1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4 * Copyright (C) 2013, Intel Corporation
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/err.h>
13 #include <linux/errno.h>
14 #include <linux/gpio/consumer.h>
15 #include <linux/gpio.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/mod_devicetable.h>
22 #include <linux/of.h>
23 #include <linux/pci.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/property.h>
27 #include <linux/slab.h>
28 #include <linux/spi/pxa2xx_spi.h>
29 #include <linux/spi/spi.h>
30
31 #include "spi-pxa2xx.h"
32
33 MODULE_AUTHOR("Stephen Street");
34 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
35 MODULE_LICENSE("GPL");
36 MODULE_ALIAS("platform:pxa2xx-spi");
37
38 #define TIMOUT_DFLT 1000
39
40 /*
41 * for testing SSCR1 changes that require SSP restart, basically
42 * everything except the service and interrupt enables, the pxa270 developer
43 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
44 * list, but the PXA255 dev man says all bits without really meaning the
45 * service and interrupt enables
46 */
47 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
48 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
49 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
50 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
51 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
52 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
53
54 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \
55 | QUARK_X1000_SSCR1_EFWR \
56 | QUARK_X1000_SSCR1_RFT \
57 | QUARK_X1000_SSCR1_TFT \
58 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
59
60 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
61 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
62 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
63 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
64 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
65 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
66
67 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
68 #define LPSS_CS_CONTROL_SW_MODE BIT(0)
69 #define LPSS_CS_CONTROL_CS_HIGH BIT(1)
70 #define LPSS_CAPS_CS_EN_SHIFT 9
71 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT)
72
73 #define LPSS_PRIV_CLOCK_GATE 0x38
74 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
75 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
76
77 struct lpss_config {
78 /* LPSS offset from drv_data->ioaddr */
79 unsigned offset;
80 /* Register offsets from drv_data->lpss_base or -1 */
81 int reg_general;
82 int reg_ssp;
83 int reg_cs_ctrl;
84 int reg_capabilities;
85 /* FIFO thresholds */
86 u32 rx_threshold;
87 u32 tx_threshold_lo;
88 u32 tx_threshold_hi;
89 /* Chip select control */
90 unsigned cs_sel_shift;
91 unsigned cs_sel_mask;
92 unsigned cs_num;
93 /* Quirks */
94 unsigned cs_clk_stays_gated : 1;
95 };
96
97 /* Keep these sorted with enum pxa_ssp_type */
98 static const struct lpss_config lpss_platforms[] = {
99 { /* LPSS_LPT_SSP */
100 .offset = 0x800,
101 .reg_general = 0x08,
102 .reg_ssp = 0x0c,
103 .reg_cs_ctrl = 0x18,
104 .reg_capabilities = -1,
105 .rx_threshold = 64,
106 .tx_threshold_lo = 160,
107 .tx_threshold_hi = 224,
108 },
109 { /* LPSS_BYT_SSP */
110 .offset = 0x400,
111 .reg_general = 0x08,
112 .reg_ssp = 0x0c,
113 .reg_cs_ctrl = 0x18,
114 .reg_capabilities = -1,
115 .rx_threshold = 64,
116 .tx_threshold_lo = 160,
117 .tx_threshold_hi = 224,
118 },
119 { /* LPSS_BSW_SSP */
120 .offset = 0x400,
121 .reg_general = 0x08,
122 .reg_ssp = 0x0c,
123 .reg_cs_ctrl = 0x18,
124 .reg_capabilities = -1,
125 .rx_threshold = 64,
126 .tx_threshold_lo = 160,
127 .tx_threshold_hi = 224,
128 .cs_sel_shift = 2,
129 .cs_sel_mask = 1 << 2,
130 .cs_num = 2,
131 },
132 { /* LPSS_SPT_SSP */
133 .offset = 0x200,
134 .reg_general = -1,
135 .reg_ssp = 0x20,
136 .reg_cs_ctrl = 0x24,
137 .reg_capabilities = -1,
138 .rx_threshold = 1,
139 .tx_threshold_lo = 32,
140 .tx_threshold_hi = 56,
141 },
142 { /* LPSS_BXT_SSP */
143 .offset = 0x200,
144 .reg_general = -1,
145 .reg_ssp = 0x20,
146 .reg_cs_ctrl = 0x24,
147 .reg_capabilities = 0xfc,
148 .rx_threshold = 1,
149 .tx_threshold_lo = 16,
150 .tx_threshold_hi = 48,
151 .cs_sel_shift = 8,
152 .cs_sel_mask = 3 << 8,
153 .cs_clk_stays_gated = true,
154 },
155 { /* LPSS_CNL_SSP */
156 .offset = 0x200,
157 .reg_general = -1,
158 .reg_ssp = 0x20,
159 .reg_cs_ctrl = 0x24,
160 .reg_capabilities = 0xfc,
161 .rx_threshold = 1,
162 .tx_threshold_lo = 32,
163 .tx_threshold_hi = 56,
164 .cs_sel_shift = 8,
165 .cs_sel_mask = 3 << 8,
166 .cs_clk_stays_gated = true,
167 },
168 };
169
170 static inline const struct lpss_config
lpss_get_config(const struct driver_data * drv_data)171 *lpss_get_config(const struct driver_data *drv_data)
172 {
173 return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
174 }
175
is_lpss_ssp(const struct driver_data * drv_data)176 static bool is_lpss_ssp(const struct driver_data *drv_data)
177 {
178 switch (drv_data->ssp_type) {
179 case LPSS_LPT_SSP:
180 case LPSS_BYT_SSP:
181 case LPSS_BSW_SSP:
182 case LPSS_SPT_SSP:
183 case LPSS_BXT_SSP:
184 case LPSS_CNL_SSP:
185 return true;
186 default:
187 return false;
188 }
189 }
190
is_quark_x1000_ssp(const struct driver_data * drv_data)191 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
192 {
193 return drv_data->ssp_type == QUARK_X1000_SSP;
194 }
195
is_mmp2_ssp(const struct driver_data * drv_data)196 static bool is_mmp2_ssp(const struct driver_data *drv_data)
197 {
198 return drv_data->ssp_type == MMP2_SSP;
199 }
200
pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data * drv_data)201 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
202 {
203 switch (drv_data->ssp_type) {
204 case QUARK_X1000_SSP:
205 return QUARK_X1000_SSCR1_CHANGE_MASK;
206 case CE4100_SSP:
207 return CE4100_SSCR1_CHANGE_MASK;
208 default:
209 return SSCR1_CHANGE_MASK;
210 }
211 }
212
213 static u32
pxa2xx_spi_get_rx_default_thre(const struct driver_data * drv_data)214 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
215 {
216 switch (drv_data->ssp_type) {
217 case QUARK_X1000_SSP:
218 return RX_THRESH_QUARK_X1000_DFLT;
219 case CE4100_SSP:
220 return RX_THRESH_CE4100_DFLT;
221 default:
222 return RX_THRESH_DFLT;
223 }
224 }
225
pxa2xx_spi_txfifo_full(const struct driver_data * drv_data)226 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
227 {
228 u32 mask;
229
230 switch (drv_data->ssp_type) {
231 case QUARK_X1000_SSP:
232 mask = QUARK_X1000_SSSR_TFL_MASK;
233 break;
234 case CE4100_SSP:
235 mask = CE4100_SSSR_TFL_MASK;
236 break;
237 default:
238 mask = SSSR_TFL_MASK;
239 break;
240 }
241
242 return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
243 }
244
pxa2xx_spi_clear_rx_thre(const struct driver_data * drv_data,u32 * sccr1_reg)245 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
246 u32 *sccr1_reg)
247 {
248 u32 mask;
249
250 switch (drv_data->ssp_type) {
251 case QUARK_X1000_SSP:
252 mask = QUARK_X1000_SSCR1_RFT;
253 break;
254 case CE4100_SSP:
255 mask = CE4100_SSCR1_RFT;
256 break;
257 default:
258 mask = SSCR1_RFT;
259 break;
260 }
261 *sccr1_reg &= ~mask;
262 }
263
pxa2xx_spi_set_rx_thre(const struct driver_data * drv_data,u32 * sccr1_reg,u32 threshold)264 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
265 u32 *sccr1_reg, u32 threshold)
266 {
267 switch (drv_data->ssp_type) {
268 case QUARK_X1000_SSP:
269 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
270 break;
271 case CE4100_SSP:
272 *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
273 break;
274 default:
275 *sccr1_reg |= SSCR1_RxTresh(threshold);
276 break;
277 }
278 }
279
pxa2xx_configure_sscr0(const struct driver_data * drv_data,u32 clk_div,u8 bits)280 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
281 u32 clk_div, u8 bits)
282 {
283 switch (drv_data->ssp_type) {
284 case QUARK_X1000_SSP:
285 return clk_div
286 | QUARK_X1000_SSCR0_Motorola
287 | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
288 | SSCR0_SSE;
289 default:
290 return clk_div
291 | SSCR0_Motorola
292 | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
293 | SSCR0_SSE
294 | (bits > 16 ? SSCR0_EDSS : 0);
295 }
296 }
297
298 /*
299 * Read and write LPSS SSP private registers. Caller must first check that
300 * is_lpss_ssp() returns true before these can be called.
301 */
__lpss_ssp_read_priv(struct driver_data * drv_data,unsigned offset)302 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
303 {
304 WARN_ON(!drv_data->lpss_base);
305 return readl(drv_data->lpss_base + offset);
306 }
307
__lpss_ssp_write_priv(struct driver_data * drv_data,unsigned offset,u32 value)308 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
309 unsigned offset, u32 value)
310 {
311 WARN_ON(!drv_data->lpss_base);
312 writel(value, drv_data->lpss_base + offset);
313 }
314
315 /*
316 * lpss_ssp_setup - perform LPSS SSP specific setup
317 * @drv_data: pointer to the driver private data
318 *
319 * Perform LPSS SSP specific setup. This function must be called first if
320 * one is going to use LPSS SSP private registers.
321 */
lpss_ssp_setup(struct driver_data * drv_data)322 static void lpss_ssp_setup(struct driver_data *drv_data)
323 {
324 const struct lpss_config *config;
325 u32 value;
326
327 config = lpss_get_config(drv_data);
328 drv_data->lpss_base = drv_data->ioaddr + config->offset;
329
330 /* Enable software chip select control */
331 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
332 value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
333 value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
334 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
335
336 /* Enable multiblock DMA transfers */
337 if (drv_data->controller_info->enable_dma) {
338 __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
339
340 if (config->reg_general >= 0) {
341 value = __lpss_ssp_read_priv(drv_data,
342 config->reg_general);
343 value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
344 __lpss_ssp_write_priv(drv_data,
345 config->reg_general, value);
346 }
347 }
348 }
349
lpss_ssp_select_cs(struct spi_device * spi,const struct lpss_config * config)350 static void lpss_ssp_select_cs(struct spi_device *spi,
351 const struct lpss_config *config)
352 {
353 struct driver_data *drv_data =
354 spi_controller_get_devdata(spi->controller);
355 u32 value, cs;
356
357 if (!config->cs_sel_mask)
358 return;
359
360 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
361
362 cs = spi->chip_select;
363 cs <<= config->cs_sel_shift;
364 if (cs != (value & config->cs_sel_mask)) {
365 /*
366 * When switching another chip select output active the
367 * output must be selected first and wait 2 ssp_clk cycles
368 * before changing state to active. Otherwise a short
369 * glitch will occur on the previous chip select since
370 * output select is latched but state control is not.
371 */
372 value &= ~config->cs_sel_mask;
373 value |= cs;
374 __lpss_ssp_write_priv(drv_data,
375 config->reg_cs_ctrl, value);
376 ndelay(1000000000 /
377 (drv_data->controller->max_speed_hz / 2));
378 }
379 }
380
lpss_ssp_cs_control(struct spi_device * spi,bool enable)381 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
382 {
383 struct driver_data *drv_data =
384 spi_controller_get_devdata(spi->controller);
385 const struct lpss_config *config;
386 u32 value;
387
388 config = lpss_get_config(drv_data);
389
390 if (enable)
391 lpss_ssp_select_cs(spi, config);
392
393 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
394 if (enable)
395 value &= ~LPSS_CS_CONTROL_CS_HIGH;
396 else
397 value |= LPSS_CS_CONTROL_CS_HIGH;
398 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
399 if (config->cs_clk_stays_gated) {
400 u32 clkgate;
401
402 /*
403 * Changing CS alone when dynamic clock gating is on won't
404 * actually flip CS at that time. This ruins SPI transfers
405 * that specify delays, or have no data. Toggle the clock mode
406 * to force on briefly to poke the CS pin to move.
407 */
408 clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
409 value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
410 LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
411
412 __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
413 __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
414 }
415 }
416
cs_assert(struct spi_device * spi)417 static void cs_assert(struct spi_device *spi)
418 {
419 struct chip_data *chip = spi_get_ctldata(spi);
420 struct driver_data *drv_data =
421 spi_controller_get_devdata(spi->controller);
422
423 if (drv_data->ssp_type == CE4100_SSP) {
424 pxa2xx_spi_write(drv_data, SSSR, chip->frm);
425 return;
426 }
427
428 if (chip->cs_control) {
429 chip->cs_control(PXA2XX_CS_ASSERT);
430 return;
431 }
432
433 if (chip->gpiod_cs) {
434 gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
435 return;
436 }
437
438 if (is_lpss_ssp(drv_data))
439 lpss_ssp_cs_control(spi, true);
440 }
441
cs_deassert(struct spi_device * spi)442 static void cs_deassert(struct spi_device *spi)
443 {
444 struct chip_data *chip = spi_get_ctldata(spi);
445 struct driver_data *drv_data =
446 spi_controller_get_devdata(spi->controller);
447 unsigned long timeout;
448
449 if (drv_data->ssp_type == CE4100_SSP)
450 return;
451
452 /* Wait until SSP becomes idle before deasserting the CS */
453 timeout = jiffies + msecs_to_jiffies(10);
454 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
455 !time_after(jiffies, timeout))
456 cpu_relax();
457
458 if (chip->cs_control) {
459 chip->cs_control(PXA2XX_CS_DEASSERT);
460 return;
461 }
462
463 if (chip->gpiod_cs) {
464 gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
465 return;
466 }
467
468 if (is_lpss_ssp(drv_data))
469 lpss_ssp_cs_control(spi, false);
470 }
471
pxa2xx_spi_set_cs(struct spi_device * spi,bool level)472 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
473 {
474 if (level)
475 cs_deassert(spi);
476 else
477 cs_assert(spi);
478 }
479
pxa2xx_spi_flush(struct driver_data * drv_data)480 int pxa2xx_spi_flush(struct driver_data *drv_data)
481 {
482 unsigned long limit = loops_per_jiffy << 1;
483
484 do {
485 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
486 pxa2xx_spi_read(drv_data, SSDR);
487 } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
488 write_SSSR_CS(drv_data, SSSR_ROR);
489
490 return limit;
491 }
492
pxa2xx_spi_off(struct driver_data * drv_data)493 static void pxa2xx_spi_off(struct driver_data *drv_data)
494 {
495 /* On MMP, disabling SSE seems to corrupt the Rx FIFO */
496 if (is_mmp2_ssp(drv_data))
497 return;
498
499 pxa2xx_spi_write(drv_data, SSCR0,
500 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
501 }
502
null_writer(struct driver_data * drv_data)503 static int null_writer(struct driver_data *drv_data)
504 {
505 u8 n_bytes = drv_data->n_bytes;
506
507 if (pxa2xx_spi_txfifo_full(drv_data)
508 || (drv_data->tx == drv_data->tx_end))
509 return 0;
510
511 pxa2xx_spi_write(drv_data, SSDR, 0);
512 drv_data->tx += n_bytes;
513
514 return 1;
515 }
516
null_reader(struct driver_data * drv_data)517 static int null_reader(struct driver_data *drv_data)
518 {
519 u8 n_bytes = drv_data->n_bytes;
520
521 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
522 && (drv_data->rx < drv_data->rx_end)) {
523 pxa2xx_spi_read(drv_data, SSDR);
524 drv_data->rx += n_bytes;
525 }
526
527 return drv_data->rx == drv_data->rx_end;
528 }
529
u8_writer(struct driver_data * drv_data)530 static int u8_writer(struct driver_data *drv_data)
531 {
532 if (pxa2xx_spi_txfifo_full(drv_data)
533 || (drv_data->tx == drv_data->tx_end))
534 return 0;
535
536 pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
537 ++drv_data->tx;
538
539 return 1;
540 }
541
u8_reader(struct driver_data * drv_data)542 static int u8_reader(struct driver_data *drv_data)
543 {
544 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
545 && (drv_data->rx < drv_data->rx_end)) {
546 *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
547 ++drv_data->rx;
548 }
549
550 return drv_data->rx == drv_data->rx_end;
551 }
552
u16_writer(struct driver_data * drv_data)553 static int u16_writer(struct driver_data *drv_data)
554 {
555 if (pxa2xx_spi_txfifo_full(drv_data)
556 || (drv_data->tx == drv_data->tx_end))
557 return 0;
558
559 pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
560 drv_data->tx += 2;
561
562 return 1;
563 }
564
u16_reader(struct driver_data * drv_data)565 static int u16_reader(struct driver_data *drv_data)
566 {
567 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
568 && (drv_data->rx < drv_data->rx_end)) {
569 *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
570 drv_data->rx += 2;
571 }
572
573 return drv_data->rx == drv_data->rx_end;
574 }
575
u32_writer(struct driver_data * drv_data)576 static int u32_writer(struct driver_data *drv_data)
577 {
578 if (pxa2xx_spi_txfifo_full(drv_data)
579 || (drv_data->tx == drv_data->tx_end))
580 return 0;
581
582 pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
583 drv_data->tx += 4;
584
585 return 1;
586 }
587
u32_reader(struct driver_data * drv_data)588 static int u32_reader(struct driver_data *drv_data)
589 {
590 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
591 && (drv_data->rx < drv_data->rx_end)) {
592 *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
593 drv_data->rx += 4;
594 }
595
596 return drv_data->rx == drv_data->rx_end;
597 }
598
reset_sccr1(struct driver_data * drv_data)599 static void reset_sccr1(struct driver_data *drv_data)
600 {
601 struct chip_data *chip =
602 spi_get_ctldata(drv_data->controller->cur_msg->spi);
603 u32 sccr1_reg;
604
605 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
606 switch (drv_data->ssp_type) {
607 case QUARK_X1000_SSP:
608 sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
609 break;
610 case CE4100_SSP:
611 sccr1_reg &= ~CE4100_SSCR1_RFT;
612 break;
613 default:
614 sccr1_reg &= ~SSCR1_RFT;
615 break;
616 }
617 sccr1_reg |= chip->threshold;
618 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
619 }
620
int_error_stop(struct driver_data * drv_data,const char * msg)621 static void int_error_stop(struct driver_data *drv_data, const char* msg)
622 {
623 /* Stop and reset SSP */
624 write_SSSR_CS(drv_data, drv_data->clear_sr);
625 reset_sccr1(drv_data);
626 if (!pxa25x_ssp_comp(drv_data))
627 pxa2xx_spi_write(drv_data, SSTO, 0);
628 pxa2xx_spi_flush(drv_data);
629 pxa2xx_spi_off(drv_data);
630
631 dev_err(&drv_data->pdev->dev, "%s\n", msg);
632
633 drv_data->controller->cur_msg->status = -EIO;
634 spi_finalize_current_transfer(drv_data->controller);
635 }
636
int_transfer_complete(struct driver_data * drv_data)637 static void int_transfer_complete(struct driver_data *drv_data)
638 {
639 /* Clear and disable interrupts */
640 write_SSSR_CS(drv_data, drv_data->clear_sr);
641 reset_sccr1(drv_data);
642 if (!pxa25x_ssp_comp(drv_data))
643 pxa2xx_spi_write(drv_data, SSTO, 0);
644
645 spi_finalize_current_transfer(drv_data->controller);
646 }
647
interrupt_transfer(struct driver_data * drv_data)648 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
649 {
650 u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
651 drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
652
653 u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
654
655 if (irq_status & SSSR_ROR) {
656 int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
657 return IRQ_HANDLED;
658 }
659
660 if (irq_status & SSSR_TUR) {
661 int_error_stop(drv_data, "interrupt_transfer: fifo underrun");
662 return IRQ_HANDLED;
663 }
664
665 if (irq_status & SSSR_TINT) {
666 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
667 if (drv_data->read(drv_data)) {
668 int_transfer_complete(drv_data);
669 return IRQ_HANDLED;
670 }
671 }
672
673 /* Drain rx fifo, Fill tx fifo and prevent overruns */
674 do {
675 if (drv_data->read(drv_data)) {
676 int_transfer_complete(drv_data);
677 return IRQ_HANDLED;
678 }
679 } while (drv_data->write(drv_data));
680
681 if (drv_data->read(drv_data)) {
682 int_transfer_complete(drv_data);
683 return IRQ_HANDLED;
684 }
685
686 if (drv_data->tx == drv_data->tx_end) {
687 u32 bytes_left;
688 u32 sccr1_reg;
689
690 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
691 sccr1_reg &= ~SSCR1_TIE;
692
693 /*
694 * PXA25x_SSP has no timeout, set up rx threshould for the
695 * remaining RX bytes.
696 */
697 if (pxa25x_ssp_comp(drv_data)) {
698 u32 rx_thre;
699
700 pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
701
702 bytes_left = drv_data->rx_end - drv_data->rx;
703 switch (drv_data->n_bytes) {
704 case 4:
705 bytes_left >>= 2;
706 break;
707 case 2:
708 bytes_left >>= 1;
709 break;
710 }
711
712 rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
713 if (rx_thre > bytes_left)
714 rx_thre = bytes_left;
715
716 pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
717 }
718 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
719 }
720
721 /* We did something */
722 return IRQ_HANDLED;
723 }
724
handle_bad_msg(struct driver_data * drv_data)725 static void handle_bad_msg(struct driver_data *drv_data)
726 {
727 pxa2xx_spi_off(drv_data);
728 pxa2xx_spi_write(drv_data, SSCR1,
729 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
730 if (!pxa25x_ssp_comp(drv_data))
731 pxa2xx_spi_write(drv_data, SSTO, 0);
732 write_SSSR_CS(drv_data, drv_data->clear_sr);
733
734 dev_err(&drv_data->pdev->dev,
735 "bad message state in interrupt handler\n");
736 }
737
ssp_int(int irq,void * dev_id)738 static irqreturn_t ssp_int(int irq, void *dev_id)
739 {
740 struct driver_data *drv_data = dev_id;
741 u32 sccr1_reg;
742 u32 mask = drv_data->mask_sr;
743 u32 status;
744
745 /*
746 * The IRQ might be shared with other peripherals so we must first
747 * check that are we RPM suspended or not. If we are we assume that
748 * the IRQ was not for us (we shouldn't be RPM suspended when the
749 * interrupt is enabled).
750 */
751 if (pm_runtime_suspended(&drv_data->pdev->dev))
752 return IRQ_NONE;
753
754 /*
755 * If the device is not yet in RPM suspended state and we get an
756 * interrupt that is meant for another device, check if status bits
757 * are all set to one. That means that the device is already
758 * powered off.
759 */
760 status = pxa2xx_spi_read(drv_data, SSSR);
761 if (status == ~0)
762 return IRQ_NONE;
763
764 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
765
766 /* Ignore possible writes if we don't need to write */
767 if (!(sccr1_reg & SSCR1_TIE))
768 mask &= ~SSSR_TFS;
769
770 /* Ignore RX timeout interrupt if it is disabled */
771 if (!(sccr1_reg & SSCR1_TINTE))
772 mask &= ~SSSR_TINT;
773
774 if (!(status & mask))
775 return IRQ_NONE;
776
777 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
778 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
779
780 if (!drv_data->controller->cur_msg) {
781 handle_bad_msg(drv_data);
782 /* Never fail */
783 return IRQ_HANDLED;
784 }
785
786 return drv_data->transfer_handler(drv_data);
787 }
788
789 /*
790 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
791 * input frequency by fractions of 2^24. It also has a divider by 5.
792 *
793 * There are formulas to get baud rate value for given input frequency and
794 * divider parameters, such as DDS_CLK_RATE and SCR:
795 *
796 * Fsys = 200MHz
797 *
798 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1)
799 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2)
800 *
801 * DDS_CLK_RATE either 2^n or 2^n / 5.
802 * SCR is in range 0 .. 255
803 *
804 * Divisor = 5^i * 2^j * 2 * k
805 * i = [0, 1] i = 1 iff j = 0 or j > 3
806 * j = [0, 23] j = 0 iff i = 1
807 * k = [1, 256]
808 * Special case: j = 0, i = 1: Divisor = 2 / 5
809 *
810 * Accordingly to the specification the recommended values for DDS_CLK_RATE
811 * are:
812 * Case 1: 2^n, n = [0, 23]
813 * Case 2: 2^24 * 2 / 5 (0x666666)
814 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333)
815 *
816 * In all cases the lowest possible value is better.
817 *
818 * The function calculates parameters for all cases and chooses the one closest
819 * to the asked baud rate.
820 */
quark_x1000_get_clk_div(int rate,u32 * dds)821 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
822 {
823 unsigned long xtal = 200000000;
824 unsigned long fref = xtal / 2; /* mandatory division by 2,
825 see (2) */
826 /* case 3 */
827 unsigned long fref1 = fref / 2; /* case 1 */
828 unsigned long fref2 = fref * 2 / 5; /* case 2 */
829 unsigned long scale;
830 unsigned long q, q1, q2;
831 long r, r1, r2;
832 u32 mul;
833
834 /* Case 1 */
835
836 /* Set initial value for DDS_CLK_RATE */
837 mul = (1 << 24) >> 1;
838
839 /* Calculate initial quot */
840 q1 = DIV_ROUND_UP(fref1, rate);
841
842 /* Scale q1 if it's too big */
843 if (q1 > 256) {
844 /* Scale q1 to range [1, 512] */
845 scale = fls_long(q1 - 1);
846 if (scale > 9) {
847 q1 >>= scale - 9;
848 mul >>= scale - 9;
849 }
850
851 /* Round the result if we have a remainder */
852 q1 += q1 & 1;
853 }
854
855 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
856 scale = __ffs(q1);
857 q1 >>= scale;
858 mul >>= scale;
859
860 /* Get the remainder */
861 r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
862
863 /* Case 2 */
864
865 q2 = DIV_ROUND_UP(fref2, rate);
866 r2 = abs(fref2 / q2 - rate);
867
868 /*
869 * Choose the best between two: less remainder we have the better. We
870 * can't go case 2 if q2 is greater than 256 since SCR register can
871 * hold only values 0 .. 255.
872 */
873 if (r2 >= r1 || q2 > 256) {
874 /* case 1 is better */
875 r = r1;
876 q = q1;
877 } else {
878 /* case 2 is better */
879 r = r2;
880 q = q2;
881 mul = (1 << 24) * 2 / 5;
882 }
883
884 /* Check case 3 only if the divisor is big enough */
885 if (fref / rate >= 80) {
886 u64 fssp;
887 u32 m;
888
889 /* Calculate initial quot */
890 q1 = DIV_ROUND_UP(fref, rate);
891 m = (1 << 24) / q1;
892
893 /* Get the remainder */
894 fssp = (u64)fref * m;
895 do_div(fssp, 1 << 24);
896 r1 = abs(fssp - rate);
897
898 /* Choose this one if it suits better */
899 if (r1 < r) {
900 /* case 3 is better */
901 q = 1;
902 mul = m;
903 }
904 }
905
906 *dds = mul;
907 return q - 1;
908 }
909
ssp_get_clk_div(struct driver_data * drv_data,int rate)910 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
911 {
912 unsigned long ssp_clk = drv_data->controller->max_speed_hz;
913 const struct ssp_device *ssp = drv_data->ssp;
914
915 rate = min_t(int, ssp_clk, rate);
916
917 /*
918 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
919 * that the SSP transmission rate can be greater than the device rate
920 */
921 if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
922 return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
923 else
924 return (DIV_ROUND_UP(ssp_clk, rate) - 1) & 0xfff;
925 }
926
pxa2xx_ssp_get_clk_div(struct driver_data * drv_data,int rate)927 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
928 int rate)
929 {
930 struct chip_data *chip =
931 spi_get_ctldata(drv_data->controller->cur_msg->spi);
932 unsigned int clk_div;
933
934 switch (drv_data->ssp_type) {
935 case QUARK_X1000_SSP:
936 clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
937 break;
938 default:
939 clk_div = ssp_get_clk_div(drv_data, rate);
940 break;
941 }
942 return clk_div << 8;
943 }
944
pxa2xx_spi_can_dma(struct spi_controller * controller,struct spi_device * spi,struct spi_transfer * xfer)945 static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
946 struct spi_device *spi,
947 struct spi_transfer *xfer)
948 {
949 struct chip_data *chip = spi_get_ctldata(spi);
950
951 return chip->enable_dma &&
952 xfer->len <= MAX_DMA_LEN &&
953 xfer->len >= chip->dma_burst_size;
954 }
955
pxa2xx_spi_transfer_one(struct spi_controller * controller,struct spi_device * spi,struct spi_transfer * transfer)956 static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
957 struct spi_device *spi,
958 struct spi_transfer *transfer)
959 {
960 struct driver_data *drv_data = spi_controller_get_devdata(controller);
961 struct spi_message *message = controller->cur_msg;
962 struct chip_data *chip = spi_get_ctldata(spi);
963 u32 dma_thresh = chip->dma_threshold;
964 u32 dma_burst = chip->dma_burst_size;
965 u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
966 u32 clk_div;
967 u8 bits;
968 u32 speed;
969 u32 cr0;
970 u32 cr1;
971 int err;
972 int dma_mapped;
973
974 /* Check if we can DMA this transfer */
975 if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
976
977 /* reject already-mapped transfers; PIO won't always work */
978 if (message->is_dma_mapped
979 || transfer->rx_dma || transfer->tx_dma) {
980 dev_err(&spi->dev,
981 "Mapped transfer length of %u is greater than %d\n",
982 transfer->len, MAX_DMA_LEN);
983 return -EINVAL;
984 }
985
986 /* warn ... we force this to PIO mode */
987 dev_warn_ratelimited(&spi->dev,
988 "DMA disabled for transfer length %ld greater than %d\n",
989 (long)transfer->len, MAX_DMA_LEN);
990 }
991
992 /* Setup the transfer state based on the type of transfer */
993 if (pxa2xx_spi_flush(drv_data) == 0) {
994 dev_err(&spi->dev, "Flush failed\n");
995 return -EIO;
996 }
997 drv_data->n_bytes = chip->n_bytes;
998 drv_data->tx = (void *)transfer->tx_buf;
999 drv_data->tx_end = drv_data->tx + transfer->len;
1000 drv_data->rx = transfer->rx_buf;
1001 drv_data->rx_end = drv_data->rx + transfer->len;
1002 drv_data->write = drv_data->tx ? chip->write : null_writer;
1003 drv_data->read = drv_data->rx ? chip->read : null_reader;
1004
1005 /* Change speed and bit per word on a per transfer */
1006 bits = transfer->bits_per_word;
1007 speed = transfer->speed_hz;
1008
1009 clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
1010
1011 if (bits <= 8) {
1012 drv_data->n_bytes = 1;
1013 drv_data->read = drv_data->read != null_reader ?
1014 u8_reader : null_reader;
1015 drv_data->write = drv_data->write != null_writer ?
1016 u8_writer : null_writer;
1017 } else if (bits <= 16) {
1018 drv_data->n_bytes = 2;
1019 drv_data->read = drv_data->read != null_reader ?
1020 u16_reader : null_reader;
1021 drv_data->write = drv_data->write != null_writer ?
1022 u16_writer : null_writer;
1023 } else if (bits <= 32) {
1024 drv_data->n_bytes = 4;
1025 drv_data->read = drv_data->read != null_reader ?
1026 u32_reader : null_reader;
1027 drv_data->write = drv_data->write != null_writer ?
1028 u32_writer : null_writer;
1029 }
1030 /*
1031 * if bits/word is changed in dma mode, then must check the
1032 * thresholds and burst also
1033 */
1034 if (chip->enable_dma) {
1035 if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1036 spi,
1037 bits, &dma_burst,
1038 &dma_thresh))
1039 dev_warn_ratelimited(&spi->dev,
1040 "DMA burst size reduced to match bits_per_word\n");
1041 }
1042
1043 dma_mapped = controller->can_dma &&
1044 controller->can_dma(controller, spi, transfer) &&
1045 controller->cur_msg_mapped;
1046 if (dma_mapped) {
1047
1048 /* Ensure we have the correct interrupt handler */
1049 drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1050
1051 err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1052 if (err)
1053 return err;
1054
1055 /* Clear status and start DMA engine */
1056 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1057 pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1058
1059 pxa2xx_spi_dma_start(drv_data);
1060 } else {
1061 /* Ensure we have the correct interrupt handler */
1062 drv_data->transfer_handler = interrupt_transfer;
1063
1064 /* Clear status */
1065 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1066 write_SSSR_CS(drv_data, drv_data->clear_sr);
1067 }
1068
1069 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1070 cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1071 if (!pxa25x_ssp_comp(drv_data))
1072 dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1073 controller->max_speed_hz
1074 / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1075 dma_mapped ? "DMA" : "PIO");
1076 else
1077 dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1078 controller->max_speed_hz / 2
1079 / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1080 dma_mapped ? "DMA" : "PIO");
1081
1082 if (is_lpss_ssp(drv_data)) {
1083 if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1084 != chip->lpss_rx_threshold)
1085 pxa2xx_spi_write(drv_data, SSIRF,
1086 chip->lpss_rx_threshold);
1087 if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1088 != chip->lpss_tx_threshold)
1089 pxa2xx_spi_write(drv_data, SSITF,
1090 chip->lpss_tx_threshold);
1091 }
1092
1093 if (is_quark_x1000_ssp(drv_data) &&
1094 (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1095 pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1096
1097 /* see if we need to reload the config registers */
1098 if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1099 || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1100 != (cr1 & change_mask)) {
1101 /* stop the SSP, and update the other bits */
1102 if (!is_mmp2_ssp(drv_data))
1103 pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1104 if (!pxa25x_ssp_comp(drv_data))
1105 pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1106 /* first set CR1 without interrupt and service enables */
1107 pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1108 /* restart the SSP */
1109 pxa2xx_spi_write(drv_data, SSCR0, cr0);
1110
1111 } else {
1112 if (!pxa25x_ssp_comp(drv_data))
1113 pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1114 }
1115
1116 if (is_mmp2_ssp(drv_data)) {
1117 u8 tx_level = (pxa2xx_spi_read(drv_data, SSSR)
1118 & SSSR_TFL_MASK) >> 8;
1119
1120 if (tx_level) {
1121 /* On MMP2, flipping SSE doesn't to empty TXFIFO. */
1122 dev_warn(&spi->dev, "%d bytes of garbage in TXFIFO!\n",
1123 tx_level);
1124 if (tx_level > transfer->len)
1125 tx_level = transfer->len;
1126 drv_data->tx += tx_level;
1127 }
1128 }
1129
1130 if (spi_controller_is_slave(controller)) {
1131 while (drv_data->write(drv_data))
1132 ;
1133 if (drv_data->gpiod_ready) {
1134 gpiod_set_value(drv_data->gpiod_ready, 1);
1135 udelay(1);
1136 gpiod_set_value(drv_data->gpiod_ready, 0);
1137 }
1138 }
1139
1140 /*
1141 * Release the data by enabling service requests and interrupts,
1142 * without changing any mode bits
1143 */
1144 pxa2xx_spi_write(drv_data, SSCR1, cr1);
1145
1146 return 1;
1147 }
1148
pxa2xx_spi_slave_abort(struct spi_controller * controller)1149 static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1150 {
1151 struct driver_data *drv_data = spi_controller_get_devdata(controller);
1152
1153 /* Stop and reset SSP */
1154 write_SSSR_CS(drv_data, drv_data->clear_sr);
1155 reset_sccr1(drv_data);
1156 if (!pxa25x_ssp_comp(drv_data))
1157 pxa2xx_spi_write(drv_data, SSTO, 0);
1158 pxa2xx_spi_flush(drv_data);
1159 pxa2xx_spi_off(drv_data);
1160
1161 dev_dbg(&drv_data->pdev->dev, "transfer aborted\n");
1162
1163 drv_data->controller->cur_msg->status = -EINTR;
1164 spi_finalize_current_transfer(drv_data->controller);
1165
1166 return 0;
1167 }
1168
pxa2xx_spi_handle_err(struct spi_controller * controller,struct spi_message * msg)1169 static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1170 struct spi_message *msg)
1171 {
1172 struct driver_data *drv_data = spi_controller_get_devdata(controller);
1173
1174 /* Disable the SSP */
1175 pxa2xx_spi_off(drv_data);
1176 /* Clear and disable interrupts and service requests */
1177 write_SSSR_CS(drv_data, drv_data->clear_sr);
1178 pxa2xx_spi_write(drv_data, SSCR1,
1179 pxa2xx_spi_read(drv_data, SSCR1)
1180 & ~(drv_data->int_cr1 | drv_data->dma_cr1));
1181 if (!pxa25x_ssp_comp(drv_data))
1182 pxa2xx_spi_write(drv_data, SSTO, 0);
1183
1184 /*
1185 * Stop the DMA if running. Note DMA callback handler may have unset
1186 * the dma_running already, which is fine as stopping is not needed
1187 * then but we shouldn't rely this flag for anything else than
1188 * stopping. For instance to differentiate between PIO and DMA
1189 * transfers.
1190 */
1191 if (atomic_read(&drv_data->dma_running))
1192 pxa2xx_spi_dma_stop(drv_data);
1193 }
1194
pxa2xx_spi_unprepare_transfer(struct spi_controller * controller)1195 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1196 {
1197 struct driver_data *drv_data = spi_controller_get_devdata(controller);
1198
1199 /* Disable the SSP now */
1200 pxa2xx_spi_off(drv_data);
1201
1202 return 0;
1203 }
1204
setup_cs(struct spi_device * spi,struct chip_data * chip,struct pxa2xx_spi_chip * chip_info)1205 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1206 struct pxa2xx_spi_chip *chip_info)
1207 {
1208 struct driver_data *drv_data =
1209 spi_controller_get_devdata(spi->controller);
1210 struct gpio_desc *gpiod;
1211 int err = 0;
1212
1213 if (chip == NULL)
1214 return 0;
1215
1216 if (drv_data->cs_gpiods) {
1217 gpiod = drv_data->cs_gpiods[spi->chip_select];
1218 if (gpiod) {
1219 chip->gpiod_cs = gpiod;
1220 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1221 gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1222 }
1223
1224 return 0;
1225 }
1226
1227 if (chip_info == NULL)
1228 return 0;
1229
1230 /* NOTE: setup() can be called multiple times, possibly with
1231 * different chip_info, release previously requested GPIO
1232 */
1233 if (chip->gpiod_cs) {
1234 gpiod_put(chip->gpiod_cs);
1235 chip->gpiod_cs = NULL;
1236 }
1237
1238 /* If (*cs_control) is provided, ignore GPIO chip select */
1239 if (chip_info->cs_control) {
1240 chip->cs_control = chip_info->cs_control;
1241 return 0;
1242 }
1243
1244 if (gpio_is_valid(chip_info->gpio_cs)) {
1245 err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1246 if (err) {
1247 dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1248 chip_info->gpio_cs);
1249 return err;
1250 }
1251
1252 gpiod = gpio_to_desc(chip_info->gpio_cs);
1253 chip->gpiod_cs = gpiod;
1254 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1255
1256 err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1257 if (err)
1258 gpiod_put(chip->gpiod_cs);
1259 }
1260
1261 return err;
1262 }
1263
setup(struct spi_device * spi)1264 static int setup(struct spi_device *spi)
1265 {
1266 struct pxa2xx_spi_chip *chip_info;
1267 struct chip_data *chip;
1268 const struct lpss_config *config;
1269 struct driver_data *drv_data =
1270 spi_controller_get_devdata(spi->controller);
1271 uint tx_thres, tx_hi_thres, rx_thres;
1272 int err;
1273
1274 switch (drv_data->ssp_type) {
1275 case QUARK_X1000_SSP:
1276 tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1277 tx_hi_thres = 0;
1278 rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1279 break;
1280 case CE4100_SSP:
1281 tx_thres = TX_THRESH_CE4100_DFLT;
1282 tx_hi_thres = 0;
1283 rx_thres = RX_THRESH_CE4100_DFLT;
1284 break;
1285 case LPSS_LPT_SSP:
1286 case LPSS_BYT_SSP:
1287 case LPSS_BSW_SSP:
1288 case LPSS_SPT_SSP:
1289 case LPSS_BXT_SSP:
1290 case LPSS_CNL_SSP:
1291 config = lpss_get_config(drv_data);
1292 tx_thres = config->tx_threshold_lo;
1293 tx_hi_thres = config->tx_threshold_hi;
1294 rx_thres = config->rx_threshold;
1295 break;
1296 default:
1297 tx_hi_thres = 0;
1298 if (spi_controller_is_slave(drv_data->controller)) {
1299 tx_thres = 1;
1300 rx_thres = 2;
1301 } else {
1302 tx_thres = TX_THRESH_DFLT;
1303 rx_thres = RX_THRESH_DFLT;
1304 }
1305 break;
1306 }
1307
1308 /* Only alloc on first setup */
1309 chip = spi_get_ctldata(spi);
1310 if (!chip) {
1311 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1312 if (!chip)
1313 return -ENOMEM;
1314
1315 if (drv_data->ssp_type == CE4100_SSP) {
1316 if (spi->chip_select > 4) {
1317 dev_err(&spi->dev,
1318 "failed setup: cs number must not be > 4.\n");
1319 kfree(chip);
1320 return -EINVAL;
1321 }
1322
1323 chip->frm = spi->chip_select;
1324 }
1325 chip->enable_dma = drv_data->controller_info->enable_dma;
1326 chip->timeout = TIMOUT_DFLT;
1327 }
1328
1329 /* protocol drivers may change the chip settings, so...
1330 * if chip_info exists, use it */
1331 chip_info = spi->controller_data;
1332
1333 /* chip_info isn't always needed */
1334 chip->cr1 = 0;
1335 if (chip_info) {
1336 if (chip_info->timeout)
1337 chip->timeout = chip_info->timeout;
1338 if (chip_info->tx_threshold)
1339 tx_thres = chip_info->tx_threshold;
1340 if (chip_info->tx_hi_threshold)
1341 tx_hi_thres = chip_info->tx_hi_threshold;
1342 if (chip_info->rx_threshold)
1343 rx_thres = chip_info->rx_threshold;
1344 chip->dma_threshold = 0;
1345 if (chip_info->enable_loopback)
1346 chip->cr1 = SSCR1_LBM;
1347 }
1348 if (spi_controller_is_slave(drv_data->controller)) {
1349 chip->cr1 |= SSCR1_SCFR;
1350 chip->cr1 |= SSCR1_SCLKDIR;
1351 chip->cr1 |= SSCR1_SFRMDIR;
1352 chip->cr1 |= SSCR1_SPH;
1353 }
1354
1355 chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1356 chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1357 | SSITF_TxHiThresh(tx_hi_thres);
1358
1359 /* set dma burst and threshold outside of chip_info path so that if
1360 * chip_info goes away after setting chip->enable_dma, the
1361 * burst and threshold can still respond to changes in bits_per_word */
1362 if (chip->enable_dma) {
1363 /* set up legal burst and threshold for dma */
1364 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1365 spi->bits_per_word,
1366 &chip->dma_burst_size,
1367 &chip->dma_threshold)) {
1368 dev_warn(&spi->dev,
1369 "in setup: DMA burst size reduced to match bits_per_word\n");
1370 }
1371 dev_dbg(&spi->dev,
1372 "in setup: DMA burst size set to %u\n",
1373 chip->dma_burst_size);
1374 }
1375
1376 switch (drv_data->ssp_type) {
1377 case QUARK_X1000_SSP:
1378 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1379 & QUARK_X1000_SSCR1_RFT)
1380 | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1381 & QUARK_X1000_SSCR1_TFT);
1382 break;
1383 case CE4100_SSP:
1384 chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1385 (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1386 break;
1387 default:
1388 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1389 (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1390 break;
1391 }
1392
1393 chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1394 chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1395 | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1396
1397 if (spi->mode & SPI_LOOP)
1398 chip->cr1 |= SSCR1_LBM;
1399
1400 if (spi->bits_per_word <= 8) {
1401 chip->n_bytes = 1;
1402 chip->read = u8_reader;
1403 chip->write = u8_writer;
1404 } else if (spi->bits_per_word <= 16) {
1405 chip->n_bytes = 2;
1406 chip->read = u16_reader;
1407 chip->write = u16_writer;
1408 } else if (spi->bits_per_word <= 32) {
1409 chip->n_bytes = 4;
1410 chip->read = u32_reader;
1411 chip->write = u32_writer;
1412 }
1413
1414 spi_set_ctldata(spi, chip);
1415
1416 if (drv_data->ssp_type == CE4100_SSP)
1417 return 0;
1418
1419 err = setup_cs(spi, chip, chip_info);
1420 if (err)
1421 kfree(chip);
1422
1423 return err;
1424 }
1425
cleanup(struct spi_device * spi)1426 static void cleanup(struct spi_device *spi)
1427 {
1428 struct chip_data *chip = spi_get_ctldata(spi);
1429 struct driver_data *drv_data =
1430 spi_controller_get_devdata(spi->controller);
1431
1432 if (!chip)
1433 return;
1434
1435 if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1436 chip->gpiod_cs)
1437 gpiod_put(chip->gpiod_cs);
1438
1439 kfree(chip);
1440 }
1441
1442 #ifdef CONFIG_ACPI
1443 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1444 { "INT33C0", LPSS_LPT_SSP },
1445 { "INT33C1", LPSS_LPT_SSP },
1446 { "INT3430", LPSS_LPT_SSP },
1447 { "INT3431", LPSS_LPT_SSP },
1448 { "80860F0E", LPSS_BYT_SSP },
1449 { "8086228E", LPSS_BSW_SSP },
1450 { },
1451 };
1452 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1453 #endif
1454
1455 /*
1456 * PCI IDs of compound devices that integrate both host controller and private
1457 * integrated DMA engine. Please note these are not used in module
1458 * autoloading and probing in this module but matching the LPSS SSP type.
1459 */
1460 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1461 /* SPT-LP */
1462 { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1463 { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1464 /* SPT-H */
1465 { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1466 { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1467 /* KBL-H */
1468 { PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1469 { PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1470 /* CML-V */
1471 { PCI_VDEVICE(INTEL, 0xa3a9), LPSS_SPT_SSP },
1472 { PCI_VDEVICE(INTEL, 0xa3aa), LPSS_SPT_SSP },
1473 /* BXT A-Step */
1474 { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1475 { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1476 { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1477 /* BXT B-Step */
1478 { PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1479 { PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1480 { PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1481 /* GLK */
1482 { PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1483 { PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1484 { PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1485 /* ICL-LP */
1486 { PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1487 { PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1488 { PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1489 /* EHL */
1490 { PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP },
1491 { PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP },
1492 { PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP },
1493 /* JSL */
1494 { PCI_VDEVICE(INTEL, 0x4daa), LPSS_CNL_SSP },
1495 { PCI_VDEVICE(INTEL, 0x4dab), LPSS_CNL_SSP },
1496 { PCI_VDEVICE(INTEL, 0x4dfb), LPSS_CNL_SSP },
1497 /* TGL-H */
1498 { PCI_VDEVICE(INTEL, 0x43aa), LPSS_CNL_SSP },
1499 { PCI_VDEVICE(INTEL, 0x43ab), LPSS_CNL_SSP },
1500 { PCI_VDEVICE(INTEL, 0x43fb), LPSS_CNL_SSP },
1501 { PCI_VDEVICE(INTEL, 0x43fd), LPSS_CNL_SSP },
1502 /* APL */
1503 { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1504 { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1505 { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1506 /* CNL-LP */
1507 { PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1508 { PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1509 { PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1510 /* CNL-H */
1511 { PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1512 { PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1513 { PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1514 /* CML-LP */
1515 { PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP },
1516 { PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP },
1517 { PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP },
1518 /* CML-H */
1519 { PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP },
1520 { PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP },
1521 { PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP },
1522 /* TGL-LP */
1523 { PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP },
1524 { PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP },
1525 { PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP },
1526 { PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP },
1527 { PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP },
1528 { PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP },
1529 { PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP },
1530 { },
1531 };
1532
1533 static const struct of_device_id pxa2xx_spi_of_match[] = {
1534 { .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1535 {},
1536 };
1537 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1538
1539 #ifdef CONFIG_ACPI
1540
pxa2xx_spi_get_port_id(struct device * dev)1541 static int pxa2xx_spi_get_port_id(struct device *dev)
1542 {
1543 struct acpi_device *adev;
1544 unsigned int devid;
1545 int port_id = -1;
1546
1547 adev = ACPI_COMPANION(dev);
1548 if (adev && adev->pnp.unique_id &&
1549 !kstrtouint(adev->pnp.unique_id, 0, &devid))
1550 port_id = devid;
1551 return port_id;
1552 }
1553
1554 #else /* !CONFIG_ACPI */
1555
pxa2xx_spi_get_port_id(struct device * dev)1556 static int pxa2xx_spi_get_port_id(struct device *dev)
1557 {
1558 return -1;
1559 }
1560
1561 #endif /* CONFIG_ACPI */
1562
1563
1564 #ifdef CONFIG_PCI
1565
pxa2xx_spi_idma_filter(struct dma_chan * chan,void * param)1566 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1567 {
1568 return param == chan->device->dev;
1569 }
1570
1571 #endif /* CONFIG_PCI */
1572
1573 static struct pxa2xx_spi_controller *
pxa2xx_spi_init_pdata(struct platform_device * pdev)1574 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1575 {
1576 struct pxa2xx_spi_controller *pdata;
1577 struct ssp_device *ssp;
1578 struct resource *res;
1579 struct device *parent = pdev->dev.parent;
1580 struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL;
1581 const struct pci_device_id *pcidev_id = NULL;
1582 enum pxa_ssp_type type;
1583 const void *match;
1584
1585 if (pcidev)
1586 pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev);
1587
1588 match = device_get_match_data(&pdev->dev);
1589 if (match)
1590 type = (enum pxa_ssp_type)match;
1591 else if (pcidev_id)
1592 type = (enum pxa_ssp_type)pcidev_id->driver_data;
1593 else
1594 return ERR_PTR(-EINVAL);
1595
1596 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1597 if (!pdata)
1598 return ERR_PTR(-ENOMEM);
1599
1600 ssp = &pdata->ssp;
1601
1602 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1603 ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1604 if (IS_ERR(ssp->mmio_base))
1605 return ERR_CAST(ssp->mmio_base);
1606
1607 ssp->phys_base = res->start;
1608
1609 #ifdef CONFIG_PCI
1610 if (pcidev_id) {
1611 pdata->tx_param = parent;
1612 pdata->rx_param = parent;
1613 pdata->dma_filter = pxa2xx_spi_idma_filter;
1614 }
1615 #endif
1616
1617 ssp->clk = devm_clk_get(&pdev->dev, NULL);
1618 if (IS_ERR(ssp->clk))
1619 return ERR_CAST(ssp->clk);
1620
1621 ssp->irq = platform_get_irq(pdev, 0);
1622 if (ssp->irq < 0)
1623 return ERR_PTR(ssp->irq);
1624
1625 ssp->type = type;
1626 ssp->dev = &pdev->dev;
1627 ssp->port_id = pxa2xx_spi_get_port_id(&pdev->dev);
1628
1629 pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave");
1630 pdata->num_chipselect = 1;
1631 pdata->enable_dma = true;
1632 pdata->dma_burst_size = 1;
1633
1634 return pdata;
1635 }
1636
pxa2xx_spi_fw_translate_cs(struct spi_controller * controller,unsigned int cs)1637 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1638 unsigned int cs)
1639 {
1640 struct driver_data *drv_data = spi_controller_get_devdata(controller);
1641
1642 if (has_acpi_companion(&drv_data->pdev->dev)) {
1643 switch (drv_data->ssp_type) {
1644 /*
1645 * For Atoms the ACPI DeviceSelection used by the Windows
1646 * driver starts from 1 instead of 0 so translate it here
1647 * to match what Linux expects.
1648 */
1649 case LPSS_BYT_SSP:
1650 case LPSS_BSW_SSP:
1651 return cs - 1;
1652
1653 default:
1654 break;
1655 }
1656 }
1657
1658 return cs;
1659 }
1660
pxa2xx_spi_max_dma_transfer_size(struct spi_device * spi)1661 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1662 {
1663 return MAX_DMA_LEN;
1664 }
1665
pxa2xx_spi_probe(struct platform_device * pdev)1666 static int pxa2xx_spi_probe(struct platform_device *pdev)
1667 {
1668 struct device *dev = &pdev->dev;
1669 struct pxa2xx_spi_controller *platform_info;
1670 struct spi_controller *controller;
1671 struct driver_data *drv_data;
1672 struct ssp_device *ssp;
1673 const struct lpss_config *config;
1674 int status, count;
1675 u32 tmp;
1676
1677 platform_info = dev_get_platdata(dev);
1678 if (!platform_info) {
1679 platform_info = pxa2xx_spi_init_pdata(pdev);
1680 if (IS_ERR(platform_info)) {
1681 dev_err(&pdev->dev, "missing platform data\n");
1682 return PTR_ERR(platform_info);
1683 }
1684 }
1685
1686 ssp = pxa_ssp_request(pdev->id, pdev->name);
1687 if (!ssp)
1688 ssp = &platform_info->ssp;
1689
1690 if (!ssp->mmio_base) {
1691 dev_err(&pdev->dev, "failed to get ssp\n");
1692 return -ENODEV;
1693 }
1694
1695 if (platform_info->is_slave)
1696 controller = devm_spi_alloc_slave(dev, sizeof(*drv_data));
1697 else
1698 controller = devm_spi_alloc_master(dev, sizeof(*drv_data));
1699
1700 if (!controller) {
1701 dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1702 pxa_ssp_free(ssp);
1703 return -ENOMEM;
1704 }
1705 drv_data = spi_controller_get_devdata(controller);
1706 drv_data->controller = controller;
1707 drv_data->controller_info = platform_info;
1708 drv_data->pdev = pdev;
1709 drv_data->ssp = ssp;
1710
1711 controller->dev.of_node = pdev->dev.of_node;
1712 /* the spi->mode bits understood by this driver: */
1713 controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1714
1715 controller->bus_num = ssp->port_id;
1716 controller->dma_alignment = DMA_ALIGNMENT;
1717 controller->cleanup = cleanup;
1718 controller->setup = setup;
1719 controller->set_cs = pxa2xx_spi_set_cs;
1720 controller->transfer_one = pxa2xx_spi_transfer_one;
1721 controller->slave_abort = pxa2xx_spi_slave_abort;
1722 controller->handle_err = pxa2xx_spi_handle_err;
1723 controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1724 controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1725 controller->auto_runtime_pm = true;
1726 controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1727
1728 drv_data->ssp_type = ssp->type;
1729
1730 drv_data->ioaddr = ssp->mmio_base;
1731 drv_data->ssdr_physical = ssp->phys_base + SSDR;
1732 if (pxa25x_ssp_comp(drv_data)) {
1733 switch (drv_data->ssp_type) {
1734 case QUARK_X1000_SSP:
1735 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1736 break;
1737 default:
1738 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1739 break;
1740 }
1741
1742 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1743 drv_data->dma_cr1 = 0;
1744 drv_data->clear_sr = SSSR_ROR;
1745 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1746 } else {
1747 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1748 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1749 drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1750 drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1751 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1752 | SSSR_ROR | SSSR_TUR;
1753 }
1754
1755 status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1756 drv_data);
1757 if (status < 0) {
1758 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1759 goto out_error_controller_alloc;
1760 }
1761
1762 /* Setup DMA if requested */
1763 if (platform_info->enable_dma) {
1764 status = pxa2xx_spi_dma_setup(drv_data);
1765 if (status) {
1766 dev_warn(dev, "no DMA channels available, using PIO\n");
1767 platform_info->enable_dma = false;
1768 } else {
1769 controller->can_dma = pxa2xx_spi_can_dma;
1770 controller->max_dma_len = MAX_DMA_LEN;
1771 controller->max_transfer_size =
1772 pxa2xx_spi_max_dma_transfer_size;
1773 }
1774 }
1775
1776 /* Enable SOC clock */
1777 status = clk_prepare_enable(ssp->clk);
1778 if (status)
1779 goto out_error_dma_irq_alloc;
1780
1781 controller->max_speed_hz = clk_get_rate(ssp->clk);
1782 /*
1783 * Set minimum speed for all other platforms than Intel Quark which is
1784 * able do under 1 Hz transfers.
1785 */
1786 if (!pxa25x_ssp_comp(drv_data))
1787 controller->min_speed_hz =
1788 DIV_ROUND_UP(controller->max_speed_hz, 4096);
1789 else if (!is_quark_x1000_ssp(drv_data))
1790 controller->min_speed_hz =
1791 DIV_ROUND_UP(controller->max_speed_hz, 512);
1792
1793 /* Load default SSP configuration */
1794 pxa2xx_spi_write(drv_data, SSCR0, 0);
1795 switch (drv_data->ssp_type) {
1796 case QUARK_X1000_SSP:
1797 tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1798 QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1799 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1800
1801 /* using the Motorola SPI protocol and use 8 bit frame */
1802 tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1803 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1804 break;
1805 case CE4100_SSP:
1806 tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1807 CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1808 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1809 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1810 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1811 break;
1812 default:
1813
1814 if (spi_controller_is_slave(controller)) {
1815 tmp = SSCR1_SCFR |
1816 SSCR1_SCLKDIR |
1817 SSCR1_SFRMDIR |
1818 SSCR1_RxTresh(2) |
1819 SSCR1_TxTresh(1) |
1820 SSCR1_SPH;
1821 } else {
1822 tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1823 SSCR1_TxTresh(TX_THRESH_DFLT);
1824 }
1825 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1826 tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1827 if (!spi_controller_is_slave(controller))
1828 tmp |= SSCR0_SCR(2);
1829 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1830 break;
1831 }
1832
1833 if (!pxa25x_ssp_comp(drv_data))
1834 pxa2xx_spi_write(drv_data, SSTO, 0);
1835
1836 if (!is_quark_x1000_ssp(drv_data))
1837 pxa2xx_spi_write(drv_data, SSPSP, 0);
1838
1839 if (is_lpss_ssp(drv_data)) {
1840 lpss_ssp_setup(drv_data);
1841 config = lpss_get_config(drv_data);
1842 if (config->reg_capabilities >= 0) {
1843 tmp = __lpss_ssp_read_priv(drv_data,
1844 config->reg_capabilities);
1845 tmp &= LPSS_CAPS_CS_EN_MASK;
1846 tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1847 platform_info->num_chipselect = ffz(tmp);
1848 } else if (config->cs_num) {
1849 platform_info->num_chipselect = config->cs_num;
1850 }
1851 }
1852 controller->num_chipselect = platform_info->num_chipselect;
1853
1854 count = gpiod_count(&pdev->dev, "cs");
1855 if (count > 0) {
1856 int i;
1857
1858 controller->num_chipselect = max_t(int, count,
1859 controller->num_chipselect);
1860
1861 drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1862 controller->num_chipselect, sizeof(struct gpio_desc *),
1863 GFP_KERNEL);
1864 if (!drv_data->cs_gpiods) {
1865 status = -ENOMEM;
1866 goto out_error_clock_enabled;
1867 }
1868
1869 for (i = 0; i < controller->num_chipselect; i++) {
1870 struct gpio_desc *gpiod;
1871
1872 gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1873 if (IS_ERR(gpiod)) {
1874 /* Means use native chip select */
1875 if (PTR_ERR(gpiod) == -ENOENT)
1876 continue;
1877
1878 status = PTR_ERR(gpiod);
1879 goto out_error_clock_enabled;
1880 } else {
1881 drv_data->cs_gpiods[i] = gpiod;
1882 }
1883 }
1884 }
1885
1886 if (platform_info->is_slave) {
1887 drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1888 "ready", GPIOD_OUT_LOW);
1889 if (IS_ERR(drv_data->gpiod_ready)) {
1890 status = PTR_ERR(drv_data->gpiod_ready);
1891 goto out_error_clock_enabled;
1892 }
1893 }
1894
1895 pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1896 pm_runtime_use_autosuspend(&pdev->dev);
1897 pm_runtime_set_active(&pdev->dev);
1898 pm_runtime_enable(&pdev->dev);
1899
1900 /* Register with the SPI framework */
1901 platform_set_drvdata(pdev, drv_data);
1902 status = spi_register_controller(controller);
1903 if (status != 0) {
1904 dev_err(&pdev->dev, "problem registering spi controller\n");
1905 goto out_error_pm_runtime_enabled;
1906 }
1907
1908 return status;
1909
1910 out_error_pm_runtime_enabled:
1911 pm_runtime_disable(&pdev->dev);
1912
1913 out_error_clock_enabled:
1914 clk_disable_unprepare(ssp->clk);
1915
1916 out_error_dma_irq_alloc:
1917 pxa2xx_spi_dma_release(drv_data);
1918 free_irq(ssp->irq, drv_data);
1919
1920 out_error_controller_alloc:
1921 pxa_ssp_free(ssp);
1922 return status;
1923 }
1924
pxa2xx_spi_remove(struct platform_device * pdev)1925 static int pxa2xx_spi_remove(struct platform_device *pdev)
1926 {
1927 struct driver_data *drv_data = platform_get_drvdata(pdev);
1928 struct ssp_device *ssp = drv_data->ssp;
1929
1930 pm_runtime_get_sync(&pdev->dev);
1931
1932 spi_unregister_controller(drv_data->controller);
1933
1934 /* Disable the SSP at the peripheral and SOC level */
1935 pxa2xx_spi_write(drv_data, SSCR0, 0);
1936 clk_disable_unprepare(ssp->clk);
1937
1938 /* Release DMA */
1939 if (drv_data->controller_info->enable_dma)
1940 pxa2xx_spi_dma_release(drv_data);
1941
1942 pm_runtime_put_noidle(&pdev->dev);
1943 pm_runtime_disable(&pdev->dev);
1944
1945 /* Release IRQ */
1946 free_irq(ssp->irq, drv_data);
1947
1948 /* Release SSP */
1949 pxa_ssp_free(ssp);
1950
1951 return 0;
1952 }
1953
1954 #ifdef CONFIG_PM_SLEEP
pxa2xx_spi_suspend(struct device * dev)1955 static int pxa2xx_spi_suspend(struct device *dev)
1956 {
1957 struct driver_data *drv_data = dev_get_drvdata(dev);
1958 struct ssp_device *ssp = drv_data->ssp;
1959 int status;
1960
1961 status = spi_controller_suspend(drv_data->controller);
1962 if (status != 0)
1963 return status;
1964 pxa2xx_spi_write(drv_data, SSCR0, 0);
1965
1966 if (!pm_runtime_suspended(dev))
1967 clk_disable_unprepare(ssp->clk);
1968
1969 return 0;
1970 }
1971
pxa2xx_spi_resume(struct device * dev)1972 static int pxa2xx_spi_resume(struct device *dev)
1973 {
1974 struct driver_data *drv_data = dev_get_drvdata(dev);
1975 struct ssp_device *ssp = drv_data->ssp;
1976 int status;
1977
1978 /* Enable the SSP clock */
1979 if (!pm_runtime_suspended(dev)) {
1980 status = clk_prepare_enable(ssp->clk);
1981 if (status)
1982 return status;
1983 }
1984
1985 /* Start the queue running */
1986 return spi_controller_resume(drv_data->controller);
1987 }
1988 #endif
1989
1990 #ifdef CONFIG_PM
pxa2xx_spi_runtime_suspend(struct device * dev)1991 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1992 {
1993 struct driver_data *drv_data = dev_get_drvdata(dev);
1994
1995 clk_disable_unprepare(drv_data->ssp->clk);
1996 return 0;
1997 }
1998
pxa2xx_spi_runtime_resume(struct device * dev)1999 static int pxa2xx_spi_runtime_resume(struct device *dev)
2000 {
2001 struct driver_data *drv_data = dev_get_drvdata(dev);
2002 int status;
2003
2004 status = clk_prepare_enable(drv_data->ssp->clk);
2005 return status;
2006 }
2007 #endif
2008
2009 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
2010 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
2011 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
2012 pxa2xx_spi_runtime_resume, NULL)
2013 };
2014
2015 static struct platform_driver driver = {
2016 .driver = {
2017 .name = "pxa2xx-spi",
2018 .pm = &pxa2xx_spi_pm_ops,
2019 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
2020 .of_match_table = of_match_ptr(pxa2xx_spi_of_match),
2021 },
2022 .probe = pxa2xx_spi_probe,
2023 .remove = pxa2xx_spi_remove,
2024 };
2025
pxa2xx_spi_init(void)2026 static int __init pxa2xx_spi_init(void)
2027 {
2028 return platform_driver_register(&driver);
2029 }
2030 subsys_initcall(pxa2xx_spi_init);
2031
pxa2xx_spi_exit(void)2032 static void __exit pxa2xx_spi_exit(void)
2033 {
2034 platform_driver_unregister(&driver);
2035 }
2036 module_exit(pxa2xx_spi_exit);
2037
2038 MODULE_SOFTDEP("pre: dw_dmac");
2039