1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
5 *
6 * Copyright 2008 Openmoko, Inc.
7 * Copyright 2008 Simtec Electronics
8 * Ben Dooks <ben@simtec.co.uk>
9 * http://armlinux.simtec.co.uk/
10 *
11 * S3C USB2.0 High-speed / OtG driver
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
26
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
30 #include <linux/usb/composite.h>
31
32
33 #include "core.h"
34 #include "hw.h"
35
36 /* conversion functions */
our_req(struct usb_request * req)37 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
38 {
39 return container_of(req, struct dwc2_hsotg_req, req);
40 }
41
our_ep(struct usb_ep * ep)42 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
43 {
44 return container_of(ep, struct dwc2_hsotg_ep, ep);
45 }
46
to_hsotg(struct usb_gadget * gadget)47 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
48 {
49 return container_of(gadget, struct dwc2_hsotg, gadget);
50 }
51
dwc2_set_bit(struct dwc2_hsotg * hsotg,u32 offset,u32 val)52 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
53 {
54 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
55 }
56
dwc2_clear_bit(struct dwc2_hsotg * hsotg,u32 offset,u32 val)57 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
58 {
59 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
60 }
61
index_to_ep(struct dwc2_hsotg * hsotg,u32 ep_index,u32 dir_in)62 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
63 u32 ep_index, u32 dir_in)
64 {
65 if (dir_in)
66 return hsotg->eps_in[ep_index];
67 else
68 return hsotg->eps_out[ep_index];
69 }
70
71 /* forward declaration of functions */
72 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
73
74 /**
75 * using_dma - return the DMA status of the driver.
76 * @hsotg: The driver state.
77 *
78 * Return true if we're using DMA.
79 *
80 * Currently, we have the DMA support code worked into everywhere
81 * that needs it, but the AMBA DMA implementation in the hardware can
82 * only DMA from 32bit aligned addresses. This means that gadgets such
83 * as the CDC Ethernet cannot work as they often pass packets which are
84 * not 32bit aligned.
85 *
86 * Unfortunately the choice to use DMA or not is global to the controller
87 * and seems to be only settable when the controller is being put through
88 * a core reset. This means we either need to fix the gadgets to take
89 * account of DMA alignment, or add bounce buffers (yuerk).
90 *
91 * g_using_dma is set depending on dts flag.
92 */
using_dma(struct dwc2_hsotg * hsotg)93 static inline bool using_dma(struct dwc2_hsotg *hsotg)
94 {
95 return hsotg->params.g_dma;
96 }
97
98 /*
99 * using_desc_dma - return the descriptor DMA status of the driver.
100 * @hsotg: The driver state.
101 *
102 * Return true if we're using descriptor DMA.
103 */
using_desc_dma(struct dwc2_hsotg * hsotg)104 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
105 {
106 return hsotg->params.g_dma_desc;
107 }
108
109 /**
110 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
111 * @hs_ep: The endpoint
112 *
113 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
114 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
115 */
dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep * hs_ep)116 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
117 {
118 struct dwc2_hsotg *hsotg = hs_ep->parent;
119 u16 limit = DSTS_SOFFN_LIMIT;
120
121 if (hsotg->gadget.speed != USB_SPEED_HIGH)
122 limit >>= 3;
123
124 hs_ep->target_frame += hs_ep->interval;
125 if (hs_ep->target_frame > limit) {
126 hs_ep->frame_overrun = true;
127 hs_ep->target_frame &= limit;
128 } else {
129 hs_ep->frame_overrun = false;
130 }
131 }
132
133 /**
134 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
135 * by one.
136 * @hs_ep: The endpoint.
137 *
138 * This function used in service interval based scheduling flow to calculate
139 * descriptor frame number filed value. For service interval mode frame
140 * number in descriptor should point to last (u)frame in the interval.
141 *
142 */
dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep * hs_ep)143 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
144 {
145 struct dwc2_hsotg *hsotg = hs_ep->parent;
146 u16 limit = DSTS_SOFFN_LIMIT;
147
148 if (hsotg->gadget.speed != USB_SPEED_HIGH)
149 limit >>= 3;
150
151 if (hs_ep->target_frame)
152 hs_ep->target_frame -= 1;
153 else
154 hs_ep->target_frame = limit;
155 }
156
157 /**
158 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
159 * @hsotg: The device state
160 * @ints: A bitmask of the interrupts to enable
161 */
dwc2_hsotg_en_gsint(struct dwc2_hsotg * hsotg,u32 ints)162 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
163 {
164 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
165 u32 new_gsintmsk;
166
167 new_gsintmsk = gsintmsk | ints;
168
169 if (new_gsintmsk != gsintmsk) {
170 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
171 dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
172 }
173 }
174
175 /**
176 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
177 * @hsotg: The device state
178 * @ints: A bitmask of the interrupts to enable
179 */
dwc2_hsotg_disable_gsint(struct dwc2_hsotg * hsotg,u32 ints)180 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
181 {
182 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
183 u32 new_gsintmsk;
184
185 new_gsintmsk = gsintmsk & ~ints;
186
187 if (new_gsintmsk != gsintmsk)
188 dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
189 }
190
191 /**
192 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
193 * @hsotg: The device state
194 * @ep: The endpoint index
195 * @dir_in: True if direction is in.
196 * @en: The enable value, true to enable
197 *
198 * Set or clear the mask for an individual endpoint's interrupt
199 * request.
200 */
dwc2_hsotg_ctrl_epint(struct dwc2_hsotg * hsotg,unsigned int ep,unsigned int dir_in,unsigned int en)201 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
202 unsigned int ep, unsigned int dir_in,
203 unsigned int en)
204 {
205 unsigned long flags;
206 u32 bit = 1 << ep;
207 u32 daint;
208
209 if (!dir_in)
210 bit <<= 16;
211
212 local_irq_save(flags);
213 daint = dwc2_readl(hsotg, DAINTMSK);
214 if (en)
215 daint |= bit;
216 else
217 daint &= ~bit;
218 dwc2_writel(hsotg, daint, DAINTMSK);
219 local_irq_restore(flags);
220 }
221
222 /**
223 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
224 *
225 * @hsotg: Programming view of the DWC_otg controller
226 */
dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg * hsotg)227 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
228 {
229 if (hsotg->hw_params.en_multiple_tx_fifo)
230 /* In dedicated FIFO mode we need count of IN EPs */
231 return hsotg->hw_params.num_dev_in_eps;
232 else
233 /* In shared FIFO mode we need count of Periodic IN EPs */
234 return hsotg->hw_params.num_dev_perio_in_ep;
235 }
236
237 /**
238 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
239 * device mode TX FIFOs
240 *
241 * @hsotg: Programming view of the DWC_otg controller
242 */
dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg * hsotg)243 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
244 {
245 int addr;
246 int tx_addr_max;
247 u32 np_tx_fifo_size;
248
249 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
250 hsotg->params.g_np_tx_fifo_size);
251
252 /* Get Endpoint Info Control block size in DWORDs. */
253 tx_addr_max = hsotg->hw_params.total_fifo_size;
254
255 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
256 if (tx_addr_max <= addr)
257 return 0;
258
259 return tx_addr_max - addr;
260 }
261
262 /**
263 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
264 *
265 * @hsotg: Programming view of the DWC_otg controller
266 *
267 */
dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg * hsotg)268 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
269 {
270 u32 gintsts2;
271 u32 gintmsk2;
272
273 gintsts2 = dwc2_readl(hsotg, GINTSTS2);
274 gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
275 gintsts2 &= gintmsk2;
276
277 if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
278 dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
279 dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
280 dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
281 }
282 }
283
284 /**
285 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
286 * TX FIFOs
287 *
288 * @hsotg: Programming view of the DWC_otg controller
289 */
dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg * hsotg)290 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
291 {
292 int tx_fifo_count;
293 int tx_fifo_depth;
294
295 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
296
297 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
298
299 if (!tx_fifo_count)
300 return tx_fifo_depth;
301 else
302 return tx_fifo_depth / tx_fifo_count;
303 }
304
305 /**
306 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
307 * @hsotg: The device instance.
308 */
dwc2_hsotg_init_fifo(struct dwc2_hsotg * hsotg)309 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
310 {
311 unsigned int ep;
312 unsigned int addr;
313 int timeout;
314
315 u32 val;
316 u32 *txfsz = hsotg->params.g_tx_fifo_size;
317
318 /* Reset fifo map if not correctly cleared during previous session */
319 WARN_ON(hsotg->fifo_map);
320 hsotg->fifo_map = 0;
321
322 /* set RX/NPTX FIFO sizes */
323 dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
324 dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
325 FIFOSIZE_STARTADDR_SHIFT) |
326 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
327 GNPTXFSIZ);
328
329 /*
330 * arange all the rest of the TX FIFOs, as some versions of this
331 * block have overlapping default addresses. This also ensures
332 * that if the settings have been changed, then they are set to
333 * known values.
334 */
335
336 /* start at the end of the GNPTXFSIZ, rounded up */
337 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
338
339 /*
340 * Configure fifos sizes from provided configuration and assign
341 * them to endpoints dynamically according to maxpacket size value of
342 * given endpoint.
343 */
344 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
345 if (!txfsz[ep])
346 continue;
347 val = addr;
348 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
349 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
350 "insufficient fifo memory");
351 addr += txfsz[ep];
352
353 dwc2_writel(hsotg, val, DPTXFSIZN(ep));
354 val = dwc2_readl(hsotg, DPTXFSIZN(ep));
355 }
356
357 dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
358 addr << GDFIFOCFG_EPINFOBASE_SHIFT,
359 GDFIFOCFG);
360 /*
361 * according to p428 of the design guide, we need to ensure that
362 * all fifos are flushed before continuing
363 */
364
365 dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
366 GRSTCTL_RXFFLSH, GRSTCTL);
367
368 /* wait until the fifos are both flushed */
369 timeout = 100;
370 while (1) {
371 val = dwc2_readl(hsotg, GRSTCTL);
372
373 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
374 break;
375
376 if (--timeout == 0) {
377 dev_err(hsotg->dev,
378 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
379 __func__, val);
380 break;
381 }
382
383 udelay(1);
384 }
385
386 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
387 }
388
389 /**
390 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
391 * @ep: USB endpoint to allocate request for.
392 * @flags: Allocation flags
393 *
394 * Allocate a new USB request structure appropriate for the specified endpoint
395 */
dwc2_hsotg_ep_alloc_request(struct usb_ep * ep,gfp_t flags)396 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
397 gfp_t flags)
398 {
399 struct dwc2_hsotg_req *req;
400
401 req = kzalloc(sizeof(*req), flags);
402 if (!req)
403 return NULL;
404
405 INIT_LIST_HEAD(&req->queue);
406
407 return &req->req;
408 }
409
410 /**
411 * is_ep_periodic - return true if the endpoint is in periodic mode.
412 * @hs_ep: The endpoint to query.
413 *
414 * Returns true if the endpoint is in periodic mode, meaning it is being
415 * used for an Interrupt or ISO transfer.
416 */
is_ep_periodic(struct dwc2_hsotg_ep * hs_ep)417 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
418 {
419 return hs_ep->periodic;
420 }
421
422 /**
423 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
424 * @hsotg: The device state.
425 * @hs_ep: The endpoint for the request
426 * @hs_req: The request being processed.
427 *
428 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
429 * of a request to ensure the buffer is ready for access by the caller.
430 */
dwc2_hsotg_unmap_dma(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep,struct dwc2_hsotg_req * hs_req)431 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
432 struct dwc2_hsotg_ep *hs_ep,
433 struct dwc2_hsotg_req *hs_req)
434 {
435 struct usb_request *req = &hs_req->req;
436
437 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->map_dir);
438 }
439
440 /*
441 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
442 * for Control endpoint
443 * @hsotg: The device state.
444 *
445 * This function will allocate 4 descriptor chains for EP 0: 2 for
446 * Setup stage, per one for IN and OUT data/status transactions.
447 */
dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg * hsotg)448 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
449 {
450 hsotg->setup_desc[0] =
451 dmam_alloc_coherent(hsotg->dev,
452 sizeof(struct dwc2_dma_desc),
453 &hsotg->setup_desc_dma[0],
454 GFP_KERNEL);
455 if (!hsotg->setup_desc[0])
456 goto fail;
457
458 hsotg->setup_desc[1] =
459 dmam_alloc_coherent(hsotg->dev,
460 sizeof(struct dwc2_dma_desc),
461 &hsotg->setup_desc_dma[1],
462 GFP_KERNEL);
463 if (!hsotg->setup_desc[1])
464 goto fail;
465
466 hsotg->ctrl_in_desc =
467 dmam_alloc_coherent(hsotg->dev,
468 sizeof(struct dwc2_dma_desc),
469 &hsotg->ctrl_in_desc_dma,
470 GFP_KERNEL);
471 if (!hsotg->ctrl_in_desc)
472 goto fail;
473
474 hsotg->ctrl_out_desc =
475 dmam_alloc_coherent(hsotg->dev,
476 sizeof(struct dwc2_dma_desc),
477 &hsotg->ctrl_out_desc_dma,
478 GFP_KERNEL);
479 if (!hsotg->ctrl_out_desc)
480 goto fail;
481
482 return 0;
483
484 fail:
485 return -ENOMEM;
486 }
487
488 /**
489 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
490 * @hsotg: The controller state.
491 * @hs_ep: The endpoint we're going to write for.
492 * @hs_req: The request to write data for.
493 *
494 * This is called when the TxFIFO has some space in it to hold a new
495 * transmission and we have something to give it. The actual setup of
496 * the data size is done elsewhere, so all we have to do is to actually
497 * write the data.
498 *
499 * The return value is zero if there is more space (or nothing was done)
500 * otherwise -ENOSPC is returned if the FIFO space was used up.
501 *
502 * This routine is only needed for PIO
503 */
dwc2_hsotg_write_fifo(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep,struct dwc2_hsotg_req * hs_req)504 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
505 struct dwc2_hsotg_ep *hs_ep,
506 struct dwc2_hsotg_req *hs_req)
507 {
508 bool periodic = is_ep_periodic(hs_ep);
509 u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
510 int buf_pos = hs_req->req.actual;
511 int to_write = hs_ep->size_loaded;
512 void *data;
513 int can_write;
514 int pkt_round;
515 int max_transfer;
516
517 to_write -= (buf_pos - hs_ep->last_load);
518
519 /* if there's nothing to write, get out early */
520 if (to_write == 0)
521 return 0;
522
523 if (periodic && !hsotg->dedicated_fifos) {
524 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
525 int size_left;
526 int size_done;
527
528 /*
529 * work out how much data was loaded so we can calculate
530 * how much data is left in the fifo.
531 */
532
533 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
534
535 /*
536 * if shared fifo, we cannot write anything until the
537 * previous data has been completely sent.
538 */
539 if (hs_ep->fifo_load != 0) {
540 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
541 return -ENOSPC;
542 }
543
544 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
545 __func__, size_left,
546 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
547
548 /* how much of the data has moved */
549 size_done = hs_ep->size_loaded - size_left;
550
551 /* how much data is left in the fifo */
552 can_write = hs_ep->fifo_load - size_done;
553 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
554 __func__, can_write);
555
556 can_write = hs_ep->fifo_size - can_write;
557 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
558 __func__, can_write);
559
560 if (can_write <= 0) {
561 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
562 return -ENOSPC;
563 }
564 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
565 can_write = dwc2_readl(hsotg,
566 DTXFSTS(hs_ep->fifo_index));
567
568 can_write &= 0xffff;
569 can_write *= 4;
570 } else {
571 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
572 dev_dbg(hsotg->dev,
573 "%s: no queue slots available (0x%08x)\n",
574 __func__, gnptxsts);
575
576 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
577 return -ENOSPC;
578 }
579
580 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
581 can_write *= 4; /* fifo size is in 32bit quantities. */
582 }
583
584 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
585
586 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
587 __func__, gnptxsts, can_write, to_write, max_transfer);
588
589 /*
590 * limit to 512 bytes of data, it seems at least on the non-periodic
591 * FIFO, requests of >512 cause the endpoint to get stuck with a
592 * fragment of the end of the transfer in it.
593 */
594 if (can_write > 512 && !periodic)
595 can_write = 512;
596
597 /*
598 * limit the write to one max-packet size worth of data, but allow
599 * the transfer to return that it did not run out of fifo space
600 * doing it.
601 */
602 if (to_write > max_transfer) {
603 to_write = max_transfer;
604
605 /* it's needed only when we do not use dedicated fifos */
606 if (!hsotg->dedicated_fifos)
607 dwc2_hsotg_en_gsint(hsotg,
608 periodic ? GINTSTS_PTXFEMP :
609 GINTSTS_NPTXFEMP);
610 }
611
612 /* see if we can write data */
613
614 if (to_write > can_write) {
615 to_write = can_write;
616 pkt_round = to_write % max_transfer;
617
618 /*
619 * Round the write down to an
620 * exact number of packets.
621 *
622 * Note, we do not currently check to see if we can ever
623 * write a full packet or not to the FIFO.
624 */
625
626 if (pkt_round)
627 to_write -= pkt_round;
628
629 /*
630 * enable correct FIFO interrupt to alert us when there
631 * is more room left.
632 */
633
634 /* it's needed only when we do not use dedicated fifos */
635 if (!hsotg->dedicated_fifos)
636 dwc2_hsotg_en_gsint(hsotg,
637 periodic ? GINTSTS_PTXFEMP :
638 GINTSTS_NPTXFEMP);
639 }
640
641 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
642 to_write, hs_req->req.length, can_write, buf_pos);
643
644 if (to_write <= 0)
645 return -ENOSPC;
646
647 hs_req->req.actual = buf_pos + to_write;
648 hs_ep->total_data += to_write;
649
650 if (periodic)
651 hs_ep->fifo_load += to_write;
652
653 to_write = DIV_ROUND_UP(to_write, 4);
654 data = hs_req->req.buf + buf_pos;
655
656 dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
657
658 return (to_write >= can_write) ? -ENOSPC : 0;
659 }
660
661 /**
662 * get_ep_limit - get the maximum data legnth for this endpoint
663 * @hs_ep: The endpoint
664 *
665 * Return the maximum data that can be queued in one go on a given endpoint
666 * so that transfers that are too long can be split.
667 */
get_ep_limit(struct dwc2_hsotg_ep * hs_ep)668 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
669 {
670 int index = hs_ep->index;
671 unsigned int maxsize;
672 unsigned int maxpkt;
673
674 if (index != 0) {
675 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
676 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
677 } else {
678 maxsize = 64 + 64;
679 if (hs_ep->dir_in)
680 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
681 else
682 maxpkt = 2;
683 }
684
685 /* we made the constant loading easier above by using +1 */
686 maxpkt--;
687 maxsize--;
688
689 /*
690 * constrain by packet count if maxpkts*pktsize is greater
691 * than the length register size.
692 */
693
694 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
695 maxsize = maxpkt * hs_ep->ep.maxpacket;
696
697 return maxsize;
698 }
699
700 /**
701 * dwc2_hsotg_read_frameno - read current frame number
702 * @hsotg: The device instance
703 *
704 * Return the current frame number
705 */
dwc2_hsotg_read_frameno(struct dwc2_hsotg * hsotg)706 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
707 {
708 u32 dsts;
709
710 dsts = dwc2_readl(hsotg, DSTS);
711 dsts &= DSTS_SOFFN_MASK;
712 dsts >>= DSTS_SOFFN_SHIFT;
713
714 return dsts;
715 }
716
717 /**
718 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
719 * DMA descriptor chain prepared for specific endpoint
720 * @hs_ep: The endpoint
721 *
722 * Return the maximum data that can be queued in one go on a given endpoint
723 * depending on its descriptor chain capacity so that transfers that
724 * are too long can be split.
725 */
dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep * hs_ep)726 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
727 {
728 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
729 int is_isoc = hs_ep->isochronous;
730 unsigned int maxsize;
731 u32 mps = hs_ep->ep.maxpacket;
732 int dir_in = hs_ep->dir_in;
733
734 if (is_isoc)
735 maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
736 DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
737 MAX_DMA_DESC_NUM_HS_ISOC;
738 else
739 maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
740
741 /* Interrupt OUT EP with mps not multiple of 4 */
742 if (hs_ep->index)
743 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
744 maxsize = mps * MAX_DMA_DESC_NUM_GENERIC;
745
746 return maxsize;
747 }
748
749 /*
750 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
751 * @hs_ep: The endpoint
752 * @mask: RX/TX bytes mask to be defined
753 *
754 * Returns maximum data payload for one descriptor after analyzing endpoint
755 * characteristics.
756 * DMA descriptor transfer bytes limit depends on EP type:
757 * Control out - MPS,
758 * Isochronous - descriptor rx/tx bytes bitfield limit,
759 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
760 * have concatenations from various descriptors within one packet.
761 * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds
762 * to a single descriptor.
763 *
764 * Selects corresponding mask for RX/TX bytes as well.
765 */
dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep * hs_ep,u32 * mask)766 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
767 {
768 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
769 u32 mps = hs_ep->ep.maxpacket;
770 int dir_in = hs_ep->dir_in;
771 u32 desc_size = 0;
772
773 if (!hs_ep->index && !dir_in) {
774 desc_size = mps;
775 *mask = DEV_DMA_NBYTES_MASK;
776 } else if (hs_ep->isochronous) {
777 if (dir_in) {
778 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
779 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
780 } else {
781 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
782 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
783 }
784 } else {
785 desc_size = DEV_DMA_NBYTES_LIMIT;
786 *mask = DEV_DMA_NBYTES_MASK;
787
788 /* Round down desc_size to be mps multiple */
789 desc_size -= desc_size % mps;
790 }
791
792 /* Interrupt OUT EP with mps not multiple of 4 */
793 if (hs_ep->index)
794 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) {
795 desc_size = mps;
796 *mask = DEV_DMA_NBYTES_MASK;
797 }
798
799 return desc_size;
800 }
801
dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep * hs_ep,struct dwc2_dma_desc ** desc,dma_addr_t dma_buff,unsigned int len,bool true_last)802 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
803 struct dwc2_dma_desc **desc,
804 dma_addr_t dma_buff,
805 unsigned int len,
806 bool true_last)
807 {
808 int dir_in = hs_ep->dir_in;
809 u32 mps = hs_ep->ep.maxpacket;
810 u32 maxsize = 0;
811 u32 offset = 0;
812 u32 mask = 0;
813 int i;
814
815 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
816
817 hs_ep->desc_count = (len / maxsize) +
818 ((len % maxsize) ? 1 : 0);
819 if (len == 0)
820 hs_ep->desc_count = 1;
821
822 for (i = 0; i < hs_ep->desc_count; ++i) {
823 (*desc)->status = 0;
824 (*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
825 << DEV_DMA_BUFF_STS_SHIFT);
826
827 if (len > maxsize) {
828 if (!hs_ep->index && !dir_in)
829 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
830
831 (*desc)->status |=
832 maxsize << DEV_DMA_NBYTES_SHIFT & mask;
833 (*desc)->buf = dma_buff + offset;
834
835 len -= maxsize;
836 offset += maxsize;
837 } else {
838 if (true_last)
839 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
840
841 if (dir_in)
842 (*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
843 ((hs_ep->send_zlp && true_last) ?
844 DEV_DMA_SHORT : 0);
845
846 (*desc)->status |=
847 len << DEV_DMA_NBYTES_SHIFT & mask;
848 (*desc)->buf = dma_buff + offset;
849 }
850
851 (*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
852 (*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
853 << DEV_DMA_BUFF_STS_SHIFT);
854 (*desc)++;
855 }
856 }
857
858 /*
859 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
860 * @hs_ep: The endpoint
861 * @ureq: Request to transfer
862 * @offset: offset in bytes
863 * @len: Length of the transfer
864 *
865 * This function will iterate over descriptor chain and fill its entries
866 * with corresponding information based on transfer data.
867 */
dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep * hs_ep,dma_addr_t dma_buff,unsigned int len)868 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
869 dma_addr_t dma_buff,
870 unsigned int len)
871 {
872 struct usb_request *ureq = NULL;
873 struct dwc2_dma_desc *desc = hs_ep->desc_list;
874 struct scatterlist *sg;
875 int i;
876 u8 desc_count = 0;
877
878 if (hs_ep->req)
879 ureq = &hs_ep->req->req;
880
881 /* non-DMA sg buffer */
882 if (!ureq || !ureq->num_sgs) {
883 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
884 dma_buff, len, true);
885 return;
886 }
887
888 /* DMA sg buffer */
889 for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
890 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
891 sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
892 sg_is_last(sg));
893 desc_count += hs_ep->desc_count;
894 }
895
896 hs_ep->desc_count = desc_count;
897 }
898
899 /*
900 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
901 * @hs_ep: The isochronous endpoint.
902 * @dma_buff: usb requests dma buffer.
903 * @len: usb request transfer length.
904 *
905 * Fills next free descriptor with the data of the arrived usb request,
906 * frame info, sets Last and IOC bits increments next_desc. If filled
907 * descriptor is not the first one, removes L bit from the previous descriptor
908 * status.
909 */
dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep * hs_ep,dma_addr_t dma_buff,unsigned int len)910 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
911 dma_addr_t dma_buff, unsigned int len)
912 {
913 struct dwc2_dma_desc *desc;
914 struct dwc2_hsotg *hsotg = hs_ep->parent;
915 u32 index;
916 u32 mask = 0;
917 u8 pid = 0;
918
919 dwc2_gadget_get_desc_params(hs_ep, &mask);
920
921 index = hs_ep->next_desc;
922 desc = &hs_ep->desc_list[index];
923
924 /* Check if descriptor chain full */
925 if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
926 DEV_DMA_BUFF_STS_HREADY) {
927 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
928 return 1;
929 }
930
931 /* Clear L bit of previous desc if more than one entries in the chain */
932 if (hs_ep->next_desc)
933 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
934
935 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
936 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
937
938 desc->status = 0;
939 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT);
940
941 desc->buf = dma_buff;
942 desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
943 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
944
945 if (hs_ep->dir_in) {
946 if (len)
947 pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
948 else
949 pid = 1;
950 desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
951 DEV_DMA_ISOC_PID_MASK) |
952 ((len % hs_ep->ep.maxpacket) ?
953 DEV_DMA_SHORT : 0) |
954 ((hs_ep->target_frame <<
955 DEV_DMA_ISOC_FRNUM_SHIFT) &
956 DEV_DMA_ISOC_FRNUM_MASK);
957 }
958
959 desc->status &= ~DEV_DMA_BUFF_STS_MASK;
960 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
961
962 /* Increment frame number by interval for IN */
963 if (hs_ep->dir_in)
964 dwc2_gadget_incr_frame_num(hs_ep);
965
966 /* Update index of last configured entry in the chain */
967 hs_ep->next_desc++;
968 if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
969 hs_ep->next_desc = 0;
970
971 return 0;
972 }
973
974 /*
975 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
976 * @hs_ep: The isochronous endpoint.
977 *
978 * Prepare descriptor chain for isochronous endpoints. Afterwards
979 * write DMA address to HW and enable the endpoint.
980 */
dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep * hs_ep)981 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
982 {
983 struct dwc2_hsotg *hsotg = hs_ep->parent;
984 struct dwc2_hsotg_req *hs_req, *treq;
985 int index = hs_ep->index;
986 int ret;
987 int i;
988 u32 dma_reg;
989 u32 depctl;
990 u32 ctrl;
991 struct dwc2_dma_desc *desc;
992
993 if (list_empty(&hs_ep->queue)) {
994 hs_ep->target_frame = TARGET_FRAME_INITIAL;
995 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
996 return;
997 }
998
999 /* Initialize descriptor chain by Host Busy status */
1000 for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
1001 desc = &hs_ep->desc_list[i];
1002 desc->status = 0;
1003 desc->status |= (DEV_DMA_BUFF_STS_HBUSY
1004 << DEV_DMA_BUFF_STS_SHIFT);
1005 }
1006
1007 hs_ep->next_desc = 0;
1008 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
1009 dma_addr_t dma_addr = hs_req->req.dma;
1010
1011 if (hs_req->req.num_sgs) {
1012 WARN_ON(hs_req->req.num_sgs > 1);
1013 dma_addr = sg_dma_address(hs_req->req.sg);
1014 }
1015 ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1016 hs_req->req.length);
1017 if (ret)
1018 break;
1019 }
1020
1021 hs_ep->compl_desc = 0;
1022 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1023 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
1024
1025 /* write descriptor chain address to control register */
1026 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1027
1028 ctrl = dwc2_readl(hsotg, depctl);
1029 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1030 dwc2_writel(hsotg, ctrl, depctl);
1031 }
1032
1033 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep);
1034 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1035 struct dwc2_hsotg_ep *hs_ep,
1036 struct dwc2_hsotg_req *hs_req,
1037 int result);
1038
1039 /**
1040 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1041 * @hsotg: The controller state.
1042 * @hs_ep: The endpoint to process a request for
1043 * @hs_req: The request to start.
1044 * @continuing: True if we are doing more for the current request.
1045 *
1046 * Start the given request running by setting the endpoint registers
1047 * appropriately, and writing any data to the FIFOs.
1048 */
dwc2_hsotg_start_req(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep,struct dwc2_hsotg_req * hs_req,bool continuing)1049 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1050 struct dwc2_hsotg_ep *hs_ep,
1051 struct dwc2_hsotg_req *hs_req,
1052 bool continuing)
1053 {
1054 struct usb_request *ureq = &hs_req->req;
1055 int index = hs_ep->index;
1056 int dir_in = hs_ep->dir_in;
1057 u32 epctrl_reg;
1058 u32 epsize_reg;
1059 u32 epsize;
1060 u32 ctrl;
1061 unsigned int length;
1062 unsigned int packets;
1063 unsigned int maxreq;
1064 unsigned int dma_reg;
1065
1066 if (index != 0) {
1067 if (hs_ep->req && !continuing) {
1068 dev_err(hsotg->dev, "%s: active request\n", __func__);
1069 WARN_ON(1);
1070 return;
1071 } else if (hs_ep->req != hs_req && continuing) {
1072 dev_err(hsotg->dev,
1073 "%s: continue different req\n", __func__);
1074 WARN_ON(1);
1075 return;
1076 }
1077 }
1078
1079 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1080 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1081 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1082
1083 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1084 __func__, dwc2_readl(hsotg, epctrl_reg), index,
1085 hs_ep->dir_in ? "in" : "out");
1086
1087 /* If endpoint is stalled, we will restart request later */
1088 ctrl = dwc2_readl(hsotg, epctrl_reg);
1089
1090 if (index && ctrl & DXEPCTL_STALL) {
1091 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1092 return;
1093 }
1094
1095 length = ureq->length - ureq->actual;
1096 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1097 ureq->length, ureq->actual);
1098
1099 if (!using_desc_dma(hsotg))
1100 maxreq = get_ep_limit(hs_ep);
1101 else
1102 maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1103
1104 if (length > maxreq) {
1105 int round = maxreq % hs_ep->ep.maxpacket;
1106
1107 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1108 __func__, length, maxreq, round);
1109
1110 /* round down to multiple of packets */
1111 if (round)
1112 maxreq -= round;
1113
1114 length = maxreq;
1115 }
1116
1117 if (length)
1118 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1119 else
1120 packets = 1; /* send one packet if length is zero. */
1121
1122 if (dir_in && index != 0)
1123 if (hs_ep->isochronous)
1124 epsize = DXEPTSIZ_MC(packets);
1125 else
1126 epsize = DXEPTSIZ_MC(1);
1127 else
1128 epsize = 0;
1129
1130 /*
1131 * zero length packet should be programmed on its own and should not
1132 * be counted in DIEPTSIZ.PktCnt with other packets.
1133 */
1134 if (dir_in && ureq->zero && !continuing) {
1135 /* Test if zlp is actually required. */
1136 if ((ureq->length >= hs_ep->ep.maxpacket) &&
1137 !(ureq->length % hs_ep->ep.maxpacket))
1138 hs_ep->send_zlp = 1;
1139 }
1140
1141 epsize |= DXEPTSIZ_PKTCNT(packets);
1142 epsize |= DXEPTSIZ_XFERSIZE(length);
1143
1144 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1145 __func__, packets, length, ureq->length, epsize, epsize_reg);
1146
1147 /* store the request as the current one we're doing */
1148 hs_ep->req = hs_req;
1149
1150 if (using_desc_dma(hsotg)) {
1151 u32 offset = 0;
1152 u32 mps = hs_ep->ep.maxpacket;
1153
1154 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1155 if (!dir_in) {
1156 if (!index)
1157 length = mps;
1158 else if (length % mps)
1159 length += (mps - (length % mps));
1160 }
1161
1162 if (continuing)
1163 offset = ureq->actual;
1164
1165 /* Fill DDMA chain entries */
1166 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1167 length);
1168
1169 /* write descriptor chain address to control register */
1170 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1171
1172 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1173 __func__, (u32)hs_ep->desc_list_dma, dma_reg);
1174 } else {
1175 /* write size / packets */
1176 dwc2_writel(hsotg, epsize, epsize_reg);
1177
1178 if (using_dma(hsotg) && !continuing && (length != 0)) {
1179 /*
1180 * write DMA address to control register, buffer
1181 * already synced by dwc2_hsotg_ep_queue().
1182 */
1183
1184 dwc2_writel(hsotg, ureq->dma, dma_reg);
1185
1186 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1187 __func__, &ureq->dma, dma_reg);
1188 }
1189 }
1190
1191 if (hs_ep->isochronous) {
1192 if (!dwc2_gadget_target_frame_elapsed(hs_ep)) {
1193 if (hs_ep->interval == 1) {
1194 if (hs_ep->target_frame & 0x1)
1195 ctrl |= DXEPCTL_SETODDFR;
1196 else
1197 ctrl |= DXEPCTL_SETEVENFR;
1198 }
1199 ctrl |= DXEPCTL_CNAK;
1200 } else {
1201 hs_req->req.frame_number = hs_ep->target_frame;
1202 hs_req->req.actual = 0;
1203 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
1204 return;
1205 }
1206 }
1207
1208 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1209
1210 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1211
1212 /* For Setup request do not clear NAK */
1213 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1214 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1215
1216 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1217 dwc2_writel(hsotg, ctrl, epctrl_reg);
1218
1219 /*
1220 * set these, it seems that DMA support increments past the end
1221 * of the packet buffer so we need to calculate the length from
1222 * this information.
1223 */
1224 hs_ep->size_loaded = length;
1225 hs_ep->last_load = ureq->actual;
1226
1227 if (dir_in && !using_dma(hsotg)) {
1228 /* set these anyway, we may need them for non-periodic in */
1229 hs_ep->fifo_load = 0;
1230
1231 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1232 }
1233
1234 /*
1235 * Note, trying to clear the NAK here causes problems with transmit
1236 * on the S3C6400 ending up with the TXFIFO becoming full.
1237 */
1238
1239 /* check ep is enabled */
1240 if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1241 dev_dbg(hsotg->dev,
1242 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1243 index, dwc2_readl(hsotg, epctrl_reg));
1244
1245 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1246 __func__, dwc2_readl(hsotg, epctrl_reg));
1247
1248 /* enable ep interrupts */
1249 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1250 }
1251
1252 /**
1253 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1254 * @hsotg: The device state.
1255 * @hs_ep: The endpoint the request is on.
1256 * @req: The request being processed.
1257 *
1258 * We've been asked to queue a request, so ensure that the memory buffer
1259 * is correctly setup for DMA. If we've been passed an extant DMA address
1260 * then ensure the buffer has been synced to memory. If our buffer has no
1261 * DMA memory, then we map the memory and mark our request to allow us to
1262 * cleanup on completion.
1263 */
dwc2_hsotg_map_dma(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep,struct usb_request * req)1264 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1265 struct dwc2_hsotg_ep *hs_ep,
1266 struct usb_request *req)
1267 {
1268 int ret;
1269
1270 hs_ep->map_dir = hs_ep->dir_in;
1271 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1272 if (ret)
1273 goto dma_error;
1274
1275 return 0;
1276
1277 dma_error:
1278 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1279 __func__, req->buf, req->length);
1280
1281 return -EIO;
1282 }
1283
dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep,struct dwc2_hsotg_req * hs_req)1284 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1285 struct dwc2_hsotg_ep *hs_ep,
1286 struct dwc2_hsotg_req *hs_req)
1287 {
1288 void *req_buf = hs_req->req.buf;
1289
1290 /* If dma is not being used or buffer is aligned */
1291 if (!using_dma(hsotg) || !((long)req_buf & 3))
1292 return 0;
1293
1294 WARN_ON(hs_req->saved_req_buf);
1295
1296 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1297 hs_ep->ep.name, req_buf, hs_req->req.length);
1298
1299 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1300 if (!hs_req->req.buf) {
1301 hs_req->req.buf = req_buf;
1302 dev_err(hsotg->dev,
1303 "%s: unable to allocate memory for bounce buffer\n",
1304 __func__);
1305 return -ENOMEM;
1306 }
1307
1308 /* Save actual buffer */
1309 hs_req->saved_req_buf = req_buf;
1310
1311 if (hs_ep->dir_in)
1312 memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1313 return 0;
1314 }
1315
1316 static void
dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep,struct dwc2_hsotg_req * hs_req)1317 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1318 struct dwc2_hsotg_ep *hs_ep,
1319 struct dwc2_hsotg_req *hs_req)
1320 {
1321 /* If dma is not being used or buffer was aligned */
1322 if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1323 return;
1324
1325 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1326 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1327
1328 /* Copy data from bounce buffer on successful out transfer */
1329 if (!hs_ep->dir_in && !hs_req->req.status)
1330 memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1331 hs_req->req.actual);
1332
1333 /* Free bounce buffer */
1334 kfree(hs_req->req.buf);
1335
1336 hs_req->req.buf = hs_req->saved_req_buf;
1337 hs_req->saved_req_buf = NULL;
1338 }
1339
1340 /**
1341 * dwc2_gadget_target_frame_elapsed - Checks target frame
1342 * @hs_ep: The driver endpoint to check
1343 *
1344 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1345 * corresponding transfer.
1346 */
dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep * hs_ep)1347 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1348 {
1349 struct dwc2_hsotg *hsotg = hs_ep->parent;
1350 u32 target_frame = hs_ep->target_frame;
1351 u32 current_frame = hsotg->frame_number;
1352 bool frame_overrun = hs_ep->frame_overrun;
1353 u16 limit = DSTS_SOFFN_LIMIT;
1354
1355 if (hsotg->gadget.speed != USB_SPEED_HIGH)
1356 limit >>= 3;
1357
1358 if (!frame_overrun && current_frame >= target_frame)
1359 return true;
1360
1361 if (frame_overrun && current_frame >= target_frame &&
1362 ((current_frame - target_frame) < limit / 2))
1363 return true;
1364
1365 return false;
1366 }
1367
1368 /*
1369 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1370 * @hsotg: The driver state
1371 * @hs_ep: the ep descriptor chain is for
1372 *
1373 * Called to update EP0 structure's pointers depend on stage of
1374 * control transfer.
1375 */
dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep)1376 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1377 struct dwc2_hsotg_ep *hs_ep)
1378 {
1379 switch (hsotg->ep0_state) {
1380 case DWC2_EP0_SETUP:
1381 case DWC2_EP0_STATUS_OUT:
1382 hs_ep->desc_list = hsotg->setup_desc[0];
1383 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1384 break;
1385 case DWC2_EP0_DATA_IN:
1386 case DWC2_EP0_STATUS_IN:
1387 hs_ep->desc_list = hsotg->ctrl_in_desc;
1388 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1389 break;
1390 case DWC2_EP0_DATA_OUT:
1391 hs_ep->desc_list = hsotg->ctrl_out_desc;
1392 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1393 break;
1394 default:
1395 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1396 hsotg->ep0_state);
1397 return -EINVAL;
1398 }
1399
1400 return 0;
1401 }
1402
dwc2_hsotg_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)1403 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1404 gfp_t gfp_flags)
1405 {
1406 struct dwc2_hsotg_req *hs_req = our_req(req);
1407 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1408 struct dwc2_hsotg *hs = hs_ep->parent;
1409 bool first;
1410 int ret;
1411 u32 maxsize = 0;
1412 u32 mask = 0;
1413
1414
1415 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1416 ep->name, req, req->length, req->buf, req->no_interrupt,
1417 req->zero, req->short_not_ok);
1418
1419 /* Prevent new request submission when controller is suspended */
1420 if (hs->lx_state != DWC2_L0) {
1421 dev_dbg(hs->dev, "%s: submit request only in active state\n",
1422 __func__);
1423 return -EAGAIN;
1424 }
1425
1426 /* initialise status of the request */
1427 INIT_LIST_HEAD(&hs_req->queue);
1428 req->actual = 0;
1429 req->status = -EINPROGRESS;
1430
1431 /* Don't queue ISOC request if length greater than mps*mc */
1432 if (hs_ep->isochronous &&
1433 req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1434 dev_err(hs->dev, "req length > maxpacket*mc\n");
1435 return -EINVAL;
1436 }
1437
1438 /* In DDMA mode for ISOC's don't queue request if length greater
1439 * than descriptor limits.
1440 */
1441 if (using_desc_dma(hs) && hs_ep->isochronous) {
1442 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1443 if (hs_ep->dir_in && req->length > maxsize) {
1444 dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1445 req->length, maxsize);
1446 return -EINVAL;
1447 }
1448
1449 if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1450 dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1451 req->length, hs_ep->ep.maxpacket);
1452 return -EINVAL;
1453 }
1454 }
1455
1456 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1457 if (ret)
1458 return ret;
1459
1460 /* if we're using DMA, sync the buffers as necessary */
1461 if (using_dma(hs)) {
1462 ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1463 if (ret)
1464 return ret;
1465 }
1466 /* If using descriptor DMA configure EP0 descriptor chain pointers */
1467 if (using_desc_dma(hs) && !hs_ep->index) {
1468 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1469 if (ret)
1470 return ret;
1471 }
1472
1473 first = list_empty(&hs_ep->queue);
1474 list_add_tail(&hs_req->queue, &hs_ep->queue);
1475
1476 /*
1477 * Handle DDMA isochronous transfers separately - just add new entry
1478 * to the descriptor chain.
1479 * Transfer will be started once SW gets either one of NAK or
1480 * OutTknEpDis interrupts.
1481 */
1482 if (using_desc_dma(hs) && hs_ep->isochronous) {
1483 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1484 dma_addr_t dma_addr = hs_req->req.dma;
1485
1486 if (hs_req->req.num_sgs) {
1487 WARN_ON(hs_req->req.num_sgs > 1);
1488 dma_addr = sg_dma_address(hs_req->req.sg);
1489 }
1490 dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1491 hs_req->req.length);
1492 }
1493 return 0;
1494 }
1495
1496 /* Change EP direction if status phase request is after data out */
1497 if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1498 hs->ep0_state == DWC2_EP0_DATA_OUT)
1499 hs_ep->dir_in = 1;
1500
1501 if (first) {
1502 if (!hs_ep->isochronous) {
1503 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1504 return 0;
1505 }
1506
1507 /* Update current frame number value. */
1508 hs->frame_number = dwc2_hsotg_read_frameno(hs);
1509 while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1510 dwc2_gadget_incr_frame_num(hs_ep);
1511 /* Update current frame number value once more as it
1512 * changes here.
1513 */
1514 hs->frame_number = dwc2_hsotg_read_frameno(hs);
1515 }
1516
1517 if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1518 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1519 }
1520 return 0;
1521 }
1522
dwc2_hsotg_ep_queue_lock(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)1523 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1524 gfp_t gfp_flags)
1525 {
1526 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1527 struct dwc2_hsotg *hs = hs_ep->parent;
1528 unsigned long flags = 0;
1529 int ret = 0;
1530
1531 spin_lock_irqsave(&hs->lock, flags);
1532 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1533 spin_unlock_irqrestore(&hs->lock, flags);
1534
1535 return ret;
1536 }
1537
dwc2_hsotg_ep_free_request(struct usb_ep * ep,struct usb_request * req)1538 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1539 struct usb_request *req)
1540 {
1541 struct dwc2_hsotg_req *hs_req = our_req(req);
1542
1543 kfree(hs_req);
1544 }
1545
1546 /**
1547 * dwc2_hsotg_complete_oursetup - setup completion callback
1548 * @ep: The endpoint the request was on.
1549 * @req: The request completed.
1550 *
1551 * Called on completion of any requests the driver itself
1552 * submitted that need cleaning up.
1553 */
dwc2_hsotg_complete_oursetup(struct usb_ep * ep,struct usb_request * req)1554 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1555 struct usb_request *req)
1556 {
1557 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1558 struct dwc2_hsotg *hsotg = hs_ep->parent;
1559
1560 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1561
1562 dwc2_hsotg_ep_free_request(ep, req);
1563 }
1564
1565 /**
1566 * ep_from_windex - convert control wIndex value to endpoint
1567 * @hsotg: The driver state.
1568 * @windex: The control request wIndex field (in host order).
1569 *
1570 * Convert the given wIndex into a pointer to an driver endpoint
1571 * structure, or return NULL if it is not a valid endpoint.
1572 */
ep_from_windex(struct dwc2_hsotg * hsotg,u32 windex)1573 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1574 u32 windex)
1575 {
1576 int dir = (windex & USB_DIR_IN) ? 1 : 0;
1577 int idx = windex & 0x7F;
1578
1579 if (windex >= 0x100)
1580 return NULL;
1581
1582 if (idx > hsotg->num_of_eps)
1583 return NULL;
1584
1585 return index_to_ep(hsotg, idx, dir);
1586 }
1587
1588 /**
1589 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1590 * @hsotg: The driver state.
1591 * @testmode: requested usb test mode
1592 * Enable usb Test Mode requested by the Host.
1593 */
dwc2_hsotg_set_test_mode(struct dwc2_hsotg * hsotg,int testmode)1594 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1595 {
1596 int dctl = dwc2_readl(hsotg, DCTL);
1597
1598 dctl &= ~DCTL_TSTCTL_MASK;
1599 switch (testmode) {
1600 case USB_TEST_J:
1601 case USB_TEST_K:
1602 case USB_TEST_SE0_NAK:
1603 case USB_TEST_PACKET:
1604 case USB_TEST_FORCE_ENABLE:
1605 dctl |= testmode << DCTL_TSTCTL_SHIFT;
1606 break;
1607 default:
1608 return -EINVAL;
1609 }
1610 dwc2_writel(hsotg, dctl, DCTL);
1611 return 0;
1612 }
1613
1614 /**
1615 * dwc2_hsotg_send_reply - send reply to control request
1616 * @hsotg: The device state
1617 * @ep: Endpoint 0
1618 * @buff: Buffer for request
1619 * @length: Length of reply.
1620 *
1621 * Create a request and queue it on the given endpoint. This is useful as
1622 * an internal method of sending replies to certain control requests, etc.
1623 */
dwc2_hsotg_send_reply(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * ep,void * buff,int length)1624 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1625 struct dwc2_hsotg_ep *ep,
1626 void *buff,
1627 int length)
1628 {
1629 struct usb_request *req;
1630 int ret;
1631
1632 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1633
1634 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1635 hsotg->ep0_reply = req;
1636 if (!req) {
1637 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1638 return -ENOMEM;
1639 }
1640
1641 req->buf = hsotg->ep0_buff;
1642 req->length = length;
1643 /*
1644 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1645 * STATUS stage.
1646 */
1647 req->zero = 0;
1648 req->complete = dwc2_hsotg_complete_oursetup;
1649
1650 if (length)
1651 memcpy(req->buf, buff, length);
1652
1653 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1654 if (ret) {
1655 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1656 return ret;
1657 }
1658
1659 return 0;
1660 }
1661
1662 /**
1663 * dwc2_hsotg_process_req_status - process request GET_STATUS
1664 * @hsotg: The device state
1665 * @ctrl: USB control request
1666 */
dwc2_hsotg_process_req_status(struct dwc2_hsotg * hsotg,struct usb_ctrlrequest * ctrl)1667 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1668 struct usb_ctrlrequest *ctrl)
1669 {
1670 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1671 struct dwc2_hsotg_ep *ep;
1672 __le16 reply;
1673 u16 status;
1674 int ret;
1675
1676 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1677
1678 if (!ep0->dir_in) {
1679 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1680 return -EINVAL;
1681 }
1682
1683 switch (ctrl->bRequestType & USB_RECIP_MASK) {
1684 case USB_RECIP_DEVICE:
1685 status = hsotg->gadget.is_selfpowered <<
1686 USB_DEVICE_SELF_POWERED;
1687 status |= hsotg->remote_wakeup_allowed <<
1688 USB_DEVICE_REMOTE_WAKEUP;
1689 reply = cpu_to_le16(status);
1690 break;
1691
1692 case USB_RECIP_INTERFACE:
1693 /* currently, the data result should be zero */
1694 reply = cpu_to_le16(0);
1695 break;
1696
1697 case USB_RECIP_ENDPOINT:
1698 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1699 if (!ep)
1700 return -ENOENT;
1701
1702 reply = cpu_to_le16(ep->halted ? 1 : 0);
1703 break;
1704
1705 default:
1706 return 0;
1707 }
1708
1709 if (le16_to_cpu(ctrl->wLength) != 2)
1710 return -EINVAL;
1711
1712 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1713 if (ret) {
1714 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1715 return ret;
1716 }
1717
1718 return 1;
1719 }
1720
1721 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1722
1723 /**
1724 * get_ep_head - return the first request on the endpoint
1725 * @hs_ep: The controller endpoint to get
1726 *
1727 * Get the first request on the endpoint.
1728 */
get_ep_head(struct dwc2_hsotg_ep * hs_ep)1729 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1730 {
1731 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1732 queue);
1733 }
1734
1735 /**
1736 * dwc2_gadget_start_next_request - Starts next request from ep queue
1737 * @hs_ep: Endpoint structure
1738 *
1739 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1740 * in its handler. Hence we need to unmask it here to be able to do
1741 * resynchronization.
1742 */
dwc2_gadget_start_next_request(struct dwc2_hsotg_ep * hs_ep)1743 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1744 {
1745 struct dwc2_hsotg *hsotg = hs_ep->parent;
1746 int dir_in = hs_ep->dir_in;
1747 struct dwc2_hsotg_req *hs_req;
1748
1749 if (!list_empty(&hs_ep->queue)) {
1750 hs_req = get_ep_head(hs_ep);
1751 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1752 return;
1753 }
1754 if (!hs_ep->isochronous)
1755 return;
1756
1757 if (dir_in) {
1758 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1759 __func__);
1760 } else {
1761 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1762 __func__);
1763 }
1764 }
1765
1766 /**
1767 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1768 * @hsotg: The device state
1769 * @ctrl: USB control request
1770 */
dwc2_hsotg_process_req_feature(struct dwc2_hsotg * hsotg,struct usb_ctrlrequest * ctrl)1771 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1772 struct usb_ctrlrequest *ctrl)
1773 {
1774 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1775 struct dwc2_hsotg_req *hs_req;
1776 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1777 struct dwc2_hsotg_ep *ep;
1778 int ret;
1779 bool halted;
1780 u32 recip;
1781 u32 wValue;
1782 u32 wIndex;
1783
1784 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1785 __func__, set ? "SET" : "CLEAR");
1786
1787 wValue = le16_to_cpu(ctrl->wValue);
1788 wIndex = le16_to_cpu(ctrl->wIndex);
1789 recip = ctrl->bRequestType & USB_RECIP_MASK;
1790
1791 switch (recip) {
1792 case USB_RECIP_DEVICE:
1793 switch (wValue) {
1794 case USB_DEVICE_REMOTE_WAKEUP:
1795 if (set)
1796 hsotg->remote_wakeup_allowed = 1;
1797 else
1798 hsotg->remote_wakeup_allowed = 0;
1799 break;
1800
1801 case USB_DEVICE_TEST_MODE:
1802 if ((wIndex & 0xff) != 0)
1803 return -EINVAL;
1804 if (!set)
1805 return -EINVAL;
1806
1807 hsotg->test_mode = wIndex >> 8;
1808 break;
1809 default:
1810 return -ENOENT;
1811 }
1812
1813 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1814 if (ret) {
1815 dev_err(hsotg->dev,
1816 "%s: failed to send reply\n", __func__);
1817 return ret;
1818 }
1819 break;
1820
1821 case USB_RECIP_ENDPOINT:
1822 ep = ep_from_windex(hsotg, wIndex);
1823 if (!ep) {
1824 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1825 __func__, wIndex);
1826 return -ENOENT;
1827 }
1828
1829 switch (wValue) {
1830 case USB_ENDPOINT_HALT:
1831 halted = ep->halted;
1832
1833 dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1834
1835 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1836 if (ret) {
1837 dev_err(hsotg->dev,
1838 "%s: failed to send reply\n", __func__);
1839 return ret;
1840 }
1841
1842 /*
1843 * we have to complete all requests for ep if it was
1844 * halted, and the halt was cleared by CLEAR_FEATURE
1845 */
1846
1847 if (!set && halted) {
1848 /*
1849 * If we have request in progress,
1850 * then complete it
1851 */
1852 if (ep->req) {
1853 hs_req = ep->req;
1854 ep->req = NULL;
1855 list_del_init(&hs_req->queue);
1856 if (hs_req->req.complete) {
1857 spin_unlock(&hsotg->lock);
1858 usb_gadget_giveback_request(
1859 &ep->ep, &hs_req->req);
1860 spin_lock(&hsotg->lock);
1861 }
1862 }
1863
1864 /* If we have pending request, then start it */
1865 if (!ep->req)
1866 dwc2_gadget_start_next_request(ep);
1867 }
1868
1869 break;
1870
1871 default:
1872 return -ENOENT;
1873 }
1874 break;
1875 default:
1876 return -ENOENT;
1877 }
1878 return 1;
1879 }
1880
1881 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1882
1883 /**
1884 * dwc2_hsotg_stall_ep0 - stall ep0
1885 * @hsotg: The device state
1886 *
1887 * Set stall for ep0 as response for setup request.
1888 */
dwc2_hsotg_stall_ep0(struct dwc2_hsotg * hsotg)1889 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1890 {
1891 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1892 u32 reg;
1893 u32 ctrl;
1894
1895 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1896 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1897
1898 /*
1899 * DxEPCTL_Stall will be cleared by EP once it has
1900 * taken effect, so no need to clear later.
1901 */
1902
1903 ctrl = dwc2_readl(hsotg, reg);
1904 ctrl |= DXEPCTL_STALL;
1905 ctrl |= DXEPCTL_CNAK;
1906 dwc2_writel(hsotg, ctrl, reg);
1907
1908 dev_dbg(hsotg->dev,
1909 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1910 ctrl, reg, dwc2_readl(hsotg, reg));
1911
1912 /*
1913 * complete won't be called, so we enqueue
1914 * setup request here
1915 */
1916 dwc2_hsotg_enqueue_setup(hsotg);
1917 }
1918
1919 /**
1920 * dwc2_hsotg_process_control - process a control request
1921 * @hsotg: The device state
1922 * @ctrl: The control request received
1923 *
1924 * The controller has received the SETUP phase of a control request, and
1925 * needs to work out what to do next (and whether to pass it on to the
1926 * gadget driver).
1927 */
dwc2_hsotg_process_control(struct dwc2_hsotg * hsotg,struct usb_ctrlrequest * ctrl)1928 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1929 struct usb_ctrlrequest *ctrl)
1930 {
1931 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1932 int ret = 0;
1933 u32 dcfg;
1934
1935 dev_dbg(hsotg->dev,
1936 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1937 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1938 ctrl->wIndex, ctrl->wLength);
1939
1940 if (ctrl->wLength == 0) {
1941 ep0->dir_in = 1;
1942 hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1943 } else if (ctrl->bRequestType & USB_DIR_IN) {
1944 ep0->dir_in = 1;
1945 hsotg->ep0_state = DWC2_EP0_DATA_IN;
1946 } else {
1947 ep0->dir_in = 0;
1948 hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1949 }
1950
1951 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1952 switch (ctrl->bRequest) {
1953 case USB_REQ_SET_ADDRESS:
1954 hsotg->connected = 1;
1955 dcfg = dwc2_readl(hsotg, DCFG);
1956 dcfg &= ~DCFG_DEVADDR_MASK;
1957 dcfg |= (le16_to_cpu(ctrl->wValue) <<
1958 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1959 dwc2_writel(hsotg, dcfg, DCFG);
1960
1961 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1962
1963 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1964 return;
1965
1966 case USB_REQ_GET_STATUS:
1967 ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1968 break;
1969
1970 case USB_REQ_CLEAR_FEATURE:
1971 case USB_REQ_SET_FEATURE:
1972 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1973 break;
1974 }
1975 }
1976
1977 /* as a fallback, try delivering it to the driver to deal with */
1978
1979 if (ret == 0 && hsotg->driver) {
1980 spin_unlock(&hsotg->lock);
1981 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1982 spin_lock(&hsotg->lock);
1983 if (ret < 0)
1984 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1985 }
1986
1987 hsotg->delayed_status = false;
1988 if (ret == USB_GADGET_DELAYED_STATUS)
1989 hsotg->delayed_status = true;
1990
1991 /*
1992 * the request is either unhandlable, or is not formatted correctly
1993 * so respond with a STALL for the status stage to indicate failure.
1994 */
1995
1996 if (ret < 0)
1997 dwc2_hsotg_stall_ep0(hsotg);
1998 }
1999
2000 /**
2001 * dwc2_hsotg_complete_setup - completion of a setup transfer
2002 * @ep: The endpoint the request was on.
2003 * @req: The request completed.
2004 *
2005 * Called on completion of any requests the driver itself submitted for
2006 * EP0 setup packets
2007 */
dwc2_hsotg_complete_setup(struct usb_ep * ep,struct usb_request * req)2008 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
2009 struct usb_request *req)
2010 {
2011 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2012 struct dwc2_hsotg *hsotg = hs_ep->parent;
2013
2014 if (req->status < 0) {
2015 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
2016 return;
2017 }
2018
2019 spin_lock(&hsotg->lock);
2020 if (req->actual == 0)
2021 dwc2_hsotg_enqueue_setup(hsotg);
2022 else
2023 dwc2_hsotg_process_control(hsotg, req->buf);
2024 spin_unlock(&hsotg->lock);
2025 }
2026
2027 /**
2028 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
2029 * @hsotg: The device state.
2030 *
2031 * Enqueue a request on EP0 if necessary to received any SETUP packets
2032 * received from the host.
2033 */
dwc2_hsotg_enqueue_setup(struct dwc2_hsotg * hsotg)2034 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
2035 {
2036 struct usb_request *req = hsotg->ctrl_req;
2037 struct dwc2_hsotg_req *hs_req = our_req(req);
2038 int ret;
2039
2040 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2041
2042 req->zero = 0;
2043 req->length = 8;
2044 req->buf = hsotg->ctrl_buff;
2045 req->complete = dwc2_hsotg_complete_setup;
2046
2047 if (!list_empty(&hs_req->queue)) {
2048 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2049 return;
2050 }
2051
2052 hsotg->eps_out[0]->dir_in = 0;
2053 hsotg->eps_out[0]->send_zlp = 0;
2054 hsotg->ep0_state = DWC2_EP0_SETUP;
2055
2056 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2057 if (ret < 0) {
2058 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2059 /*
2060 * Don't think there's much we can do other than watch the
2061 * driver fail.
2062 */
2063 }
2064 }
2065
dwc2_hsotg_program_zlp(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep)2066 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2067 struct dwc2_hsotg_ep *hs_ep)
2068 {
2069 u32 ctrl;
2070 u8 index = hs_ep->index;
2071 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2072 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2073
2074 if (hs_ep->dir_in)
2075 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2076 index);
2077 else
2078 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2079 index);
2080 if (using_desc_dma(hsotg)) {
2081 /* Not specific buffer needed for ep0 ZLP */
2082 dma_addr_t dma = hs_ep->desc_list_dma;
2083
2084 if (!index)
2085 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2086
2087 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2088 } else {
2089 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2090 DXEPTSIZ_XFERSIZE(0),
2091 epsiz_reg);
2092 }
2093
2094 ctrl = dwc2_readl(hsotg, epctl_reg);
2095 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
2096 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2097 ctrl |= DXEPCTL_USBACTEP;
2098 dwc2_writel(hsotg, ctrl, epctl_reg);
2099 }
2100
2101 /**
2102 * dwc2_hsotg_complete_request - complete a request given to us
2103 * @hsotg: The device state.
2104 * @hs_ep: The endpoint the request was on.
2105 * @hs_req: The request to complete.
2106 * @result: The result code (0 => Ok, otherwise errno)
2107 *
2108 * The given request has finished, so call the necessary completion
2109 * if it has one and then look to see if we can start a new request
2110 * on the endpoint.
2111 *
2112 * Note, expects the ep to already be locked as appropriate.
2113 */
dwc2_hsotg_complete_request(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep,struct dwc2_hsotg_req * hs_req,int result)2114 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2115 struct dwc2_hsotg_ep *hs_ep,
2116 struct dwc2_hsotg_req *hs_req,
2117 int result)
2118 {
2119 if (!hs_req) {
2120 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2121 return;
2122 }
2123
2124 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2125 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2126
2127 /*
2128 * only replace the status if we've not already set an error
2129 * from a previous transaction
2130 */
2131
2132 if (hs_req->req.status == -EINPROGRESS)
2133 hs_req->req.status = result;
2134
2135 if (using_dma(hsotg))
2136 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2137
2138 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2139
2140 hs_ep->req = NULL;
2141 list_del_init(&hs_req->queue);
2142
2143 /*
2144 * call the complete request with the locks off, just in case the
2145 * request tries to queue more work for this endpoint.
2146 */
2147
2148 if (hs_req->req.complete) {
2149 spin_unlock(&hsotg->lock);
2150 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2151 spin_lock(&hsotg->lock);
2152 }
2153
2154 /* In DDMA don't need to proceed to starting of next ISOC request */
2155 if (using_desc_dma(hsotg) && hs_ep->isochronous)
2156 return;
2157
2158 /*
2159 * Look to see if there is anything else to do. Note, the completion
2160 * of the previous request may have caused a new request to be started
2161 * so be careful when doing this.
2162 */
2163
2164 if (!hs_ep->req && result >= 0)
2165 dwc2_gadget_start_next_request(hs_ep);
2166 }
2167
2168 /*
2169 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2170 * @hs_ep: The endpoint the request was on.
2171 *
2172 * Get first request from the ep queue, determine descriptor on which complete
2173 * happened. SW discovers which descriptor currently in use by HW, adjusts
2174 * dma_address and calculates index of completed descriptor based on the value
2175 * of DEPDMA register. Update actual length of request, giveback to gadget.
2176 */
dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep * hs_ep)2177 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2178 {
2179 struct dwc2_hsotg *hsotg = hs_ep->parent;
2180 struct dwc2_hsotg_req *hs_req;
2181 struct usb_request *ureq;
2182 u32 desc_sts;
2183 u32 mask;
2184
2185 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2186
2187 /* Process only descriptors with buffer status set to DMA done */
2188 while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2189 DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2190
2191 hs_req = get_ep_head(hs_ep);
2192 if (!hs_req) {
2193 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2194 return;
2195 }
2196 ureq = &hs_req->req;
2197
2198 /* Check completion status */
2199 if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2200 DEV_DMA_STS_SUCC) {
2201 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2202 DEV_DMA_ISOC_RX_NBYTES_MASK;
2203 ureq->actual = ureq->length - ((desc_sts & mask) >>
2204 DEV_DMA_ISOC_NBYTES_SHIFT);
2205
2206 /* Adjust actual len for ISOC Out if len is
2207 * not align of 4
2208 */
2209 if (!hs_ep->dir_in && ureq->length & 0x3)
2210 ureq->actual += 4 - (ureq->length & 0x3);
2211
2212 /* Set actual frame number for completed transfers */
2213 ureq->frame_number =
2214 (desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2215 DEV_DMA_ISOC_FRNUM_SHIFT;
2216 }
2217
2218 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2219
2220 hs_ep->compl_desc++;
2221 if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2222 hs_ep->compl_desc = 0;
2223 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2224 }
2225 }
2226
2227 /*
2228 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2229 * @hs_ep: The isochronous endpoint.
2230 *
2231 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2232 * interrupt. Reset target frame and next_desc to allow to start
2233 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2234 * interrupt for OUT direction.
2235 */
dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep * hs_ep)2236 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2237 {
2238 struct dwc2_hsotg *hsotg = hs_ep->parent;
2239
2240 if (!hs_ep->dir_in)
2241 dwc2_flush_rx_fifo(hsotg);
2242 dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2243
2244 hs_ep->target_frame = TARGET_FRAME_INITIAL;
2245 hs_ep->next_desc = 0;
2246 hs_ep->compl_desc = 0;
2247 }
2248
2249 /**
2250 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2251 * @hsotg: The device state.
2252 * @ep_idx: The endpoint index for the data
2253 * @size: The size of data in the fifo, in bytes
2254 *
2255 * The FIFO status shows there is data to read from the FIFO for a given
2256 * endpoint, so sort out whether we need to read the data into a request
2257 * that has been made for that endpoint.
2258 */
dwc2_hsotg_rx_data(struct dwc2_hsotg * hsotg,int ep_idx,int size)2259 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2260 {
2261 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2262 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2263 int to_read;
2264 int max_req;
2265 int read_ptr;
2266
2267 if (!hs_req) {
2268 u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2269 int ptr;
2270
2271 dev_dbg(hsotg->dev,
2272 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2273 __func__, size, ep_idx, epctl);
2274
2275 /* dump the data from the FIFO, we've nothing we can do */
2276 for (ptr = 0; ptr < size; ptr += 4)
2277 (void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2278
2279 return;
2280 }
2281
2282 to_read = size;
2283 read_ptr = hs_req->req.actual;
2284 max_req = hs_req->req.length - read_ptr;
2285
2286 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2287 __func__, to_read, max_req, read_ptr, hs_req->req.length);
2288
2289 if (to_read > max_req) {
2290 /*
2291 * more data appeared than we where willing
2292 * to deal with in this request.
2293 */
2294
2295 /* currently we don't deal this */
2296 WARN_ON_ONCE(1);
2297 }
2298
2299 hs_ep->total_data += to_read;
2300 hs_req->req.actual += to_read;
2301 to_read = DIV_ROUND_UP(to_read, 4);
2302
2303 /*
2304 * note, we might over-write the buffer end by 3 bytes depending on
2305 * alignment of the data.
2306 */
2307 dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2308 hs_req->req.buf + read_ptr, to_read);
2309 }
2310
2311 /**
2312 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2313 * @hsotg: The device instance
2314 * @dir_in: If IN zlp
2315 *
2316 * Generate a zero-length IN packet request for terminating a SETUP
2317 * transaction.
2318 *
2319 * Note, since we don't write any data to the TxFIFO, then it is
2320 * currently believed that we do not need to wait for any space in
2321 * the TxFIFO.
2322 */
dwc2_hsotg_ep0_zlp(struct dwc2_hsotg * hsotg,bool dir_in)2323 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2324 {
2325 /* eps_out[0] is used in both directions */
2326 hsotg->eps_out[0]->dir_in = dir_in;
2327 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2328
2329 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2330 }
2331
2332 /*
2333 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2334 * @hs_ep - The endpoint on which transfer went
2335 *
2336 * Iterate over endpoints descriptor chain and get info on bytes remained
2337 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2338 */
dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep * hs_ep)2339 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2340 {
2341 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
2342 struct dwc2_hsotg *hsotg = hs_ep->parent;
2343 unsigned int bytes_rem = 0;
2344 unsigned int bytes_rem_correction = 0;
2345 struct dwc2_dma_desc *desc = hs_ep->desc_list;
2346 int i;
2347 u32 status;
2348 u32 mps = hs_ep->ep.maxpacket;
2349 int dir_in = hs_ep->dir_in;
2350
2351 if (!desc)
2352 return -EINVAL;
2353
2354 /* Interrupt OUT EP with mps not multiple of 4 */
2355 if (hs_ep->index)
2356 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
2357 bytes_rem_correction = 4 - (mps % 4);
2358
2359 for (i = 0; i < hs_ep->desc_count; ++i) {
2360 status = desc->status;
2361 bytes_rem += status & DEV_DMA_NBYTES_MASK;
2362 bytes_rem -= bytes_rem_correction;
2363
2364 if (status & DEV_DMA_STS_MASK)
2365 dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2366 i, status & DEV_DMA_STS_MASK);
2367
2368 if (status & DEV_DMA_L)
2369 break;
2370
2371 desc++;
2372 }
2373
2374 return bytes_rem;
2375 }
2376
2377 /**
2378 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2379 * @hsotg: The device instance
2380 * @epnum: The endpoint received from
2381 *
2382 * The RXFIFO has delivered an OutDone event, which means that the data
2383 * transfer for an OUT endpoint has been completed, either by a short
2384 * packet or by the finish of a transfer.
2385 */
dwc2_hsotg_handle_outdone(struct dwc2_hsotg * hsotg,int epnum)2386 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2387 {
2388 u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2389 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2390 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2391 struct usb_request *req = &hs_req->req;
2392 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2393 int result = 0;
2394
2395 if (!hs_req) {
2396 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2397 return;
2398 }
2399
2400 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2401 dev_dbg(hsotg->dev, "zlp packet received\n");
2402 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2403 dwc2_hsotg_enqueue_setup(hsotg);
2404 return;
2405 }
2406
2407 if (using_desc_dma(hsotg))
2408 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2409
2410 if (using_dma(hsotg)) {
2411 unsigned int size_done;
2412
2413 /*
2414 * Calculate the size of the transfer by checking how much
2415 * is left in the endpoint size register and then working it
2416 * out from the amount we loaded for the transfer.
2417 *
2418 * We need to do this as DMA pointers are always 32bit aligned
2419 * so may overshoot/undershoot the transfer.
2420 */
2421
2422 size_done = hs_ep->size_loaded - size_left;
2423 size_done += hs_ep->last_load;
2424
2425 req->actual = size_done;
2426 }
2427
2428 /* if there is more request to do, schedule new transfer */
2429 if (req->actual < req->length && size_left == 0) {
2430 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2431 return;
2432 }
2433
2434 if (req->actual < req->length && req->short_not_ok) {
2435 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2436 __func__, req->actual, req->length);
2437
2438 /*
2439 * todo - what should we return here? there's no one else
2440 * even bothering to check the status.
2441 */
2442 }
2443
2444 /* DDMA IN status phase will start from StsPhseRcvd interrupt */
2445 if (!using_desc_dma(hsotg) && epnum == 0 &&
2446 hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2447 /* Move to STATUS IN */
2448 if (!hsotg->delayed_status)
2449 dwc2_hsotg_ep0_zlp(hsotg, true);
2450 }
2451
2452 /* Set actual frame number for completed transfers */
2453 if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2454 req->frame_number = hs_ep->target_frame;
2455 dwc2_gadget_incr_frame_num(hs_ep);
2456 }
2457
2458 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2459 }
2460
2461 /**
2462 * dwc2_hsotg_handle_rx - RX FIFO has data
2463 * @hsotg: The device instance
2464 *
2465 * The IRQ handler has detected that the RX FIFO has some data in it
2466 * that requires processing, so find out what is in there and do the
2467 * appropriate read.
2468 *
2469 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2470 * chunks, so if you have x packets received on an endpoint you'll get x
2471 * FIFO events delivered, each with a packet's worth of data in it.
2472 *
2473 * When using DMA, we should not be processing events from the RXFIFO
2474 * as the actual data should be sent to the memory directly and we turn
2475 * on the completion interrupts to get notifications of transfer completion.
2476 */
dwc2_hsotg_handle_rx(struct dwc2_hsotg * hsotg)2477 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2478 {
2479 u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2480 u32 epnum, status, size;
2481
2482 WARN_ON(using_dma(hsotg));
2483
2484 epnum = grxstsr & GRXSTS_EPNUM_MASK;
2485 status = grxstsr & GRXSTS_PKTSTS_MASK;
2486
2487 size = grxstsr & GRXSTS_BYTECNT_MASK;
2488 size >>= GRXSTS_BYTECNT_SHIFT;
2489
2490 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2491 __func__, grxstsr, size, epnum);
2492
2493 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2494 case GRXSTS_PKTSTS_GLOBALOUTNAK:
2495 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2496 break;
2497
2498 case GRXSTS_PKTSTS_OUTDONE:
2499 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2500 dwc2_hsotg_read_frameno(hsotg));
2501
2502 if (!using_dma(hsotg))
2503 dwc2_hsotg_handle_outdone(hsotg, epnum);
2504 break;
2505
2506 case GRXSTS_PKTSTS_SETUPDONE:
2507 dev_dbg(hsotg->dev,
2508 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2509 dwc2_hsotg_read_frameno(hsotg),
2510 dwc2_readl(hsotg, DOEPCTL(0)));
2511 /*
2512 * Call dwc2_hsotg_handle_outdone here if it was not called from
2513 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2514 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2515 */
2516 if (hsotg->ep0_state == DWC2_EP0_SETUP)
2517 dwc2_hsotg_handle_outdone(hsotg, epnum);
2518 break;
2519
2520 case GRXSTS_PKTSTS_OUTRX:
2521 dwc2_hsotg_rx_data(hsotg, epnum, size);
2522 break;
2523
2524 case GRXSTS_PKTSTS_SETUPRX:
2525 dev_dbg(hsotg->dev,
2526 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2527 dwc2_hsotg_read_frameno(hsotg),
2528 dwc2_readl(hsotg, DOEPCTL(0)));
2529
2530 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2531
2532 dwc2_hsotg_rx_data(hsotg, epnum, size);
2533 break;
2534
2535 default:
2536 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2537 __func__, grxstsr);
2538
2539 dwc2_hsotg_dump(hsotg);
2540 break;
2541 }
2542 }
2543
2544 /**
2545 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2546 * @mps: The maximum packet size in bytes.
2547 */
dwc2_hsotg_ep0_mps(unsigned int mps)2548 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2549 {
2550 switch (mps) {
2551 case 64:
2552 return D0EPCTL_MPS_64;
2553 case 32:
2554 return D0EPCTL_MPS_32;
2555 case 16:
2556 return D0EPCTL_MPS_16;
2557 case 8:
2558 return D0EPCTL_MPS_8;
2559 }
2560
2561 /* bad max packet size, warn and return invalid result */
2562 WARN_ON(1);
2563 return (u32)-1;
2564 }
2565
2566 /**
2567 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2568 * @hsotg: The driver state.
2569 * @ep: The index number of the endpoint
2570 * @mps: The maximum packet size in bytes
2571 * @mc: The multicount value
2572 * @dir_in: True if direction is in.
2573 *
2574 * Configure the maximum packet size for the given endpoint, updating
2575 * the hardware control registers to reflect this.
2576 */
dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg * hsotg,unsigned int ep,unsigned int mps,unsigned int mc,unsigned int dir_in)2577 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2578 unsigned int ep, unsigned int mps,
2579 unsigned int mc, unsigned int dir_in)
2580 {
2581 struct dwc2_hsotg_ep *hs_ep;
2582 u32 reg;
2583
2584 hs_ep = index_to_ep(hsotg, ep, dir_in);
2585 if (!hs_ep)
2586 return;
2587
2588 if (ep == 0) {
2589 u32 mps_bytes = mps;
2590
2591 /* EP0 is a special case */
2592 mps = dwc2_hsotg_ep0_mps(mps_bytes);
2593 if (mps > 3)
2594 goto bad_mps;
2595 hs_ep->ep.maxpacket = mps_bytes;
2596 hs_ep->mc = 1;
2597 } else {
2598 if (mps > 1024)
2599 goto bad_mps;
2600 hs_ep->mc = mc;
2601 if (mc > 3)
2602 goto bad_mps;
2603 hs_ep->ep.maxpacket = mps;
2604 }
2605
2606 if (dir_in) {
2607 reg = dwc2_readl(hsotg, DIEPCTL(ep));
2608 reg &= ~DXEPCTL_MPS_MASK;
2609 reg |= mps;
2610 dwc2_writel(hsotg, reg, DIEPCTL(ep));
2611 } else {
2612 reg = dwc2_readl(hsotg, DOEPCTL(ep));
2613 reg &= ~DXEPCTL_MPS_MASK;
2614 reg |= mps;
2615 dwc2_writel(hsotg, reg, DOEPCTL(ep));
2616 }
2617
2618 return;
2619
2620 bad_mps:
2621 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2622 }
2623
2624 /**
2625 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2626 * @hsotg: The driver state
2627 * @idx: The index for the endpoint (0..15)
2628 */
dwc2_hsotg_txfifo_flush(struct dwc2_hsotg * hsotg,unsigned int idx)2629 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2630 {
2631 dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2632 GRSTCTL);
2633
2634 /* wait until the fifo is flushed */
2635 if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2636 dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2637 __func__);
2638 }
2639
2640 /**
2641 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2642 * @hsotg: The driver state
2643 * @hs_ep: The driver endpoint to check.
2644 *
2645 * Check to see if there is a request that has data to send, and if so
2646 * make an attempt to write data into the FIFO.
2647 */
dwc2_hsotg_trytx(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep)2648 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2649 struct dwc2_hsotg_ep *hs_ep)
2650 {
2651 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2652
2653 if (!hs_ep->dir_in || !hs_req) {
2654 /**
2655 * if request is not enqueued, we disable interrupts
2656 * for endpoints, excepting ep0
2657 */
2658 if (hs_ep->index != 0)
2659 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2660 hs_ep->dir_in, 0);
2661 return 0;
2662 }
2663
2664 if (hs_req->req.actual < hs_req->req.length) {
2665 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2666 hs_ep->index);
2667 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2668 }
2669
2670 return 0;
2671 }
2672
2673 /**
2674 * dwc2_hsotg_complete_in - complete IN transfer
2675 * @hsotg: The device state.
2676 * @hs_ep: The endpoint that has just completed.
2677 *
2678 * An IN transfer has been completed, update the transfer's state and then
2679 * call the relevant completion routines.
2680 */
dwc2_hsotg_complete_in(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep)2681 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2682 struct dwc2_hsotg_ep *hs_ep)
2683 {
2684 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2685 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2686 int size_left, size_done;
2687
2688 if (!hs_req) {
2689 dev_dbg(hsotg->dev, "XferCompl but no req\n");
2690 return;
2691 }
2692
2693 /* Finish ZLP handling for IN EP0 transactions */
2694 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2695 dev_dbg(hsotg->dev, "zlp packet sent\n");
2696
2697 /*
2698 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2699 * changed to IN. Change back to complete OUT transfer request
2700 */
2701 hs_ep->dir_in = 0;
2702
2703 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2704 if (hsotg->test_mode) {
2705 int ret;
2706
2707 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2708 if (ret < 0) {
2709 dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2710 hsotg->test_mode);
2711 dwc2_hsotg_stall_ep0(hsotg);
2712 return;
2713 }
2714 }
2715 dwc2_hsotg_enqueue_setup(hsotg);
2716 return;
2717 }
2718
2719 /*
2720 * Calculate the size of the transfer by checking how much is left
2721 * in the endpoint size register and then working it out from
2722 * the amount we loaded for the transfer.
2723 *
2724 * We do this even for DMA, as the transfer may have incremented
2725 * past the end of the buffer (DMA transfers are always 32bit
2726 * aligned).
2727 */
2728 if (using_desc_dma(hsotg)) {
2729 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2730 if (size_left < 0)
2731 dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2732 size_left);
2733 } else {
2734 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2735 }
2736
2737 size_done = hs_ep->size_loaded - size_left;
2738 size_done += hs_ep->last_load;
2739
2740 if (hs_req->req.actual != size_done)
2741 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2742 __func__, hs_req->req.actual, size_done);
2743
2744 hs_req->req.actual = size_done;
2745 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2746 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2747
2748 if (!size_left && hs_req->req.actual < hs_req->req.length) {
2749 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2750 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2751 return;
2752 }
2753
2754 /* Zlp for all endpoints in non DDMA, for ep0 only in DATA IN stage */
2755 if (hs_ep->send_zlp) {
2756 hs_ep->send_zlp = 0;
2757 if (!using_desc_dma(hsotg)) {
2758 dwc2_hsotg_program_zlp(hsotg, hs_ep);
2759 /* transfer will be completed on next complete interrupt */
2760 return;
2761 }
2762 }
2763
2764 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2765 /* Move to STATUS OUT */
2766 dwc2_hsotg_ep0_zlp(hsotg, false);
2767 return;
2768 }
2769
2770 /* Set actual frame number for completed transfers */
2771 if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2772 hs_req->req.frame_number = hs_ep->target_frame;
2773 dwc2_gadget_incr_frame_num(hs_ep);
2774 }
2775
2776 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2777 }
2778
2779 /**
2780 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2781 * @hsotg: The device state.
2782 * @idx: Index of ep.
2783 * @dir_in: Endpoint direction 1-in 0-out.
2784 *
2785 * Reads for endpoint with given index and direction, by masking
2786 * epint_reg with coresponding mask.
2787 */
dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg * hsotg,unsigned int idx,int dir_in)2788 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2789 unsigned int idx, int dir_in)
2790 {
2791 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2792 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2793 u32 ints;
2794 u32 mask;
2795 u32 diepempmsk;
2796
2797 mask = dwc2_readl(hsotg, epmsk_reg);
2798 diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2799 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2800 mask |= DXEPINT_SETUP_RCVD;
2801
2802 ints = dwc2_readl(hsotg, epint_reg);
2803 ints &= mask;
2804 return ints;
2805 }
2806
2807 /**
2808 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2809 * @hs_ep: The endpoint on which interrupt is asserted.
2810 *
2811 * This interrupt indicates that the endpoint has been disabled per the
2812 * application's request.
2813 *
2814 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2815 * in case of ISOC completes current request.
2816 *
2817 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2818 * request starts it.
2819 */
dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep * hs_ep)2820 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2821 {
2822 struct dwc2_hsotg *hsotg = hs_ep->parent;
2823 struct dwc2_hsotg_req *hs_req;
2824 unsigned char idx = hs_ep->index;
2825 int dir_in = hs_ep->dir_in;
2826 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2827 int dctl = dwc2_readl(hsotg, DCTL);
2828
2829 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2830
2831 if (dir_in) {
2832 int epctl = dwc2_readl(hsotg, epctl_reg);
2833
2834 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2835
2836 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2837 int dctl = dwc2_readl(hsotg, DCTL);
2838
2839 dctl |= DCTL_CGNPINNAK;
2840 dwc2_writel(hsotg, dctl, DCTL);
2841 }
2842 } else {
2843
2844 if (dctl & DCTL_GOUTNAKSTS) {
2845 dctl |= DCTL_CGOUTNAK;
2846 dwc2_writel(hsotg, dctl, DCTL);
2847 }
2848 }
2849
2850 if (!hs_ep->isochronous)
2851 return;
2852
2853 if (list_empty(&hs_ep->queue)) {
2854 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2855 __func__, hs_ep);
2856 return;
2857 }
2858
2859 do {
2860 hs_req = get_ep_head(hs_ep);
2861 if (hs_req) {
2862 hs_req->req.frame_number = hs_ep->target_frame;
2863 hs_req->req.actual = 0;
2864 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2865 -ENODATA);
2866 }
2867 dwc2_gadget_incr_frame_num(hs_ep);
2868 /* Update current frame number value. */
2869 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2870 } while (dwc2_gadget_target_frame_elapsed(hs_ep));
2871 }
2872
2873 /**
2874 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2875 * @ep: The endpoint on which interrupt is asserted.
2876 *
2877 * This is starting point for ISOC-OUT transfer, synchronization done with
2878 * first out token received from host while corresponding EP is disabled.
2879 *
2880 * Device does not know initial frame in which out token will come. For this
2881 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2882 * getting this interrupt SW starts calculation for next transfer frame.
2883 */
dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep * ep)2884 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2885 {
2886 struct dwc2_hsotg *hsotg = ep->parent;
2887 struct dwc2_hsotg_req *hs_req;
2888 int dir_in = ep->dir_in;
2889
2890 if (dir_in || !ep->isochronous)
2891 return;
2892
2893 if (using_desc_dma(hsotg)) {
2894 if (ep->target_frame == TARGET_FRAME_INITIAL) {
2895 /* Start first ISO Out */
2896 ep->target_frame = hsotg->frame_number;
2897 dwc2_gadget_start_isoc_ddma(ep);
2898 }
2899 return;
2900 }
2901
2902 if (ep->target_frame == TARGET_FRAME_INITIAL) {
2903 u32 ctrl;
2904
2905 ep->target_frame = hsotg->frame_number;
2906 if (ep->interval > 1) {
2907 ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2908 if (ep->target_frame & 0x1)
2909 ctrl |= DXEPCTL_SETODDFR;
2910 else
2911 ctrl |= DXEPCTL_SETEVENFR;
2912
2913 dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2914 }
2915 }
2916
2917 while (dwc2_gadget_target_frame_elapsed(ep)) {
2918 hs_req = get_ep_head(ep);
2919 if (hs_req) {
2920 hs_req->req.frame_number = ep->target_frame;
2921 hs_req->req.actual = 0;
2922 dwc2_hsotg_complete_request(hsotg, ep, hs_req, -ENODATA);
2923 }
2924
2925 dwc2_gadget_incr_frame_num(ep);
2926 /* Update current frame number value. */
2927 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2928 }
2929
2930 if (!ep->req)
2931 dwc2_gadget_start_next_request(ep);
2932
2933 }
2934
2935 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
2936 struct dwc2_hsotg_ep *hs_ep);
2937
2938 /**
2939 * dwc2_gadget_handle_nak - handle NAK interrupt
2940 * @hs_ep: The endpoint on which interrupt is asserted.
2941 *
2942 * This is starting point for ISOC-IN transfer, synchronization done with
2943 * first IN token received from host while corresponding EP is disabled.
2944 *
2945 * Device does not know when first one token will arrive from host. On first
2946 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2947 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2948 * sent in response to that as there was no data in FIFO. SW is basing on this
2949 * interrupt to obtain frame in which token has come and then based on the
2950 * interval calculates next frame for transfer.
2951 */
dwc2_gadget_handle_nak(struct dwc2_hsotg_ep * hs_ep)2952 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2953 {
2954 struct dwc2_hsotg *hsotg = hs_ep->parent;
2955 struct dwc2_hsotg_req *hs_req;
2956 int dir_in = hs_ep->dir_in;
2957 u32 ctrl;
2958
2959 if (!dir_in || !hs_ep->isochronous)
2960 return;
2961
2962 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2963
2964 if (using_desc_dma(hsotg)) {
2965 hs_ep->target_frame = hsotg->frame_number;
2966 dwc2_gadget_incr_frame_num(hs_ep);
2967
2968 /* In service interval mode target_frame must
2969 * be set to last (u)frame of the service interval.
2970 */
2971 if (hsotg->params.service_interval) {
2972 /* Set target_frame to the first (u)frame of
2973 * the service interval
2974 */
2975 hs_ep->target_frame &= ~hs_ep->interval + 1;
2976
2977 /* Set target_frame to the last (u)frame of
2978 * the service interval
2979 */
2980 dwc2_gadget_incr_frame_num(hs_ep);
2981 dwc2_gadget_dec_frame_num_by_one(hs_ep);
2982 }
2983
2984 dwc2_gadget_start_isoc_ddma(hs_ep);
2985 return;
2986 }
2987
2988 hs_ep->target_frame = hsotg->frame_number;
2989 if (hs_ep->interval > 1) {
2990 u32 ctrl = dwc2_readl(hsotg,
2991 DIEPCTL(hs_ep->index));
2992 if (hs_ep->target_frame & 0x1)
2993 ctrl |= DXEPCTL_SETODDFR;
2994 else
2995 ctrl |= DXEPCTL_SETEVENFR;
2996
2997 dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2998 }
2999 }
3000
3001 if (using_desc_dma(hsotg))
3002 return;
3003
3004 ctrl = dwc2_readl(hsotg, DIEPCTL(hs_ep->index));
3005 if (ctrl & DXEPCTL_EPENA)
3006 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
3007 else
3008 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
3009
3010 while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
3011 hs_req = get_ep_head(hs_ep);
3012 if (hs_req) {
3013 hs_req->req.frame_number = hs_ep->target_frame;
3014 hs_req->req.actual = 0;
3015 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
3016 }
3017
3018 dwc2_gadget_incr_frame_num(hs_ep);
3019 /* Update current frame number value. */
3020 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
3021 }
3022
3023 if (!hs_ep->req)
3024 dwc2_gadget_start_next_request(hs_ep);
3025 }
3026
3027 /**
3028 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
3029 * @hsotg: The driver state
3030 * @idx: The index for the endpoint (0..15)
3031 * @dir_in: Set if this is an IN endpoint
3032 *
3033 * Process and clear any interrupt pending for an individual endpoint
3034 */
dwc2_hsotg_epint(struct dwc2_hsotg * hsotg,unsigned int idx,int dir_in)3035 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
3036 int dir_in)
3037 {
3038 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
3039 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
3040 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
3041 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
3042 u32 ints;
3043
3044 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
3045
3046 /* Clear endpoint interrupts */
3047 dwc2_writel(hsotg, ints, epint_reg);
3048
3049 if (!hs_ep) {
3050 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
3051 __func__, idx, dir_in ? "in" : "out");
3052 return;
3053 }
3054
3055 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
3056 __func__, idx, dir_in ? "in" : "out", ints);
3057
3058 /* Don't process XferCompl interrupt if it is a setup packet */
3059 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
3060 ints &= ~DXEPINT_XFERCOMPL;
3061
3062 /*
3063 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
3064 * stage and xfercomplete was generated without SETUP phase done
3065 * interrupt. SW should parse received setup packet only after host's
3066 * exit from setup phase of control transfer.
3067 */
3068 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3069 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3070 ints &= ~DXEPINT_XFERCOMPL;
3071
3072 if (ints & DXEPINT_XFERCOMPL) {
3073 dev_dbg(hsotg->dev,
3074 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3075 __func__, dwc2_readl(hsotg, epctl_reg),
3076 dwc2_readl(hsotg, epsiz_reg));
3077
3078 /* In DDMA handle isochronous requests separately */
3079 if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3080 dwc2_gadget_complete_isoc_request_ddma(hs_ep);
3081 } else if (dir_in) {
3082 /*
3083 * We get OutDone from the FIFO, so we only
3084 * need to look at completing IN requests here
3085 * if operating slave mode
3086 */
3087 if (!hs_ep->isochronous || !(ints & DXEPINT_NAKINTRPT))
3088 dwc2_hsotg_complete_in(hsotg, hs_ep);
3089
3090 if (idx == 0 && !hs_ep->req)
3091 dwc2_hsotg_enqueue_setup(hsotg);
3092 } else if (using_dma(hsotg)) {
3093 /*
3094 * We're using DMA, we need to fire an OutDone here
3095 * as we ignore the RXFIFO.
3096 */
3097 if (!hs_ep->isochronous || !(ints & DXEPINT_OUTTKNEPDIS))
3098 dwc2_hsotg_handle_outdone(hsotg, idx);
3099 }
3100 }
3101
3102 if (ints & DXEPINT_EPDISBLD)
3103 dwc2_gadget_handle_ep_disabled(hs_ep);
3104
3105 if (ints & DXEPINT_OUTTKNEPDIS)
3106 dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3107
3108 if (ints & DXEPINT_NAKINTRPT)
3109 dwc2_gadget_handle_nak(hs_ep);
3110
3111 if (ints & DXEPINT_AHBERR)
3112 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3113
3114 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */
3115 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
3116
3117 if (using_dma(hsotg) && idx == 0) {
3118 /*
3119 * this is the notification we've received a
3120 * setup packet. In non-DMA mode we'd get this
3121 * from the RXFIFO, instead we need to process
3122 * the setup here.
3123 */
3124
3125 if (dir_in)
3126 WARN_ON_ONCE(1);
3127 else
3128 dwc2_hsotg_handle_outdone(hsotg, 0);
3129 }
3130 }
3131
3132 if (ints & DXEPINT_STSPHSERCVD) {
3133 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3134
3135 /* Safety check EP0 state when STSPHSERCVD asserted */
3136 if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3137 /* Move to STATUS IN for DDMA */
3138 if (using_desc_dma(hsotg)) {
3139 if (!hsotg->delayed_status)
3140 dwc2_hsotg_ep0_zlp(hsotg, true);
3141 else
3142 /* In case of 3 stage Control Write with delayed
3143 * status, when Status IN transfer started
3144 * before STSPHSERCVD asserted, NAKSTS bit not
3145 * cleared by CNAK in dwc2_hsotg_start_req()
3146 * function. Clear now NAKSTS to allow complete
3147 * transfer.
3148 */
3149 dwc2_set_bit(hsotg, DIEPCTL(0),
3150 DXEPCTL_CNAK);
3151 }
3152 }
3153
3154 }
3155
3156 if (ints & DXEPINT_BACK2BACKSETUP)
3157 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3158
3159 if (ints & DXEPINT_BNAINTR) {
3160 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3161 if (hs_ep->isochronous)
3162 dwc2_gadget_handle_isoc_bna(hs_ep);
3163 }
3164
3165 if (dir_in && !hs_ep->isochronous) {
3166 /* not sure if this is important, but we'll clear it anyway */
3167 if (ints & DXEPINT_INTKNTXFEMP) {
3168 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3169 __func__, idx);
3170 }
3171
3172 /* this probably means something bad is happening */
3173 if (ints & DXEPINT_INTKNEPMIS) {
3174 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3175 __func__, idx);
3176 }
3177
3178 /* FIFO has space or is empty (see GAHBCFG) */
3179 if (hsotg->dedicated_fifos &&
3180 ints & DXEPINT_TXFEMP) {
3181 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3182 __func__, idx);
3183 if (!using_dma(hsotg))
3184 dwc2_hsotg_trytx(hsotg, hs_ep);
3185 }
3186 }
3187 }
3188
3189 /**
3190 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3191 * @hsotg: The device state.
3192 *
3193 * Handle updating the device settings after the enumeration phase has
3194 * been completed.
3195 */
dwc2_hsotg_irq_enumdone(struct dwc2_hsotg * hsotg)3196 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3197 {
3198 u32 dsts = dwc2_readl(hsotg, DSTS);
3199 int ep0_mps = 0, ep_mps = 8;
3200
3201 /*
3202 * This should signal the finish of the enumeration phase
3203 * of the USB handshaking, so we should now know what rate
3204 * we connected at.
3205 */
3206
3207 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3208
3209 /*
3210 * note, since we're limited by the size of transfer on EP0, and
3211 * it seems IN transfers must be a even number of packets we do
3212 * not advertise a 64byte MPS on EP0.
3213 */
3214
3215 /* catch both EnumSpd_FS and EnumSpd_FS48 */
3216 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3217 case DSTS_ENUMSPD_FS:
3218 case DSTS_ENUMSPD_FS48:
3219 hsotg->gadget.speed = USB_SPEED_FULL;
3220 ep0_mps = EP0_MPS_LIMIT;
3221 ep_mps = 1023;
3222 break;
3223
3224 case DSTS_ENUMSPD_HS:
3225 hsotg->gadget.speed = USB_SPEED_HIGH;
3226 ep0_mps = EP0_MPS_LIMIT;
3227 ep_mps = 1024;
3228 break;
3229
3230 case DSTS_ENUMSPD_LS:
3231 hsotg->gadget.speed = USB_SPEED_LOW;
3232 ep0_mps = 8;
3233 ep_mps = 8;
3234 /*
3235 * note, we don't actually support LS in this driver at the
3236 * moment, and the documentation seems to imply that it isn't
3237 * supported by the PHYs on some of the devices.
3238 */
3239 break;
3240 }
3241 dev_info(hsotg->dev, "new device is %s\n",
3242 usb_speed_string(hsotg->gadget.speed));
3243
3244 /*
3245 * we should now know the maximum packet size for an
3246 * endpoint, so set the endpoints to a default value.
3247 */
3248
3249 if (ep0_mps) {
3250 int i;
3251 /* Initialize ep0 for both in and out directions */
3252 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3253 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3254 for (i = 1; i < hsotg->num_of_eps; i++) {
3255 if (hsotg->eps_in[i])
3256 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3257 0, 1);
3258 if (hsotg->eps_out[i])
3259 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3260 0, 0);
3261 }
3262 }
3263
3264 /* ensure after enumeration our EP0 is active */
3265
3266 dwc2_hsotg_enqueue_setup(hsotg);
3267
3268 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3269 dwc2_readl(hsotg, DIEPCTL0),
3270 dwc2_readl(hsotg, DOEPCTL0));
3271 }
3272
3273 /**
3274 * kill_all_requests - remove all requests from the endpoint's queue
3275 * @hsotg: The device state.
3276 * @ep: The endpoint the requests may be on.
3277 * @result: The result code to use.
3278 *
3279 * Go through the requests on the given endpoint and mark them
3280 * completed with the given result code.
3281 */
kill_all_requests(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * ep,int result)3282 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3283 struct dwc2_hsotg_ep *ep,
3284 int result)
3285 {
3286 unsigned int size;
3287
3288 ep->req = NULL;
3289
3290 while (!list_empty(&ep->queue)) {
3291 struct dwc2_hsotg_req *req = get_ep_head(ep);
3292
3293 dwc2_hsotg_complete_request(hsotg, ep, req, result);
3294 }
3295
3296 if (!hsotg->dedicated_fifos)
3297 return;
3298 size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3299 if (size < ep->fifo_size)
3300 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3301 }
3302
3303 /**
3304 * dwc2_hsotg_disconnect - disconnect service
3305 * @hsotg: The device state.
3306 *
3307 * The device has been disconnected. Remove all current
3308 * transactions and signal the gadget driver that this
3309 * has happened.
3310 */
dwc2_hsotg_disconnect(struct dwc2_hsotg * hsotg)3311 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3312 {
3313 unsigned int ep;
3314
3315 if (!hsotg->connected)
3316 return;
3317
3318 hsotg->connected = 0;
3319 hsotg->test_mode = 0;
3320
3321 /* all endpoints should be shutdown */
3322 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3323 if (hsotg->eps_in[ep])
3324 kill_all_requests(hsotg, hsotg->eps_in[ep],
3325 -ESHUTDOWN);
3326 if (hsotg->eps_out[ep])
3327 kill_all_requests(hsotg, hsotg->eps_out[ep],
3328 -ESHUTDOWN);
3329 }
3330
3331 call_gadget(hsotg, disconnect);
3332 hsotg->lx_state = DWC2_L3;
3333
3334 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3335 }
3336
3337 /**
3338 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3339 * @hsotg: The device state:
3340 * @periodic: True if this is a periodic FIFO interrupt
3341 */
dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg * hsotg,bool periodic)3342 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3343 {
3344 struct dwc2_hsotg_ep *ep;
3345 int epno, ret;
3346
3347 /* look through for any more data to transmit */
3348 for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3349 ep = index_to_ep(hsotg, epno, 1);
3350
3351 if (!ep)
3352 continue;
3353
3354 if (!ep->dir_in)
3355 continue;
3356
3357 if ((periodic && !ep->periodic) ||
3358 (!periodic && ep->periodic))
3359 continue;
3360
3361 ret = dwc2_hsotg_trytx(hsotg, ep);
3362 if (ret < 0)
3363 break;
3364 }
3365 }
3366
3367 /* IRQ flags which will trigger a retry around the IRQ loop */
3368 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3369 GINTSTS_PTXFEMP | \
3370 GINTSTS_RXFLVL)
3371
3372 static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3373 /**
3374 * dwc2_hsotg_core_init - issue softreset to the core
3375 * @hsotg: The device state
3376 * @is_usb_reset: Usb resetting flag
3377 *
3378 * Issue a soft reset to the core, and await the core finishing it.
3379 */
dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg * hsotg,bool is_usb_reset)3380 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3381 bool is_usb_reset)
3382 {
3383 u32 intmsk;
3384 u32 val;
3385 u32 usbcfg;
3386 u32 dcfg = 0;
3387 int ep;
3388
3389 /* Kill any ep0 requests as controller will be reinitialized */
3390 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3391
3392 if (!is_usb_reset) {
3393 if (dwc2_core_reset(hsotg, true))
3394 return;
3395 } else {
3396 /* all endpoints should be shutdown */
3397 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3398 if (hsotg->eps_in[ep])
3399 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3400 if (hsotg->eps_out[ep])
3401 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3402 }
3403 }
3404
3405 /*
3406 * we must now enable ep0 ready for host detection and then
3407 * set configuration.
3408 */
3409
3410 /* keep other bits untouched (so e.g. forced modes are not lost) */
3411 usbcfg = dwc2_readl(hsotg, GUSBCFG);
3412 usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3413 usbcfg |= GUSBCFG_TOUTCAL(7);
3414
3415 /* remove the HNP/SRP and set the PHY */
3416 usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3417 dwc2_writel(hsotg, usbcfg, GUSBCFG);
3418
3419 dwc2_phy_init(hsotg, true);
3420
3421 dwc2_hsotg_init_fifo(hsotg);
3422
3423 if (!is_usb_reset)
3424 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3425
3426 dcfg |= DCFG_EPMISCNT(1);
3427
3428 switch (hsotg->params.speed) {
3429 case DWC2_SPEED_PARAM_LOW:
3430 dcfg |= DCFG_DEVSPD_LS;
3431 break;
3432 case DWC2_SPEED_PARAM_FULL:
3433 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3434 dcfg |= DCFG_DEVSPD_FS48;
3435 else
3436 dcfg |= DCFG_DEVSPD_FS;
3437 break;
3438 default:
3439 dcfg |= DCFG_DEVSPD_HS;
3440 }
3441
3442 if (hsotg->params.ipg_isoc_en)
3443 dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3444
3445 dwc2_writel(hsotg, dcfg, DCFG);
3446
3447 /* Clear any pending OTG interrupts */
3448 dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3449
3450 /* Clear any pending interrupts */
3451 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3452 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3453 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3454 GINTSTS_USBRST | GINTSTS_RESETDET |
3455 GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3456 GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3457 GINTSTS_LPMTRANRCVD;
3458
3459 if (!using_desc_dma(hsotg))
3460 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3461
3462 if (!hsotg->params.external_id_pin_ctl)
3463 intmsk |= GINTSTS_CONIDSTSCHNG;
3464
3465 dwc2_writel(hsotg, intmsk, GINTMSK);
3466
3467 if (using_dma(hsotg)) {
3468 dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3469 hsotg->params.ahbcfg,
3470 GAHBCFG);
3471
3472 /* Set DDMA mode support in the core if needed */
3473 if (using_desc_dma(hsotg))
3474 dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3475
3476 } else {
3477 dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3478 (GAHBCFG_NP_TXF_EMP_LVL |
3479 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3480 GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3481 }
3482
3483 /*
3484 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3485 * when we have no data to transfer. Otherwise we get being flooded by
3486 * interrupts.
3487 */
3488
3489 dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3490 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3491 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3492 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3493 DIEPMSK);
3494
3495 /*
3496 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3497 * DMA mode we may need this and StsPhseRcvd.
3498 */
3499 dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3500 DOEPMSK_STSPHSERCVDMSK) : 0) |
3501 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3502 DOEPMSK_SETUPMSK,
3503 DOEPMSK);
3504
3505 /* Enable BNA interrupt for DDMA */
3506 if (using_desc_dma(hsotg)) {
3507 dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3508 dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3509 }
3510
3511 /* Enable Service Interval mode if supported */
3512 if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3513 dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3514
3515 dwc2_writel(hsotg, 0, DAINTMSK);
3516
3517 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3518 dwc2_readl(hsotg, DIEPCTL0),
3519 dwc2_readl(hsotg, DOEPCTL0));
3520
3521 /* enable in and out endpoint interrupts */
3522 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3523
3524 /*
3525 * Enable the RXFIFO when in slave mode, as this is how we collect
3526 * the data. In DMA mode, we get events from the FIFO but also
3527 * things we cannot process, so do not use it.
3528 */
3529 if (!using_dma(hsotg))
3530 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3531
3532 /* Enable interrupts for EP0 in and out */
3533 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3534 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3535
3536 if (!is_usb_reset) {
3537 dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3538 udelay(10); /* see openiboot */
3539 dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3540 }
3541
3542 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3543
3544 /*
3545 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3546 * writing to the EPCTL register..
3547 */
3548
3549 /* set to read 1 8byte packet */
3550 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3551 DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3552
3553 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3554 DXEPCTL_CNAK | DXEPCTL_EPENA |
3555 DXEPCTL_USBACTEP,
3556 DOEPCTL0);
3557
3558 /* enable, but don't activate EP0in */
3559 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3560 DXEPCTL_USBACTEP, DIEPCTL0);
3561
3562 /* clear global NAKs */
3563 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3564 if (!is_usb_reset)
3565 val |= DCTL_SFTDISCON;
3566 dwc2_set_bit(hsotg, DCTL, val);
3567
3568 /* configure the core to support LPM */
3569 dwc2_gadget_init_lpm(hsotg);
3570
3571 /* program GREFCLK register if needed */
3572 if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3573 dwc2_gadget_program_ref_clk(hsotg);
3574
3575 /* must be at-least 3ms to allow bus to see disconnect */
3576 mdelay(3);
3577
3578 hsotg->lx_state = DWC2_L0;
3579
3580 dwc2_hsotg_enqueue_setup(hsotg);
3581
3582 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3583 dwc2_readl(hsotg, DIEPCTL0),
3584 dwc2_readl(hsotg, DOEPCTL0));
3585 }
3586
dwc2_hsotg_core_disconnect(struct dwc2_hsotg * hsotg)3587 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3588 {
3589 /* set the soft-disconnect bit */
3590 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3591 }
3592
dwc2_hsotg_core_connect(struct dwc2_hsotg * hsotg)3593 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3594 {
3595 /* remove the soft-disconnect and let's go */
3596 if (!hsotg->role_sw || (dwc2_readl(hsotg, GOTGCTL) & GOTGCTL_BSESVLD))
3597 dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3598 }
3599
3600 /**
3601 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3602 * @hsotg: The device state:
3603 *
3604 * This interrupt indicates one of the following conditions occurred while
3605 * transmitting an ISOC transaction.
3606 * - Corrupted IN Token for ISOC EP.
3607 * - Packet not complete in FIFO.
3608 *
3609 * The following actions will be taken:
3610 * - Determine the EP
3611 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3612 */
dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg * hsotg)3613 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3614 {
3615 struct dwc2_hsotg_ep *hs_ep;
3616 u32 epctrl;
3617 u32 daintmsk;
3618 u32 idx;
3619
3620 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3621
3622 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3623
3624 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3625 hs_ep = hsotg->eps_in[idx];
3626 /* Proceed only unmasked ISOC EPs */
3627 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3628 continue;
3629
3630 epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3631 if ((epctrl & DXEPCTL_EPENA) &&
3632 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3633 epctrl |= DXEPCTL_SNAK;
3634 epctrl |= DXEPCTL_EPDIS;
3635 dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3636 }
3637 }
3638
3639 /* Clear interrupt */
3640 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3641 }
3642
3643 /**
3644 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3645 * @hsotg: The device state:
3646 *
3647 * This interrupt indicates one of the following conditions occurred while
3648 * transmitting an ISOC transaction.
3649 * - Corrupted OUT Token for ISOC EP.
3650 * - Packet not complete in FIFO.
3651 *
3652 * The following actions will be taken:
3653 * - Determine the EP
3654 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3655 */
dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg * hsotg)3656 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3657 {
3658 u32 gintsts;
3659 u32 gintmsk;
3660 u32 daintmsk;
3661 u32 epctrl;
3662 struct dwc2_hsotg_ep *hs_ep;
3663 int idx;
3664
3665 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3666
3667 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3668 daintmsk >>= DAINT_OUTEP_SHIFT;
3669
3670 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3671 hs_ep = hsotg->eps_out[idx];
3672 /* Proceed only unmasked ISOC EPs */
3673 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3674 continue;
3675
3676 epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3677 if ((epctrl & DXEPCTL_EPENA) &&
3678 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3679 /* Unmask GOUTNAKEFF interrupt */
3680 gintmsk = dwc2_readl(hsotg, GINTMSK);
3681 gintmsk |= GINTSTS_GOUTNAKEFF;
3682 dwc2_writel(hsotg, gintmsk, GINTMSK);
3683
3684 gintsts = dwc2_readl(hsotg, GINTSTS);
3685 if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3686 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3687 break;
3688 }
3689 }
3690 }
3691
3692 /* Clear interrupt */
3693 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3694 }
3695
3696 /**
3697 * dwc2_hsotg_irq - handle device interrupt
3698 * @irq: The IRQ number triggered
3699 * @pw: The pw value when registered the handler.
3700 */
dwc2_hsotg_irq(int irq,void * pw)3701 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3702 {
3703 struct dwc2_hsotg *hsotg = pw;
3704 int retry_count = 8;
3705 u32 gintsts;
3706 u32 gintmsk;
3707
3708 if (!dwc2_is_device_mode(hsotg))
3709 return IRQ_NONE;
3710
3711 spin_lock(&hsotg->lock);
3712 irq_retry:
3713 gintsts = dwc2_readl(hsotg, GINTSTS);
3714 gintmsk = dwc2_readl(hsotg, GINTMSK);
3715
3716 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3717 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3718
3719 gintsts &= gintmsk;
3720
3721 if (gintsts & GINTSTS_RESETDET) {
3722 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3723
3724 dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3725
3726 /* This event must be used only if controller is suspended */
3727 if (hsotg->lx_state == DWC2_L2) {
3728 dwc2_exit_partial_power_down(hsotg, true);
3729 hsotg->lx_state = DWC2_L0;
3730 }
3731 }
3732
3733 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3734 u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3735 u32 connected = hsotg->connected;
3736
3737 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3738 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3739 dwc2_readl(hsotg, GNPTXSTS));
3740
3741 dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3742
3743 /* Report disconnection if it is not already done. */
3744 dwc2_hsotg_disconnect(hsotg);
3745
3746 /* Reset device address to zero */
3747 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3748
3749 if (usb_status & GOTGCTL_BSESVLD && connected)
3750 dwc2_hsotg_core_init_disconnected(hsotg, true);
3751 }
3752
3753 if (gintsts & GINTSTS_ENUMDONE) {
3754 dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3755
3756 dwc2_hsotg_irq_enumdone(hsotg);
3757 }
3758
3759 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3760 u32 daint = dwc2_readl(hsotg, DAINT);
3761 u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3762 u32 daint_out, daint_in;
3763 int ep;
3764
3765 daint &= daintmsk;
3766 daint_out = daint >> DAINT_OUTEP_SHIFT;
3767 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3768
3769 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3770
3771 for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3772 ep++, daint_out >>= 1) {
3773 if (daint_out & 1)
3774 dwc2_hsotg_epint(hsotg, ep, 0);
3775 }
3776
3777 for (ep = 0; ep < hsotg->num_of_eps && daint_in;
3778 ep++, daint_in >>= 1) {
3779 if (daint_in & 1)
3780 dwc2_hsotg_epint(hsotg, ep, 1);
3781 }
3782 }
3783
3784 /* check both FIFOs */
3785
3786 if (gintsts & GINTSTS_NPTXFEMP) {
3787 dev_dbg(hsotg->dev, "NPTxFEmp\n");
3788
3789 /*
3790 * Disable the interrupt to stop it happening again
3791 * unless one of these endpoint routines decides that
3792 * it needs re-enabling
3793 */
3794
3795 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3796 dwc2_hsotg_irq_fifoempty(hsotg, false);
3797 }
3798
3799 if (gintsts & GINTSTS_PTXFEMP) {
3800 dev_dbg(hsotg->dev, "PTxFEmp\n");
3801
3802 /* See note in GINTSTS_NPTxFEmp */
3803
3804 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3805 dwc2_hsotg_irq_fifoempty(hsotg, true);
3806 }
3807
3808 if (gintsts & GINTSTS_RXFLVL) {
3809 /*
3810 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3811 * we need to retry dwc2_hsotg_handle_rx if this is still
3812 * set.
3813 */
3814
3815 dwc2_hsotg_handle_rx(hsotg);
3816 }
3817
3818 if (gintsts & GINTSTS_ERLYSUSP) {
3819 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3820 dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3821 }
3822
3823 /*
3824 * these next two seem to crop-up occasionally causing the core
3825 * to shutdown the USB transfer, so try clearing them and logging
3826 * the occurrence.
3827 */
3828
3829 if (gintsts & GINTSTS_GOUTNAKEFF) {
3830 u8 idx;
3831 u32 epctrl;
3832 u32 gintmsk;
3833 u32 daintmsk;
3834 struct dwc2_hsotg_ep *hs_ep;
3835
3836 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3837 daintmsk >>= DAINT_OUTEP_SHIFT;
3838 /* Mask this interrupt */
3839 gintmsk = dwc2_readl(hsotg, GINTMSK);
3840 gintmsk &= ~GINTSTS_GOUTNAKEFF;
3841 dwc2_writel(hsotg, gintmsk, GINTMSK);
3842
3843 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3844 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3845 hs_ep = hsotg->eps_out[idx];
3846 /* Proceed only unmasked ISOC EPs */
3847 if (BIT(idx) & ~daintmsk)
3848 continue;
3849
3850 epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3851
3852 //ISOC Ep's only
3853 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3854 epctrl |= DXEPCTL_SNAK;
3855 epctrl |= DXEPCTL_EPDIS;
3856 dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3857 continue;
3858 }
3859
3860 //Non-ISOC EP's
3861 if (hs_ep->halted) {
3862 if (!(epctrl & DXEPCTL_EPENA))
3863 epctrl |= DXEPCTL_EPENA;
3864 epctrl |= DXEPCTL_EPDIS;
3865 epctrl |= DXEPCTL_STALL;
3866 dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3867 }
3868 }
3869
3870 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3871 }
3872
3873 if (gintsts & GINTSTS_GINNAKEFF) {
3874 dev_info(hsotg->dev, "GINNakEff triggered\n");
3875
3876 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3877
3878 dwc2_hsotg_dump(hsotg);
3879 }
3880
3881 if (gintsts & GINTSTS_INCOMPL_SOIN)
3882 dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3883
3884 if (gintsts & GINTSTS_INCOMPL_SOOUT)
3885 dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3886
3887 /*
3888 * if we've had fifo events, we should try and go around the
3889 * loop again to see if there's any point in returning yet.
3890 */
3891
3892 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3893 goto irq_retry;
3894
3895 /* Check WKUP_ALERT interrupt*/
3896 if (hsotg->params.service_interval)
3897 dwc2_gadget_wkup_alert_handler(hsotg);
3898
3899 spin_unlock(&hsotg->lock);
3900
3901 return IRQ_HANDLED;
3902 }
3903
dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep)3904 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3905 struct dwc2_hsotg_ep *hs_ep)
3906 {
3907 u32 epctrl_reg;
3908 u32 epint_reg;
3909
3910 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3911 DOEPCTL(hs_ep->index);
3912 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3913 DOEPINT(hs_ep->index);
3914
3915 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3916 hs_ep->name);
3917
3918 if (hs_ep->dir_in) {
3919 if (hsotg->dedicated_fifos || hs_ep->periodic) {
3920 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3921 /* Wait for Nak effect */
3922 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3923 DXEPINT_INEPNAKEFF, 100))
3924 dev_warn(hsotg->dev,
3925 "%s: timeout DIEPINT.NAKEFF\n",
3926 __func__);
3927 } else {
3928 dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3929 /* Wait for Nak effect */
3930 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3931 GINTSTS_GINNAKEFF, 100))
3932 dev_warn(hsotg->dev,
3933 "%s: timeout GINTSTS.GINNAKEFF\n",
3934 __func__);
3935 }
3936 } else {
3937 /* Mask GINTSTS_GOUTNAKEFF interrupt */
3938 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_GOUTNAKEFF);
3939
3940 if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3941 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3942
3943 if (!using_dma(hsotg)) {
3944 /* Wait for GINTSTS_RXFLVL interrupt */
3945 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3946 GINTSTS_RXFLVL, 100)) {
3947 dev_warn(hsotg->dev, "%s: timeout GINTSTS.RXFLVL\n",
3948 __func__);
3949 } else {
3950 /*
3951 * Pop GLOBAL OUT NAK status packet from RxFIFO
3952 * to assert GOUTNAKEFF interrupt
3953 */
3954 dwc2_readl(hsotg, GRXSTSP);
3955 }
3956 }
3957
3958 /* Wait for global nak to take effect */
3959 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3960 GINTSTS_GOUTNAKEFF, 100))
3961 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3962 __func__);
3963 }
3964
3965 /* Disable ep */
3966 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3967
3968 /* Wait for ep to be disabled */
3969 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3970 dev_warn(hsotg->dev,
3971 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3972
3973 /* Clear EPDISBLD interrupt */
3974 dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3975
3976 if (hs_ep->dir_in) {
3977 unsigned short fifo_index;
3978
3979 if (hsotg->dedicated_fifos || hs_ep->periodic)
3980 fifo_index = hs_ep->fifo_index;
3981 else
3982 fifo_index = 0;
3983
3984 /* Flush TX FIFO */
3985 dwc2_flush_tx_fifo(hsotg, fifo_index);
3986
3987 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3988 if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3989 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3990
3991 } else {
3992 /* Remove global NAKs */
3993 dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3994 }
3995 }
3996
3997 /**
3998 * dwc2_hsotg_ep_enable - enable the given endpoint
3999 * @ep: The USB endpint to configure
4000 * @desc: The USB endpoint descriptor to configure with.
4001 *
4002 * This is called from the USB gadget code's usb_ep_enable().
4003 */
dwc2_hsotg_ep_enable(struct usb_ep * ep,const struct usb_endpoint_descriptor * desc)4004 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
4005 const struct usb_endpoint_descriptor *desc)
4006 {
4007 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4008 struct dwc2_hsotg *hsotg = hs_ep->parent;
4009 unsigned long flags;
4010 unsigned int index = hs_ep->index;
4011 u32 epctrl_reg;
4012 u32 epctrl;
4013 u32 mps;
4014 u32 mc;
4015 u32 mask;
4016 unsigned int dir_in;
4017 unsigned int i, val, size;
4018 int ret = 0;
4019 unsigned char ep_type;
4020 int desc_num;
4021
4022 dev_dbg(hsotg->dev,
4023 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
4024 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
4025 desc->wMaxPacketSize, desc->bInterval);
4026
4027 /* not to be called for EP0 */
4028 if (index == 0) {
4029 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
4030 return -EINVAL;
4031 }
4032
4033 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
4034 if (dir_in != hs_ep->dir_in) {
4035 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
4036 return -EINVAL;
4037 }
4038
4039 ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
4040 mps = usb_endpoint_maxp(desc);
4041 mc = usb_endpoint_maxp_mult(desc);
4042
4043 /* ISOC IN in DDMA supported bInterval up to 10 */
4044 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4045 dir_in && desc->bInterval > 10) {
4046 dev_err(hsotg->dev,
4047 "%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
4048 return -EINVAL;
4049 }
4050
4051 /* High bandwidth ISOC OUT in DDMA not supported */
4052 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4053 !dir_in && mc > 1) {
4054 dev_err(hsotg->dev,
4055 "%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
4056 return -EINVAL;
4057 }
4058
4059 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
4060
4061 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4062 epctrl = dwc2_readl(hsotg, epctrl_reg);
4063
4064 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
4065 __func__, epctrl, epctrl_reg);
4066
4067 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
4068 desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
4069 else
4070 desc_num = MAX_DMA_DESC_NUM_GENERIC;
4071
4072 /* Allocate DMA descriptor chain for non-ctrl endpoints */
4073 if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
4074 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
4075 desc_num * sizeof(struct dwc2_dma_desc),
4076 &hs_ep->desc_list_dma, GFP_ATOMIC);
4077 if (!hs_ep->desc_list) {
4078 ret = -ENOMEM;
4079 goto error2;
4080 }
4081 }
4082
4083 spin_lock_irqsave(&hsotg->lock, flags);
4084
4085 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
4086 epctrl |= DXEPCTL_MPS(mps);
4087
4088 /*
4089 * mark the endpoint as active, otherwise the core may ignore
4090 * transactions entirely for this endpoint
4091 */
4092 epctrl |= DXEPCTL_USBACTEP;
4093
4094 /* update the endpoint state */
4095 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4096
4097 /* default, set to non-periodic */
4098 hs_ep->isochronous = 0;
4099 hs_ep->periodic = 0;
4100 hs_ep->halted = 0;
4101 hs_ep->interval = desc->bInterval;
4102
4103 switch (ep_type) {
4104 case USB_ENDPOINT_XFER_ISOC:
4105 epctrl |= DXEPCTL_EPTYPE_ISO;
4106 epctrl |= DXEPCTL_SETEVENFR;
4107 hs_ep->isochronous = 1;
4108 hs_ep->interval = 1 << (desc->bInterval - 1);
4109 hs_ep->target_frame = TARGET_FRAME_INITIAL;
4110 hs_ep->next_desc = 0;
4111 hs_ep->compl_desc = 0;
4112 if (dir_in) {
4113 hs_ep->periodic = 1;
4114 mask = dwc2_readl(hsotg, DIEPMSK);
4115 mask |= DIEPMSK_NAKMSK;
4116 dwc2_writel(hsotg, mask, DIEPMSK);
4117 } else {
4118 epctrl |= DXEPCTL_SNAK;
4119 mask = dwc2_readl(hsotg, DOEPMSK);
4120 mask |= DOEPMSK_OUTTKNEPDISMSK;
4121 dwc2_writel(hsotg, mask, DOEPMSK);
4122 }
4123 break;
4124
4125 case USB_ENDPOINT_XFER_BULK:
4126 epctrl |= DXEPCTL_EPTYPE_BULK;
4127 break;
4128
4129 case USB_ENDPOINT_XFER_INT:
4130 if (dir_in)
4131 hs_ep->periodic = 1;
4132
4133 if (hsotg->gadget.speed == USB_SPEED_HIGH)
4134 hs_ep->interval = 1 << (desc->bInterval - 1);
4135
4136 epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4137 break;
4138
4139 case USB_ENDPOINT_XFER_CONTROL:
4140 epctrl |= DXEPCTL_EPTYPE_CONTROL;
4141 break;
4142 }
4143
4144 /*
4145 * if the hardware has dedicated fifos, we must give each IN EP
4146 * a unique tx-fifo even if it is non-periodic.
4147 */
4148 if (dir_in && hsotg->dedicated_fifos) {
4149 unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
4150 u32 fifo_index = 0;
4151 u32 fifo_size = UINT_MAX;
4152
4153 size = hs_ep->ep.maxpacket * hs_ep->mc;
4154 for (i = 1; i <= fifo_count; ++i) {
4155 if (hsotg->fifo_map & (1 << i))
4156 continue;
4157 val = dwc2_readl(hsotg, DPTXFSIZN(i));
4158 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4159 if (val < size)
4160 continue;
4161 /* Search for smallest acceptable fifo */
4162 if (val < fifo_size) {
4163 fifo_size = val;
4164 fifo_index = i;
4165 }
4166 }
4167 if (!fifo_index) {
4168 dev_err(hsotg->dev,
4169 "%s: No suitable fifo found\n", __func__);
4170 ret = -ENOMEM;
4171 goto error1;
4172 }
4173 epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4174 hsotg->fifo_map |= 1 << fifo_index;
4175 epctrl |= DXEPCTL_TXFNUM(fifo_index);
4176 hs_ep->fifo_index = fifo_index;
4177 hs_ep->fifo_size = fifo_size;
4178 }
4179
4180 /* for non control endpoints, set PID to D0 */
4181 if (index && !hs_ep->isochronous)
4182 epctrl |= DXEPCTL_SETD0PID;
4183
4184 /* WA for Full speed ISOC IN in DDMA mode.
4185 * By Clear NAK status of EP, core will send ZLP
4186 * to IN token and assert NAK interrupt relying
4187 * on TxFIFO status only
4188 */
4189
4190 if (hsotg->gadget.speed == USB_SPEED_FULL &&
4191 hs_ep->isochronous && dir_in) {
4192 /* The WA applies only to core versions from 2.72a
4193 * to 4.00a (including both). Also for FS_IOT_1.00a
4194 * and HS_IOT_1.00a.
4195 */
4196 u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4197
4198 if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4199 gsnpsid <= DWC2_CORE_REV_4_00a) ||
4200 gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4201 gsnpsid == DWC2_HS_IOT_REV_1_00a)
4202 epctrl |= DXEPCTL_CNAK;
4203 }
4204
4205 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4206 __func__, epctrl);
4207
4208 dwc2_writel(hsotg, epctrl, epctrl_reg);
4209 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4210 __func__, dwc2_readl(hsotg, epctrl_reg));
4211
4212 /* enable the endpoint interrupt */
4213 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4214
4215 error1:
4216 spin_unlock_irqrestore(&hsotg->lock, flags);
4217
4218 error2:
4219 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4220 dmam_free_coherent(hsotg->dev, desc_num *
4221 sizeof(struct dwc2_dma_desc),
4222 hs_ep->desc_list, hs_ep->desc_list_dma);
4223 hs_ep->desc_list = NULL;
4224 }
4225
4226 return ret;
4227 }
4228
4229 /**
4230 * dwc2_hsotg_ep_disable - disable given endpoint
4231 * @ep: The endpoint to disable.
4232 */
dwc2_hsotg_ep_disable(struct usb_ep * ep)4233 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4234 {
4235 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4236 struct dwc2_hsotg *hsotg = hs_ep->parent;
4237 int dir_in = hs_ep->dir_in;
4238 int index = hs_ep->index;
4239 u32 epctrl_reg;
4240 u32 ctrl;
4241
4242 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4243
4244 if (ep == &hsotg->eps_out[0]->ep) {
4245 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4246 return -EINVAL;
4247 }
4248
4249 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4250 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4251 return -EINVAL;
4252 }
4253
4254 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4255
4256 ctrl = dwc2_readl(hsotg, epctrl_reg);
4257
4258 if (ctrl & DXEPCTL_EPENA)
4259 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4260
4261 ctrl &= ~DXEPCTL_EPENA;
4262 ctrl &= ~DXEPCTL_USBACTEP;
4263 ctrl |= DXEPCTL_SNAK;
4264
4265 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4266 dwc2_writel(hsotg, ctrl, epctrl_reg);
4267
4268 /* disable endpoint interrupts */
4269 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4270
4271 /* terminate all requests with shutdown */
4272 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4273
4274 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4275 hs_ep->fifo_index = 0;
4276 hs_ep->fifo_size = 0;
4277
4278 return 0;
4279 }
4280
dwc2_hsotg_ep_disable_lock(struct usb_ep * ep)4281 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4282 {
4283 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4284 struct dwc2_hsotg *hsotg = hs_ep->parent;
4285 unsigned long flags;
4286 int ret;
4287
4288 spin_lock_irqsave(&hsotg->lock, flags);
4289 ret = dwc2_hsotg_ep_disable(ep);
4290 spin_unlock_irqrestore(&hsotg->lock, flags);
4291 return ret;
4292 }
4293
4294 /**
4295 * on_list - check request is on the given endpoint
4296 * @ep: The endpoint to check.
4297 * @test: The request to test if it is on the endpoint.
4298 */
on_list(struct dwc2_hsotg_ep * ep,struct dwc2_hsotg_req * test)4299 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4300 {
4301 struct dwc2_hsotg_req *req, *treq;
4302
4303 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4304 if (req == test)
4305 return true;
4306 }
4307
4308 return false;
4309 }
4310
4311 /**
4312 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4313 * @ep: The endpoint to dequeue.
4314 * @req: The request to be removed from a queue.
4315 */
dwc2_hsotg_ep_dequeue(struct usb_ep * ep,struct usb_request * req)4316 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4317 {
4318 struct dwc2_hsotg_req *hs_req = our_req(req);
4319 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4320 struct dwc2_hsotg *hs = hs_ep->parent;
4321 unsigned long flags;
4322
4323 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4324
4325 spin_lock_irqsave(&hs->lock, flags);
4326
4327 if (!on_list(hs_ep, hs_req)) {
4328 spin_unlock_irqrestore(&hs->lock, flags);
4329 return -EINVAL;
4330 }
4331
4332 /* Dequeue already started request */
4333 if (req == &hs_ep->req->req)
4334 dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4335
4336 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4337 spin_unlock_irqrestore(&hs->lock, flags);
4338
4339 return 0;
4340 }
4341
4342 /**
4343 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4344 * @ep: The endpoint to set halt.
4345 * @value: Set or unset the halt.
4346 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4347 * the endpoint is busy processing requests.
4348 *
4349 * We need to stall the endpoint immediately if request comes from set_feature
4350 * protocol command handler.
4351 */
dwc2_hsotg_ep_sethalt(struct usb_ep * ep,int value,bool now)4352 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4353 {
4354 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4355 struct dwc2_hsotg *hs = hs_ep->parent;
4356 int index = hs_ep->index;
4357 u32 epreg;
4358 u32 epctl;
4359 u32 xfertype;
4360
4361 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4362
4363 if (index == 0) {
4364 if (value)
4365 dwc2_hsotg_stall_ep0(hs);
4366 else
4367 dev_warn(hs->dev,
4368 "%s: can't clear halt on ep0\n", __func__);
4369 return 0;
4370 }
4371
4372 if (hs_ep->isochronous) {
4373 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4374 return -EINVAL;
4375 }
4376
4377 if (!now && value && !list_empty(&hs_ep->queue)) {
4378 dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4379 ep->name);
4380 return -EAGAIN;
4381 }
4382
4383 if (hs_ep->dir_in) {
4384 epreg = DIEPCTL(index);
4385 epctl = dwc2_readl(hs, epreg);
4386
4387 if (value) {
4388 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4389 if (epctl & DXEPCTL_EPENA)
4390 epctl |= DXEPCTL_EPDIS;
4391 } else {
4392 epctl &= ~DXEPCTL_STALL;
4393 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4394 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4395 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4396 epctl |= DXEPCTL_SETD0PID;
4397 }
4398 dwc2_writel(hs, epctl, epreg);
4399 } else {
4400 epreg = DOEPCTL(index);
4401 epctl = dwc2_readl(hs, epreg);
4402
4403 if (value) {
4404 /* Unmask GOUTNAKEFF interrupt */
4405 dwc2_hsotg_en_gsint(hs, GINTSTS_GOUTNAKEFF);
4406
4407 if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF))
4408 dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK);
4409 // STALL bit will be set in GOUTNAKEFF interrupt handler
4410 } else {
4411 epctl &= ~DXEPCTL_STALL;
4412 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4413 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4414 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4415 epctl |= DXEPCTL_SETD0PID;
4416 dwc2_writel(hs, epctl, epreg);
4417 }
4418 }
4419
4420 hs_ep->halted = value;
4421 return 0;
4422 }
4423
4424 /**
4425 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4426 * @ep: The endpoint to set halt.
4427 * @value: Set or unset the halt.
4428 */
dwc2_hsotg_ep_sethalt_lock(struct usb_ep * ep,int value)4429 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4430 {
4431 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4432 struct dwc2_hsotg *hs = hs_ep->parent;
4433 unsigned long flags = 0;
4434 int ret = 0;
4435
4436 spin_lock_irqsave(&hs->lock, flags);
4437 ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4438 spin_unlock_irqrestore(&hs->lock, flags);
4439
4440 return ret;
4441 }
4442
4443 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4444 .enable = dwc2_hsotg_ep_enable,
4445 .disable = dwc2_hsotg_ep_disable_lock,
4446 .alloc_request = dwc2_hsotg_ep_alloc_request,
4447 .free_request = dwc2_hsotg_ep_free_request,
4448 .queue = dwc2_hsotg_ep_queue_lock,
4449 .dequeue = dwc2_hsotg_ep_dequeue,
4450 .set_halt = dwc2_hsotg_ep_sethalt_lock,
4451 /* note, don't believe we have any call for the fifo routines */
4452 };
4453
4454 /**
4455 * dwc2_hsotg_init - initialize the usb core
4456 * @hsotg: The driver state
4457 */
dwc2_hsotg_init(struct dwc2_hsotg * hsotg)4458 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4459 {
4460 /* unmask subset of endpoint interrupts */
4461
4462 dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4463 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4464 DIEPMSK);
4465
4466 dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4467 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4468 DOEPMSK);
4469
4470 dwc2_writel(hsotg, 0, DAINTMSK);
4471
4472 /* Be in disconnected state until gadget is registered */
4473 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4474
4475 /* setup fifos */
4476
4477 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4478 dwc2_readl(hsotg, GRXFSIZ),
4479 dwc2_readl(hsotg, GNPTXFSIZ));
4480
4481 dwc2_hsotg_init_fifo(hsotg);
4482
4483 if (using_dma(hsotg))
4484 dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4485 }
4486
4487 /**
4488 * dwc2_hsotg_udc_start - prepare the udc for work
4489 * @gadget: The usb gadget state
4490 * @driver: The usb gadget driver
4491 *
4492 * Perform initialization to prepare udc device and driver
4493 * to work.
4494 */
dwc2_hsotg_udc_start(struct usb_gadget * gadget,struct usb_gadget_driver * driver)4495 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4496 struct usb_gadget_driver *driver)
4497 {
4498 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4499 unsigned long flags;
4500 int ret;
4501
4502 if (!hsotg) {
4503 pr_err("%s: called with no device\n", __func__);
4504 return -ENODEV;
4505 }
4506
4507 if (!driver) {
4508 dev_err(hsotg->dev, "%s: no driver\n", __func__);
4509 return -EINVAL;
4510 }
4511
4512 if (driver->max_speed < USB_SPEED_FULL)
4513 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4514
4515 if (!driver->setup) {
4516 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4517 return -EINVAL;
4518 }
4519
4520 WARN_ON(hsotg->driver);
4521
4522 hsotg->driver = driver;
4523 hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4524 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4525
4526 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4527 ret = dwc2_lowlevel_hw_enable(hsotg);
4528 if (ret)
4529 goto err;
4530 }
4531
4532 if (!IS_ERR_OR_NULL(hsotg->uphy))
4533 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4534
4535 spin_lock_irqsave(&hsotg->lock, flags);
4536 if (dwc2_hw_is_device(hsotg)) {
4537 dwc2_hsotg_init(hsotg);
4538 dwc2_hsotg_core_init_disconnected(hsotg, false);
4539 }
4540
4541 hsotg->enabled = 0;
4542 spin_unlock_irqrestore(&hsotg->lock, flags);
4543
4544 gadget->sg_supported = using_desc_dma(hsotg);
4545 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4546
4547 return 0;
4548
4549 err:
4550 hsotg->driver = NULL;
4551 return ret;
4552 }
4553
4554 /**
4555 * dwc2_hsotg_udc_stop - stop the udc
4556 * @gadget: The usb gadget state
4557 *
4558 * Stop udc hw block and stay tunned for future transmissions
4559 */
dwc2_hsotg_udc_stop(struct usb_gadget * gadget)4560 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4561 {
4562 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4563 unsigned long flags = 0;
4564 int ep;
4565
4566 if (!hsotg)
4567 return -ENODEV;
4568
4569 /* all endpoints should be shutdown */
4570 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4571 if (hsotg->eps_in[ep])
4572 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4573 if (hsotg->eps_out[ep])
4574 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4575 }
4576
4577 spin_lock_irqsave(&hsotg->lock, flags);
4578
4579 hsotg->driver = NULL;
4580 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4581 hsotg->enabled = 0;
4582
4583 spin_unlock_irqrestore(&hsotg->lock, flags);
4584
4585 if (!IS_ERR_OR_NULL(hsotg->uphy))
4586 otg_set_peripheral(hsotg->uphy->otg, NULL);
4587
4588 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4589 dwc2_lowlevel_hw_disable(hsotg);
4590
4591 return 0;
4592 }
4593
4594 /**
4595 * dwc2_hsotg_gadget_getframe - read the frame number
4596 * @gadget: The usb gadget state
4597 *
4598 * Read the {micro} frame number
4599 */
dwc2_hsotg_gadget_getframe(struct usb_gadget * gadget)4600 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4601 {
4602 return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4603 }
4604
4605 /**
4606 * dwc2_hsotg_set_selfpowered - set if device is self/bus powered
4607 * @gadget: The usb gadget state
4608 * @is_selfpowered: Whether the device is self-powered
4609 *
4610 * Set if the device is self or bus powered.
4611 */
dwc2_hsotg_set_selfpowered(struct usb_gadget * gadget,int is_selfpowered)4612 static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget,
4613 int is_selfpowered)
4614 {
4615 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4616 unsigned long flags;
4617
4618 spin_lock_irqsave(&hsotg->lock, flags);
4619 gadget->is_selfpowered = !!is_selfpowered;
4620 spin_unlock_irqrestore(&hsotg->lock, flags);
4621
4622 return 0;
4623 }
4624
4625 /**
4626 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4627 * @gadget: The usb gadget state
4628 * @is_on: Current state of the USB PHY
4629 *
4630 * Connect/Disconnect the USB PHY pullup
4631 */
dwc2_hsotg_pullup(struct usb_gadget * gadget,int is_on)4632 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4633 {
4634 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4635 unsigned long flags = 0;
4636
4637 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4638 hsotg->op_state);
4639
4640 /* Don't modify pullup state while in host mode */
4641 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4642 hsotg->enabled = is_on;
4643 return 0;
4644 }
4645
4646 spin_lock_irqsave(&hsotg->lock, flags);
4647 if (is_on) {
4648 hsotg->enabled = 1;
4649 dwc2_hsotg_core_init_disconnected(hsotg, false);
4650 /* Enable ACG feature in device mode,if supported */
4651 dwc2_enable_acg(hsotg);
4652 dwc2_hsotg_core_connect(hsotg);
4653 } else {
4654 dwc2_hsotg_core_disconnect(hsotg);
4655 dwc2_hsotg_disconnect(hsotg);
4656 hsotg->enabled = 0;
4657 }
4658
4659 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4660 spin_unlock_irqrestore(&hsotg->lock, flags);
4661
4662 return 0;
4663 }
4664
dwc2_hsotg_vbus_session(struct usb_gadget * gadget,int is_active)4665 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4666 {
4667 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4668 unsigned long flags;
4669
4670 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4671 spin_lock_irqsave(&hsotg->lock, flags);
4672
4673 /*
4674 * If controller is hibernated, it must exit from power_down
4675 * before being initialized / de-initialized
4676 */
4677 if (hsotg->lx_state == DWC2_L2)
4678 dwc2_exit_partial_power_down(hsotg, false);
4679
4680 if (is_active) {
4681 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4682
4683 dwc2_hsotg_core_init_disconnected(hsotg, false);
4684 if (hsotg->enabled) {
4685 /* Enable ACG feature in device mode,if supported */
4686 dwc2_enable_acg(hsotg);
4687 dwc2_hsotg_core_connect(hsotg);
4688 }
4689 } else {
4690 dwc2_hsotg_core_disconnect(hsotg);
4691 dwc2_hsotg_disconnect(hsotg);
4692 }
4693
4694 spin_unlock_irqrestore(&hsotg->lock, flags);
4695 return 0;
4696 }
4697
4698 /**
4699 * dwc2_hsotg_vbus_draw - report bMaxPower field
4700 * @gadget: The usb gadget state
4701 * @mA: Amount of current
4702 *
4703 * Report how much power the device may consume to the phy.
4704 */
dwc2_hsotg_vbus_draw(struct usb_gadget * gadget,unsigned int mA)4705 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4706 {
4707 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4708
4709 if (IS_ERR_OR_NULL(hsotg->uphy))
4710 return -ENOTSUPP;
4711 return usb_phy_set_power(hsotg->uphy, mA);
4712 }
4713
4714 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4715 .get_frame = dwc2_hsotg_gadget_getframe,
4716 .set_selfpowered = dwc2_hsotg_set_selfpowered,
4717 .udc_start = dwc2_hsotg_udc_start,
4718 .udc_stop = dwc2_hsotg_udc_stop,
4719 .pullup = dwc2_hsotg_pullup,
4720 .vbus_session = dwc2_hsotg_vbus_session,
4721 .vbus_draw = dwc2_hsotg_vbus_draw,
4722 };
4723
4724 /**
4725 * dwc2_hsotg_initep - initialise a single endpoint
4726 * @hsotg: The device state.
4727 * @hs_ep: The endpoint to be initialised.
4728 * @epnum: The endpoint number
4729 * @dir_in: True if direction is in.
4730 *
4731 * Initialise the given endpoint (as part of the probe and device state
4732 * creation) to give to the gadget driver. Setup the endpoint name, any
4733 * direction information and other state that may be required.
4734 */
dwc2_hsotg_initep(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep,int epnum,bool dir_in)4735 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4736 struct dwc2_hsotg_ep *hs_ep,
4737 int epnum,
4738 bool dir_in)
4739 {
4740 char *dir;
4741
4742 if (epnum == 0)
4743 dir = "";
4744 else if (dir_in)
4745 dir = "in";
4746 else
4747 dir = "out";
4748
4749 hs_ep->dir_in = dir_in;
4750 hs_ep->index = epnum;
4751
4752 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4753
4754 INIT_LIST_HEAD(&hs_ep->queue);
4755 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4756
4757 /* add to the list of endpoints known by the gadget driver */
4758 if (epnum)
4759 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4760
4761 hs_ep->parent = hsotg;
4762 hs_ep->ep.name = hs_ep->name;
4763
4764 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4765 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4766 else
4767 usb_ep_set_maxpacket_limit(&hs_ep->ep,
4768 epnum ? 1024 : EP0_MPS_LIMIT);
4769 hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4770
4771 if (epnum == 0) {
4772 hs_ep->ep.caps.type_control = true;
4773 } else {
4774 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4775 hs_ep->ep.caps.type_iso = true;
4776 hs_ep->ep.caps.type_bulk = true;
4777 }
4778 hs_ep->ep.caps.type_int = true;
4779 }
4780
4781 if (dir_in)
4782 hs_ep->ep.caps.dir_in = true;
4783 else
4784 hs_ep->ep.caps.dir_out = true;
4785
4786 /*
4787 * if we're using dma, we need to set the next-endpoint pointer
4788 * to be something valid.
4789 */
4790
4791 if (using_dma(hsotg)) {
4792 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4793
4794 if (dir_in)
4795 dwc2_writel(hsotg, next, DIEPCTL(epnum));
4796 else
4797 dwc2_writel(hsotg, next, DOEPCTL(epnum));
4798 }
4799 }
4800
4801 /**
4802 * dwc2_hsotg_hw_cfg - read HW configuration registers
4803 * @hsotg: Programming view of the DWC_otg controller
4804 *
4805 * Read the USB core HW configuration registers
4806 */
dwc2_hsotg_hw_cfg(struct dwc2_hsotg * hsotg)4807 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4808 {
4809 u32 cfg;
4810 u32 ep_type;
4811 u32 i;
4812
4813 /* check hardware configuration */
4814
4815 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4816
4817 /* Add ep0 */
4818 hsotg->num_of_eps++;
4819
4820 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4821 sizeof(struct dwc2_hsotg_ep),
4822 GFP_KERNEL);
4823 if (!hsotg->eps_in[0])
4824 return -ENOMEM;
4825 /* Same dwc2_hsotg_ep is used in both directions for ep0 */
4826 hsotg->eps_out[0] = hsotg->eps_in[0];
4827
4828 cfg = hsotg->hw_params.dev_ep_dirs;
4829 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4830 ep_type = cfg & 3;
4831 /* Direction in or both */
4832 if (!(ep_type & 2)) {
4833 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4834 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4835 if (!hsotg->eps_in[i])
4836 return -ENOMEM;
4837 }
4838 /* Direction out or both */
4839 if (!(ep_type & 1)) {
4840 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4841 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4842 if (!hsotg->eps_out[i])
4843 return -ENOMEM;
4844 }
4845 }
4846
4847 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4848 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4849
4850 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4851 hsotg->num_of_eps,
4852 hsotg->dedicated_fifos ? "dedicated" : "shared",
4853 hsotg->fifo_mem);
4854 return 0;
4855 }
4856
4857 /**
4858 * dwc2_hsotg_dump - dump state of the udc
4859 * @hsotg: Programming view of the DWC_otg controller
4860 *
4861 */
dwc2_hsotg_dump(struct dwc2_hsotg * hsotg)4862 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4863 {
4864 #ifdef DEBUG
4865 struct device *dev = hsotg->dev;
4866 u32 val;
4867 int idx;
4868
4869 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4870 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4871 dwc2_readl(hsotg, DIEPMSK));
4872
4873 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4874 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4875
4876 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4877 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4878
4879 /* show periodic fifo settings */
4880
4881 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4882 val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4883 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4884 val >> FIFOSIZE_DEPTH_SHIFT,
4885 val & FIFOSIZE_STARTADDR_MASK);
4886 }
4887
4888 for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4889 dev_info(dev,
4890 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4891 dwc2_readl(hsotg, DIEPCTL(idx)),
4892 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4893 dwc2_readl(hsotg, DIEPDMA(idx)));
4894
4895 val = dwc2_readl(hsotg, DOEPCTL(idx));
4896 dev_info(dev,
4897 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4898 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4899 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4900 dwc2_readl(hsotg, DOEPDMA(idx)));
4901 }
4902
4903 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4904 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4905 #endif
4906 }
4907
4908 /**
4909 * dwc2_gadget_init - init function for gadget
4910 * @hsotg: Programming view of the DWC_otg controller
4911 *
4912 */
dwc2_gadget_init(struct dwc2_hsotg * hsotg)4913 int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4914 {
4915 struct device *dev = hsotg->dev;
4916 int epnum;
4917 int ret;
4918
4919 /* Dump fifo information */
4920 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4921 hsotg->params.g_np_tx_fifo_size);
4922 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4923
4924 hsotg->gadget.max_speed = USB_SPEED_HIGH;
4925 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4926 hsotg->gadget.name = dev_name(dev);
4927 hsotg->remote_wakeup_allowed = 0;
4928
4929 if (hsotg->params.lpm)
4930 hsotg->gadget.lpm_capable = true;
4931
4932 if (hsotg->dr_mode == USB_DR_MODE_OTG)
4933 hsotg->gadget.is_otg = 1;
4934 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4935 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4936
4937 ret = dwc2_hsotg_hw_cfg(hsotg);
4938 if (ret) {
4939 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4940 return ret;
4941 }
4942
4943 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4944 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4945 if (!hsotg->ctrl_buff)
4946 return -ENOMEM;
4947
4948 hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4949 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4950 if (!hsotg->ep0_buff)
4951 return -ENOMEM;
4952
4953 if (using_desc_dma(hsotg)) {
4954 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4955 if (ret < 0)
4956 return ret;
4957 }
4958
4959 ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
4960 IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4961 if (ret < 0) {
4962 dev_err(dev, "cannot claim IRQ for gadget\n");
4963 return ret;
4964 }
4965
4966 /* hsotg->num_of_eps holds number of EPs other than ep0 */
4967
4968 if (hsotg->num_of_eps == 0) {
4969 dev_err(dev, "wrong number of EPs (zero)\n");
4970 return -EINVAL;
4971 }
4972
4973 /* setup endpoint information */
4974
4975 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4976 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4977
4978 /* allocate EP0 request */
4979
4980 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4981 GFP_KERNEL);
4982 if (!hsotg->ctrl_req) {
4983 dev_err(dev, "failed to allocate ctrl req\n");
4984 return -ENOMEM;
4985 }
4986
4987 /* initialise the endpoints now the core has been initialised */
4988 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4989 if (hsotg->eps_in[epnum])
4990 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4991 epnum, 1);
4992 if (hsotg->eps_out[epnum])
4993 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4994 epnum, 0);
4995 }
4996
4997 dwc2_hsotg_dump(hsotg);
4998
4999 return 0;
5000 }
5001
5002 /**
5003 * dwc2_hsotg_remove - remove function for hsotg driver
5004 * @hsotg: Programming view of the DWC_otg controller
5005 *
5006 */
dwc2_hsotg_remove(struct dwc2_hsotg * hsotg)5007 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
5008 {
5009 usb_del_gadget_udc(&hsotg->gadget);
5010 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
5011
5012 return 0;
5013 }
5014
dwc2_hsotg_suspend(struct dwc2_hsotg * hsotg)5015 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
5016 {
5017 unsigned long flags;
5018
5019 if (hsotg->lx_state != DWC2_L0)
5020 return 0;
5021
5022 if (hsotg->driver) {
5023 int ep;
5024
5025 dev_info(hsotg->dev, "suspending usb gadget %s\n",
5026 hsotg->driver->driver.name);
5027
5028 spin_lock_irqsave(&hsotg->lock, flags);
5029 if (hsotg->enabled)
5030 dwc2_hsotg_core_disconnect(hsotg);
5031 dwc2_hsotg_disconnect(hsotg);
5032 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
5033 spin_unlock_irqrestore(&hsotg->lock, flags);
5034
5035 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
5036 if (hsotg->eps_in[ep])
5037 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
5038 if (hsotg->eps_out[ep])
5039 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
5040 }
5041 }
5042
5043 return 0;
5044 }
5045
dwc2_hsotg_resume(struct dwc2_hsotg * hsotg)5046 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
5047 {
5048 unsigned long flags;
5049
5050 if (hsotg->lx_state == DWC2_L2)
5051 return 0;
5052
5053 if (hsotg->driver) {
5054 dev_info(hsotg->dev, "resuming usb gadget %s\n",
5055 hsotg->driver->driver.name);
5056
5057 spin_lock_irqsave(&hsotg->lock, flags);
5058 dwc2_hsotg_core_init_disconnected(hsotg, false);
5059 if (hsotg->enabled) {
5060 /* Enable ACG feature in device mode,if supported */
5061 dwc2_enable_acg(hsotg);
5062 dwc2_hsotg_core_connect(hsotg);
5063 }
5064 spin_unlock_irqrestore(&hsotg->lock, flags);
5065 }
5066
5067 return 0;
5068 }
5069
5070 /**
5071 * dwc2_backup_device_registers() - Backup controller device registers.
5072 * When suspending usb bus, registers needs to be backuped
5073 * if controller power is disabled once suspended.
5074 *
5075 * @hsotg: Programming view of the DWC_otg controller
5076 */
dwc2_backup_device_registers(struct dwc2_hsotg * hsotg)5077 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
5078 {
5079 struct dwc2_dregs_backup *dr;
5080 int i;
5081
5082 dev_dbg(hsotg->dev, "%s\n", __func__);
5083
5084 /* Backup dev regs */
5085 dr = &hsotg->dr_backup;
5086
5087 dr->dcfg = dwc2_readl(hsotg, DCFG);
5088 dr->dctl = dwc2_readl(hsotg, DCTL);
5089 dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
5090 dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
5091 dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
5092
5093 for (i = 0; i < hsotg->num_of_eps; i++) {
5094 /* Backup IN EPs */
5095 dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
5096
5097 /* Ensure DATA PID is correctly configured */
5098 if (dr->diepctl[i] & DXEPCTL_DPID)
5099 dr->diepctl[i] |= DXEPCTL_SETD1PID;
5100 else
5101 dr->diepctl[i] |= DXEPCTL_SETD0PID;
5102
5103 dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
5104 dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
5105
5106 /* Backup OUT EPs */
5107 dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
5108
5109 /* Ensure DATA PID is correctly configured */
5110 if (dr->doepctl[i] & DXEPCTL_DPID)
5111 dr->doepctl[i] |= DXEPCTL_SETD1PID;
5112 else
5113 dr->doepctl[i] |= DXEPCTL_SETD0PID;
5114
5115 dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5116 dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5117 dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5118 }
5119 dr->valid = true;
5120 return 0;
5121 }
5122
5123 /**
5124 * dwc2_restore_device_registers() - Restore controller device registers.
5125 * When resuming usb bus, device registers needs to be restored
5126 * if controller power were disabled.
5127 *
5128 * @hsotg: Programming view of the DWC_otg controller
5129 * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5130 *
5131 * Return: 0 if successful, negative error code otherwise
5132 */
dwc2_restore_device_registers(struct dwc2_hsotg * hsotg,int remote_wakeup)5133 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5134 {
5135 struct dwc2_dregs_backup *dr;
5136 int i;
5137
5138 dev_dbg(hsotg->dev, "%s\n", __func__);
5139
5140 /* Restore dev regs */
5141 dr = &hsotg->dr_backup;
5142 if (!dr->valid) {
5143 dev_err(hsotg->dev, "%s: no device registers to restore\n",
5144 __func__);
5145 return -EINVAL;
5146 }
5147 dr->valid = false;
5148
5149 if (!remote_wakeup)
5150 dwc2_writel(hsotg, dr->dctl, DCTL);
5151
5152 dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5153 dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5154 dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5155
5156 for (i = 0; i < hsotg->num_of_eps; i++) {
5157 /* Restore IN EPs */
5158 dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5159 dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5160 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5161 /** WA for enabled EPx's IN in DDMA mode. On entering to
5162 * hibernation wrong value read and saved from DIEPDMAx,
5163 * as result BNA interrupt asserted on hibernation exit
5164 * by restoring from saved area.
5165 */
5166 if (hsotg->params.g_dma_desc &&
5167 (dr->diepctl[i] & DXEPCTL_EPENA))
5168 dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5169 dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5170 dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5171 /* Restore OUT EPs */
5172 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5173 /* WA for enabled EPx's OUT in DDMA mode. On entering to
5174 * hibernation wrong value read and saved from DOEPDMAx,
5175 * as result BNA interrupt asserted on hibernation exit
5176 * by restoring from saved area.
5177 */
5178 if (hsotg->params.g_dma_desc &&
5179 (dr->doepctl[i] & DXEPCTL_EPENA))
5180 dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5181 dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5182 dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5183 }
5184
5185 return 0;
5186 }
5187
5188 /**
5189 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5190 *
5191 * @hsotg: Programming view of DWC_otg controller
5192 *
5193 */
dwc2_gadget_init_lpm(struct dwc2_hsotg * hsotg)5194 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5195 {
5196 u32 val;
5197
5198 if (!hsotg->params.lpm)
5199 return;
5200
5201 val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5202 val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5203 val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5204 val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5205 val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5206 val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5207 val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5208 dwc2_writel(hsotg, val, GLPMCFG);
5209 dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5210
5211 /* Unmask WKUP_ALERT Interrupt */
5212 if (hsotg->params.service_interval)
5213 dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5214 }
5215
5216 /**
5217 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5218 *
5219 * @hsotg: Programming view of DWC_otg controller
5220 *
5221 */
dwc2_gadget_program_ref_clk(struct dwc2_hsotg * hsotg)5222 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5223 {
5224 u32 val = 0;
5225
5226 val |= GREFCLK_REF_CLK_MODE;
5227 val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5228 val |= hsotg->params.sof_cnt_wkup_alert <<
5229 GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5230
5231 dwc2_writel(hsotg, val, GREFCLK);
5232 dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5233 }
5234
5235 /**
5236 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5237 *
5238 * @hsotg: Programming view of the DWC_otg controller
5239 *
5240 * Return non-zero if failed to enter to hibernation.
5241 */
dwc2_gadget_enter_hibernation(struct dwc2_hsotg * hsotg)5242 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5243 {
5244 u32 gpwrdn;
5245 int ret = 0;
5246
5247 /* Change to L2(suspend) state */
5248 hsotg->lx_state = DWC2_L2;
5249 dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5250 ret = dwc2_backup_global_registers(hsotg);
5251 if (ret) {
5252 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5253 __func__);
5254 return ret;
5255 }
5256 ret = dwc2_backup_device_registers(hsotg);
5257 if (ret) {
5258 dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5259 __func__);
5260 return ret;
5261 }
5262
5263 gpwrdn = GPWRDN_PWRDNRSTN;
5264 gpwrdn |= GPWRDN_PMUACTV;
5265 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5266 udelay(10);
5267
5268 /* Set flag to indicate that we are in hibernation */
5269 hsotg->hibernated = 1;
5270
5271 /* Enable interrupts from wake up logic */
5272 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5273 gpwrdn |= GPWRDN_PMUINTSEL;
5274 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5275 udelay(10);
5276
5277 /* Unmask device mode interrupts in GPWRDN */
5278 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5279 gpwrdn |= GPWRDN_RST_DET_MSK;
5280 gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5281 gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5282 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5283 udelay(10);
5284
5285 /* Enable Power Down Clamp */
5286 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5287 gpwrdn |= GPWRDN_PWRDNCLMP;
5288 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5289 udelay(10);
5290
5291 /* Switch off VDD */
5292 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5293 gpwrdn |= GPWRDN_PWRDNSWTCH;
5294 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5295 udelay(10);
5296
5297 /* Save gpwrdn register for further usage if stschng interrupt */
5298 hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5299 dev_dbg(hsotg->dev, "Hibernation completed\n");
5300
5301 return ret;
5302 }
5303
5304 /**
5305 * dwc2_gadget_exit_hibernation()
5306 * This function is for exiting from Device mode hibernation by host initiated
5307 * resume/reset and device initiated remote-wakeup.
5308 *
5309 * @hsotg: Programming view of the DWC_otg controller
5310 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5311 * @reset: indicates whether resume is initiated by Reset.
5312 *
5313 * Return non-zero if failed to exit from hibernation.
5314 */
dwc2_gadget_exit_hibernation(struct dwc2_hsotg * hsotg,int rem_wakeup,int reset)5315 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5316 int rem_wakeup, int reset)
5317 {
5318 u32 pcgcctl;
5319 u32 gpwrdn;
5320 u32 dctl;
5321 int ret = 0;
5322 struct dwc2_gregs_backup *gr;
5323 struct dwc2_dregs_backup *dr;
5324
5325 gr = &hsotg->gr_backup;
5326 dr = &hsotg->dr_backup;
5327
5328 if (!hsotg->hibernated) {
5329 dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5330 return 1;
5331 }
5332 dev_dbg(hsotg->dev,
5333 "%s: called with rem_wakeup = %d reset = %d\n",
5334 __func__, rem_wakeup, reset);
5335
5336 dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5337
5338 if (!reset) {
5339 /* Clear all pending interupts */
5340 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5341 }
5342
5343 /* De-assert Restore */
5344 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5345 gpwrdn &= ~GPWRDN_RESTORE;
5346 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5347 udelay(10);
5348
5349 if (!rem_wakeup) {
5350 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5351 pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5352 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5353 }
5354
5355 /* Restore GUSBCFG, DCFG and DCTL */
5356 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5357 dwc2_writel(hsotg, dr->dcfg, DCFG);
5358 dwc2_writel(hsotg, dr->dctl, DCTL);
5359
5360 /* De-assert Wakeup Logic */
5361 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5362 gpwrdn &= ~GPWRDN_PMUACTV;
5363 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5364
5365 if (rem_wakeup) {
5366 udelay(10);
5367 /* Start Remote Wakeup Signaling */
5368 dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5369 } else {
5370 udelay(50);
5371 /* Set Device programming done bit */
5372 dctl = dwc2_readl(hsotg, DCTL);
5373 dctl |= DCTL_PWRONPRGDONE;
5374 dwc2_writel(hsotg, dctl, DCTL);
5375 }
5376 /* Wait for interrupts which must be cleared */
5377 mdelay(2);
5378 /* Clear all pending interupts */
5379 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5380
5381 /* Restore global registers */
5382 ret = dwc2_restore_global_registers(hsotg);
5383 if (ret) {
5384 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5385 __func__);
5386 return ret;
5387 }
5388
5389 /* Restore device registers */
5390 ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5391 if (ret) {
5392 dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5393 __func__);
5394 return ret;
5395 }
5396
5397 if (rem_wakeup) {
5398 mdelay(10);
5399 dctl = dwc2_readl(hsotg, DCTL);
5400 dctl &= ~DCTL_RMTWKUPSIG;
5401 dwc2_writel(hsotg, dctl, DCTL);
5402 }
5403
5404 hsotg->hibernated = 0;
5405 hsotg->lx_state = DWC2_L0;
5406 dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5407
5408 return ret;
5409 }
5410