• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2010, 2014 The Linux Foundation. All rights reserved.  */
3 
4 #include <linux/console.h>
5 #include <linux/init.h>
6 #include <linux/kfifo.h>
7 #include <linux/moduleparam.h>
8 #include <linux/serial.h>
9 #include <linux/serial_core.h>
10 #include <linux/spinlock.h>
11 
12 #include <asm/dcc.h>
13 #include <asm/processor.h>
14 
15 #include "hvc_console.h"
16 
17 /*
18  * Disable DCC driver at runtime. Want driver enabled for GKI, but some devices
19  * do not support the registers and crash when driver pokes the registers
20  */
21 static bool enable;
22 module_param(enable, bool, 0444);
23 
24 /* DCC Status Bits */
25 #define DCC_STATUS_RX		(1 << 30)
26 #define DCC_STATUS_TX		(1 << 29)
27 
dcc_uart_console_putchar(struct uart_port * port,int ch)28 static void dcc_uart_console_putchar(struct uart_port *port, int ch)
29 {
30 	while (__dcc_getstatus() & DCC_STATUS_TX)
31 		cpu_relax();
32 
33 	__dcc_putchar(ch);
34 }
35 
dcc_early_write(struct console * con,const char * s,unsigned n)36 static void dcc_early_write(struct console *con, const char *s, unsigned n)
37 {
38 	struct earlycon_device *dev = con->data;
39 
40 	uart_console_write(&dev->port, s, n, dcc_uart_console_putchar);
41 }
42 
dcc_early_console_setup(struct earlycon_device * device,const char * opt)43 static int __init dcc_early_console_setup(struct earlycon_device *device,
44 					  const char *opt)
45 {
46 	device->con->write = dcc_early_write;
47 
48 	return 0;
49 }
50 
51 EARLYCON_DECLARE(dcc, dcc_early_console_setup);
52 
hvc_dcc_put_chars(uint32_t vt,const char * buf,int count)53 static int hvc_dcc_put_chars(uint32_t vt, const char *buf, int count)
54 {
55 	int i;
56 
57 	for (i = 0; i < count; i++) {
58 		while (__dcc_getstatus() & DCC_STATUS_TX)
59 			cpu_relax();
60 
61 		__dcc_putchar(buf[i]);
62 	}
63 
64 	return count;
65 }
66 
hvc_dcc_get_chars(uint32_t vt,char * buf,int count)67 static int hvc_dcc_get_chars(uint32_t vt, char *buf, int count)
68 {
69 	int i;
70 
71 	for (i = 0; i < count; ++i)
72 		if (__dcc_getstatus() & DCC_STATUS_RX)
73 			buf[i] = __dcc_getchar();
74 		else
75 			break;
76 
77 	return i;
78 }
79 
80 /*
81  * Check if the DCC is enabled.  If CONFIG_HVC_DCC_SERIALIZE_SMP is enabled,
82  * then we assume then this function will be called first on core 0.  That
83  * way, dcc_core0_available will be true only if it's available on core 0.
84  */
hvc_dcc_check(void)85 static bool hvc_dcc_check(void)
86 {
87 	unsigned long time = jiffies + (HZ / 10);
88 
89 #ifdef CONFIG_HVC_DCC_SERIALIZE_SMP
90 	static bool dcc_core0_available;
91 
92 	/*
93 	 * If we're not on core 0, but we previously confirmed that DCC is
94 	 * active, then just return true.
95 	 */
96 	if (smp_processor_id() && dcc_core0_available)
97 		return true;
98 #endif
99 
100 	/* Write a test character to check if it is handled */
101 	__dcc_putchar('\n');
102 
103 	while (time_is_after_jiffies(time)) {
104 		if (!(__dcc_getstatus() & DCC_STATUS_TX)) {
105 #ifdef CONFIG_HVC_DCC_SERIALIZE_SMP
106 			dcc_core0_available = true;
107 #endif
108 			return true;
109 		}
110 	}
111 
112 	return false;
113 }
114 
115 #ifdef CONFIG_HVC_DCC_SERIALIZE_SMP
116 
117 static void dcc_put_work_fn(struct work_struct *work);
118 static void dcc_get_work_fn(struct work_struct *work);
119 static DECLARE_WORK(dcc_pwork, dcc_put_work_fn);
120 static DECLARE_WORK(dcc_gwork, dcc_get_work_fn);
121 static DEFINE_SPINLOCK(dcc_lock);
122 static DEFINE_KFIFO(inbuf, unsigned char, 128);
123 static DEFINE_KFIFO(outbuf, unsigned char, 1024);
124 
125 /*
126  * Workqueue function that writes the output FIFO to the DCC on core 0.
127  */
dcc_put_work_fn(struct work_struct * work)128 static void dcc_put_work_fn(struct work_struct *work)
129 {
130 	unsigned char ch;
131 	unsigned long irqflags;
132 
133 	spin_lock_irqsave(&dcc_lock, irqflags);
134 
135 	/* While there's data in the output FIFO, write it to the DCC */
136 	while (kfifo_get(&outbuf, &ch))
137 		hvc_dcc_put_chars(0, &ch, 1);
138 
139 	/* While we're at it, check for any input characters */
140 	while (!kfifo_is_full(&inbuf)) {
141 		if (!hvc_dcc_get_chars(0, &ch, 1))
142 			break;
143 		kfifo_put(&inbuf, ch);
144 	}
145 
146 	spin_unlock_irqrestore(&dcc_lock, irqflags);
147 }
148 
149 /*
150  * Workqueue function that reads characters from DCC and puts them into the
151  * input FIFO.
152  */
dcc_get_work_fn(struct work_struct * work)153 static void dcc_get_work_fn(struct work_struct *work)
154 {
155 	unsigned char ch;
156 	unsigned long irqflags;
157 
158 	/*
159 	 * Read characters from DCC and put them into the input FIFO, as
160 	 * long as there is room and we have characters to read.
161 	 */
162 	spin_lock_irqsave(&dcc_lock, irqflags);
163 
164 	while (!kfifo_is_full(&inbuf)) {
165 		if (!hvc_dcc_get_chars(0, &ch, 1))
166 			break;
167 		kfifo_put(&inbuf, ch);
168 	}
169 	spin_unlock_irqrestore(&dcc_lock, irqflags);
170 }
171 
172 /*
173  * Write characters directly to the DCC if we're on core 0 and the FIFO
174  * is empty, or write them to the FIFO if we're not.
175  */
hvc_dcc0_put_chars(uint32_t vt,const char * buf,int count)176 static int hvc_dcc0_put_chars(uint32_t vt, const char *buf,
177 					     int count)
178 {
179 	int len;
180 	unsigned long irqflags;
181 
182 	spin_lock_irqsave(&dcc_lock, irqflags);
183 	if (smp_processor_id() || (!kfifo_is_empty(&outbuf))) {
184 		len = kfifo_in(&outbuf, buf, count);
185 		spin_unlock_irqrestore(&dcc_lock, irqflags);
186 		/*
187 		 * We just push data to the output FIFO, so schedule the
188 		 * workqueue that will actually write that data to DCC.
189 		 */
190 		schedule_work_on(0, &dcc_pwork);
191 		return len;
192 	}
193 
194 	/*
195 	 * If we're already on core 0, and the FIFO is empty, then just
196 	 * write the data to DCC.
197 	 */
198 	len = hvc_dcc_put_chars(vt, buf, count);
199 	spin_unlock_irqrestore(&dcc_lock, irqflags);
200 
201 	return len;
202 }
203 
204 /*
205  * Read characters directly from the DCC if we're on core 0 and the FIFO
206  * is empty, or read them from the FIFO if we're not.
207  */
hvc_dcc0_get_chars(uint32_t vt,char * buf,int count)208 static int hvc_dcc0_get_chars(uint32_t vt, char *buf, int count)
209 {
210 	int len;
211 	unsigned long irqflags;
212 
213 	spin_lock_irqsave(&dcc_lock, irqflags);
214 
215 	if (smp_processor_id() || (!kfifo_is_empty(&inbuf))) {
216 		len = kfifo_out(&inbuf, buf, count);
217 		spin_unlock_irqrestore(&dcc_lock, irqflags);
218 
219 		/*
220 		 * If the FIFO was empty, there may be characters in the DCC
221 		 * that we haven't read yet.  Schedule a workqueue to fill
222 		 * the input FIFO, so that the next time this function is
223 		 * called, we'll have data.
224 		*/
225 		if (!len)
226 			schedule_work_on(0, &dcc_gwork);
227 
228 		return len;
229 	}
230 
231 	/*
232 	 * If we're already on core 0, and the FIFO is empty, then just
233 	 * read the data from DCC.
234 	 */
235 	len = hvc_dcc_get_chars(vt, buf, count);
236 	spin_unlock_irqrestore(&dcc_lock, irqflags);
237 
238 	return len;
239 }
240 
241 static const struct hv_ops hvc_dcc_get_put_ops = {
242 	.get_chars = hvc_dcc0_get_chars,
243 	.put_chars = hvc_dcc0_put_chars,
244 };
245 
246 #else
247 
248 static const struct hv_ops hvc_dcc_get_put_ops = {
249 	.get_chars = hvc_dcc_get_chars,
250 	.put_chars = hvc_dcc_put_chars,
251 };
252 
253 #endif
254 
hvc_dcc_console_init(void)255 static int __init hvc_dcc_console_init(void)
256 {
257 	int ret;
258 
259 	if (!enable || !hvc_dcc_check())
260 		return -ENODEV;
261 
262 	/* Returns -1 if error */
263 	ret = hvc_instantiate(0, 0, &hvc_dcc_get_put_ops);
264 
265 	return ret < 0 ? -ENODEV : 0;
266 }
267 console_initcall(hvc_dcc_console_init);
268 
hvc_dcc_init(void)269 static int __init hvc_dcc_init(void)
270 {
271 	struct hvc_struct *p;
272 
273 	if (!enable || !hvc_dcc_check())
274 		return -ENODEV;
275 
276 	p = hvc_alloc(0, 0, &hvc_dcc_get_put_ops, 128);
277 
278 	return PTR_ERR_OR_ZERO(p);
279 }
280 device_initcall(hvc_dcc_init);
281