1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2014 - 2018, NVIDIA CORPORATION. All rights reserved.
4 *
5 * Author:
6 * Mikko Perttunen <mperttunen@nvidia.com>
7 *
8 * This software is licensed under the terms of the GNU General Public
9 * License version 2, as published by the Free Software Foundation, and
10 * may be copied, distributed, and modified under those terms.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 */
18
19 #include <linux/debugfs.h>
20 #include <linux/bitops.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/err.h>
24 #include <linux/interrupt.h>
25 #include <linux/io.h>
26 #include <linux/irq.h>
27 #include <linux/irqdomain.h>
28 #include <linux/module.h>
29 #include <linux/of.h>
30 #include <linux/platform_device.h>
31 #include <linux/reset.h>
32 #include <linux/thermal.h>
33
34 #include <dt-bindings/thermal/tegra124-soctherm.h>
35
36 #include "../thermal_core.h"
37 #include "soctherm.h"
38
39 #define SENSOR_CONFIG0 0
40 #define SENSOR_CONFIG0_STOP BIT(0)
41 #define SENSOR_CONFIG0_CPTR_OVER BIT(2)
42 #define SENSOR_CONFIG0_OVER BIT(3)
43 #define SENSOR_CONFIG0_TCALC_OVER BIT(4)
44 #define SENSOR_CONFIG0_TALL_MASK (0xfffff << 8)
45 #define SENSOR_CONFIG0_TALL_SHIFT 8
46
47 #define SENSOR_CONFIG1 4
48 #define SENSOR_CONFIG1_TSAMPLE_MASK 0x3ff
49 #define SENSOR_CONFIG1_TSAMPLE_SHIFT 0
50 #define SENSOR_CONFIG1_TIDDQ_EN_MASK (0x3f << 15)
51 #define SENSOR_CONFIG1_TIDDQ_EN_SHIFT 15
52 #define SENSOR_CONFIG1_TEN_COUNT_MASK (0x3f << 24)
53 #define SENSOR_CONFIG1_TEN_COUNT_SHIFT 24
54 #define SENSOR_CONFIG1_TEMP_ENABLE BIT(31)
55
56 /*
57 * SENSOR_CONFIG2 is defined in soctherm.h
58 * because, it will be used by tegra_soctherm_fuse.c
59 */
60
61 #define SENSOR_STATUS0 0xc
62 #define SENSOR_STATUS0_VALID_MASK BIT(31)
63 #define SENSOR_STATUS0_CAPTURE_MASK 0xffff
64
65 #define SENSOR_STATUS1 0x10
66 #define SENSOR_STATUS1_TEMP_VALID_MASK BIT(31)
67 #define SENSOR_STATUS1_TEMP_MASK 0xffff
68
69 #define READBACK_VALUE_MASK 0xff00
70 #define READBACK_VALUE_SHIFT 8
71 #define READBACK_ADD_HALF BIT(7)
72 #define READBACK_NEGATE BIT(0)
73
74 /*
75 * THERMCTL_LEVEL0_GROUP_CPU is defined in soctherm.h
76 * because it will be used by tegraxxx_soctherm.c
77 */
78 #define THERMCTL_LVL0_CPU0_EN_MASK BIT(8)
79 #define THERMCTL_LVL0_CPU0_CPU_THROT_MASK (0x3 << 5)
80 #define THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT 0x1
81 #define THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY 0x2
82 #define THERMCTL_LVL0_CPU0_GPU_THROT_MASK (0x3 << 3)
83 #define THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT 0x1
84 #define THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY 0x2
85 #define THERMCTL_LVL0_CPU0_MEM_THROT_MASK BIT(2)
86 #define THERMCTL_LVL0_CPU0_STATUS_MASK 0x3
87
88 #define THERMCTL_LVL0_UP_STATS 0x10
89 #define THERMCTL_LVL0_DN_STATS 0x14
90
91 #define THERMCTL_INTR_STATUS 0x84
92
93 #define TH_INTR_MD0_MASK BIT(25)
94 #define TH_INTR_MU0_MASK BIT(24)
95 #define TH_INTR_GD0_MASK BIT(17)
96 #define TH_INTR_GU0_MASK BIT(16)
97 #define TH_INTR_CD0_MASK BIT(9)
98 #define TH_INTR_CU0_MASK BIT(8)
99 #define TH_INTR_PD0_MASK BIT(1)
100 #define TH_INTR_PU0_MASK BIT(0)
101 #define TH_INTR_IGNORE_MASK 0xFCFCFCFC
102
103 #define THERMCTL_STATS_CTL 0x94
104 #define STATS_CTL_CLR_DN 0x8
105 #define STATS_CTL_EN_DN 0x4
106 #define STATS_CTL_CLR_UP 0x2
107 #define STATS_CTL_EN_UP 0x1
108
109 #define OC1_CFG 0x310
110 #define OC1_CFG_LONG_LATENCY_MASK BIT(6)
111 #define OC1_CFG_HW_RESTORE_MASK BIT(5)
112 #define OC1_CFG_PWR_GOOD_MASK_MASK BIT(4)
113 #define OC1_CFG_THROTTLE_MODE_MASK (0x3 << 2)
114 #define OC1_CFG_ALARM_POLARITY_MASK BIT(1)
115 #define OC1_CFG_EN_THROTTLE_MASK BIT(0)
116
117 #define OC1_CNT_THRESHOLD 0x314
118 #define OC1_THROTTLE_PERIOD 0x318
119 #define OC1_ALARM_COUNT 0x31c
120 #define OC1_FILTER 0x320
121 #define OC1_STATS 0x3a8
122
123 #define OC_INTR_STATUS 0x39c
124 #define OC_INTR_ENABLE 0x3a0
125 #define OC_INTR_DISABLE 0x3a4
126 #define OC_STATS_CTL 0x3c4
127 #define OC_STATS_CTL_CLR_ALL 0x2
128 #define OC_STATS_CTL_EN_ALL 0x1
129
130 #define OC_INTR_OC1_MASK BIT(0)
131 #define OC_INTR_OC2_MASK BIT(1)
132 #define OC_INTR_OC3_MASK BIT(2)
133 #define OC_INTR_OC4_MASK BIT(3)
134 #define OC_INTR_OC5_MASK BIT(4)
135
136 #define THROT_GLOBAL_CFG 0x400
137 #define THROT_GLOBAL_ENB_MASK BIT(0)
138
139 #define CPU_PSKIP_STATUS 0x418
140 #define XPU_PSKIP_STATUS_M_MASK (0xff << 12)
141 #define XPU_PSKIP_STATUS_N_MASK (0xff << 4)
142 #define XPU_PSKIP_STATUS_SW_OVERRIDE_MASK BIT(1)
143 #define XPU_PSKIP_STATUS_ENABLED_MASK BIT(0)
144
145 #define THROT_PRIORITY_LOCK 0x424
146 #define THROT_PRIORITY_LOCK_PRIORITY_MASK 0xff
147
148 #define THROT_STATUS 0x428
149 #define THROT_STATUS_BREACH_MASK BIT(12)
150 #define THROT_STATUS_STATE_MASK (0xff << 4)
151 #define THROT_STATUS_ENABLED_MASK BIT(0)
152
153 #define THROT_PSKIP_CTRL_LITE_CPU 0x430
154 #define THROT_PSKIP_CTRL_ENABLE_MASK BIT(31)
155 #define THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8)
156 #define THROT_PSKIP_CTRL_DIVISOR_MASK 0xff
157 #define THROT_PSKIP_CTRL_VECT_GPU_MASK (0x7 << 16)
158 #define THROT_PSKIP_CTRL_VECT_CPU_MASK (0x7 << 8)
159 #define THROT_PSKIP_CTRL_VECT2_CPU_MASK 0x7
160
161 #define THROT_VECT_NONE 0x0 /* 3'b000 */
162 #define THROT_VECT_LOW 0x1 /* 3'b001 */
163 #define THROT_VECT_MED 0x3 /* 3'b011 */
164 #define THROT_VECT_HIGH 0x7 /* 3'b111 */
165
166 #define THROT_PSKIP_RAMP_LITE_CPU 0x434
167 #define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31)
168 #define THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8)
169 #define THROT_PSKIP_RAMP_STEP_MASK 0xff
170
171 #define THROT_PRIORITY_LITE 0x444
172 #define THROT_PRIORITY_LITE_PRIO_MASK 0xff
173
174 #define THROT_DELAY_LITE 0x448
175 #define THROT_DELAY_LITE_DELAY_MASK 0xff
176
177 /* car register offsets needed for enabling HW throttling */
178 #define CAR_SUPER_CCLKG_DIVIDER 0x36c
179 #define CDIVG_USE_THERM_CONTROLS_MASK BIT(30)
180
181 /* ccroc register offsets needed for enabling HW throttling for Tegra132 */
182 #define CCROC_SUPER_CCLKG_DIVIDER 0x024
183
184 #define CCROC_GLOBAL_CFG 0x148
185
186 #define CCROC_THROT_PSKIP_RAMP_CPU 0x150
187 #define CCROC_THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31)
188 #define CCROC_THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8)
189 #define CCROC_THROT_PSKIP_RAMP_STEP_MASK 0xff
190
191 #define CCROC_THROT_PSKIP_CTRL_CPU 0x154
192 #define CCROC_THROT_PSKIP_CTRL_ENB_MASK BIT(31)
193 #define CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8)
194 #define CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK 0xff
195
196 /* get val from register(r) mask bits(m) */
197 #define REG_GET_MASK(r, m) (((r) & (m)) >> (ffs(m) - 1))
198 /* set val(v) to mask bits(m) of register(r) */
199 #define REG_SET_MASK(r, m, v) (((r) & ~(m)) | \
200 (((v) & (m >> (ffs(m) - 1))) << (ffs(m) - 1)))
201
202 /* get dividend from the depth */
203 #define THROT_DEPTH_DIVIDEND(depth) ((256 * (100 - (depth)) / 100) - 1)
204
205 /* gk20a nv_therm interface N:3 Mapping. Levels defined in tegra124-soctherm.h
206 * level vector
207 * NONE 3'b000
208 * LOW 3'b001
209 * MED 3'b011
210 * HIGH 3'b111
211 */
212 #define THROT_LEVEL_TO_DEPTH(level) ((0x1 << (level)) - 1)
213
214 /* get THROT_PSKIP_xxx offset per LIGHT/HEAVY throt and CPU/GPU dev */
215 #define THROT_OFFSET 0x30
216 #define THROT_PSKIP_CTRL(throt, dev) (THROT_PSKIP_CTRL_LITE_CPU + \
217 (THROT_OFFSET * throt) + (8 * dev))
218 #define THROT_PSKIP_RAMP(throt, dev) (THROT_PSKIP_RAMP_LITE_CPU + \
219 (THROT_OFFSET * throt) + (8 * dev))
220
221 /* get THROT_xxx_CTRL offset per LIGHT/HEAVY throt */
222 #define THROT_PRIORITY_CTRL(throt) (THROT_PRIORITY_LITE + \
223 (THROT_OFFSET * throt))
224 #define THROT_DELAY_CTRL(throt) (THROT_DELAY_LITE + \
225 (THROT_OFFSET * throt))
226
227 #define ALARM_OFFSET 0x14
228 #define ALARM_CFG(throt) (OC1_CFG + \
229 (ALARM_OFFSET * (throt - THROTTLE_OC1)))
230
231 #define ALARM_CNT_THRESHOLD(throt) (OC1_CNT_THRESHOLD + \
232 (ALARM_OFFSET * (throt - THROTTLE_OC1)))
233
234 #define ALARM_THROTTLE_PERIOD(throt) (OC1_THROTTLE_PERIOD + \
235 (ALARM_OFFSET * (throt - THROTTLE_OC1)))
236
237 #define ALARM_ALARM_COUNT(throt) (OC1_ALARM_COUNT + \
238 (ALARM_OFFSET * (throt - THROTTLE_OC1)))
239
240 #define ALARM_FILTER(throt) (OC1_FILTER + \
241 (ALARM_OFFSET * (throt - THROTTLE_OC1)))
242
243 #define ALARM_STATS(throt) (OC1_STATS + \
244 (4 * (throt - THROTTLE_OC1)))
245
246 /* get CCROC_THROT_PSKIP_xxx offset per HIGH/MED/LOW vect*/
247 #define CCROC_THROT_OFFSET 0x0c
248 #define CCROC_THROT_PSKIP_CTRL_CPU_REG(vect) (CCROC_THROT_PSKIP_CTRL_CPU + \
249 (CCROC_THROT_OFFSET * vect))
250 #define CCROC_THROT_PSKIP_RAMP_CPU_REG(vect) (CCROC_THROT_PSKIP_RAMP_CPU + \
251 (CCROC_THROT_OFFSET * vect))
252
253 /* get THERMCTL_LEVELx offset per CPU/GPU/MEM/TSENSE rg and LEVEL0~3 lv */
254 #define THERMCTL_LVL_REGS_SIZE 0x20
255 #define THERMCTL_LVL_REG(rg, lv) ((rg) + ((lv) * THERMCTL_LVL_REGS_SIZE))
256
257 #define OC_THROTTLE_MODE_DISABLED 0
258 #define OC_THROTTLE_MODE_BRIEF 2
259
260 static const int min_low_temp = -127000;
261 static const int max_high_temp = 127000;
262
263 enum soctherm_throttle_id {
264 THROTTLE_LIGHT = 0,
265 THROTTLE_HEAVY,
266 THROTTLE_OC1,
267 THROTTLE_OC2,
268 THROTTLE_OC3,
269 THROTTLE_OC4,
270 THROTTLE_OC5, /* OC5 is reserved */
271 THROTTLE_SIZE,
272 };
273
274 enum soctherm_oc_irq_id {
275 TEGRA_SOC_OC_IRQ_1,
276 TEGRA_SOC_OC_IRQ_2,
277 TEGRA_SOC_OC_IRQ_3,
278 TEGRA_SOC_OC_IRQ_4,
279 TEGRA_SOC_OC_IRQ_5,
280 TEGRA_SOC_OC_IRQ_MAX,
281 };
282
283 enum soctherm_throttle_dev_id {
284 THROTTLE_DEV_CPU = 0,
285 THROTTLE_DEV_GPU,
286 THROTTLE_DEV_SIZE,
287 };
288
289 static const char *const throt_names[] = {
290 [THROTTLE_LIGHT] = "light",
291 [THROTTLE_HEAVY] = "heavy",
292 [THROTTLE_OC1] = "oc1",
293 [THROTTLE_OC2] = "oc2",
294 [THROTTLE_OC3] = "oc3",
295 [THROTTLE_OC4] = "oc4",
296 [THROTTLE_OC5] = "oc5",
297 };
298
299 struct tegra_soctherm;
300 struct tegra_thermctl_zone {
301 void __iomem *reg;
302 struct device *dev;
303 struct tegra_soctherm *ts;
304 struct thermal_zone_device *tz;
305 const struct tegra_tsensor_group *sg;
306 };
307
308 struct soctherm_oc_cfg {
309 u32 active_low;
310 u32 throt_period;
311 u32 alarm_cnt_thresh;
312 u32 alarm_filter;
313 u32 mode;
314 bool intr_en;
315 };
316
317 struct soctherm_throt_cfg {
318 const char *name;
319 unsigned int id;
320 u8 priority;
321 u8 cpu_throt_level;
322 u32 cpu_throt_depth;
323 u32 gpu_throt_level;
324 struct soctherm_oc_cfg oc_cfg;
325 struct thermal_cooling_device *cdev;
326 bool init;
327 };
328
329 struct tegra_soctherm {
330 struct reset_control *reset;
331 struct clk *clock_tsensor;
332 struct clk *clock_soctherm;
333 void __iomem *regs;
334 void __iomem *clk_regs;
335 void __iomem *ccroc_regs;
336
337 int thermal_irq;
338 int edp_irq;
339
340 u32 *calib;
341 struct thermal_zone_device **thermctl_tzs;
342 struct tegra_soctherm_soc *soc;
343
344 struct soctherm_throt_cfg throt_cfgs[THROTTLE_SIZE];
345
346 struct dentry *debugfs_dir;
347
348 struct mutex thermctl_lock;
349 };
350
351 struct soctherm_oc_irq_chip_data {
352 struct mutex irq_lock; /* serialize OC IRQs */
353 struct irq_chip irq_chip;
354 struct irq_domain *domain;
355 int irq_enable;
356 };
357
358 static struct soctherm_oc_irq_chip_data soc_irq_cdata;
359
360 /**
361 * ccroc_writel() - writes a value to a CCROC register
362 * @ts: pointer to a struct tegra_soctherm
363 * @value: the value to write
364 * @reg: the register offset
365 *
366 * Writes @v to @reg. No return value.
367 */
ccroc_writel(struct tegra_soctherm * ts,u32 value,u32 reg)368 static inline void ccroc_writel(struct tegra_soctherm *ts, u32 value, u32 reg)
369 {
370 writel(value, (ts->ccroc_regs + reg));
371 }
372
373 /**
374 * ccroc_readl() - reads specified register from CCROC IP block
375 * @ts: pointer to a struct tegra_soctherm
376 * @reg: register address to be read
377 *
378 * Return: the value of the register
379 */
ccroc_readl(struct tegra_soctherm * ts,u32 reg)380 static inline u32 ccroc_readl(struct tegra_soctherm *ts, u32 reg)
381 {
382 return readl(ts->ccroc_regs + reg);
383 }
384
enable_tsensor(struct tegra_soctherm * tegra,unsigned int i)385 static void enable_tsensor(struct tegra_soctherm *tegra, unsigned int i)
386 {
387 const struct tegra_tsensor *sensor = &tegra->soc->tsensors[i];
388 void __iomem *base = tegra->regs + sensor->base;
389 unsigned int val;
390
391 val = sensor->config->tall << SENSOR_CONFIG0_TALL_SHIFT;
392 writel(val, base + SENSOR_CONFIG0);
393
394 val = (sensor->config->tsample - 1) << SENSOR_CONFIG1_TSAMPLE_SHIFT;
395 val |= sensor->config->tiddq_en << SENSOR_CONFIG1_TIDDQ_EN_SHIFT;
396 val |= sensor->config->ten_count << SENSOR_CONFIG1_TEN_COUNT_SHIFT;
397 val |= SENSOR_CONFIG1_TEMP_ENABLE;
398 writel(val, base + SENSOR_CONFIG1);
399
400 writel(tegra->calib[i], base + SENSOR_CONFIG2);
401 }
402
403 /*
404 * Translate from soctherm readback format to millicelsius.
405 * The soctherm readback format in bits is as follows:
406 * TTTTTTTT H______N
407 * where T's contain the temperature in Celsius,
408 * H denotes an addition of 0.5 Celsius and N denotes negation
409 * of the final value.
410 */
translate_temp(u16 val)411 static int translate_temp(u16 val)
412 {
413 int t;
414
415 t = ((val & READBACK_VALUE_MASK) >> READBACK_VALUE_SHIFT) * 1000;
416 if (val & READBACK_ADD_HALF)
417 t += 500;
418 if (val & READBACK_NEGATE)
419 t *= -1;
420
421 return t;
422 }
423
tegra_thermctl_get_temp(void * data,int * out_temp)424 static int tegra_thermctl_get_temp(void *data, int *out_temp)
425 {
426 struct tegra_thermctl_zone *zone = data;
427 u32 val;
428
429 val = readl(zone->reg);
430 val = REG_GET_MASK(val, zone->sg->sensor_temp_mask);
431 *out_temp = translate_temp(val);
432
433 return 0;
434 }
435
436 /**
437 * enforce_temp_range() - check and enforce temperature range [min, max]
438 * @dev: struct device * of the SOC_THERM instance
439 * @trip_temp: the trip temperature to check
440 *
441 * Checks and enforces the permitted temperature range that SOC_THERM
442 * HW can support This is
443 * done while taking care of precision.
444 *
445 * Return: The precision adjusted capped temperature in millicelsius.
446 */
enforce_temp_range(struct device * dev,int trip_temp)447 static int enforce_temp_range(struct device *dev, int trip_temp)
448 {
449 int temp;
450
451 temp = clamp_val(trip_temp, min_low_temp, max_high_temp);
452 if (temp != trip_temp)
453 dev_info(dev, "soctherm: trip temperature %d forced to %d\n",
454 trip_temp, temp);
455 return temp;
456 }
457
458 /**
459 * thermtrip_program() - Configures the hardware to shut down the
460 * system if a given sensor group reaches a given temperature
461 * @dev: ptr to the struct device for the SOC_THERM IP block
462 * @sg: pointer to the sensor group to set the thermtrip temperature for
463 * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
464 *
465 * Sets the thermal trip threshold of the given sensor group to be the
466 * @trip_temp. If this threshold is crossed, the hardware will shut
467 * down.
468 *
469 * Note that, although @trip_temp is specified in millicelsius, the
470 * hardware is programmed in degrees Celsius.
471 *
472 * Return: 0 upon success, or %-EINVAL upon failure.
473 */
thermtrip_program(struct device * dev,const struct tegra_tsensor_group * sg,int trip_temp)474 static int thermtrip_program(struct device *dev,
475 const struct tegra_tsensor_group *sg,
476 int trip_temp)
477 {
478 struct tegra_soctherm *ts = dev_get_drvdata(dev);
479 int temp;
480 u32 r;
481
482 if (!sg || !sg->thermtrip_threshold_mask)
483 return -EINVAL;
484
485 temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
486
487 r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
488 r = REG_SET_MASK(r, sg->thermtrip_threshold_mask, temp);
489 r = REG_SET_MASK(r, sg->thermtrip_enable_mask, 1);
490 r = REG_SET_MASK(r, sg->thermtrip_any_en_mask, 0);
491 writel(r, ts->regs + THERMCTL_THERMTRIP_CTL);
492
493 return 0;
494 }
495
496 /**
497 * throttrip_program() - Configures the hardware to throttle the
498 * pulse if a given sensor group reaches a given temperature
499 * @dev: ptr to the struct device for the SOC_THERM IP block
500 * @sg: pointer to the sensor group to set the thermtrip temperature for
501 * @stc: pointer to the throttle need to be triggered
502 * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
503 *
504 * Sets the thermal trip threshold and throttle event of the given sensor
505 * group. If this threshold is crossed, the hardware will trigger the
506 * throttle.
507 *
508 * Note that, although @trip_temp is specified in millicelsius, the
509 * hardware is programmed in degrees Celsius.
510 *
511 * Return: 0 upon success, or %-EINVAL upon failure.
512 */
throttrip_program(struct device * dev,const struct tegra_tsensor_group * sg,struct soctherm_throt_cfg * stc,int trip_temp)513 static int throttrip_program(struct device *dev,
514 const struct tegra_tsensor_group *sg,
515 struct soctherm_throt_cfg *stc,
516 int trip_temp)
517 {
518 struct tegra_soctherm *ts = dev_get_drvdata(dev);
519 int temp, cpu_throt, gpu_throt;
520 unsigned int throt;
521 u32 r, reg_off;
522
523 if (!sg || !stc || !stc->init)
524 return -EINVAL;
525
526 temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
527
528 /* Hardcode LIGHT on LEVEL1 and HEAVY on LEVEL2 */
529 throt = stc->id;
530 reg_off = THERMCTL_LVL_REG(sg->thermctl_lvl0_offset, throt + 1);
531
532 if (throt == THROTTLE_LIGHT) {
533 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT;
534 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT;
535 } else {
536 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY;
537 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY;
538 if (throt != THROTTLE_HEAVY)
539 dev_warn(dev,
540 "invalid throt id %d - assuming HEAVY",
541 throt);
542 }
543
544 r = readl(ts->regs + reg_off);
545 r = REG_SET_MASK(r, sg->thermctl_lvl0_up_thresh_mask, temp);
546 r = REG_SET_MASK(r, sg->thermctl_lvl0_dn_thresh_mask, temp);
547 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_CPU_THROT_MASK, cpu_throt);
548 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_GPU_THROT_MASK, gpu_throt);
549 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
550 writel(r, ts->regs + reg_off);
551
552 return 0;
553 }
554
555 static struct soctherm_throt_cfg *
find_throttle_cfg_by_name(struct tegra_soctherm * ts,const char * name)556 find_throttle_cfg_by_name(struct tegra_soctherm *ts, const char *name)
557 {
558 unsigned int i;
559
560 for (i = 0; ts->throt_cfgs[i].name; i++)
561 if (!strcmp(ts->throt_cfgs[i].name, name))
562 return &ts->throt_cfgs[i];
563
564 return NULL;
565 }
566
tsensor_group_thermtrip_get(struct tegra_soctherm * ts,int id)567 static int tsensor_group_thermtrip_get(struct tegra_soctherm *ts, int id)
568 {
569 int i, temp = min_low_temp;
570 struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
571
572 if (id >= TEGRA124_SOCTHERM_SENSOR_NUM)
573 return temp;
574
575 if (tt) {
576 for (i = 0; i < ts->soc->num_ttgs; i++) {
577 if (tt[i].id == id)
578 return tt[i].temp;
579 }
580 }
581
582 return temp;
583 }
584
tegra_thermctl_set_trip_temp(void * data,int trip,int temp)585 static int tegra_thermctl_set_trip_temp(void *data, int trip, int temp)
586 {
587 struct tegra_thermctl_zone *zone = data;
588 struct thermal_zone_device *tz = zone->tz;
589 struct tegra_soctherm *ts = zone->ts;
590 const struct tegra_tsensor_group *sg = zone->sg;
591 struct device *dev = zone->dev;
592 enum thermal_trip_type type;
593 int ret;
594
595 if (!tz)
596 return -EINVAL;
597
598 ret = tz->ops->get_trip_type(tz, trip, &type);
599 if (ret)
600 return ret;
601
602 if (type == THERMAL_TRIP_CRITICAL) {
603 /*
604 * If thermtrips property is set in DT,
605 * doesn't need to program critical type trip to HW,
606 * if not, program critical trip to HW.
607 */
608 if (min_low_temp == tsensor_group_thermtrip_get(ts, sg->id))
609 return thermtrip_program(dev, sg, temp);
610 else
611 return 0;
612
613 } else if (type == THERMAL_TRIP_HOT) {
614 int i;
615
616 for (i = 0; i < THROTTLE_SIZE; i++) {
617 struct thermal_cooling_device *cdev;
618 struct soctherm_throt_cfg *stc;
619
620 if (!ts->throt_cfgs[i].init)
621 continue;
622
623 cdev = ts->throt_cfgs[i].cdev;
624 if (get_thermal_instance(tz, cdev, trip))
625 stc = find_throttle_cfg_by_name(ts, cdev->type);
626 else
627 continue;
628
629 return throttrip_program(dev, sg, stc, temp);
630 }
631 }
632
633 return 0;
634 }
635
tegra_thermctl_get_trend(void * data,int trip,enum thermal_trend * trend)636 static int tegra_thermctl_get_trend(void *data, int trip,
637 enum thermal_trend *trend)
638 {
639 struct tegra_thermctl_zone *zone = data;
640 struct thermal_zone_device *tz = zone->tz;
641 int trip_temp, temp, last_temp, ret;
642
643 if (!tz)
644 return -EINVAL;
645
646 ret = tz->ops->get_trip_temp(zone->tz, trip, &trip_temp);
647 if (ret)
648 return ret;
649
650 temp = READ_ONCE(tz->temperature);
651 last_temp = READ_ONCE(tz->last_temperature);
652
653 if (temp > trip_temp) {
654 if (temp >= last_temp)
655 *trend = THERMAL_TREND_RAISING;
656 else
657 *trend = THERMAL_TREND_STABLE;
658 } else if (temp < trip_temp) {
659 *trend = THERMAL_TREND_DROPPING;
660 } else {
661 *trend = THERMAL_TREND_STABLE;
662 }
663
664 return 0;
665 }
666
thermal_irq_enable(struct tegra_thermctl_zone * zn)667 static void thermal_irq_enable(struct tegra_thermctl_zone *zn)
668 {
669 u32 r;
670
671 /* multiple zones could be handling and setting trips at once */
672 mutex_lock(&zn->ts->thermctl_lock);
673 r = readl(zn->ts->regs + THERMCTL_INTR_ENABLE);
674 r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, TH_INTR_UP_DN_EN);
675 writel(r, zn->ts->regs + THERMCTL_INTR_ENABLE);
676 mutex_unlock(&zn->ts->thermctl_lock);
677 }
678
thermal_irq_disable(struct tegra_thermctl_zone * zn)679 static void thermal_irq_disable(struct tegra_thermctl_zone *zn)
680 {
681 u32 r;
682
683 /* multiple zones could be handling and setting trips at once */
684 mutex_lock(&zn->ts->thermctl_lock);
685 r = readl(zn->ts->regs + THERMCTL_INTR_DISABLE);
686 r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, 0);
687 writel(r, zn->ts->regs + THERMCTL_INTR_DISABLE);
688 mutex_unlock(&zn->ts->thermctl_lock);
689 }
690
tegra_thermctl_set_trips(void * data,int lo,int hi)691 static int tegra_thermctl_set_trips(void *data, int lo, int hi)
692 {
693 struct tegra_thermctl_zone *zone = data;
694 u32 r;
695
696 thermal_irq_disable(zone);
697
698 r = readl(zone->ts->regs + zone->sg->thermctl_lvl0_offset);
699 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 0);
700 writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
701
702 lo = enforce_temp_range(zone->dev, lo) / zone->ts->soc->thresh_grain;
703 hi = enforce_temp_range(zone->dev, hi) / zone->ts->soc->thresh_grain;
704 dev_dbg(zone->dev, "%s hi:%d, lo:%d\n", __func__, hi, lo);
705
706 r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_up_thresh_mask, hi);
707 r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_dn_thresh_mask, lo);
708 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
709 writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
710
711 thermal_irq_enable(zone);
712
713 return 0;
714 }
715
716 static const struct thermal_zone_of_device_ops tegra_of_thermal_ops = {
717 .get_temp = tegra_thermctl_get_temp,
718 .set_trip_temp = tegra_thermctl_set_trip_temp,
719 .get_trend = tegra_thermctl_get_trend,
720 .set_trips = tegra_thermctl_set_trips,
721 };
722
get_hot_temp(struct thermal_zone_device * tz,int * trip,int * temp)723 static int get_hot_temp(struct thermal_zone_device *tz, int *trip, int *temp)
724 {
725 int ntrips, i, ret;
726 enum thermal_trip_type type;
727
728 ntrips = of_thermal_get_ntrips(tz);
729 if (ntrips <= 0)
730 return -EINVAL;
731
732 for (i = 0; i < ntrips; i++) {
733 ret = tz->ops->get_trip_type(tz, i, &type);
734 if (ret)
735 return -EINVAL;
736 if (type == THERMAL_TRIP_HOT) {
737 ret = tz->ops->get_trip_temp(tz, i, temp);
738 if (!ret)
739 *trip = i;
740
741 return ret;
742 }
743 }
744
745 return -EINVAL;
746 }
747
748 /**
749 * tegra_soctherm_set_hwtrips() - set HW trip point from DT data
750 * @dev: struct device * of the SOC_THERM instance
751 * @sg: pointer to the sensor group to set the thermtrip temperature for
752 * @tz: struct thermal_zone_device *
753 *
754 * Configure the SOC_THERM HW trip points, setting "THERMTRIP"
755 * "THROTTLE" trip points , using "thermtrips", "critical" or "hot"
756 * type trip_temp
757 * from thermal zone.
758 * After they have been configured, THERMTRIP or THROTTLE will take
759 * action when the configured SoC thermal sensor group reaches a
760 * certain temperature.
761 *
762 * Return: 0 upon success, or a negative error code on failure.
763 * "Success" does not mean that trips was enabled; it could also
764 * mean that no node was found in DT.
765 * THERMTRIP has been enabled successfully when a message similar to
766 * this one appears on the serial console:
767 * "thermtrip: will shut down when sensor group XXX reaches YYYYYY mC"
768 * THROTTLE has been enabled successfully when a message similar to
769 * this one appears on the serial console:
770 * ""throttrip: will throttle when sensor group XXX reaches YYYYYY mC"
771 */
tegra_soctherm_set_hwtrips(struct device * dev,const struct tegra_tsensor_group * sg,struct thermal_zone_device * tz)772 static int tegra_soctherm_set_hwtrips(struct device *dev,
773 const struct tegra_tsensor_group *sg,
774 struct thermal_zone_device *tz)
775 {
776 struct tegra_soctherm *ts = dev_get_drvdata(dev);
777 struct soctherm_throt_cfg *stc;
778 int i, trip, temperature, ret;
779
780 /* Get thermtrips. If missing, try to get critical trips. */
781 temperature = tsensor_group_thermtrip_get(ts, sg->id);
782 if (min_low_temp == temperature)
783 if (tz->ops->get_crit_temp(tz, &temperature))
784 temperature = max_high_temp;
785
786 ret = thermtrip_program(dev, sg, temperature);
787 if (ret) {
788 dev_err(dev, "thermtrip: %s: error during enable\n", sg->name);
789 return ret;
790 }
791
792 dev_info(dev, "thermtrip: will shut down when %s reaches %d mC\n",
793 sg->name, temperature);
794
795 ret = get_hot_temp(tz, &trip, &temperature);
796 if (ret) {
797 dev_info(dev, "throttrip: %s: missing hot temperature\n",
798 sg->name);
799 return 0;
800 }
801
802 for (i = 0; i < THROTTLE_OC1; i++) {
803 struct thermal_cooling_device *cdev;
804
805 if (!ts->throt_cfgs[i].init)
806 continue;
807
808 cdev = ts->throt_cfgs[i].cdev;
809 if (get_thermal_instance(tz, cdev, trip))
810 stc = find_throttle_cfg_by_name(ts, cdev->type);
811 else
812 continue;
813
814 ret = throttrip_program(dev, sg, stc, temperature);
815 if (ret) {
816 dev_err(dev, "throttrip: %s: error during enable\n",
817 sg->name);
818 return ret;
819 }
820
821 dev_info(dev,
822 "throttrip: will throttle when %s reaches %d mC\n",
823 sg->name, temperature);
824 break;
825 }
826
827 if (i == THROTTLE_SIZE)
828 dev_info(dev, "throttrip: %s: missing throttle cdev\n",
829 sg->name);
830
831 return 0;
832 }
833
soctherm_thermal_isr(int irq,void * dev_id)834 static irqreturn_t soctherm_thermal_isr(int irq, void *dev_id)
835 {
836 struct tegra_soctherm *ts = dev_id;
837 u32 r;
838
839 /* Case for no lock:
840 * Although interrupts are enabled in set_trips, there is still no need
841 * to lock here because the interrupts are disabled before programming
842 * new trip points. Hence there cant be a interrupt on the same sensor.
843 * An interrupt can however occur on a sensor while trips are being
844 * programmed on a different one. This beign a LEVEL interrupt won't
845 * cause a new interrupt but this is taken care of by the re-reading of
846 * the STATUS register in the thread function.
847 */
848 r = readl(ts->regs + THERMCTL_INTR_STATUS);
849 writel(r, ts->regs + THERMCTL_INTR_DISABLE);
850
851 return IRQ_WAKE_THREAD;
852 }
853
854 /**
855 * soctherm_thermal_isr_thread() - Handles a thermal interrupt request
856 * @irq: The interrupt number being requested; not used
857 * @dev_id: Opaque pointer to tegra_soctherm;
858 *
859 * Clears the interrupt status register if there are expected
860 * interrupt bits set.
861 * The interrupt(s) are then handled by updating the corresponding
862 * thermal zones.
863 *
864 * An error is logged if any unexpected interrupt bits are set.
865 *
866 * Disabled interrupts are re-enabled.
867 *
868 * Return: %IRQ_HANDLED. Interrupt was handled and no further processing
869 * is needed.
870 */
soctherm_thermal_isr_thread(int irq,void * dev_id)871 static irqreturn_t soctherm_thermal_isr_thread(int irq, void *dev_id)
872 {
873 struct tegra_soctherm *ts = dev_id;
874 struct thermal_zone_device *tz;
875 u32 st, ex = 0, cp = 0, gp = 0, pl = 0, me = 0;
876
877 st = readl(ts->regs + THERMCTL_INTR_STATUS);
878
879 /* deliberately clear expected interrupts handled in SW */
880 cp |= st & TH_INTR_CD0_MASK;
881 cp |= st & TH_INTR_CU0_MASK;
882
883 gp |= st & TH_INTR_GD0_MASK;
884 gp |= st & TH_INTR_GU0_MASK;
885
886 pl |= st & TH_INTR_PD0_MASK;
887 pl |= st & TH_INTR_PU0_MASK;
888
889 me |= st & TH_INTR_MD0_MASK;
890 me |= st & TH_INTR_MU0_MASK;
891
892 ex |= cp | gp | pl | me;
893 if (ex) {
894 writel(ex, ts->regs + THERMCTL_INTR_STATUS);
895 st &= ~ex;
896
897 if (cp) {
898 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_CPU];
899 thermal_zone_device_update(tz,
900 THERMAL_EVENT_UNSPECIFIED);
901 }
902
903 if (gp) {
904 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_GPU];
905 thermal_zone_device_update(tz,
906 THERMAL_EVENT_UNSPECIFIED);
907 }
908
909 if (pl) {
910 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_PLLX];
911 thermal_zone_device_update(tz,
912 THERMAL_EVENT_UNSPECIFIED);
913 }
914
915 if (me) {
916 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_MEM];
917 thermal_zone_device_update(tz,
918 THERMAL_EVENT_UNSPECIFIED);
919 }
920 }
921
922 /* deliberately ignore expected interrupts NOT handled in SW */
923 ex |= TH_INTR_IGNORE_MASK;
924 st &= ~ex;
925
926 if (st) {
927 /* Whine about any other unexpected INTR bits still set */
928 pr_err("soctherm: Ignored unexpected INTRs 0x%08x\n", st);
929 writel(st, ts->regs + THERMCTL_INTR_STATUS);
930 }
931
932 return IRQ_HANDLED;
933 }
934
935 /**
936 * soctherm_oc_intr_enable() - Enables the soctherm over-current interrupt
937 * @ts: pointer to a struct tegra_soctherm
938 * @alarm: The soctherm throttle id
939 * @enable: Flag indicating enable the soctherm over-current
940 * interrupt or disable it
941 *
942 * Enables a specific over-current pins @alarm to raise an interrupt if the flag
943 * is set and the alarm corresponds to OC1, OC2, OC3, or OC4.
944 */
soctherm_oc_intr_enable(struct tegra_soctherm * ts,enum soctherm_throttle_id alarm,bool enable)945 static void soctherm_oc_intr_enable(struct tegra_soctherm *ts,
946 enum soctherm_throttle_id alarm,
947 bool enable)
948 {
949 u32 r;
950
951 if (!enable)
952 return;
953
954 r = readl(ts->regs + OC_INTR_ENABLE);
955 switch (alarm) {
956 case THROTTLE_OC1:
957 r = REG_SET_MASK(r, OC_INTR_OC1_MASK, 1);
958 break;
959 case THROTTLE_OC2:
960 r = REG_SET_MASK(r, OC_INTR_OC2_MASK, 1);
961 break;
962 case THROTTLE_OC3:
963 r = REG_SET_MASK(r, OC_INTR_OC3_MASK, 1);
964 break;
965 case THROTTLE_OC4:
966 r = REG_SET_MASK(r, OC_INTR_OC4_MASK, 1);
967 break;
968 default:
969 r = 0;
970 break;
971 }
972 writel(r, ts->regs + OC_INTR_ENABLE);
973 }
974
975 /**
976 * soctherm_handle_alarm() - Handles soctherm alarms
977 * @alarm: The soctherm throttle id
978 *
979 * "Handles" over-current alarms (OC1, OC2, OC3, and OC4) by printing
980 * a warning or informative message.
981 *
982 * Return: -EINVAL for @alarm = THROTTLE_OC3, otherwise 0 (success).
983 */
soctherm_handle_alarm(enum soctherm_throttle_id alarm)984 static int soctherm_handle_alarm(enum soctherm_throttle_id alarm)
985 {
986 int rv = -EINVAL;
987
988 switch (alarm) {
989 case THROTTLE_OC1:
990 pr_debug("soctherm: Successfully handled OC1 alarm\n");
991 rv = 0;
992 break;
993
994 case THROTTLE_OC2:
995 pr_debug("soctherm: Successfully handled OC2 alarm\n");
996 rv = 0;
997 break;
998
999 case THROTTLE_OC3:
1000 pr_debug("soctherm: Successfully handled OC3 alarm\n");
1001 rv = 0;
1002 break;
1003
1004 case THROTTLE_OC4:
1005 pr_debug("soctherm: Successfully handled OC4 alarm\n");
1006 rv = 0;
1007 break;
1008
1009 default:
1010 break;
1011 }
1012
1013 if (rv)
1014 pr_err("soctherm: ERROR in handling %s alarm\n",
1015 throt_names[alarm]);
1016
1017 return rv;
1018 }
1019
1020 /**
1021 * soctherm_edp_isr_thread() - log an over-current interrupt request
1022 * @irq: OC irq number. Currently not being used. See description
1023 * @arg: a void pointer for callback, currently not being used
1024 *
1025 * Over-current events are handled in hardware. This function is called to log
1026 * and handle any OC events that happened. Additionally, it checks every
1027 * over-current interrupt registers for registers are set but
1028 * was not expected (i.e. any discrepancy in interrupt status) by the function,
1029 * the discrepancy will logged.
1030 *
1031 * Return: %IRQ_HANDLED
1032 */
soctherm_edp_isr_thread(int irq,void * arg)1033 static irqreturn_t soctherm_edp_isr_thread(int irq, void *arg)
1034 {
1035 struct tegra_soctherm *ts = arg;
1036 u32 st, ex, oc1, oc2, oc3, oc4;
1037
1038 st = readl(ts->regs + OC_INTR_STATUS);
1039
1040 /* deliberately clear expected interrupts handled in SW */
1041 oc1 = st & OC_INTR_OC1_MASK;
1042 oc2 = st & OC_INTR_OC2_MASK;
1043 oc3 = st & OC_INTR_OC3_MASK;
1044 oc4 = st & OC_INTR_OC4_MASK;
1045 ex = oc1 | oc2 | oc3 | oc4;
1046
1047 pr_err("soctherm: OC ALARM 0x%08x\n", ex);
1048 if (ex) {
1049 writel(st, ts->regs + OC_INTR_STATUS);
1050 st &= ~ex;
1051
1052 if (oc1 && !soctherm_handle_alarm(THROTTLE_OC1))
1053 soctherm_oc_intr_enable(ts, THROTTLE_OC1, true);
1054
1055 if (oc2 && !soctherm_handle_alarm(THROTTLE_OC2))
1056 soctherm_oc_intr_enable(ts, THROTTLE_OC2, true);
1057
1058 if (oc3 && !soctherm_handle_alarm(THROTTLE_OC3))
1059 soctherm_oc_intr_enable(ts, THROTTLE_OC3, true);
1060
1061 if (oc4 && !soctherm_handle_alarm(THROTTLE_OC4))
1062 soctherm_oc_intr_enable(ts, THROTTLE_OC4, true);
1063
1064 if (oc1 && soc_irq_cdata.irq_enable & BIT(0))
1065 handle_nested_irq(
1066 irq_find_mapping(soc_irq_cdata.domain, 0));
1067
1068 if (oc2 && soc_irq_cdata.irq_enable & BIT(1))
1069 handle_nested_irq(
1070 irq_find_mapping(soc_irq_cdata.domain, 1));
1071
1072 if (oc3 && soc_irq_cdata.irq_enable & BIT(2))
1073 handle_nested_irq(
1074 irq_find_mapping(soc_irq_cdata.domain, 2));
1075
1076 if (oc4 && soc_irq_cdata.irq_enable & BIT(3))
1077 handle_nested_irq(
1078 irq_find_mapping(soc_irq_cdata.domain, 3));
1079 }
1080
1081 if (st) {
1082 pr_err("soctherm: Ignored unexpected OC ALARM 0x%08x\n", st);
1083 writel(st, ts->regs + OC_INTR_STATUS);
1084 }
1085
1086 return IRQ_HANDLED;
1087 }
1088
1089 /**
1090 * soctherm_edp_isr() - Disables any active interrupts
1091 * @irq: The interrupt request number
1092 * @arg: Opaque pointer to an argument
1093 *
1094 * Writes to the OC_INTR_DISABLE register the over current interrupt status,
1095 * masking any asserted interrupts. Doing this prevents the same interrupts
1096 * from triggering this isr repeatedly. The thread woken by this isr will
1097 * handle asserted interrupts and subsequently unmask/re-enable them.
1098 *
1099 * The OC_INTR_DISABLE register indicates which OC interrupts
1100 * have been disabled.
1101 *
1102 * Return: %IRQ_WAKE_THREAD, handler requests to wake the handler thread
1103 */
soctherm_edp_isr(int irq,void * arg)1104 static irqreturn_t soctherm_edp_isr(int irq, void *arg)
1105 {
1106 struct tegra_soctherm *ts = arg;
1107 u32 r;
1108
1109 if (!ts)
1110 return IRQ_NONE;
1111
1112 r = readl(ts->regs + OC_INTR_STATUS);
1113 writel(r, ts->regs + OC_INTR_DISABLE);
1114
1115 return IRQ_WAKE_THREAD;
1116 }
1117
1118 /**
1119 * soctherm_oc_irq_lock() - locks the over-current interrupt request
1120 * @data: Interrupt request data
1121 *
1122 * Looks up the chip data from @data and locks the mutex associated with
1123 * a particular over-current interrupt request.
1124 */
soctherm_oc_irq_lock(struct irq_data * data)1125 static void soctherm_oc_irq_lock(struct irq_data *data)
1126 {
1127 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1128
1129 mutex_lock(&d->irq_lock);
1130 }
1131
1132 /**
1133 * soctherm_oc_irq_sync_unlock() - Unlocks the OC interrupt request
1134 * @data: Interrupt request data
1135 *
1136 * Looks up the interrupt request data @data and unlocks the mutex associated
1137 * with a particular over-current interrupt request.
1138 */
soctherm_oc_irq_sync_unlock(struct irq_data * data)1139 static void soctherm_oc_irq_sync_unlock(struct irq_data *data)
1140 {
1141 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1142
1143 mutex_unlock(&d->irq_lock);
1144 }
1145
1146 /**
1147 * soctherm_oc_irq_enable() - Enables the SOC_THERM over-current interrupt queue
1148 * @data: irq_data structure of the chip
1149 *
1150 * Sets the irq_enable bit of SOC_THERM allowing SOC_THERM
1151 * to respond to over-current interrupts.
1152 *
1153 */
soctherm_oc_irq_enable(struct irq_data * data)1154 static void soctherm_oc_irq_enable(struct irq_data *data)
1155 {
1156 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1157
1158 d->irq_enable |= BIT(data->hwirq);
1159 }
1160
1161 /**
1162 * soctherm_oc_irq_disable() - Disables overcurrent interrupt requests
1163 * @data: The interrupt request information
1164 *
1165 * Clears the interrupt request enable bit of the overcurrent
1166 * interrupt request chip data.
1167 *
1168 * Return: Nothing is returned (void)
1169 */
soctherm_oc_irq_disable(struct irq_data * data)1170 static void soctherm_oc_irq_disable(struct irq_data *data)
1171 {
1172 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1173
1174 d->irq_enable &= ~BIT(data->hwirq);
1175 }
1176
soctherm_oc_irq_set_type(struct irq_data * data,unsigned int type)1177 static int soctherm_oc_irq_set_type(struct irq_data *data, unsigned int type)
1178 {
1179 return 0;
1180 }
1181
1182 /**
1183 * soctherm_oc_irq_map() - SOC_THERM interrupt request domain mapper
1184 * @h: Interrupt request domain
1185 * @virq: Virtual interrupt request number
1186 * @hw: Hardware interrupt request number
1187 *
1188 * Mapping callback function for SOC_THERM's irq_domain. When a SOC_THERM
1189 * interrupt request is called, the irq_domain takes the request's virtual
1190 * request number (much like a virtual memory address) and maps it to a
1191 * physical hardware request number.
1192 *
1193 * When a mapping doesn't already exist for a virtual request number, the
1194 * irq_domain calls this function to associate the virtual request number with
1195 * a hardware request number.
1196 *
1197 * Return: 0
1198 */
soctherm_oc_irq_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t hw)1199 static int soctherm_oc_irq_map(struct irq_domain *h, unsigned int virq,
1200 irq_hw_number_t hw)
1201 {
1202 struct soctherm_oc_irq_chip_data *data = h->host_data;
1203
1204 irq_set_chip_data(virq, data);
1205 irq_set_chip(virq, &data->irq_chip);
1206 irq_set_nested_thread(virq, 1);
1207 return 0;
1208 }
1209
1210 /**
1211 * soctherm_irq_domain_xlate_twocell() - xlate for soctherm interrupts
1212 * @d: Interrupt request domain
1213 * @ctrlr: Controller device tree node
1214 * @intspec: Array of u32s from DTs "interrupt" property
1215 * @intsize: Number of values inside the intspec array
1216 * @out_hwirq: HW IRQ value associated with this interrupt
1217 * @out_type: The IRQ SENSE type for this interrupt.
1218 *
1219 * This Device Tree IRQ specifier translation function will translate a
1220 * specific "interrupt" as defined by 2 DT values where the cell values map
1221 * the hwirq number + 1 and linux irq flags. Since the output is the hwirq
1222 * number, this function will subtract 1 from the value listed in DT.
1223 *
1224 * Return: 0
1225 */
soctherm_irq_domain_xlate_twocell(struct irq_domain * d,struct device_node * ctrlr,const u32 * intspec,unsigned int intsize,irq_hw_number_t * out_hwirq,unsigned int * out_type)1226 static int soctherm_irq_domain_xlate_twocell(struct irq_domain *d,
1227 struct device_node *ctrlr, const u32 *intspec, unsigned int intsize,
1228 irq_hw_number_t *out_hwirq, unsigned int *out_type)
1229 {
1230 if (WARN_ON(intsize < 2))
1231 return -EINVAL;
1232
1233 /*
1234 * The HW value is 1 index less than the DT IRQ values.
1235 * i.e. OC4 goes to HW index 3.
1236 */
1237 *out_hwirq = intspec[0] - 1;
1238 *out_type = intspec[1] & IRQ_TYPE_SENSE_MASK;
1239 return 0;
1240 }
1241
1242 static const struct irq_domain_ops soctherm_oc_domain_ops = {
1243 .map = soctherm_oc_irq_map,
1244 .xlate = soctherm_irq_domain_xlate_twocell,
1245 };
1246
1247 /**
1248 * soctherm_oc_int_init() - Initial enabling of the over
1249 * current interrupts
1250 * @np: The devicetree node for soctherm
1251 * @num_irqs: The number of new interrupt requests
1252 *
1253 * Sets the over current interrupt request chip data
1254 *
1255 * Return: 0 on success or if overcurrent interrupts are not enabled,
1256 * -ENOMEM (out of memory), or irq_base if the function failed to
1257 * allocate the irqs
1258 */
soctherm_oc_int_init(struct device_node * np,int num_irqs)1259 static int soctherm_oc_int_init(struct device_node *np, int num_irqs)
1260 {
1261 if (!num_irqs) {
1262 pr_info("%s(): OC interrupts are not enabled\n", __func__);
1263 return 0;
1264 }
1265
1266 mutex_init(&soc_irq_cdata.irq_lock);
1267 soc_irq_cdata.irq_enable = 0;
1268
1269 soc_irq_cdata.irq_chip.name = "soc_therm_oc";
1270 soc_irq_cdata.irq_chip.irq_bus_lock = soctherm_oc_irq_lock;
1271 soc_irq_cdata.irq_chip.irq_bus_sync_unlock =
1272 soctherm_oc_irq_sync_unlock;
1273 soc_irq_cdata.irq_chip.irq_disable = soctherm_oc_irq_disable;
1274 soc_irq_cdata.irq_chip.irq_enable = soctherm_oc_irq_enable;
1275 soc_irq_cdata.irq_chip.irq_set_type = soctherm_oc_irq_set_type;
1276 soc_irq_cdata.irq_chip.irq_set_wake = NULL;
1277
1278 soc_irq_cdata.domain = irq_domain_add_linear(np, num_irqs,
1279 &soctherm_oc_domain_ops,
1280 &soc_irq_cdata);
1281
1282 if (!soc_irq_cdata.domain) {
1283 pr_err("%s: Failed to create IRQ domain\n", __func__);
1284 return -ENOMEM;
1285 }
1286
1287 pr_debug("%s(): OC interrupts enabled successful\n", __func__);
1288 return 0;
1289 }
1290
1291 #ifdef CONFIG_DEBUG_FS
regs_show(struct seq_file * s,void * data)1292 static int regs_show(struct seq_file *s, void *data)
1293 {
1294 struct platform_device *pdev = s->private;
1295 struct tegra_soctherm *ts = platform_get_drvdata(pdev);
1296 const struct tegra_tsensor *tsensors = ts->soc->tsensors;
1297 const struct tegra_tsensor_group **ttgs = ts->soc->ttgs;
1298 u32 r, state;
1299 int i, level;
1300
1301 seq_puts(s, "-----TSENSE (convert HW)-----\n");
1302
1303 for (i = 0; i < ts->soc->num_tsensors; i++) {
1304 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG1);
1305 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEMP_ENABLE);
1306
1307 seq_printf(s, "%s: ", tsensors[i].name);
1308 seq_printf(s, "En(%d) ", state);
1309
1310 if (!state) {
1311 seq_puts(s, "\n");
1312 continue;
1313 }
1314
1315 state = REG_GET_MASK(r, SENSOR_CONFIG1_TIDDQ_EN_MASK);
1316 seq_printf(s, "tiddq(%d) ", state);
1317 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEN_COUNT_MASK);
1318 seq_printf(s, "ten_count(%d) ", state);
1319 state = REG_GET_MASK(r, SENSOR_CONFIG1_TSAMPLE_MASK);
1320 seq_printf(s, "tsample(%d) ", state + 1);
1321
1322 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS1);
1323 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_VALID_MASK);
1324 seq_printf(s, "Temp(%d/", state);
1325 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_MASK);
1326 seq_printf(s, "%d) ", translate_temp(state));
1327
1328 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS0);
1329 state = REG_GET_MASK(r, SENSOR_STATUS0_VALID_MASK);
1330 seq_printf(s, "Capture(%d/", state);
1331 state = REG_GET_MASK(r, SENSOR_STATUS0_CAPTURE_MASK);
1332 seq_printf(s, "%d) ", state);
1333
1334 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG0);
1335 state = REG_GET_MASK(r, SENSOR_CONFIG0_STOP);
1336 seq_printf(s, "Stop(%d) ", state);
1337 state = REG_GET_MASK(r, SENSOR_CONFIG0_TALL_MASK);
1338 seq_printf(s, "Tall(%d) ", state);
1339 state = REG_GET_MASK(r, SENSOR_CONFIG0_TCALC_OVER);
1340 seq_printf(s, "Over(%d/", state);
1341 state = REG_GET_MASK(r, SENSOR_CONFIG0_OVER);
1342 seq_printf(s, "%d/", state);
1343 state = REG_GET_MASK(r, SENSOR_CONFIG0_CPTR_OVER);
1344 seq_printf(s, "%d) ", state);
1345
1346 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG2);
1347 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMA_MASK);
1348 seq_printf(s, "Therm_A/B(%d/", state);
1349 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMB_MASK);
1350 seq_printf(s, "%d)\n", (s16)state);
1351 }
1352
1353 r = readl(ts->regs + SENSOR_PDIV);
1354 seq_printf(s, "PDIV: 0x%x\n", r);
1355
1356 r = readl(ts->regs + SENSOR_HOTSPOT_OFF);
1357 seq_printf(s, "HOTSPOT: 0x%x\n", r);
1358
1359 seq_puts(s, "\n");
1360 seq_puts(s, "-----SOC_THERM-----\n");
1361
1362 r = readl(ts->regs + SENSOR_TEMP1);
1363 state = REG_GET_MASK(r, SENSOR_TEMP1_CPU_TEMP_MASK);
1364 seq_printf(s, "Temperatures: CPU(%d) ", translate_temp(state));
1365 state = REG_GET_MASK(r, SENSOR_TEMP1_GPU_TEMP_MASK);
1366 seq_printf(s, " GPU(%d) ", translate_temp(state));
1367 r = readl(ts->regs + SENSOR_TEMP2);
1368 state = REG_GET_MASK(r, SENSOR_TEMP2_PLLX_TEMP_MASK);
1369 seq_printf(s, " PLLX(%d) ", translate_temp(state));
1370 state = REG_GET_MASK(r, SENSOR_TEMP2_MEM_TEMP_MASK);
1371 seq_printf(s, " MEM(%d)\n", translate_temp(state));
1372
1373 for (i = 0; i < ts->soc->num_ttgs; i++) {
1374 seq_printf(s, "%s:\n", ttgs[i]->name);
1375 for (level = 0; level < 4; level++) {
1376 s32 v;
1377 u32 mask;
1378 u16 off = ttgs[i]->thermctl_lvl0_offset;
1379
1380 r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1381
1382 mask = ttgs[i]->thermctl_lvl0_up_thresh_mask;
1383 state = REG_GET_MASK(r, mask);
1384 v = sign_extend32(state, ts->soc->bptt - 1);
1385 v *= ts->soc->thresh_grain;
1386 seq_printf(s, " %d: Up/Dn(%d /", level, v);
1387
1388 mask = ttgs[i]->thermctl_lvl0_dn_thresh_mask;
1389 state = REG_GET_MASK(r, mask);
1390 v = sign_extend32(state, ts->soc->bptt - 1);
1391 v *= ts->soc->thresh_grain;
1392 seq_printf(s, "%d ) ", v);
1393
1394 mask = THERMCTL_LVL0_CPU0_EN_MASK;
1395 state = REG_GET_MASK(r, mask);
1396 seq_printf(s, "En(%d) ", state);
1397
1398 mask = THERMCTL_LVL0_CPU0_CPU_THROT_MASK;
1399 state = REG_GET_MASK(r, mask);
1400 seq_puts(s, "CPU Throt");
1401 if (!state)
1402 seq_printf(s, "(%s) ", "none");
1403 else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT)
1404 seq_printf(s, "(%s) ", "L");
1405 else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY)
1406 seq_printf(s, "(%s) ", "H");
1407 else
1408 seq_printf(s, "(%s) ", "H+L");
1409
1410 mask = THERMCTL_LVL0_CPU0_GPU_THROT_MASK;
1411 state = REG_GET_MASK(r, mask);
1412 seq_puts(s, "GPU Throt");
1413 if (!state)
1414 seq_printf(s, "(%s) ", "none");
1415 else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT)
1416 seq_printf(s, "(%s) ", "L");
1417 else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY)
1418 seq_printf(s, "(%s) ", "H");
1419 else
1420 seq_printf(s, "(%s) ", "H+L");
1421
1422 mask = THERMCTL_LVL0_CPU0_STATUS_MASK;
1423 state = REG_GET_MASK(r, mask);
1424 seq_printf(s, "Status(%s)\n",
1425 state == 0 ? "LO" :
1426 state == 1 ? "In" :
1427 state == 2 ? "Res" : "HI");
1428 }
1429 }
1430
1431 r = readl(ts->regs + THERMCTL_STATS_CTL);
1432 seq_printf(s, "STATS: Up(%s) Dn(%s)\n",
1433 r & STATS_CTL_EN_UP ? "En" : "--",
1434 r & STATS_CTL_EN_DN ? "En" : "--");
1435
1436 for (level = 0; level < 4; level++) {
1437 u16 off;
1438
1439 off = THERMCTL_LVL0_UP_STATS;
1440 r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1441 seq_printf(s, " Level_%d Up(%d) ", level, r);
1442
1443 off = THERMCTL_LVL0_DN_STATS;
1444 r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1445 seq_printf(s, "Dn(%d)\n", r);
1446 }
1447
1448 r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
1449 state = REG_GET_MASK(r, ttgs[0]->thermtrip_any_en_mask);
1450 seq_printf(s, "Thermtrip Any En(%d)\n", state);
1451 for (i = 0; i < ts->soc->num_ttgs; i++) {
1452 state = REG_GET_MASK(r, ttgs[i]->thermtrip_enable_mask);
1453 seq_printf(s, " %s En(%d) ", ttgs[i]->name, state);
1454 state = REG_GET_MASK(r, ttgs[i]->thermtrip_threshold_mask);
1455 state *= ts->soc->thresh_grain;
1456 seq_printf(s, "Thresh(%d)\n", state);
1457 }
1458
1459 r = readl(ts->regs + THROT_GLOBAL_CFG);
1460 seq_puts(s, "\n");
1461 seq_printf(s, "GLOBAL THROTTLE CONFIG: 0x%08x\n", r);
1462
1463 seq_puts(s, "---------------------------------------------------\n");
1464 r = readl(ts->regs + THROT_STATUS);
1465 state = REG_GET_MASK(r, THROT_STATUS_BREACH_MASK);
1466 seq_printf(s, "THROT STATUS: breach(%d) ", state);
1467 state = REG_GET_MASK(r, THROT_STATUS_STATE_MASK);
1468 seq_printf(s, "state(%d) ", state);
1469 state = REG_GET_MASK(r, THROT_STATUS_ENABLED_MASK);
1470 seq_printf(s, "enabled(%d)\n", state);
1471
1472 r = readl(ts->regs + CPU_PSKIP_STATUS);
1473 if (ts->soc->use_ccroc) {
1474 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
1475 seq_printf(s, "CPU PSKIP STATUS: enabled(%d)\n", state);
1476 } else {
1477 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_M_MASK);
1478 seq_printf(s, "CPU PSKIP STATUS: M(%d) ", state);
1479 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_N_MASK);
1480 seq_printf(s, "N(%d) ", state);
1481 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
1482 seq_printf(s, "enabled(%d)\n", state);
1483 }
1484
1485 return 0;
1486 }
1487
1488 DEFINE_SHOW_ATTRIBUTE(regs);
1489
soctherm_debug_init(struct platform_device * pdev)1490 static void soctherm_debug_init(struct platform_device *pdev)
1491 {
1492 struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1493 struct dentry *root;
1494
1495 root = debugfs_create_dir("soctherm", NULL);
1496
1497 tegra->debugfs_dir = root;
1498
1499 debugfs_create_file("reg_contents", 0644, root, pdev, ®s_fops);
1500 }
1501 #else
soctherm_debug_init(struct platform_device * pdev)1502 static inline void soctherm_debug_init(struct platform_device *pdev) {}
1503 #endif
1504
soctherm_clk_enable(struct platform_device * pdev,bool enable)1505 static int soctherm_clk_enable(struct platform_device *pdev, bool enable)
1506 {
1507 struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1508 int err;
1509
1510 if (!tegra->clock_soctherm || !tegra->clock_tsensor)
1511 return -EINVAL;
1512
1513 reset_control_assert(tegra->reset);
1514
1515 if (enable) {
1516 err = clk_prepare_enable(tegra->clock_soctherm);
1517 if (err) {
1518 reset_control_deassert(tegra->reset);
1519 return err;
1520 }
1521
1522 err = clk_prepare_enable(tegra->clock_tsensor);
1523 if (err) {
1524 clk_disable_unprepare(tegra->clock_soctherm);
1525 reset_control_deassert(tegra->reset);
1526 return err;
1527 }
1528 } else {
1529 clk_disable_unprepare(tegra->clock_tsensor);
1530 clk_disable_unprepare(tegra->clock_soctherm);
1531 }
1532
1533 reset_control_deassert(tegra->reset);
1534
1535 return 0;
1536 }
1537
throt_get_cdev_max_state(struct thermal_cooling_device * cdev,unsigned long * max_state)1538 static int throt_get_cdev_max_state(struct thermal_cooling_device *cdev,
1539 unsigned long *max_state)
1540 {
1541 *max_state = 1;
1542 return 0;
1543 }
1544
throt_get_cdev_cur_state(struct thermal_cooling_device * cdev,unsigned long * cur_state)1545 static int throt_get_cdev_cur_state(struct thermal_cooling_device *cdev,
1546 unsigned long *cur_state)
1547 {
1548 struct tegra_soctherm *ts = cdev->devdata;
1549 u32 r;
1550
1551 r = readl(ts->regs + THROT_STATUS);
1552 if (REG_GET_MASK(r, THROT_STATUS_STATE_MASK))
1553 *cur_state = 1;
1554 else
1555 *cur_state = 0;
1556
1557 return 0;
1558 }
1559
throt_set_cdev_state(struct thermal_cooling_device * cdev,unsigned long cur_state)1560 static int throt_set_cdev_state(struct thermal_cooling_device *cdev,
1561 unsigned long cur_state)
1562 {
1563 return 0;
1564 }
1565
1566 static const struct thermal_cooling_device_ops throt_cooling_ops = {
1567 .get_max_state = throt_get_cdev_max_state,
1568 .get_cur_state = throt_get_cdev_cur_state,
1569 .set_cur_state = throt_set_cdev_state,
1570 };
1571
soctherm_thermtrips_parse(struct platform_device * pdev)1572 static int soctherm_thermtrips_parse(struct platform_device *pdev)
1573 {
1574 struct device *dev = &pdev->dev;
1575 struct tegra_soctherm *ts = dev_get_drvdata(dev);
1576 struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
1577 const int max_num_prop = ts->soc->num_ttgs * 2;
1578 u32 *tlb;
1579 int i, j, n, ret;
1580
1581 if (!tt)
1582 return -ENOMEM;
1583
1584 n = of_property_count_u32_elems(dev->of_node, "nvidia,thermtrips");
1585 if (n <= 0) {
1586 dev_info(dev,
1587 "missing thermtrips, will use critical trips as shut down temp\n");
1588 return n;
1589 }
1590
1591 n = min(max_num_prop, n);
1592
1593 tlb = devm_kcalloc(&pdev->dev, max_num_prop, sizeof(u32), GFP_KERNEL);
1594 if (!tlb)
1595 return -ENOMEM;
1596 ret = of_property_read_u32_array(dev->of_node, "nvidia,thermtrips",
1597 tlb, n);
1598 if (ret) {
1599 dev_err(dev, "invalid num ele: thermtrips:%d\n", ret);
1600 return ret;
1601 }
1602
1603 i = 0;
1604 for (j = 0; j < n; j = j + 2) {
1605 if (tlb[j] >= TEGRA124_SOCTHERM_SENSOR_NUM)
1606 continue;
1607
1608 tt[i].id = tlb[j];
1609 tt[i].temp = tlb[j + 1];
1610 i++;
1611 }
1612
1613 return 0;
1614 }
1615
soctherm_oc_cfg_parse(struct device * dev,struct device_node * np_oc,struct soctherm_throt_cfg * stc)1616 static void soctherm_oc_cfg_parse(struct device *dev,
1617 struct device_node *np_oc,
1618 struct soctherm_throt_cfg *stc)
1619 {
1620 u32 val;
1621
1622 if (of_property_read_bool(np_oc, "nvidia,polarity-active-low"))
1623 stc->oc_cfg.active_low = 1;
1624 else
1625 stc->oc_cfg.active_low = 0;
1626
1627 if (!of_property_read_u32(np_oc, "nvidia,count-threshold", &val)) {
1628 stc->oc_cfg.intr_en = 1;
1629 stc->oc_cfg.alarm_cnt_thresh = val;
1630 }
1631
1632 if (!of_property_read_u32(np_oc, "nvidia,throttle-period-us", &val))
1633 stc->oc_cfg.throt_period = val;
1634
1635 if (!of_property_read_u32(np_oc, "nvidia,alarm-filter", &val))
1636 stc->oc_cfg.alarm_filter = val;
1637
1638 /* BRIEF throttling by default, do not support STICKY */
1639 stc->oc_cfg.mode = OC_THROTTLE_MODE_BRIEF;
1640 }
1641
soctherm_throt_cfg_parse(struct device * dev,struct device_node * np,struct soctherm_throt_cfg * stc)1642 static int soctherm_throt_cfg_parse(struct device *dev,
1643 struct device_node *np,
1644 struct soctherm_throt_cfg *stc)
1645 {
1646 struct tegra_soctherm *ts = dev_get_drvdata(dev);
1647 int ret;
1648 u32 val;
1649
1650 ret = of_property_read_u32(np, "nvidia,priority", &val);
1651 if (ret) {
1652 dev_err(dev, "throttle-cfg: %s: invalid priority\n", stc->name);
1653 return -EINVAL;
1654 }
1655 stc->priority = val;
1656
1657 ret = of_property_read_u32(np, ts->soc->use_ccroc ?
1658 "nvidia,cpu-throt-level" :
1659 "nvidia,cpu-throt-percent", &val);
1660 if (!ret) {
1661 if (ts->soc->use_ccroc &&
1662 val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
1663 stc->cpu_throt_level = val;
1664 else if (!ts->soc->use_ccroc && val <= 100)
1665 stc->cpu_throt_depth = val;
1666 else
1667 goto err;
1668 } else {
1669 goto err;
1670 }
1671
1672 ret = of_property_read_u32(np, "nvidia,gpu-throt-level", &val);
1673 if (!ret && val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
1674 stc->gpu_throt_level = val;
1675 else
1676 goto err;
1677
1678 return 0;
1679
1680 err:
1681 dev_err(dev, "throttle-cfg: %s: no throt prop or invalid prop\n",
1682 stc->name);
1683 return -EINVAL;
1684 }
1685
1686 /**
1687 * soctherm_init_hw_throt_cdev() - Parse the HW throttle configurations
1688 * and register them as cooling devices.
1689 * @pdev: Pointer to platform_device struct
1690 */
soctherm_init_hw_throt_cdev(struct platform_device * pdev)1691 static void soctherm_init_hw_throt_cdev(struct platform_device *pdev)
1692 {
1693 struct device *dev = &pdev->dev;
1694 struct tegra_soctherm *ts = dev_get_drvdata(dev);
1695 struct device_node *np_stc, *np_stcc;
1696 const char *name;
1697 int i;
1698
1699 for (i = 0; i < THROTTLE_SIZE; i++) {
1700 ts->throt_cfgs[i].name = throt_names[i];
1701 ts->throt_cfgs[i].id = i;
1702 ts->throt_cfgs[i].init = false;
1703 }
1704
1705 np_stc = of_get_child_by_name(dev->of_node, "throttle-cfgs");
1706 if (!np_stc) {
1707 dev_info(dev,
1708 "throttle-cfg: no throttle-cfgs - not enabling\n");
1709 return;
1710 }
1711
1712 for_each_child_of_node(np_stc, np_stcc) {
1713 struct soctherm_throt_cfg *stc;
1714 struct thermal_cooling_device *tcd;
1715 int err;
1716
1717 name = np_stcc->name;
1718 stc = find_throttle_cfg_by_name(ts, name);
1719 if (!stc) {
1720 dev_err(dev,
1721 "throttle-cfg: could not find %s\n", name);
1722 continue;
1723 }
1724
1725 if (stc->init) {
1726 dev_err(dev, "throttle-cfg: %s: redefined!\n", name);
1727 of_node_put(np_stcc);
1728 break;
1729 }
1730
1731 err = soctherm_throt_cfg_parse(dev, np_stcc, stc);
1732 if (err)
1733 continue;
1734
1735 if (stc->id >= THROTTLE_OC1) {
1736 soctherm_oc_cfg_parse(dev, np_stcc, stc);
1737 stc->init = true;
1738 } else {
1739
1740 tcd = thermal_of_cooling_device_register(np_stcc,
1741 (char *)name, ts,
1742 &throt_cooling_ops);
1743 if (IS_ERR_OR_NULL(tcd)) {
1744 dev_err(dev,
1745 "throttle-cfg: %s: failed to register cooling device\n",
1746 name);
1747 continue;
1748 }
1749 stc->cdev = tcd;
1750 stc->init = true;
1751 }
1752
1753 }
1754
1755 of_node_put(np_stc);
1756 }
1757
1758 /**
1759 * throttlectl_cpu_level_cfg() - programs CCROC NV_THERM level config
1760 * @ts: pointer to a struct tegra_soctherm
1761 * @level: describing the level LOW/MED/HIGH of throttling
1762 *
1763 * It's necessary to set up the CPU-local CCROC NV_THERM instance with
1764 * the M/N values desired for each level. This function does this.
1765 *
1766 * This function pre-programs the CCROC NV_THERM levels in terms of
1767 * pre-configured "Low", "Medium" or "Heavy" throttle levels which are
1768 * mapped to THROT_LEVEL_LOW, THROT_LEVEL_MED and THROT_LEVEL_HVY.
1769 */
throttlectl_cpu_level_cfg(struct tegra_soctherm * ts,int level)1770 static void throttlectl_cpu_level_cfg(struct tegra_soctherm *ts, int level)
1771 {
1772 u8 depth, dividend;
1773 u32 r;
1774
1775 switch (level) {
1776 case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1777 depth = 50;
1778 break;
1779 case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1780 depth = 75;
1781 break;
1782 case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1783 depth = 80;
1784 break;
1785 case TEGRA_SOCTHERM_THROT_LEVEL_NONE:
1786 return;
1787 default:
1788 return;
1789 }
1790
1791 dividend = THROT_DEPTH_DIVIDEND(depth);
1792
1793 /* setup PSKIP in ccroc nv_therm registers */
1794 r = ccroc_readl(ts, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1795 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1796 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1797 ccroc_writel(ts, r, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1798
1799 r = ccroc_readl(ts, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1800 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_ENB_MASK, 1);
1801 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1802 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1803 ccroc_writel(ts, r, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1804 }
1805
1806 /**
1807 * throttlectl_cpu_level_select() - program CPU pulse skipper config
1808 * @ts: pointer to a struct tegra_soctherm
1809 * @throt: the LIGHT/HEAVY of throttle event id
1810 *
1811 * Pulse skippers are used to throttle clock frequencies. This
1812 * function programs the pulse skippers based on @throt and platform
1813 * data. This function is used on SoCs which have CPU-local pulse
1814 * skipper control, such as T13x. It programs soctherm's interface to
1815 * Denver:CCROC NV_THERM in terms of Low, Medium and HIGH throttling
1816 * vectors. PSKIP_BYPASS mode is set as required per HW spec.
1817 */
throttlectl_cpu_level_select(struct tegra_soctherm * ts,enum soctherm_throttle_id throt)1818 static void throttlectl_cpu_level_select(struct tegra_soctherm *ts,
1819 enum soctherm_throttle_id throt)
1820 {
1821 u32 r, throt_vect;
1822
1823 /* Denver:CCROC NV_THERM interface N:3 Mapping */
1824 switch (ts->throt_cfgs[throt].cpu_throt_level) {
1825 case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1826 throt_vect = THROT_VECT_LOW;
1827 break;
1828 case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1829 throt_vect = THROT_VECT_MED;
1830 break;
1831 case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1832 throt_vect = THROT_VECT_HIGH;
1833 break;
1834 default:
1835 throt_vect = THROT_VECT_NONE;
1836 break;
1837 }
1838
1839 r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1840 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1841 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_CPU_MASK, throt_vect);
1842 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT2_CPU_MASK, throt_vect);
1843 writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1844
1845 /* bypass sequencer in soc_therm as it is programmed in ccroc */
1846 r = REG_SET_MASK(0, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK, 1);
1847 writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1848 }
1849
1850 /**
1851 * throttlectl_cpu_mn() - program CPU pulse skipper configuration
1852 * @ts: pointer to a struct tegra_soctherm
1853 * @throt: the LIGHT/HEAVY of throttle event id
1854 *
1855 * Pulse skippers are used to throttle clock frequencies. This
1856 * function programs the pulse skippers based on @throt and platform
1857 * data. This function is used for CPUs that have "remote" pulse
1858 * skipper control, e.g., the CPU pulse skipper is controlled by the
1859 * SOC_THERM IP block. (SOC_THERM is located outside the CPU
1860 * complex.)
1861 */
throttlectl_cpu_mn(struct tegra_soctherm * ts,enum soctherm_throttle_id throt)1862 static void throttlectl_cpu_mn(struct tegra_soctherm *ts,
1863 enum soctherm_throttle_id throt)
1864 {
1865 u32 r;
1866 int depth;
1867 u8 dividend;
1868
1869 depth = ts->throt_cfgs[throt].cpu_throt_depth;
1870 dividend = THROT_DEPTH_DIVIDEND(depth);
1871
1872 r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1873 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1874 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1875 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1876 writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1877
1878 r = readl(ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1879 r = REG_SET_MASK(r, THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1880 r = REG_SET_MASK(r, THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1881 writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1882 }
1883
1884 /**
1885 * throttlectl_gpu_level_select() - selects throttling level for GPU
1886 * @ts: pointer to a struct tegra_soctherm
1887 * @throt: the LIGHT/HEAVY of throttle event id
1888 *
1889 * This function programs soctherm's interface to GK20a NV_THERM to select
1890 * pre-configured "Low", "Medium" or "Heavy" throttle levels.
1891 *
1892 * Return: boolean true if HW was programmed
1893 */
throttlectl_gpu_level_select(struct tegra_soctherm * ts,enum soctherm_throttle_id throt)1894 static void throttlectl_gpu_level_select(struct tegra_soctherm *ts,
1895 enum soctherm_throttle_id throt)
1896 {
1897 u32 r, level, throt_vect;
1898
1899 level = ts->throt_cfgs[throt].gpu_throt_level;
1900 throt_vect = THROT_LEVEL_TO_DEPTH(level);
1901 r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
1902 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1903 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_GPU_MASK, throt_vect);
1904 writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
1905 }
1906
soctherm_oc_cfg_program(struct tegra_soctherm * ts,enum soctherm_throttle_id throt)1907 static int soctherm_oc_cfg_program(struct tegra_soctherm *ts,
1908 enum soctherm_throttle_id throt)
1909 {
1910 u32 r;
1911 struct soctherm_oc_cfg *oc = &ts->throt_cfgs[throt].oc_cfg;
1912
1913 if (oc->mode == OC_THROTTLE_MODE_DISABLED)
1914 return -EINVAL;
1915
1916 r = REG_SET_MASK(0, OC1_CFG_HW_RESTORE_MASK, 1);
1917 r = REG_SET_MASK(r, OC1_CFG_THROTTLE_MODE_MASK, oc->mode);
1918 r = REG_SET_MASK(r, OC1_CFG_ALARM_POLARITY_MASK, oc->active_low);
1919 r = REG_SET_MASK(r, OC1_CFG_EN_THROTTLE_MASK, 1);
1920 writel(r, ts->regs + ALARM_CFG(throt));
1921 writel(oc->throt_period, ts->regs + ALARM_THROTTLE_PERIOD(throt));
1922 writel(oc->alarm_cnt_thresh, ts->regs + ALARM_CNT_THRESHOLD(throt));
1923 writel(oc->alarm_filter, ts->regs + ALARM_FILTER(throt));
1924 soctherm_oc_intr_enable(ts, throt, oc->intr_en);
1925
1926 return 0;
1927 }
1928
1929 /**
1930 * soctherm_throttle_program() - programs pulse skippers' configuration
1931 * @ts: pointer to a struct tegra_soctherm
1932 * @throt: the LIGHT/HEAVY of the throttle event id.
1933 *
1934 * Pulse skippers are used to throttle clock frequencies.
1935 * This function programs the pulse skippers.
1936 */
soctherm_throttle_program(struct tegra_soctherm * ts,enum soctherm_throttle_id throt)1937 static void soctherm_throttle_program(struct tegra_soctherm *ts,
1938 enum soctherm_throttle_id throt)
1939 {
1940 u32 r;
1941 struct soctherm_throt_cfg stc = ts->throt_cfgs[throt];
1942
1943 if (!stc.init)
1944 return;
1945
1946 if ((throt >= THROTTLE_OC1) && (soctherm_oc_cfg_program(ts, throt)))
1947 return;
1948
1949 /* Setup PSKIP parameters */
1950 if (ts->soc->use_ccroc)
1951 throttlectl_cpu_level_select(ts, throt);
1952 else
1953 throttlectl_cpu_mn(ts, throt);
1954
1955 throttlectl_gpu_level_select(ts, throt);
1956
1957 r = REG_SET_MASK(0, THROT_PRIORITY_LITE_PRIO_MASK, stc.priority);
1958 writel(r, ts->regs + THROT_PRIORITY_CTRL(throt));
1959
1960 r = REG_SET_MASK(0, THROT_DELAY_LITE_DELAY_MASK, 0);
1961 writel(r, ts->regs + THROT_DELAY_CTRL(throt));
1962
1963 r = readl(ts->regs + THROT_PRIORITY_LOCK);
1964 r = REG_GET_MASK(r, THROT_PRIORITY_LOCK_PRIORITY_MASK);
1965 if (r >= stc.priority)
1966 return;
1967 r = REG_SET_MASK(0, THROT_PRIORITY_LOCK_PRIORITY_MASK,
1968 stc.priority);
1969 writel(r, ts->regs + THROT_PRIORITY_LOCK);
1970 }
1971
tegra_soctherm_throttle(struct device * dev)1972 static void tegra_soctherm_throttle(struct device *dev)
1973 {
1974 struct tegra_soctherm *ts = dev_get_drvdata(dev);
1975 u32 v;
1976 int i;
1977
1978 /* configure LOW, MED and HIGH levels for CCROC NV_THERM */
1979 if (ts->soc->use_ccroc) {
1980 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_LOW);
1981 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_MED);
1982 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_HIGH);
1983 }
1984
1985 /* Thermal HW throttle programming */
1986 for (i = 0; i < THROTTLE_SIZE; i++)
1987 soctherm_throttle_program(ts, i);
1988
1989 v = REG_SET_MASK(0, THROT_GLOBAL_ENB_MASK, 1);
1990 if (ts->soc->use_ccroc) {
1991 ccroc_writel(ts, v, CCROC_GLOBAL_CFG);
1992
1993 v = ccroc_readl(ts, CCROC_SUPER_CCLKG_DIVIDER);
1994 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
1995 ccroc_writel(ts, v, CCROC_SUPER_CCLKG_DIVIDER);
1996 } else {
1997 writel(v, ts->regs + THROT_GLOBAL_CFG);
1998
1999 v = readl(ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
2000 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
2001 writel(v, ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
2002 }
2003
2004 /* initialize stats collection */
2005 v = STATS_CTL_CLR_DN | STATS_CTL_EN_DN |
2006 STATS_CTL_CLR_UP | STATS_CTL_EN_UP;
2007 writel(v, ts->regs + THERMCTL_STATS_CTL);
2008 }
2009
soctherm_interrupts_init(struct platform_device * pdev,struct tegra_soctherm * tegra)2010 static int soctherm_interrupts_init(struct platform_device *pdev,
2011 struct tegra_soctherm *tegra)
2012 {
2013 struct device_node *np = pdev->dev.of_node;
2014 int ret;
2015
2016 ret = soctherm_oc_int_init(np, TEGRA_SOC_OC_IRQ_MAX);
2017 if (ret < 0) {
2018 dev_err(&pdev->dev, "soctherm_oc_int_init failed\n");
2019 return ret;
2020 }
2021
2022 tegra->thermal_irq = platform_get_irq(pdev, 0);
2023 if (tegra->thermal_irq < 0) {
2024 dev_dbg(&pdev->dev, "get 'thermal_irq' failed.\n");
2025 return 0;
2026 }
2027
2028 tegra->edp_irq = platform_get_irq(pdev, 1);
2029 if (tegra->edp_irq < 0) {
2030 dev_dbg(&pdev->dev, "get 'edp_irq' failed.\n");
2031 return 0;
2032 }
2033
2034 ret = devm_request_threaded_irq(&pdev->dev,
2035 tegra->thermal_irq,
2036 soctherm_thermal_isr,
2037 soctherm_thermal_isr_thread,
2038 IRQF_ONESHOT,
2039 dev_name(&pdev->dev),
2040 tegra);
2041 if (ret < 0) {
2042 dev_err(&pdev->dev, "request_irq 'thermal_irq' failed.\n");
2043 return ret;
2044 }
2045
2046 ret = devm_request_threaded_irq(&pdev->dev,
2047 tegra->edp_irq,
2048 soctherm_edp_isr,
2049 soctherm_edp_isr_thread,
2050 IRQF_ONESHOT,
2051 "soctherm_edp",
2052 tegra);
2053 if (ret < 0) {
2054 dev_err(&pdev->dev, "request_irq 'edp_irq' failed.\n");
2055 return ret;
2056 }
2057
2058 return 0;
2059 }
2060
soctherm_init(struct platform_device * pdev)2061 static void soctherm_init(struct platform_device *pdev)
2062 {
2063 struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2064 const struct tegra_tsensor_group **ttgs = tegra->soc->ttgs;
2065 int i;
2066 u32 pdiv, hotspot;
2067
2068 /* Initialize raw sensors */
2069 for (i = 0; i < tegra->soc->num_tsensors; ++i)
2070 enable_tsensor(tegra, i);
2071
2072 /* program pdiv and hotspot offsets per THERM */
2073 pdiv = readl(tegra->regs + SENSOR_PDIV);
2074 hotspot = readl(tegra->regs + SENSOR_HOTSPOT_OFF);
2075 for (i = 0; i < tegra->soc->num_ttgs; ++i) {
2076 pdiv = REG_SET_MASK(pdiv, ttgs[i]->pdiv_mask,
2077 ttgs[i]->pdiv);
2078 /* hotspot offset from PLLX, doesn't need to configure PLLX */
2079 if (ttgs[i]->id == TEGRA124_SOCTHERM_SENSOR_PLLX)
2080 continue;
2081 hotspot = REG_SET_MASK(hotspot,
2082 ttgs[i]->pllx_hotspot_mask,
2083 ttgs[i]->pllx_hotspot_diff);
2084 }
2085 writel(pdiv, tegra->regs + SENSOR_PDIV);
2086 writel(hotspot, tegra->regs + SENSOR_HOTSPOT_OFF);
2087
2088 /* Configure hw throttle */
2089 tegra_soctherm_throttle(&pdev->dev);
2090 }
2091
2092 static const struct of_device_id tegra_soctherm_of_match[] = {
2093 #ifdef CONFIG_ARCH_TEGRA_124_SOC
2094 {
2095 .compatible = "nvidia,tegra124-soctherm",
2096 .data = &tegra124_soctherm,
2097 },
2098 #endif
2099 #ifdef CONFIG_ARCH_TEGRA_132_SOC
2100 {
2101 .compatible = "nvidia,tegra132-soctherm",
2102 .data = &tegra132_soctherm,
2103 },
2104 #endif
2105 #ifdef CONFIG_ARCH_TEGRA_210_SOC
2106 {
2107 .compatible = "nvidia,tegra210-soctherm",
2108 .data = &tegra210_soctherm,
2109 },
2110 #endif
2111 { },
2112 };
2113 MODULE_DEVICE_TABLE(of, tegra_soctherm_of_match);
2114
tegra_soctherm_probe(struct platform_device * pdev)2115 static int tegra_soctherm_probe(struct platform_device *pdev)
2116 {
2117 const struct of_device_id *match;
2118 struct tegra_soctherm *tegra;
2119 struct thermal_zone_device *z;
2120 struct tsensor_shared_calib shared_calib;
2121 struct resource *res;
2122 struct tegra_soctherm_soc *soc;
2123 unsigned int i;
2124 int err;
2125
2126 match = of_match_node(tegra_soctherm_of_match, pdev->dev.of_node);
2127 if (!match)
2128 return -ENODEV;
2129
2130 soc = (struct tegra_soctherm_soc *)match->data;
2131 if (soc->num_ttgs > TEGRA124_SOCTHERM_SENSOR_NUM)
2132 return -EINVAL;
2133
2134 tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
2135 if (!tegra)
2136 return -ENOMEM;
2137
2138 mutex_init(&tegra->thermctl_lock);
2139 dev_set_drvdata(&pdev->dev, tegra);
2140
2141 tegra->soc = soc;
2142
2143 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2144 "soctherm-reg");
2145 tegra->regs = devm_ioremap_resource(&pdev->dev, res);
2146 if (IS_ERR(tegra->regs)) {
2147 dev_err(&pdev->dev, "can't get soctherm registers");
2148 return PTR_ERR(tegra->regs);
2149 }
2150
2151 if (!tegra->soc->use_ccroc) {
2152 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2153 "car-reg");
2154 tegra->clk_regs = devm_ioremap_resource(&pdev->dev, res);
2155 if (IS_ERR(tegra->clk_regs)) {
2156 dev_err(&pdev->dev, "can't get car clk registers");
2157 return PTR_ERR(tegra->clk_regs);
2158 }
2159 } else {
2160 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2161 "ccroc-reg");
2162 tegra->ccroc_regs = devm_ioremap_resource(&pdev->dev, res);
2163 if (IS_ERR(tegra->ccroc_regs)) {
2164 dev_err(&pdev->dev, "can't get ccroc registers");
2165 return PTR_ERR(tegra->ccroc_regs);
2166 }
2167 }
2168
2169 tegra->reset = devm_reset_control_get(&pdev->dev, "soctherm");
2170 if (IS_ERR(tegra->reset)) {
2171 dev_err(&pdev->dev, "can't get soctherm reset\n");
2172 return PTR_ERR(tegra->reset);
2173 }
2174
2175 tegra->clock_tsensor = devm_clk_get(&pdev->dev, "tsensor");
2176 if (IS_ERR(tegra->clock_tsensor)) {
2177 dev_err(&pdev->dev, "can't get tsensor clock\n");
2178 return PTR_ERR(tegra->clock_tsensor);
2179 }
2180
2181 tegra->clock_soctherm = devm_clk_get(&pdev->dev, "soctherm");
2182 if (IS_ERR(tegra->clock_soctherm)) {
2183 dev_err(&pdev->dev, "can't get soctherm clock\n");
2184 return PTR_ERR(tegra->clock_soctherm);
2185 }
2186
2187 tegra->calib = devm_kcalloc(&pdev->dev,
2188 soc->num_tsensors, sizeof(u32),
2189 GFP_KERNEL);
2190 if (!tegra->calib)
2191 return -ENOMEM;
2192
2193 /* calculate shared calibration data */
2194 err = tegra_calc_shared_calib(soc->tfuse, &shared_calib);
2195 if (err)
2196 return err;
2197
2198 /* calculate tsensor calibaration data */
2199 for (i = 0; i < soc->num_tsensors; ++i) {
2200 err = tegra_calc_tsensor_calib(&soc->tsensors[i],
2201 &shared_calib,
2202 &tegra->calib[i]);
2203 if (err)
2204 return err;
2205 }
2206
2207 tegra->thermctl_tzs = devm_kcalloc(&pdev->dev,
2208 soc->num_ttgs, sizeof(z),
2209 GFP_KERNEL);
2210 if (!tegra->thermctl_tzs)
2211 return -ENOMEM;
2212
2213 err = soctherm_clk_enable(pdev, true);
2214 if (err)
2215 return err;
2216
2217 soctherm_thermtrips_parse(pdev);
2218
2219 soctherm_init_hw_throt_cdev(pdev);
2220
2221 soctherm_init(pdev);
2222
2223 for (i = 0; i < soc->num_ttgs; ++i) {
2224 struct tegra_thermctl_zone *zone =
2225 devm_kzalloc(&pdev->dev, sizeof(*zone), GFP_KERNEL);
2226 if (!zone) {
2227 err = -ENOMEM;
2228 goto disable_clocks;
2229 }
2230
2231 zone->reg = tegra->regs + soc->ttgs[i]->sensor_temp_offset;
2232 zone->dev = &pdev->dev;
2233 zone->sg = soc->ttgs[i];
2234 zone->ts = tegra;
2235
2236 z = devm_thermal_zone_of_sensor_register(&pdev->dev,
2237 soc->ttgs[i]->id, zone,
2238 &tegra_of_thermal_ops);
2239 if (IS_ERR(z)) {
2240 err = PTR_ERR(z);
2241 dev_err(&pdev->dev, "failed to register sensor: %d\n",
2242 err);
2243 goto disable_clocks;
2244 }
2245
2246 zone->tz = z;
2247 tegra->thermctl_tzs[soc->ttgs[i]->id] = z;
2248
2249 /* Configure hw trip points */
2250 err = tegra_soctherm_set_hwtrips(&pdev->dev, soc->ttgs[i], z);
2251 if (err)
2252 goto disable_clocks;
2253 }
2254
2255 err = soctherm_interrupts_init(pdev, tegra);
2256
2257 soctherm_debug_init(pdev);
2258
2259 return 0;
2260
2261 disable_clocks:
2262 soctherm_clk_enable(pdev, false);
2263
2264 return err;
2265 }
2266
tegra_soctherm_remove(struct platform_device * pdev)2267 static int tegra_soctherm_remove(struct platform_device *pdev)
2268 {
2269 struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2270
2271 debugfs_remove_recursive(tegra->debugfs_dir);
2272
2273 soctherm_clk_enable(pdev, false);
2274
2275 return 0;
2276 }
2277
soctherm_suspend(struct device * dev)2278 static int __maybe_unused soctherm_suspend(struct device *dev)
2279 {
2280 struct platform_device *pdev = to_platform_device(dev);
2281
2282 soctherm_clk_enable(pdev, false);
2283
2284 return 0;
2285 }
2286
soctherm_resume(struct device * dev)2287 static int __maybe_unused soctherm_resume(struct device *dev)
2288 {
2289 struct platform_device *pdev = to_platform_device(dev);
2290 struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2291 struct tegra_soctherm_soc *soc = tegra->soc;
2292 int err, i;
2293
2294 err = soctherm_clk_enable(pdev, true);
2295 if (err) {
2296 dev_err(&pdev->dev,
2297 "Resume failed: enable clocks failed\n");
2298 return err;
2299 }
2300
2301 soctherm_init(pdev);
2302
2303 for (i = 0; i < soc->num_ttgs; ++i) {
2304 struct thermal_zone_device *tz;
2305
2306 tz = tegra->thermctl_tzs[soc->ttgs[i]->id];
2307 err = tegra_soctherm_set_hwtrips(dev, soc->ttgs[i], tz);
2308 if (err) {
2309 dev_err(&pdev->dev,
2310 "Resume failed: set hwtrips failed\n");
2311 return err;
2312 }
2313 }
2314
2315 return 0;
2316 }
2317
2318 static SIMPLE_DEV_PM_OPS(tegra_soctherm_pm, soctherm_suspend, soctherm_resume);
2319
2320 static struct platform_driver tegra_soctherm_driver = {
2321 .probe = tegra_soctherm_probe,
2322 .remove = tegra_soctherm_remove,
2323 .driver = {
2324 .name = "tegra_soctherm",
2325 .pm = &tegra_soctherm_pm,
2326 .of_match_table = tegra_soctherm_of_match,
2327 },
2328 };
2329 module_platform_driver(tegra_soctherm_driver);
2330
2331 MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
2332 MODULE_DESCRIPTION("NVIDIA Tegra SOCTHERM thermal management driver");
2333 MODULE_LICENSE("GPL v2");
2334