• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2018 Exceet Electronics GmbH
4  * Copyright (C) 2018 Bootlin
5  *
6  * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7  */
8 #include <linux/dmaengine.h>
9 #include <linux/pm_runtime.h>
10 #include <linux/spi/spi.h>
11 #include <linux/spi/spi-mem.h>
12 
13 #include "internals.h"
14 
15 #define SPI_MEM_MAX_BUSWIDTH		8
16 
17 /**
18  * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
19  *					  memory operation
20  * @ctlr: the SPI controller requesting this dma_map()
21  * @op: the memory operation containing the buffer to map
22  * @sgt: a pointer to a non-initialized sg_table that will be filled by this
23  *	 function
24  *
25  * Some controllers might want to do DMA on the data buffer embedded in @op.
26  * This helper prepares everything for you and provides a ready-to-use
27  * sg_table. This function is not intended to be called from spi drivers.
28  * Only SPI controller drivers should use it.
29  * Note that the caller must ensure the memory region pointed by
30  * op->data.buf.{in,out} is DMA-able before calling this function.
31  *
32  * Return: 0 in case of success, a negative error code otherwise.
33  */
spi_controller_dma_map_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sgt)34 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
35 				       const struct spi_mem_op *op,
36 				       struct sg_table *sgt)
37 {
38 	struct device *dmadev;
39 
40 	if (!op->data.nbytes)
41 		return -EINVAL;
42 
43 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
44 		dmadev = ctlr->dma_tx->device->dev;
45 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
46 		dmadev = ctlr->dma_rx->device->dev;
47 	else
48 		dmadev = ctlr->dev.parent;
49 
50 	if (!dmadev)
51 		return -EINVAL;
52 
53 	return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
54 			   op->data.dir == SPI_MEM_DATA_IN ?
55 			   DMA_FROM_DEVICE : DMA_TO_DEVICE);
56 }
57 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
58 
59 /**
60  * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
61  *					    memory operation
62  * @ctlr: the SPI controller requesting this dma_unmap()
63  * @op: the memory operation containing the buffer to unmap
64  * @sgt: a pointer to an sg_table previously initialized by
65  *	 spi_controller_dma_map_mem_op_data()
66  *
67  * Some controllers might want to do DMA on the data buffer embedded in @op.
68  * This helper prepares things so that the CPU can access the
69  * op->data.buf.{in,out} buffer again.
70  *
71  * This function is not intended to be called from SPI drivers. Only SPI
72  * controller drivers should use it.
73  *
74  * This function should be called after the DMA operation has finished and is
75  * only valid if the previous spi_controller_dma_map_mem_op_data() call
76  * returned 0.
77  *
78  * Return: 0 in case of success, a negative error code otherwise.
79  */
spi_controller_dma_unmap_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sgt)80 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
81 					  const struct spi_mem_op *op,
82 					  struct sg_table *sgt)
83 {
84 	struct device *dmadev;
85 
86 	if (!op->data.nbytes)
87 		return;
88 
89 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
90 		dmadev = ctlr->dma_tx->device->dev;
91 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
92 		dmadev = ctlr->dma_rx->device->dev;
93 	else
94 		dmadev = ctlr->dev.parent;
95 
96 	spi_unmap_buf(ctlr, dmadev, sgt,
97 		      op->data.dir == SPI_MEM_DATA_IN ?
98 		      DMA_FROM_DEVICE : DMA_TO_DEVICE);
99 }
100 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
101 
spi_check_buswidth_req(struct spi_mem * mem,u8 buswidth,bool tx)102 static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
103 {
104 	u32 mode = mem->spi->mode;
105 
106 	switch (buswidth) {
107 	case 1:
108 		return 0;
109 
110 	case 2:
111 		if ((tx &&
112 		     (mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) ||
113 		    (!tx &&
114 		     (mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))))
115 			return 0;
116 
117 		break;
118 
119 	case 4:
120 		if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) ||
121 		    (!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL))))
122 			return 0;
123 
124 		break;
125 
126 	case 8:
127 		if ((tx && (mode & SPI_TX_OCTAL)) ||
128 		    (!tx && (mode & SPI_RX_OCTAL)))
129 			return 0;
130 
131 		break;
132 
133 	default:
134 		break;
135 	}
136 
137 	return -ENOTSUPP;
138 }
139 
spi_mem_check_buswidth(struct spi_mem * mem,const struct spi_mem_op * op)140 static bool spi_mem_check_buswidth(struct spi_mem *mem,
141 				   const struct spi_mem_op *op)
142 {
143 	if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
144 		return false;
145 
146 	if (op->addr.nbytes &&
147 	    spi_check_buswidth_req(mem, op->addr.buswidth, true))
148 		return false;
149 
150 	if (op->dummy.nbytes &&
151 	    spi_check_buswidth_req(mem, op->dummy.buswidth, true))
152 		return false;
153 
154 	if (op->data.dir != SPI_MEM_NO_DATA &&
155 	    spi_check_buswidth_req(mem, op->data.buswidth,
156 				   op->data.dir == SPI_MEM_DATA_OUT))
157 		return false;
158 
159 	return true;
160 }
161 
spi_mem_dtr_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)162 bool spi_mem_dtr_supports_op(struct spi_mem *mem,
163 			     const struct spi_mem_op *op)
164 {
165 	if (op->cmd.nbytes != 2)
166 		return false;
167 
168 	return spi_mem_check_buswidth(mem, op);
169 }
170 EXPORT_SYMBOL_GPL(spi_mem_dtr_supports_op);
171 
spi_mem_default_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)172 bool spi_mem_default_supports_op(struct spi_mem *mem,
173 				 const struct spi_mem_op *op)
174 {
175 	if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr)
176 		return false;
177 
178 	if (op->cmd.nbytes != 1)
179 		return false;
180 
181 	return spi_mem_check_buswidth(mem, op);
182 }
183 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
184 
spi_mem_buswidth_is_valid(u8 buswidth)185 static bool spi_mem_buswidth_is_valid(u8 buswidth)
186 {
187 	if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH)
188 		return false;
189 
190 	return true;
191 }
192 
spi_mem_check_op(const struct spi_mem_op * op)193 static int spi_mem_check_op(const struct spi_mem_op *op)
194 {
195 	if (!op->cmd.buswidth || !op->cmd.nbytes)
196 		return -EINVAL;
197 
198 	if ((op->addr.nbytes && !op->addr.buswidth) ||
199 	    (op->dummy.nbytes && !op->dummy.buswidth) ||
200 	    (op->data.nbytes && !op->data.buswidth))
201 		return -EINVAL;
202 
203 	if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) ||
204 	    !spi_mem_buswidth_is_valid(op->addr.buswidth) ||
205 	    !spi_mem_buswidth_is_valid(op->dummy.buswidth) ||
206 	    !spi_mem_buswidth_is_valid(op->data.buswidth))
207 		return -EINVAL;
208 
209 	return 0;
210 }
211 
spi_mem_internal_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)212 static bool spi_mem_internal_supports_op(struct spi_mem *mem,
213 					 const struct spi_mem_op *op)
214 {
215 	struct spi_controller *ctlr = mem->spi->controller;
216 
217 	if (ctlr->mem_ops && ctlr->mem_ops->supports_op)
218 		return ctlr->mem_ops->supports_op(mem, op);
219 
220 	return spi_mem_default_supports_op(mem, op);
221 }
222 
223 /**
224  * spi_mem_supports_op() - Check if a memory device and the controller it is
225  *			   connected to support a specific memory operation
226  * @mem: the SPI memory
227  * @op: the memory operation to check
228  *
229  * Some controllers are only supporting Single or Dual IOs, others might only
230  * support specific opcodes, or it can even be that the controller and device
231  * both support Quad IOs but the hardware prevents you from using it because
232  * only 2 IO lines are connected.
233  *
234  * This function checks whether a specific operation is supported.
235  *
236  * Return: true if @op is supported, false otherwise.
237  */
spi_mem_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)238 bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
239 {
240 	if (spi_mem_check_op(op))
241 		return false;
242 
243 	return spi_mem_internal_supports_op(mem, op);
244 }
245 EXPORT_SYMBOL_GPL(spi_mem_supports_op);
246 
spi_mem_access_start(struct spi_mem * mem)247 static int spi_mem_access_start(struct spi_mem *mem)
248 {
249 	struct spi_controller *ctlr = mem->spi->controller;
250 
251 	/*
252 	 * Flush the message queue before executing our SPI memory
253 	 * operation to prevent preemption of regular SPI transfers.
254 	 */
255 	spi_flush_queue(ctlr);
256 
257 	if (ctlr->auto_runtime_pm) {
258 		int ret;
259 
260 		ret = pm_runtime_get_sync(ctlr->dev.parent);
261 		if (ret < 0) {
262 			pm_runtime_put_noidle(ctlr->dev.parent);
263 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
264 				ret);
265 			return ret;
266 		}
267 	}
268 
269 	mutex_lock(&ctlr->bus_lock_mutex);
270 	mutex_lock(&ctlr->io_mutex);
271 
272 	return 0;
273 }
274 
spi_mem_access_end(struct spi_mem * mem)275 static void spi_mem_access_end(struct spi_mem *mem)
276 {
277 	struct spi_controller *ctlr = mem->spi->controller;
278 
279 	mutex_unlock(&ctlr->io_mutex);
280 	mutex_unlock(&ctlr->bus_lock_mutex);
281 
282 	if (ctlr->auto_runtime_pm)
283 		pm_runtime_put(ctlr->dev.parent);
284 }
285 
286 /**
287  * spi_mem_exec_op() - Execute a memory operation
288  * @mem: the SPI memory
289  * @op: the memory operation to execute
290  *
291  * Executes a memory operation.
292  *
293  * This function first checks that @op is supported and then tries to execute
294  * it.
295  *
296  * Return: 0 in case of success, a negative error code otherwise.
297  */
spi_mem_exec_op(struct spi_mem * mem,const struct spi_mem_op * op)298 int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
299 {
300 	unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0;
301 	struct spi_controller *ctlr = mem->spi->controller;
302 	struct spi_transfer xfers[4] = { };
303 	struct spi_message msg;
304 	u8 *tmpbuf;
305 	int ret;
306 
307 	ret = spi_mem_check_op(op);
308 	if (ret)
309 		return ret;
310 
311 	if (!spi_mem_internal_supports_op(mem, op))
312 		return -ENOTSUPP;
313 
314 	if (ctlr->mem_ops && !mem->spi->cs_gpiod) {
315 		ret = spi_mem_access_start(mem);
316 		if (ret)
317 			return ret;
318 
319 		ret = ctlr->mem_ops->exec_op(mem, op);
320 
321 		spi_mem_access_end(mem);
322 
323 		/*
324 		 * Some controllers only optimize specific paths (typically the
325 		 * read path) and expect the core to use the regular SPI
326 		 * interface in other cases.
327 		 */
328 		if (!ret || ret != -ENOTSUPP)
329 			return ret;
330 	}
331 
332 	tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
333 
334 	/*
335 	 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
336 	 * we're guaranteed that this buffer is DMA-able, as required by the
337 	 * SPI layer.
338 	 */
339 	tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
340 	if (!tmpbuf)
341 		return -ENOMEM;
342 
343 	spi_message_init(&msg);
344 
345 	tmpbuf[0] = op->cmd.opcode;
346 	xfers[xferpos].tx_buf = tmpbuf;
347 	xfers[xferpos].len = op->cmd.nbytes;
348 	xfers[xferpos].tx_nbits = op->cmd.buswidth;
349 	spi_message_add_tail(&xfers[xferpos], &msg);
350 	xferpos++;
351 	totalxferlen++;
352 
353 	if (op->addr.nbytes) {
354 		int i;
355 
356 		for (i = 0; i < op->addr.nbytes; i++)
357 			tmpbuf[i + 1] = op->addr.val >>
358 					(8 * (op->addr.nbytes - i - 1));
359 
360 		xfers[xferpos].tx_buf = tmpbuf + 1;
361 		xfers[xferpos].len = op->addr.nbytes;
362 		xfers[xferpos].tx_nbits = op->addr.buswidth;
363 		spi_message_add_tail(&xfers[xferpos], &msg);
364 		xferpos++;
365 		totalxferlen += op->addr.nbytes;
366 	}
367 
368 	if (op->dummy.nbytes) {
369 		memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
370 		xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
371 		xfers[xferpos].len = op->dummy.nbytes;
372 		xfers[xferpos].tx_nbits = op->dummy.buswidth;
373 		spi_message_add_tail(&xfers[xferpos], &msg);
374 		xferpos++;
375 		totalxferlen += op->dummy.nbytes;
376 	}
377 
378 	if (op->data.nbytes) {
379 		if (op->data.dir == SPI_MEM_DATA_IN) {
380 			xfers[xferpos].rx_buf = op->data.buf.in;
381 			xfers[xferpos].rx_nbits = op->data.buswidth;
382 		} else {
383 			xfers[xferpos].tx_buf = op->data.buf.out;
384 			xfers[xferpos].tx_nbits = op->data.buswidth;
385 		}
386 
387 		xfers[xferpos].len = op->data.nbytes;
388 		spi_message_add_tail(&xfers[xferpos], &msg);
389 		xferpos++;
390 		totalxferlen += op->data.nbytes;
391 	}
392 
393 	ret = spi_sync(mem->spi, &msg);
394 
395 	kfree(tmpbuf);
396 
397 	if (ret)
398 		return ret;
399 
400 	if (msg.actual_length != totalxferlen)
401 		return -EIO;
402 
403 	return 0;
404 }
405 EXPORT_SYMBOL_GPL(spi_mem_exec_op);
406 
407 /**
408  * spi_mem_get_name() - Return the SPI mem device name to be used by the
409  *			upper layer if necessary
410  * @mem: the SPI memory
411  *
412  * This function allows SPI mem users to retrieve the SPI mem device name.
413  * It is useful if the upper layer needs to expose a custom name for
414  * compatibility reasons.
415  *
416  * Return: a string containing the name of the memory device to be used
417  *	   by the SPI mem user
418  */
spi_mem_get_name(struct spi_mem * mem)419 const char *spi_mem_get_name(struct spi_mem *mem)
420 {
421 	return mem->name;
422 }
423 EXPORT_SYMBOL_GPL(spi_mem_get_name);
424 
425 /**
426  * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
427  *			      match controller limitations
428  * @mem: the SPI memory
429  * @op: the operation to adjust
430  *
431  * Some controllers have FIFO limitations and must split a data transfer
432  * operation into multiple ones, others require a specific alignment for
433  * optimized accesses. This function allows SPI mem drivers to split a single
434  * operation into multiple sub-operations when required.
435  *
436  * Return: a negative error code if the controller can't properly adjust @op,
437  *	   0 otherwise. Note that @op->data.nbytes will be updated if @op
438  *	   can't be handled in a single step.
439  */
spi_mem_adjust_op_size(struct spi_mem * mem,struct spi_mem_op * op)440 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
441 {
442 	struct spi_controller *ctlr = mem->spi->controller;
443 	size_t len;
444 
445 	if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size)
446 		return ctlr->mem_ops->adjust_op_size(mem, op);
447 
448 	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
449 		len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
450 
451 		if (len > spi_max_transfer_size(mem->spi))
452 			return -EINVAL;
453 
454 		op->data.nbytes = min3((size_t)op->data.nbytes,
455 				       spi_max_transfer_size(mem->spi),
456 				       spi_max_message_size(mem->spi) -
457 				       len);
458 		if (!op->data.nbytes)
459 			return -EINVAL;
460 	}
461 
462 	return 0;
463 }
464 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
465 
spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc * desc,u64 offs,size_t len,void * buf)466 static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc,
467 				      u64 offs, size_t len, void *buf)
468 {
469 	struct spi_mem_op op = desc->info.op_tmpl;
470 	int ret;
471 
472 	op.addr.val = desc->info.offset + offs;
473 	op.data.buf.in = buf;
474 	op.data.nbytes = len;
475 	ret = spi_mem_adjust_op_size(desc->mem, &op);
476 	if (ret)
477 		return ret;
478 
479 	ret = spi_mem_exec_op(desc->mem, &op);
480 	if (ret)
481 		return ret;
482 
483 	return op.data.nbytes;
484 }
485 
spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc * desc,u64 offs,size_t len,const void * buf)486 static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc,
487 				       u64 offs, size_t len, const void *buf)
488 {
489 	struct spi_mem_op op = desc->info.op_tmpl;
490 	int ret;
491 
492 	op.addr.val = desc->info.offset + offs;
493 	op.data.buf.out = buf;
494 	op.data.nbytes = len;
495 	ret = spi_mem_adjust_op_size(desc->mem, &op);
496 	if (ret)
497 		return ret;
498 
499 	ret = spi_mem_exec_op(desc->mem, &op);
500 	if (ret)
501 		return ret;
502 
503 	return op.data.nbytes;
504 }
505 
506 /**
507  * spi_mem_dirmap_create() - Create a direct mapping descriptor
508  * @mem: SPI mem device this direct mapping should be created for
509  * @info: direct mapping information
510  *
511  * This function is creating a direct mapping descriptor which can then be used
512  * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write().
513  * If the SPI controller driver does not support direct mapping, this function
514  * falls back to an implementation using spi_mem_exec_op(), so that the caller
515  * doesn't have to bother implementing a fallback on his own.
516  *
517  * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
518  */
519 struct spi_mem_dirmap_desc *
spi_mem_dirmap_create(struct spi_mem * mem,const struct spi_mem_dirmap_info * info)520 spi_mem_dirmap_create(struct spi_mem *mem,
521 		      const struct spi_mem_dirmap_info *info)
522 {
523 	struct spi_controller *ctlr = mem->spi->controller;
524 	struct spi_mem_dirmap_desc *desc;
525 	int ret = -ENOTSUPP;
526 
527 	/* Make sure the number of address cycles is between 1 and 8 bytes. */
528 	if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8)
529 		return ERR_PTR(-EINVAL);
530 
531 	/* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */
532 	if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA)
533 		return ERR_PTR(-EINVAL);
534 
535 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
536 	if (!desc)
537 		return ERR_PTR(-ENOMEM);
538 
539 	desc->mem = mem;
540 	desc->info = *info;
541 	if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create)
542 		ret = ctlr->mem_ops->dirmap_create(desc);
543 
544 	if (ret) {
545 		desc->nodirmap = true;
546 		if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
547 			ret = -ENOTSUPP;
548 		else
549 			ret = 0;
550 	}
551 
552 	if (ret) {
553 		kfree(desc);
554 		return ERR_PTR(ret);
555 	}
556 
557 	return desc;
558 }
559 EXPORT_SYMBOL_GPL(spi_mem_dirmap_create);
560 
561 /**
562  * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor
563  * @desc: the direct mapping descriptor to destroy
564  *
565  * This function destroys a direct mapping descriptor previously created by
566  * spi_mem_dirmap_create().
567  */
spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc * desc)568 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc)
569 {
570 	struct spi_controller *ctlr = desc->mem->spi->controller;
571 
572 	if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy)
573 		ctlr->mem_ops->dirmap_destroy(desc);
574 
575 	kfree(desc);
576 }
577 EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy);
578 
devm_spi_mem_dirmap_release(struct device * dev,void * res)579 static void devm_spi_mem_dirmap_release(struct device *dev, void *res)
580 {
581 	struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res;
582 
583 	spi_mem_dirmap_destroy(desc);
584 }
585 
586 /**
587  * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach
588  *				  it to a device
589  * @dev: device the dirmap desc will be attached to
590  * @mem: SPI mem device this direct mapping should be created for
591  * @info: direct mapping information
592  *
593  * devm_ variant of the spi_mem_dirmap_create() function. See
594  * spi_mem_dirmap_create() for more details.
595  *
596  * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
597  */
598 struct spi_mem_dirmap_desc *
devm_spi_mem_dirmap_create(struct device * dev,struct spi_mem * mem,const struct spi_mem_dirmap_info * info)599 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
600 			   const struct spi_mem_dirmap_info *info)
601 {
602 	struct spi_mem_dirmap_desc **ptr, *desc;
603 
604 	ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr),
605 			   GFP_KERNEL);
606 	if (!ptr)
607 		return ERR_PTR(-ENOMEM);
608 
609 	desc = spi_mem_dirmap_create(mem, info);
610 	if (IS_ERR(desc)) {
611 		devres_free(ptr);
612 	} else {
613 		*ptr = desc;
614 		devres_add(dev, ptr);
615 	}
616 
617 	return desc;
618 }
619 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create);
620 
devm_spi_mem_dirmap_match(struct device * dev,void * res,void * data)621 static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data)
622 {
623         struct spi_mem_dirmap_desc **ptr = res;
624 
625         if (WARN_ON(!ptr || !*ptr))
626                 return 0;
627 
628 	return *ptr == data;
629 }
630 
631 /**
632  * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached
633  *				   to a device
634  * @dev: device the dirmap desc is attached to
635  * @desc: the direct mapping descriptor to destroy
636  *
637  * devm_ variant of the spi_mem_dirmap_destroy() function. See
638  * spi_mem_dirmap_destroy() for more details.
639  */
devm_spi_mem_dirmap_destroy(struct device * dev,struct spi_mem_dirmap_desc * desc)640 void devm_spi_mem_dirmap_destroy(struct device *dev,
641 				 struct spi_mem_dirmap_desc *desc)
642 {
643 	devres_release(dev, devm_spi_mem_dirmap_release,
644 		       devm_spi_mem_dirmap_match, desc);
645 }
646 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy);
647 
648 /**
649  * spi_mem_dirmap_read() - Read data through a direct mapping
650  * @desc: direct mapping descriptor
651  * @offs: offset to start reading from. Note that this is not an absolute
652  *	  offset, but the offset within the direct mapping which already has
653  *	  its own offset
654  * @len: length in bytes
655  * @buf: destination buffer. This buffer must be DMA-able
656  *
657  * This function reads data from a memory device using a direct mapping
658  * previously instantiated with spi_mem_dirmap_create().
659  *
660  * Return: the amount of data read from the memory device or a negative error
661  * code. Note that the returned size might be smaller than @len, and the caller
662  * is responsible for calling spi_mem_dirmap_read() again when that happens.
663  */
spi_mem_dirmap_read(struct spi_mem_dirmap_desc * desc,u64 offs,size_t len,void * buf)664 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
665 			    u64 offs, size_t len, void *buf)
666 {
667 	struct spi_controller *ctlr = desc->mem->spi->controller;
668 	ssize_t ret;
669 
670 	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
671 		return -EINVAL;
672 
673 	if (!len)
674 		return 0;
675 
676 	if (desc->nodirmap) {
677 		ret = spi_mem_no_dirmap_read(desc, offs, len, buf);
678 	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) {
679 		ret = spi_mem_access_start(desc->mem);
680 		if (ret)
681 			return ret;
682 
683 		ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf);
684 
685 		spi_mem_access_end(desc->mem);
686 	} else {
687 		ret = -ENOTSUPP;
688 	}
689 
690 	return ret;
691 }
692 EXPORT_SYMBOL_GPL(spi_mem_dirmap_read);
693 
694 /**
695  * spi_mem_dirmap_write() - Write data through a direct mapping
696  * @desc: direct mapping descriptor
697  * @offs: offset to start writing from. Note that this is not an absolute
698  *	  offset, but the offset within the direct mapping which already has
699  *	  its own offset
700  * @len: length in bytes
701  * @buf: source buffer. This buffer must be DMA-able
702  *
703  * This function writes data to a memory device using a direct mapping
704  * previously instantiated with spi_mem_dirmap_create().
705  *
706  * Return: the amount of data written to the memory device or a negative error
707  * code. Note that the returned size might be smaller than @len, and the caller
708  * is responsible for calling spi_mem_dirmap_write() again when that happens.
709  */
spi_mem_dirmap_write(struct spi_mem_dirmap_desc * desc,u64 offs,size_t len,const void * buf)710 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
711 			     u64 offs, size_t len, const void *buf)
712 {
713 	struct spi_controller *ctlr = desc->mem->spi->controller;
714 	ssize_t ret;
715 
716 	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT)
717 		return -EINVAL;
718 
719 	if (!len)
720 		return 0;
721 
722 	if (desc->nodirmap) {
723 		ret = spi_mem_no_dirmap_write(desc, offs, len, buf);
724 	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) {
725 		ret = spi_mem_access_start(desc->mem);
726 		if (ret)
727 			return ret;
728 
729 		ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf);
730 
731 		spi_mem_access_end(desc->mem);
732 	} else {
733 		ret = -ENOTSUPP;
734 	}
735 
736 	return ret;
737 }
738 EXPORT_SYMBOL_GPL(spi_mem_dirmap_write);
739 
to_spi_mem_drv(struct device_driver * drv)740 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
741 {
742 	return container_of(drv, struct spi_mem_driver, spidrv.driver);
743 }
744 
spi_mem_probe(struct spi_device * spi)745 static int spi_mem_probe(struct spi_device *spi)
746 {
747 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
748 	struct spi_controller *ctlr = spi->controller;
749 	struct spi_mem *mem;
750 
751 	mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
752 	if (!mem)
753 		return -ENOMEM;
754 
755 	mem->spi = spi;
756 
757 	if (ctlr->mem_ops && ctlr->mem_ops->get_name)
758 		mem->name = ctlr->mem_ops->get_name(mem);
759 	else
760 		mem->name = dev_name(&spi->dev);
761 
762 	if (IS_ERR_OR_NULL(mem->name))
763 		return PTR_ERR(mem->name);
764 
765 	spi_set_drvdata(spi, mem);
766 
767 	return memdrv->probe(mem);
768 }
769 
spi_mem_remove(struct spi_device * spi)770 static int spi_mem_remove(struct spi_device *spi)
771 {
772 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
773 	struct spi_mem *mem = spi_get_drvdata(spi);
774 
775 	if (memdrv->remove)
776 		return memdrv->remove(mem);
777 
778 	return 0;
779 }
780 
spi_mem_shutdown(struct spi_device * spi)781 static void spi_mem_shutdown(struct spi_device *spi)
782 {
783 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
784 	struct spi_mem *mem = spi_get_drvdata(spi);
785 
786 	if (memdrv->shutdown)
787 		memdrv->shutdown(mem);
788 }
789 
790 /**
791  * spi_mem_driver_register_with_owner() - Register a SPI memory driver
792  * @memdrv: the SPI memory driver to register
793  * @owner: the owner of this driver
794  *
795  * Registers a SPI memory driver.
796  *
797  * Return: 0 in case of success, a negative error core otherwise.
798  */
799 
spi_mem_driver_register_with_owner(struct spi_mem_driver * memdrv,struct module * owner)800 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
801 				       struct module *owner)
802 {
803 	memdrv->spidrv.probe = spi_mem_probe;
804 	memdrv->spidrv.remove = spi_mem_remove;
805 	memdrv->spidrv.shutdown = spi_mem_shutdown;
806 
807 	return __spi_register_driver(owner, &memdrv->spidrv);
808 }
809 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
810 
811 /**
812  * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
813  * @memdrv: the SPI memory driver to unregister
814  *
815  * Unregisters a SPI memory driver.
816  */
spi_mem_driver_unregister(struct spi_mem_driver * memdrv)817 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
818 {
819 	spi_unregister_driver(&memdrv->spidrv);
820 }
821 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
822