• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015, Linaro Limited
4  */
5 #include <linux/arm-smccc.h>
6 #include <linux/device.h>
7 #include <linux/err.h>
8 #include <linux/errno.h>
9 #include <linux/mm.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/tee_drv.h>
13 #include <linux/types.h>
14 #include <linux/uaccess.h>
15 #include "optee_private.h"
16 #include "optee_smc.h"
17 
18 struct optee_call_waiter {
19 	struct list_head list_node;
20 	struct completion c;
21 };
22 
optee_cq_wait_init(struct optee_call_queue * cq,struct optee_call_waiter * w)23 static void optee_cq_wait_init(struct optee_call_queue *cq,
24 			       struct optee_call_waiter *w)
25 {
26 	/*
27 	 * We're preparing to make a call to secure world. In case we can't
28 	 * allocate a thread in secure world we'll end up waiting in
29 	 * optee_cq_wait_for_completion().
30 	 *
31 	 * Normally if there's no contention in secure world the call will
32 	 * complete and we can cleanup directly with optee_cq_wait_final().
33 	 */
34 	mutex_lock(&cq->mutex);
35 
36 	/*
37 	 * We add ourselves to the queue, but we don't wait. This
38 	 * guarantees that we don't lose a completion if secure world
39 	 * returns busy and another thread just exited and try to complete
40 	 * someone.
41 	 */
42 	init_completion(&w->c);
43 	list_add_tail(&w->list_node, &cq->waiters);
44 
45 	mutex_unlock(&cq->mutex);
46 }
47 
optee_cq_wait_for_completion(struct optee_call_queue * cq,struct optee_call_waiter * w)48 static void optee_cq_wait_for_completion(struct optee_call_queue *cq,
49 					 struct optee_call_waiter *w)
50 {
51 	wait_for_completion(&w->c);
52 
53 	mutex_lock(&cq->mutex);
54 
55 	/* Move to end of list to get out of the way for other waiters */
56 	list_del(&w->list_node);
57 	reinit_completion(&w->c);
58 	list_add_tail(&w->list_node, &cq->waiters);
59 
60 	mutex_unlock(&cq->mutex);
61 }
62 
optee_cq_complete_one(struct optee_call_queue * cq)63 static void optee_cq_complete_one(struct optee_call_queue *cq)
64 {
65 	struct optee_call_waiter *w;
66 
67 	list_for_each_entry(w, &cq->waiters, list_node) {
68 		if (!completion_done(&w->c)) {
69 			complete(&w->c);
70 			break;
71 		}
72 	}
73 }
74 
optee_cq_wait_final(struct optee_call_queue * cq,struct optee_call_waiter * w)75 static void optee_cq_wait_final(struct optee_call_queue *cq,
76 				struct optee_call_waiter *w)
77 {
78 	/*
79 	 * We're done with the call to secure world. The thread in secure
80 	 * world that was used for this call is now available for some
81 	 * other task to use.
82 	 */
83 	mutex_lock(&cq->mutex);
84 
85 	/* Get out of the list */
86 	list_del(&w->list_node);
87 
88 	/* Wake up one eventual waiting task */
89 	optee_cq_complete_one(cq);
90 
91 	/*
92 	 * If we're completed we've got a completion from another task that
93 	 * was just done with its call to secure world. Since yet another
94 	 * thread now is available in secure world wake up another eventual
95 	 * waiting task.
96 	 */
97 	if (completion_done(&w->c))
98 		optee_cq_complete_one(cq);
99 
100 	mutex_unlock(&cq->mutex);
101 }
102 
103 /* Requires the filpstate mutex to be held */
find_session(struct optee_context_data * ctxdata,u32 session_id)104 static struct optee_session *find_session(struct optee_context_data *ctxdata,
105 					  u32 session_id)
106 {
107 	struct optee_session *sess;
108 
109 	list_for_each_entry(sess, &ctxdata->sess_list, list_node)
110 		if (sess->session_id == session_id)
111 			return sess;
112 
113 	return NULL;
114 }
115 
116 /**
117  * optee_do_call_with_arg() - Do an SMC to OP-TEE in secure world
118  * @ctx:	calling context
119  * @parg:	physical address of message to pass to secure world
120  *
121  * Does and SMC to OP-TEE in secure world and handles eventual resulting
122  * Remote Procedure Calls (RPC) from OP-TEE.
123  *
124  * Returns return code from secure world, 0 is OK
125  */
optee_do_call_with_arg(struct tee_context * ctx,phys_addr_t parg)126 u32 optee_do_call_with_arg(struct tee_context *ctx, phys_addr_t parg)
127 {
128 	struct optee *optee = tee_get_drvdata(ctx->teedev);
129 	struct optee_call_waiter w;
130 	struct optee_rpc_param param = { };
131 	struct optee_call_ctx call_ctx = { };
132 	u32 ret;
133 
134 	param.a0 = OPTEE_SMC_CALL_WITH_ARG;
135 	reg_pair_from_64(&param.a1, &param.a2, parg);
136 	/* Initialize waiter */
137 	optee_cq_wait_init(&optee->call_queue, &w);
138 	while (true) {
139 		struct arm_smccc_res res;
140 
141 		optee->invoke_fn(param.a0, param.a1, param.a2, param.a3,
142 				 param.a4, param.a5, param.a6, param.a7,
143 				 &res);
144 
145 		if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
146 			/*
147 			 * Out of threads in secure world, wait for a thread
148 			 * become available.
149 			 */
150 			optee_cq_wait_for_completion(&optee->call_queue, &w);
151 		} else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
152 			if (need_resched())
153 				cond_resched();
154 			param.a0 = res.a0;
155 			param.a1 = res.a1;
156 			param.a2 = res.a2;
157 			param.a3 = res.a3;
158 			optee_handle_rpc(ctx, &param, &call_ctx);
159 		} else {
160 			ret = res.a0;
161 			break;
162 		}
163 	}
164 
165 	optee_rpc_finalize_call(&call_ctx);
166 	/*
167 	 * We're done with our thread in secure world, if there's any
168 	 * thread waiters wake up one.
169 	 */
170 	optee_cq_wait_final(&optee->call_queue, &w);
171 
172 	return ret;
173 }
174 
get_msg_arg(struct tee_context * ctx,size_t num_params,struct optee_msg_arg ** msg_arg,phys_addr_t * msg_parg)175 static struct tee_shm *get_msg_arg(struct tee_context *ctx, size_t num_params,
176 				   struct optee_msg_arg **msg_arg,
177 				   phys_addr_t *msg_parg)
178 {
179 	int rc;
180 	struct tee_shm *shm;
181 	struct optee_msg_arg *ma;
182 
183 	shm = tee_shm_alloc(ctx, OPTEE_MSG_GET_ARG_SIZE(num_params),
184 			    TEE_SHM_MAPPED | TEE_SHM_PRIV);
185 	if (IS_ERR(shm))
186 		return shm;
187 
188 	ma = tee_shm_get_va(shm, 0);
189 	if (IS_ERR(ma)) {
190 		rc = PTR_ERR(ma);
191 		goto out;
192 	}
193 
194 	rc = tee_shm_get_pa(shm, 0, msg_parg);
195 	if (rc)
196 		goto out;
197 
198 	memset(ma, 0, OPTEE_MSG_GET_ARG_SIZE(num_params));
199 	ma->num_params = num_params;
200 	*msg_arg = ma;
201 out:
202 	if (rc) {
203 		tee_shm_free(shm);
204 		return ERR_PTR(rc);
205 	}
206 
207 	return shm;
208 }
209 
optee_open_session(struct tee_context * ctx,struct tee_ioctl_open_session_arg * arg,struct tee_param * param)210 int optee_open_session(struct tee_context *ctx,
211 		       struct tee_ioctl_open_session_arg *arg,
212 		       struct tee_param *param)
213 {
214 	struct optee_context_data *ctxdata = ctx->data;
215 	int rc;
216 	struct tee_shm *shm;
217 	struct optee_msg_arg *msg_arg;
218 	phys_addr_t msg_parg;
219 	struct optee_session *sess = NULL;
220 	uuid_t client_uuid;
221 
222 	/* +2 for the meta parameters added below */
223 	shm = get_msg_arg(ctx, arg->num_params + 2, &msg_arg, &msg_parg);
224 	if (IS_ERR(shm))
225 		return PTR_ERR(shm);
226 
227 	msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION;
228 	msg_arg->cancel_id = arg->cancel_id;
229 
230 	/*
231 	 * Initialize and add the meta parameters needed when opening a
232 	 * session.
233 	 */
234 	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
235 				  OPTEE_MSG_ATTR_META;
236 	msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
237 				  OPTEE_MSG_ATTR_META;
238 	memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid));
239 	msg_arg->params[1].u.value.c = arg->clnt_login;
240 
241 	rc = tee_session_calc_client_uuid(&client_uuid, arg->clnt_login,
242 					  arg->clnt_uuid);
243 	if (rc)
244 		goto out;
245 	export_uuid(msg_arg->params[1].u.octets, &client_uuid);
246 
247 	rc = optee_to_msg_param(msg_arg->params + 2, arg->num_params, param);
248 	if (rc)
249 		goto out;
250 
251 	sess = kzalloc(sizeof(*sess), GFP_KERNEL);
252 	if (!sess) {
253 		rc = -ENOMEM;
254 		goto out;
255 	}
256 
257 	if (optee_do_call_with_arg(ctx, msg_parg)) {
258 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
259 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
260 	}
261 
262 	if (msg_arg->ret == TEEC_SUCCESS) {
263 		/* A new session has been created, add it to the list. */
264 		sess->session_id = msg_arg->session;
265 		mutex_lock(&ctxdata->mutex);
266 		list_add(&sess->list_node, &ctxdata->sess_list);
267 		mutex_unlock(&ctxdata->mutex);
268 	} else {
269 		kfree(sess);
270 	}
271 
272 	if (optee_from_msg_param(param, arg->num_params, msg_arg->params + 2)) {
273 		arg->ret = TEEC_ERROR_COMMUNICATION;
274 		arg->ret_origin = TEEC_ORIGIN_COMMS;
275 		/* Close session again to avoid leakage */
276 		optee_close_session(ctx, msg_arg->session);
277 	} else {
278 		arg->session = msg_arg->session;
279 		arg->ret = msg_arg->ret;
280 		arg->ret_origin = msg_arg->ret_origin;
281 	}
282 out:
283 	tee_shm_free(shm);
284 
285 	return rc;
286 }
287 
optee_close_session(struct tee_context * ctx,u32 session)288 int optee_close_session(struct tee_context *ctx, u32 session)
289 {
290 	struct optee_context_data *ctxdata = ctx->data;
291 	struct tee_shm *shm;
292 	struct optee_msg_arg *msg_arg;
293 	phys_addr_t msg_parg;
294 	struct optee_session *sess;
295 
296 	/* Check that the session is valid and remove it from the list */
297 	mutex_lock(&ctxdata->mutex);
298 	sess = find_session(ctxdata, session);
299 	if (sess)
300 		list_del(&sess->list_node);
301 	mutex_unlock(&ctxdata->mutex);
302 	if (!sess)
303 		return -EINVAL;
304 	kfree(sess);
305 
306 	shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
307 	if (IS_ERR(shm))
308 		return PTR_ERR(shm);
309 
310 	msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION;
311 	msg_arg->session = session;
312 	optee_do_call_with_arg(ctx, msg_parg);
313 
314 	tee_shm_free(shm);
315 	return 0;
316 }
317 
optee_invoke_func(struct tee_context * ctx,struct tee_ioctl_invoke_arg * arg,struct tee_param * param)318 int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg,
319 		      struct tee_param *param)
320 {
321 	struct optee_context_data *ctxdata = ctx->data;
322 	struct tee_shm *shm;
323 	struct optee_msg_arg *msg_arg;
324 	phys_addr_t msg_parg;
325 	struct optee_session *sess;
326 	int rc;
327 
328 	/* Check that the session is valid */
329 	mutex_lock(&ctxdata->mutex);
330 	sess = find_session(ctxdata, arg->session);
331 	mutex_unlock(&ctxdata->mutex);
332 	if (!sess)
333 		return -EINVAL;
334 
335 	shm = get_msg_arg(ctx, arg->num_params, &msg_arg, &msg_parg);
336 	if (IS_ERR(shm))
337 		return PTR_ERR(shm);
338 	msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND;
339 	msg_arg->func = arg->func;
340 	msg_arg->session = arg->session;
341 	msg_arg->cancel_id = arg->cancel_id;
342 
343 	rc = optee_to_msg_param(msg_arg->params, arg->num_params, param);
344 	if (rc)
345 		goto out;
346 
347 	if (optee_do_call_with_arg(ctx, msg_parg)) {
348 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
349 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
350 	}
351 
352 	if (optee_from_msg_param(param, arg->num_params, msg_arg->params)) {
353 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
354 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
355 	}
356 
357 	arg->ret = msg_arg->ret;
358 	arg->ret_origin = msg_arg->ret_origin;
359 out:
360 	tee_shm_free(shm);
361 	return rc;
362 }
363 
optee_cancel_req(struct tee_context * ctx,u32 cancel_id,u32 session)364 int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session)
365 {
366 	struct optee_context_data *ctxdata = ctx->data;
367 	struct tee_shm *shm;
368 	struct optee_msg_arg *msg_arg;
369 	phys_addr_t msg_parg;
370 	struct optee_session *sess;
371 
372 	/* Check that the session is valid */
373 	mutex_lock(&ctxdata->mutex);
374 	sess = find_session(ctxdata, session);
375 	mutex_unlock(&ctxdata->mutex);
376 	if (!sess)
377 		return -EINVAL;
378 
379 	shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
380 	if (IS_ERR(shm))
381 		return PTR_ERR(shm);
382 
383 	msg_arg->cmd = OPTEE_MSG_CMD_CANCEL;
384 	msg_arg->session = session;
385 	msg_arg->cancel_id = cancel_id;
386 	optee_do_call_with_arg(ctx, msg_parg);
387 
388 	tee_shm_free(shm);
389 	return 0;
390 }
391 
392 /**
393  * optee_enable_shm_cache() - Enables caching of some shared memory allocation
394  *			      in OP-TEE
395  * @optee:	main service struct
396  */
optee_enable_shm_cache(struct optee * optee)397 void optee_enable_shm_cache(struct optee *optee)
398 {
399 	struct optee_call_waiter w;
400 
401 	/* We need to retry until secure world isn't busy. */
402 	optee_cq_wait_init(&optee->call_queue, &w);
403 	while (true) {
404 		struct arm_smccc_res res;
405 
406 		optee->invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
407 				 0, &res);
408 		if (res.a0 == OPTEE_SMC_RETURN_OK)
409 			break;
410 		optee_cq_wait_for_completion(&optee->call_queue, &w);
411 	}
412 	optee_cq_wait_final(&optee->call_queue, &w);
413 }
414 
415 /**
416  * __optee_disable_shm_cache() - Disables caching of some shared memory
417  *                               allocation in OP-TEE
418  * @optee:	main service struct
419  * @is_mapped:	true if the cached shared memory addresses were mapped by this
420  *		kernel, are safe to dereference, and should be freed
421  */
__optee_disable_shm_cache(struct optee * optee,bool is_mapped)422 static void __optee_disable_shm_cache(struct optee *optee, bool is_mapped)
423 {
424 	struct optee_call_waiter w;
425 
426 	/* We need to retry until secure world isn't busy. */
427 	optee_cq_wait_init(&optee->call_queue, &w);
428 	while (true) {
429 		union {
430 			struct arm_smccc_res smccc;
431 			struct optee_smc_disable_shm_cache_result result;
432 		} res;
433 
434 		optee->invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
435 				 0, &res.smccc);
436 		if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
437 			break; /* All shm's freed */
438 		if (res.result.status == OPTEE_SMC_RETURN_OK) {
439 			struct tee_shm *shm;
440 
441 			/*
442 			 * Shared memory references that were not mapped by
443 			 * this kernel must be ignored to prevent a crash.
444 			 */
445 			if (!is_mapped)
446 				continue;
447 
448 			shm = reg_pair_to_ptr(res.result.shm_upper32,
449 					      res.result.shm_lower32);
450 			tee_shm_free(shm);
451 		} else {
452 			optee_cq_wait_for_completion(&optee->call_queue, &w);
453 		}
454 	}
455 	optee_cq_wait_final(&optee->call_queue, &w);
456 }
457 
458 /**
459  * optee_disable_shm_cache() - Disables caching of mapped shared memory
460  *                             allocations in OP-TEE
461  * @optee:	main service struct
462  */
optee_disable_shm_cache(struct optee * optee)463 void optee_disable_shm_cache(struct optee *optee)
464 {
465 	return __optee_disable_shm_cache(optee, true);
466 }
467 
468 /**
469  * optee_disable_unmapped_shm_cache() - Disables caching of shared memory
470  *                                      allocations in OP-TEE which are not
471  *                                      currently mapped
472  * @optee:	main service struct
473  */
optee_disable_unmapped_shm_cache(struct optee * optee)474 void optee_disable_unmapped_shm_cache(struct optee *optee)
475 {
476 	return __optee_disable_shm_cache(optee, false);
477 }
478 
479 #define PAGELIST_ENTRIES_PER_PAGE				\
480 	((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
481 
482 /**
483  * optee_fill_pages_list() - write list of user pages to given shared
484  * buffer.
485  *
486  * @dst: page-aligned buffer where list of pages will be stored
487  * @pages: array of pages that represents shared buffer
488  * @num_pages: number of entries in @pages
489  * @page_offset: offset of user buffer from page start
490  *
491  * @dst should be big enough to hold list of user page addresses and
492  *	links to the next pages of buffer
493  */
optee_fill_pages_list(u64 * dst,struct page ** pages,int num_pages,size_t page_offset)494 void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
495 			   size_t page_offset)
496 {
497 	int n = 0;
498 	phys_addr_t optee_page;
499 	/*
500 	 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
501 	 * for details.
502 	 */
503 	struct {
504 		u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
505 		u64 next_page_data;
506 	} *pages_data;
507 
508 	/*
509 	 * Currently OP-TEE uses 4k page size and it does not looks
510 	 * like this will change in the future.  On other hand, there are
511 	 * no know ARM architectures with page size < 4k.
512 	 * Thus the next built assert looks redundant. But the following
513 	 * code heavily relies on this assumption, so it is better be
514 	 * safe than sorry.
515 	 */
516 	BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
517 
518 	pages_data = (void *)dst;
519 	/*
520 	 * If linux page is bigger than 4k, and user buffer offset is
521 	 * larger than 4k/8k/12k/etc this will skip first 4k pages,
522 	 * because they bear no value data for OP-TEE.
523 	 */
524 	optee_page = page_to_phys(*pages) +
525 		round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
526 
527 	while (true) {
528 		pages_data->pages_list[n++] = optee_page;
529 
530 		if (n == PAGELIST_ENTRIES_PER_PAGE) {
531 			pages_data->next_page_data =
532 				virt_to_phys(pages_data + 1);
533 			pages_data++;
534 			n = 0;
535 		}
536 
537 		optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
538 		if (!(optee_page & ~PAGE_MASK)) {
539 			if (!--num_pages)
540 				break;
541 			pages++;
542 			optee_page = page_to_phys(*pages);
543 		}
544 	}
545 }
546 
547 /*
548  * The final entry in each pagelist page is a pointer to the next
549  * pagelist page.
550  */
get_pages_list_size(size_t num_entries)551 static size_t get_pages_list_size(size_t num_entries)
552 {
553 	int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
554 
555 	return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
556 }
557 
optee_allocate_pages_list(size_t num_entries)558 u64 *optee_allocate_pages_list(size_t num_entries)
559 {
560 	return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
561 }
562 
optee_free_pages_list(void * list,size_t num_entries)563 void optee_free_pages_list(void *list, size_t num_entries)
564 {
565 	free_pages_exact(list, get_pages_list_size(num_entries));
566 }
567 
is_normal_memory(pgprot_t p)568 static bool is_normal_memory(pgprot_t p)
569 {
570 #if defined(CONFIG_ARM)
571 	return (((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC) ||
572 		((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEBACK));
573 #elif defined(CONFIG_ARM64)
574 	return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL);
575 #else
576 #error "Unuspported architecture"
577 #endif
578 }
579 
__check_mem_type(struct vm_area_struct * vma,unsigned long end)580 static int __check_mem_type(struct vm_area_struct *vma, unsigned long end)
581 {
582 	while (vma && is_normal_memory(vma->vm_page_prot)) {
583 		if (vma->vm_end >= end)
584 			return 0;
585 		vma = vma->vm_next;
586 	}
587 
588 	return -EINVAL;
589 }
590 
check_mem_type(unsigned long start,size_t num_pages)591 static int check_mem_type(unsigned long start, size_t num_pages)
592 {
593 	struct mm_struct *mm = current->mm;
594 	int rc;
595 
596 	/*
597 	 * Allow kernel address to register with OP-TEE as kernel
598 	 * pages are configured as normal memory only.
599 	 */
600 	if (virt_addr_valid(start))
601 		return 0;
602 
603 	mmap_read_lock(mm);
604 	rc = __check_mem_type(find_vma(mm, start),
605 			      start + num_pages * PAGE_SIZE);
606 	mmap_read_unlock(mm);
607 
608 	return rc;
609 }
610 
optee_shm_register(struct tee_context * ctx,struct tee_shm * shm,struct page ** pages,size_t num_pages,unsigned long start)611 int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
612 		       struct page **pages, size_t num_pages,
613 		       unsigned long start)
614 {
615 	struct tee_shm *shm_arg = NULL;
616 	struct optee_msg_arg *msg_arg;
617 	u64 *pages_list;
618 	phys_addr_t msg_parg;
619 	int rc;
620 
621 	if (!num_pages)
622 		return -EINVAL;
623 
624 	rc = check_mem_type(start, num_pages);
625 	if (rc)
626 		return rc;
627 
628 	pages_list = optee_allocate_pages_list(num_pages);
629 	if (!pages_list)
630 		return -ENOMEM;
631 
632 	shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
633 	if (IS_ERR(shm_arg)) {
634 		rc = PTR_ERR(shm_arg);
635 		goto out;
636 	}
637 
638 	optee_fill_pages_list(pages_list, pages, num_pages,
639 			      tee_shm_get_page_offset(shm));
640 
641 	msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
642 	msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
643 				OPTEE_MSG_ATTR_NONCONTIG;
644 	msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
645 	msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
646 	/*
647 	 * In the least bits of msg_arg->params->u.tmem.buf_ptr we
648 	 * store buffer offset from 4k page, as described in OP-TEE ABI.
649 	 */
650 	msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
651 	  (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
652 
653 	if (optee_do_call_with_arg(ctx, msg_parg) ||
654 	    msg_arg->ret != TEEC_SUCCESS)
655 		rc = -EINVAL;
656 
657 	tee_shm_free(shm_arg);
658 out:
659 	optee_free_pages_list(pages_list, num_pages);
660 	return rc;
661 }
662 
optee_shm_unregister(struct tee_context * ctx,struct tee_shm * shm)663 int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
664 {
665 	struct tee_shm *shm_arg;
666 	struct optee_msg_arg *msg_arg;
667 	phys_addr_t msg_parg;
668 	int rc = 0;
669 
670 	shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
671 	if (IS_ERR(shm_arg))
672 		return PTR_ERR(shm_arg);
673 
674 	msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
675 
676 	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
677 	msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
678 
679 	if (optee_do_call_with_arg(ctx, msg_parg) ||
680 	    msg_arg->ret != TEEC_SUCCESS)
681 		rc = -EINVAL;
682 	tee_shm_free(shm_arg);
683 	return rc;
684 }
685 
optee_shm_register_supp(struct tee_context * ctx,struct tee_shm * shm,struct page ** pages,size_t num_pages,unsigned long start)686 int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
687 			    struct page **pages, size_t num_pages,
688 			    unsigned long start)
689 {
690 	/*
691 	 * We don't want to register supplicant memory in OP-TEE.
692 	 * Instead information about it will be passed in RPC code.
693 	 */
694 	return check_mem_type(start, num_pages);
695 }
696 
optee_shm_unregister_supp(struct tee_context * ctx,struct tee_shm * shm)697 int optee_shm_unregister_supp(struct tee_context *ctx, struct tee_shm *shm)
698 {
699 	return 0;
700 }
701