EXPORT_SYMBOL_GPL(spi_mem_exec_op);
406
407 /**
408 * spi_mem_get_name() - Return the SPI mem device name to be used by the
409 * upper layer if necessary
410 * @mem: the SPI memory
411 *
412 * This function allows SPI mem users to retrieve the SPI mem device name.
413 * It is useful if the upper layer needs to expose a custom name for
414 * compatibility reasons.
415 *
416 * Return: a string containing the name of the memory device to be used
417 * by the SPI mem user
418 */
spi_mem_get_name(struct spi_mem * mem)419 const char *spi_mem_get_name(struct spi_mem *mem)
420 {
421 return mem->name;
422 }
423 EXPORT_SYMBOL_GPL(spi_mem_get_name);
424
425 /**
426 * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
427 * match controller limitations
428 * @mem: the SPI memory
429 * @op: the operation to adjust
430 *
431 * Some controllers have FIFO limitations and must split a data transfer
432 * operation into multiple ones, others require a specific alignment for
433 * optimized accesses. This function allows SPI mem drivers to split a single
434 * operation into multiple sub-operations when required.
435 *
436 * Return: a negative error code if the controller can't properly adjust @op,
437 * 0 otherwise. Note that @op->data.nbytes will be updated if @op
438 * can't be handled in a single step.
439 */
spi_mem_adjust_op_size(struct spi_mem * mem,struct spi_mem_op * op)440 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
441 {
442 struct spi_controller *ctlr = mem->spi->controller;
443 size_t len;
444
445 if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size)
446 return ctlr->mem_ops->adjust_op_size(mem, op);
447
448 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
449 len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
450
451 if (len > spi_max_transfer_size(mem->spi))
452 return -EINVAL;
453
454 op->data.nbytes = min3((size_t)op->data.nbytes,
455 spi_max_transfer_size(mem->spi),
456 spi_max_message_size(mem->spi) -
457 len);
458 if (!op->data.nbytes)
459 return -EINVAL;
460 }
461
462 return 0;
463 }
464 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
465
spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc * desc,u64 offs,size_t len,void * buf)466 static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc,
467 u64 offs, size_t len, void *buf)
468 {
469 struct spi_mem_op op = desc->info.op_tmpl;
470 int ret;
471
472 op.addr.val = desc->info.offset + offs;
473 op.data.buf.in = buf;
474 op.data.nbytes = len;
475 ret = spi_mem_adjust_op_size(desc->mem, &op);
476 if (ret)
477 return ret;
478
479 ret = spi_mem_exec_op(desc->mem, &op);
480 if (ret)
481 return ret;
482
483 return op.data.nbytes;
484 }
485
spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc * desc,u64 offs,size_t len,const void * buf)486 static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc,
487 u64 offs, size_t len, const void *buf)
488 {
489 struct spi_mem_op op = desc->info.op_tmpl;
490 int ret;
491
492 op.addr.val = desc->info.offset + offs;
493 op.data.buf.out = buf;
494 op.data.nbytes = len;
495 ret = spi_mem_adjust_op_size(desc->mem, &op);
496 if (ret)
497 return ret;
498
499 ret = spi_mem_exec_op(desc->mem, &op);
500 if (ret)
501 return ret;
502
503 return op.data.nbytes;
504 }
505
506 /**
507 * spi_mem_dirmap_create() - Create a direct mapping descriptor
508 * @mem: SPI mem device this direct mapping should be created for
509 * @info: direct mapping information
510 *
511 * This function is creating a direct mapping descriptor which can then be used
512 * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write().
513 * If the SPI controller driver does not support direct mapping, this function
514 * falls back to an implementation using spi_mem_exec_op(), so that the caller
515 * doesn't have to bother implementing a fallback on his own.
516 *
517 * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
518 */
519 struct spi_mem_dirmap_desc *
spi_mem_dirmap_create(struct spi_mem * mem,const struct spi_mem_dirmap_info * info)520 spi_mem_dirmap_create(struct spi_mem *mem,
521 const struct spi_mem_dirmap_info *info)
522 {
523 struct spi_controller *ctlr = mem->spi->controller;
524 struct spi_mem_dirmap_desc *desc;
525 int ret = -ENOTSUPP;
526
527 /* Make sure the number of address cycles is between 1 and 8 bytes. */
528 if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8)
529 return ERR_PTR(-EINVAL);
530
531 /* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */
532 if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA)
533 return ERR_PTR(-EINVAL);
534
535 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
536 if (!desc)
537 return ERR_PTR(-ENOMEM);
538
539 desc->mem = mem;
540 desc->info = *info;
541 if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create)
542 ret = ctlr->mem_ops->dirmap_create(desc);
543
544 if (ret) {
545 desc->nodirmap = true;
546 if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
547 ret = -ENOTSUPP;
548 else
549 ret = 0;
550 }
551
552 if (ret) {
553 kfree(desc);
554 return ERR_PTR(ret);
555 }
556
557 return desc;
558 }
559 EXPORT_SYMBOL_GPL(spi_mem_dirmap_create);
560
561 /**
562 * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor
563 * @desc: the direct mapping descriptor to destroy
564 *
565 * This function destroys a direct mapping descriptor previously created by
566 * spi_mem_dirmap_create().
567 */
spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc * desc)568 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc)
569 {
570 struct spi_controller *ctlr = desc->mem->spi->controller;
571
572 if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy)
573 ctlr->mem_ops->dirmap_destroy(desc);
574
575 kfree(desc);
576 }
577 EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy);
578
devm_spi_mem_dirmap_release(struct device * dev,void * res)579 static void devm_spi_mem_dirmap_release(struct device *dev, void *res)
580 {
581 struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res;
582
583 spi_mem_dirmap_destroy(desc);
584 }
585
586 /**
587 * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach
588 * it to a device
589 * @dev: device the dirmap desc will be attached to
590 * @mem: SPI mem device this direct mapping should be created for
591 * @info: direct mapping information
592 *
593 * devm_ variant of the spi_mem_dirmap_create() function. See
594 * spi_mem_dirmap_create() for more details.
595 *
596 * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
597 */
598 struct spi_mem_dirmap_desc *
devm_spi_mem_dirmap_create(struct device * dev,struct spi_mem * mem,const struct spi_mem_dirmap_info * info)599 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
600 const struct spi_mem_dirmap_info *info)
601 {
602 struct spi_mem_dirmap_desc **ptr, *desc;
603
604 ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr),
605 GFP_KERNEL);
606 if (!ptr)
607 return ERR_PTR(-ENOMEM);
608
609 desc = spi_mem_dirmap_create(mem, info);
610 if (IS_ERR(desc)) {
611 devres_free(ptr);
612 } else {
613 *ptr = desc;
614 devres_add(dev, ptr);
615 }
616
617 return desc;
618 }
619 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create);
620
devm_spi_mem_dirmap_match(struct device * dev,void * res,void * data)621 static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data)
622 {
623 struct spi_mem_dirmap_desc **ptr = res;
624
625 if (WARN_ON(!ptr || !*ptr))
626 return 0;
627
628 return *ptr == data;
629 }
630
631 /**
632 * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached
633 * to a device
634 * @dev: device the dirmap desc is attached to
635 * @desc: the direct mapping descriptor to destroy
636 *
637 * devm_ variant of the spi_mem_dirmap_destroy() function. See
638 * spi_mem_dirmap_destroy() for more details.
639 */
devm_spi_mem_dirmap_destroy(struct device * dev,struct spi_mem_dirmap_desc * desc)640 void devm_spi_mem_dirmap_destroy(struct device *dev,
641 struct spi_mem_dirmap_desc *desc)
642 {
643 devres_release(dev, devm_spi_mem_dirmap_release,
644 devm_spi_mem_dirmap_match, desc);
645 }
646 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy);
647
648 /**
649 * spi_mem_dirmap_read() - Read data through a direct mapping
650 * @desc: direct mapping descriptor
651 * @offs: offset to start reading from. Note that this is not an absolute
652 * offset, but the offset within the direct mapping which already has
653 * its own offset
654 * @len: length in bytes
655 * @buf: destination buffer. This buffer must be DMA-able
656 *
657 * This function reads data from a memory device using a direct mapping
658 * previously instantiated with spi_mem_dirmap_create().
659 *
660 * Return: the amount of data read from the memory device or a negative error
661 * code. Note that the returned size might be smaller than @len, and the caller
662 * is responsible for calling spi_mem_dirmap_read() again when that happens.
663 */
spi_mem_dirmap_read(struct spi_mem_dirmap_desc * desc,u64 offs,size_t len,void * buf)664 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
665 u64 offs, size_t len, void *buf)
666 {
667 struct spi_controller *ctlr = desc->mem->spi->controller;
668 ssize_t ret;
669
670 if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
671 return -EINVAL;
672
673 if (!len)
674 return 0;
675
676 if (desc->nodirmap) {
677 ret = spi_mem_no_dirmap_read(desc, offs, len, buf);
678 } else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) {
679 ret = spi_mem_access_start(desc->mem);
680 if (ret)
681 return ret;
682
683 ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf);
684
685 spi_mem_access_end(desc->mem);
686 } else {
687 ret = -ENOTSUPP;
688 }
689
690 return ret;
691 }
692 EXPORT_SYMBOL_GPL(spi_mem_dirmap_read);
693
694 /**
695 * spi_mem_dirmap_write() - Write data through a direct mapping
696 * @desc: direct mapping descriptor
697 * @offs: offset to start writing from. Note that this is not an absolute
698 * offset, but the offset within the direct mapping which already has
699 * its own offset
700 * @len: length in bytes
701 * @buf: source buffer. This buffer must be DMA-able
702 *
703 * This function writes data to a memory device using a direct mapping
704 * previously instantiated with spi_mem_dirmap_create().
705 *
706 * Return: the amount of data written to the memory device or a negative error
707 * code. Note that the returned size might be smaller than @len, and the caller
708 * is responsible for calling spi_mem_dirmap_write() again when that happens.
709 */
spi_mem_dirmap_write(struct spi_mem_dirmap_desc * desc,u64 offs,size_t len,const void * buf)710 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
711 u64 offs, size_t len, const void *buf)
712 {
713 struct spi_controller *ctlr = desc->mem->spi->controller;
714 ssize_t ret;
715
716 if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT)
717 return -EINVAL;
718
719 if (!len)
720 return 0;
721
722 if (desc->nodirmap) {
723 ret = spi_mem_no_dirmap_write(desc, offs, len, buf);
724 } else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) {
725 ret = spi_mem_access_start(desc->mem);
726 if (ret)
727 return ret;
728
729 ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf);
730
731 spi_mem_access_end(desc->mem);
732 } else {
733 ret = -ENOTSUPP;
734 }
735
736 return ret;
737 }
738 EXPORT_SYMBOL_GPL(spi_mem_dirmap_write);
739
to_spi_mem_drv(struct device_driver * drv)740 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
741 {
742 return container_of(drv, struct spi_mem_driver, spidrv.driver);
743 }
744
spi_mem_probe(struct spi_device * spi)745 static int spi_mem_probe(struct spi_device *spi)
746 {
747 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
748 struct spi_controller *ctlr = spi->controller;
749 struct spi_mem *mem;
750
751 mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
752 if (!mem)
753 return -ENOMEM;
754
755 mem->spi = spi;
756
757 if (ctlr->mem_ops && ctlr->mem_ops->get_name)
758 mem->name = ctlr->mem_ops->get_name(mem);
759 else
760 mem->name = dev_name(&spi->dev);
761
762 if (IS_ERR_OR_NULL(mem->name))
763 return PTR_ERR(mem->name);
764
765 spi_set_drvdata(spi, mem);
766
767 return memdrv->probe(mem);
768 }
769
spi_mem_remove(struct spi_device * spi)770 static int spi_mem_remove(struct spi_device *spi)
771 {
772 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
773 struct spi_mem *mem = spi_get_drvdata(spi);
774
775 if (memdrv->remove)
776 return memdrv->remove(mem);
777
778 return 0;
779 }
780
spi_mem_shutdown(struct spi_device * spi)781 static void spi_mem_shutdown(struct spi_device *spi)
782 {
783 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
784 struct spi_mem *mem = spi_get_drvdata(spi);
785
786 if (memdrv->shutdown)
787 memdrv->shutdown(mem);
788 }
789
790 /**
791 * spi_mem_driver_register_with_owner() - Register a SPI memory driver
792 * @memdrv: the SPI memory driver to register
793 * @owner: the owner of this driver
794 *
795 * Registers a SPI memory driver.
796 *
797 * Return: 0 in case of success, a negative error core otherwise.
798 */
799
spi_mem_driver_register_with_owner(struct spi_mem_driver * memdrv,struct module * owner)800 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
801 struct module *owner)
802 {
803 memdrv->spidrv.probe = spi_mem_probe;
804 memdrv->spidrv.remove = spi_mem_remove;
805 memdrv->spidrv.shutdown = spi_mem_shutdown;
806
807 return __spi_register_driver(owner, &memdrv->spidrv);
808 }
809 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
810
811 /**
812 * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
813 * @memdrv: the SPI memory driver to unregister
814 *
815 * Unregisters a SPI memory driver.
816 */
spi_mem_driver_unregister(struct spi_mem_driver * memdrv)817 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
818 {
819 spi_unregister_driver(&memdrv->spidrv);
820 }
821 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
822