1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Handles the Intel 27x USB Device Controller (UDC)
4 *
5 * Inspired by original driver by Frank Becker, David Brownell, and others.
6 * Copyright (C) 2008 Robert Jarzmik
7 */
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/types.h>
11 #include <linux/errno.h>
12 #include <linux/err.h>
13 #include <linux/platform_device.h>
14 #include <linux/delay.h>
15 #include <linux/list.h>
16 #include <linux/interrupt.h>
17 #include <linux/proc_fs.h>
18 #include <linux/clk.h>
19 #include <linux/irq.h>
20 #include <linux/gpio.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/slab.h>
23 #include <linux/prefetch.h>
24 #include <linux/byteorder/generic.h>
25 #include <linux/platform_data/pxa2xx_udc.h>
26 #include <linux/of_device.h>
27 #include <linux/of_gpio.h>
28
29 #include <linux/usb.h>
30 #include <linux/usb/ch9.h>
31 #include <linux/usb/gadget.h>
32 #include <linux/usb/phy.h>
33
34 #include "pxa27x_udc.h"
35
36 /*
37 * This driver handles the USB Device Controller (UDC) in Intel's PXA 27x
38 * series processors.
39 *
40 * Such controller drivers work with a gadget driver. The gadget driver
41 * returns descriptors, implements configuration and data protocols used
42 * by the host to interact with this device, and allocates endpoints to
43 * the different protocol interfaces. The controller driver virtualizes
44 * usb hardware so that the gadget drivers will be more portable.
45 *
46 * This UDC hardware wants to implement a bit too much USB protocol. The
47 * biggest issues are: that the endpoints have to be set up before the
48 * controller can be enabled (minor, and not uncommon); and each endpoint
49 * can only have one configuration, interface and alternative interface
50 * number (major, and very unusual). Once set up, these cannot be changed
51 * without a controller reset.
52 *
53 * The workaround is to setup all combinations necessary for the gadgets which
54 * will work with this driver. This is done in pxa_udc structure, statically.
55 * See pxa_udc, udc_usb_ep versus pxa_ep, and matching function find_pxa_ep.
56 * (You could modify this if needed. Some drivers have a "fifo_mode" module
57 * parameter to facilitate such changes.)
58 *
59 * The combinations have been tested with these gadgets :
60 * - zero gadget
61 * - file storage gadget
62 * - ether gadget
63 *
64 * The driver doesn't use DMA, only IO access and IRQ callbacks. No use is
65 * made of UDC's double buffering either. USB "On-The-Go" is not implemented.
66 *
67 * All the requests are handled the same way :
68 * - the drivers tries to handle the request directly to the IO
69 * - if the IO fifo is not big enough, the remaining is send/received in
70 * interrupt handling.
71 */
72
73 #define DRIVER_VERSION "2008-04-18"
74 #define DRIVER_DESC "PXA 27x USB Device Controller driver"
75
76 static const char driver_name[] = "pxa27x_udc";
77 static struct pxa_udc *the_controller;
78
79 static void handle_ep(struct pxa_ep *ep);
80
81 /*
82 * Debug filesystem
83 */
84 #ifdef CONFIG_USB_GADGET_DEBUG_FS
85
86 #include <linux/debugfs.h>
87 #include <linux/uaccess.h>
88 #include <linux/seq_file.h>
89
state_dbg_show(struct seq_file * s,void * p)90 static int state_dbg_show(struct seq_file *s, void *p)
91 {
92 struct pxa_udc *udc = s->private;
93 u32 tmp;
94
95 if (!udc->driver)
96 return -ENODEV;
97
98 /* basic device status */
99 seq_printf(s, DRIVER_DESC "\n"
100 "%s version: %s\n"
101 "Gadget driver: %s\n",
102 driver_name, DRIVER_VERSION,
103 udc->driver ? udc->driver->driver.name : "(none)");
104
105 tmp = udc_readl(udc, UDCCR);
106 seq_printf(s,
107 "udccr=0x%0x(%s%s%s%s%s%s%s%s%s%s), con=%d,inter=%d,altinter=%d\n",
108 tmp,
109 (tmp & UDCCR_OEN) ? " oen":"",
110 (tmp & UDCCR_AALTHNP) ? " aalthnp":"",
111 (tmp & UDCCR_AHNP) ? " rem" : "",
112 (tmp & UDCCR_BHNP) ? " rstir" : "",
113 (tmp & UDCCR_DWRE) ? " dwre" : "",
114 (tmp & UDCCR_SMAC) ? " smac" : "",
115 (tmp & UDCCR_EMCE) ? " emce" : "",
116 (tmp & UDCCR_UDR) ? " udr" : "",
117 (tmp & UDCCR_UDA) ? " uda" : "",
118 (tmp & UDCCR_UDE) ? " ude" : "",
119 (tmp & UDCCR_ACN) >> UDCCR_ACN_S,
120 (tmp & UDCCR_AIN) >> UDCCR_AIN_S,
121 (tmp & UDCCR_AAISN) >> UDCCR_AAISN_S);
122 /* registers for device and ep0 */
123 seq_printf(s, "udcicr0=0x%08x udcicr1=0x%08x\n",
124 udc_readl(udc, UDCICR0), udc_readl(udc, UDCICR1));
125 seq_printf(s, "udcisr0=0x%08x udcisr1=0x%08x\n",
126 udc_readl(udc, UDCISR0), udc_readl(udc, UDCISR1));
127 seq_printf(s, "udcfnr=%d\n", udc_readl(udc, UDCFNR));
128 seq_printf(s, "irqs: reset=%lu, suspend=%lu, resume=%lu, reconfig=%lu\n",
129 udc->stats.irqs_reset, udc->stats.irqs_suspend,
130 udc->stats.irqs_resume, udc->stats.irqs_reconfig);
131
132 return 0;
133 }
134 DEFINE_SHOW_ATTRIBUTE(state_dbg);
135
queues_dbg_show(struct seq_file * s,void * p)136 static int queues_dbg_show(struct seq_file *s, void *p)
137 {
138 struct pxa_udc *udc = s->private;
139 struct pxa_ep *ep;
140 struct pxa27x_request *req;
141 int i, maxpkt;
142
143 if (!udc->driver)
144 return -ENODEV;
145
146 /* dump endpoint queues */
147 for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
148 ep = &udc->pxa_ep[i];
149 maxpkt = ep->fifo_size;
150 seq_printf(s, "%-12s max_pkt=%d %s\n",
151 EPNAME(ep), maxpkt, "pio");
152
153 if (list_empty(&ep->queue)) {
154 seq_puts(s, "\t(nothing queued)\n");
155 continue;
156 }
157
158 list_for_each_entry(req, &ep->queue, queue) {
159 seq_printf(s, "\treq %p len %d/%d buf %p\n",
160 &req->req, req->req.actual,
161 req->req.length, req->req.buf);
162 }
163 }
164
165 return 0;
166 }
167 DEFINE_SHOW_ATTRIBUTE(queues_dbg);
168
eps_dbg_show(struct seq_file * s,void * p)169 static int eps_dbg_show(struct seq_file *s, void *p)
170 {
171 struct pxa_udc *udc = s->private;
172 struct pxa_ep *ep;
173 int i;
174 u32 tmp;
175
176 if (!udc->driver)
177 return -ENODEV;
178
179 ep = &udc->pxa_ep[0];
180 tmp = udc_ep_readl(ep, UDCCSR);
181 seq_printf(s, "udccsr0=0x%03x(%s%s%s%s%s%s%s)\n",
182 tmp,
183 (tmp & UDCCSR0_SA) ? " sa" : "",
184 (tmp & UDCCSR0_RNE) ? " rne" : "",
185 (tmp & UDCCSR0_FST) ? " fst" : "",
186 (tmp & UDCCSR0_SST) ? " sst" : "",
187 (tmp & UDCCSR0_DME) ? " dme" : "",
188 (tmp & UDCCSR0_IPR) ? " ipr" : "",
189 (tmp & UDCCSR0_OPC) ? " opc" : "");
190 for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
191 ep = &udc->pxa_ep[i];
192 tmp = i? udc_ep_readl(ep, UDCCR) : udc_readl(udc, UDCCR);
193 seq_printf(s, "%-12s: IN %lu(%lu reqs), OUT %lu(%lu reqs), irqs=%lu, udccr=0x%08x, udccsr=0x%03x, udcbcr=%d\n",
194 EPNAME(ep),
195 ep->stats.in_bytes, ep->stats.in_ops,
196 ep->stats.out_bytes, ep->stats.out_ops,
197 ep->stats.irqs,
198 tmp, udc_ep_readl(ep, UDCCSR),
199 udc_ep_readl(ep, UDCBCR));
200 }
201
202 return 0;
203 }
204 DEFINE_SHOW_ATTRIBUTE(eps_dbg);
205
pxa_init_debugfs(struct pxa_udc * udc)206 static void pxa_init_debugfs(struct pxa_udc *udc)
207 {
208 struct dentry *root;
209
210 root = debugfs_create_dir(udc->gadget.name, usb_debug_root);
211 udc->debugfs_root = root;
212
213 debugfs_create_file("udcstate", 0400, root, udc, &state_dbg_fops);
214 debugfs_create_file("queues", 0400, root, udc, &queues_dbg_fops);
215 debugfs_create_file("epstate", 0400, root, udc, &eps_dbg_fops);
216 }
217
pxa_cleanup_debugfs(struct pxa_udc * udc)218 static void pxa_cleanup_debugfs(struct pxa_udc *udc)
219 {
220 debugfs_remove_recursive(udc->debugfs_root);
221 }
222
223 #else
pxa_init_debugfs(struct pxa_udc * udc)224 static inline void pxa_init_debugfs(struct pxa_udc *udc)
225 {
226 }
227
pxa_cleanup_debugfs(struct pxa_udc * udc)228 static inline void pxa_cleanup_debugfs(struct pxa_udc *udc)
229 {
230 }
231 #endif
232
233 /**
234 * is_match_usb_pxa - check if usb_ep and pxa_ep match
235 * @udc_usb_ep: usb endpoint
236 * @ep: pxa endpoint
237 * @config: configuration required in pxa_ep
238 * @interface: interface required in pxa_ep
239 * @altsetting: altsetting required in pxa_ep
240 *
241 * Returns 1 if all criteria match between pxa and usb endpoint, 0 otherwise
242 */
is_match_usb_pxa(struct udc_usb_ep * udc_usb_ep,struct pxa_ep * ep,int config,int interface,int altsetting)243 static int is_match_usb_pxa(struct udc_usb_ep *udc_usb_ep, struct pxa_ep *ep,
244 int config, int interface, int altsetting)
245 {
246 if (usb_endpoint_num(&udc_usb_ep->desc) != ep->addr)
247 return 0;
248 if (usb_endpoint_dir_in(&udc_usb_ep->desc) != ep->dir_in)
249 return 0;
250 if (usb_endpoint_type(&udc_usb_ep->desc) != ep->type)
251 return 0;
252 if ((ep->config != config) || (ep->interface != interface)
253 || (ep->alternate != altsetting))
254 return 0;
255 return 1;
256 }
257
258 /**
259 * find_pxa_ep - find pxa_ep structure matching udc_usb_ep
260 * @udc: pxa udc
261 * @udc_usb_ep: udc_usb_ep structure
262 *
263 * Match udc_usb_ep and all pxa_ep available, to see if one matches.
264 * This is necessary because of the strong pxa hardware restriction requiring
265 * that once pxa endpoints are initialized, their configuration is freezed, and
266 * no change can be made to their address, direction, or in which configuration,
267 * interface or altsetting they are active ... which differs from more usual
268 * models which have endpoints be roughly just addressable fifos, and leave
269 * configuration events up to gadget drivers (like all control messages).
270 *
271 * Note that there is still a blurred point here :
272 * - we rely on UDCCR register "active interface" and "active altsetting".
273 * This is a nonsense in regard of USB spec, where multiple interfaces are
274 * active at the same time.
275 * - if we knew for sure that the pxa can handle multiple interface at the
276 * same time, assuming Intel's Developer Guide is wrong, this function
277 * should be reviewed, and a cache of couples (iface, altsetting) should
278 * be kept in the pxa_udc structure. In this case this function would match
279 * against the cache of couples instead of the "last altsetting" set up.
280 *
281 * Returns the matched pxa_ep structure or NULL if none found
282 */
find_pxa_ep(struct pxa_udc * udc,struct udc_usb_ep * udc_usb_ep)283 static struct pxa_ep *find_pxa_ep(struct pxa_udc *udc,
284 struct udc_usb_ep *udc_usb_ep)
285 {
286 int i;
287 struct pxa_ep *ep;
288 int cfg = udc->config;
289 int iface = udc->last_interface;
290 int alt = udc->last_alternate;
291
292 if (udc_usb_ep == &udc->udc_usb_ep[0])
293 return &udc->pxa_ep[0];
294
295 for (i = 1; i < NR_PXA_ENDPOINTS; i++) {
296 ep = &udc->pxa_ep[i];
297 if (is_match_usb_pxa(udc_usb_ep, ep, cfg, iface, alt))
298 return ep;
299 }
300 return NULL;
301 }
302
303 /**
304 * update_pxa_ep_matches - update pxa_ep cached values in all udc_usb_ep
305 * @udc: pxa udc
306 *
307 * Context: in_interrupt()
308 *
309 * Updates all pxa_ep fields in udc_usb_ep structures, if this field was
310 * previously set up (and is not NULL). The update is necessary is a
311 * configuration change or altsetting change was issued by the USB host.
312 */
update_pxa_ep_matches(struct pxa_udc * udc)313 static void update_pxa_ep_matches(struct pxa_udc *udc)
314 {
315 int i;
316 struct udc_usb_ep *udc_usb_ep;
317
318 for (i = 1; i < NR_USB_ENDPOINTS; i++) {
319 udc_usb_ep = &udc->udc_usb_ep[i];
320 if (udc_usb_ep->pxa_ep)
321 udc_usb_ep->pxa_ep = find_pxa_ep(udc, udc_usb_ep);
322 }
323 }
324
325 /**
326 * pio_irq_enable - Enables irq generation for one endpoint
327 * @ep: udc endpoint
328 */
pio_irq_enable(struct pxa_ep * ep)329 static void pio_irq_enable(struct pxa_ep *ep)
330 {
331 struct pxa_udc *udc = ep->dev;
332 int index = EPIDX(ep);
333 u32 udcicr0 = udc_readl(udc, UDCICR0);
334 u32 udcicr1 = udc_readl(udc, UDCICR1);
335
336 if (index < 16)
337 udc_writel(udc, UDCICR0, udcicr0 | (3 << (index * 2)));
338 else
339 udc_writel(udc, UDCICR1, udcicr1 | (3 << ((index - 16) * 2)));
340 }
341
342 /**
343 * pio_irq_disable - Disables irq generation for one endpoint
344 * @ep: udc endpoint
345 */
pio_irq_disable(struct pxa_ep * ep)346 static void pio_irq_disable(struct pxa_ep *ep)
347 {
348 struct pxa_udc *udc = ep->dev;
349 int index = EPIDX(ep);
350 u32 udcicr0 = udc_readl(udc, UDCICR0);
351 u32 udcicr1 = udc_readl(udc, UDCICR1);
352
353 if (index < 16)
354 udc_writel(udc, UDCICR0, udcicr0 & ~(3 << (index * 2)));
355 else
356 udc_writel(udc, UDCICR1, udcicr1 & ~(3 << ((index - 16) * 2)));
357 }
358
359 /**
360 * udc_set_mask_UDCCR - set bits in UDCCR
361 * @udc: udc device
362 * @mask: bits to set in UDCCR
363 *
364 * Sets bits in UDCCR, leaving DME and FST bits as they were.
365 */
udc_set_mask_UDCCR(struct pxa_udc * udc,int mask)366 static inline void udc_set_mask_UDCCR(struct pxa_udc *udc, int mask)
367 {
368 u32 udccr = udc_readl(udc, UDCCR);
369 udc_writel(udc, UDCCR,
370 (udccr & UDCCR_MASK_BITS) | (mask & UDCCR_MASK_BITS));
371 }
372
373 /**
374 * udc_clear_mask_UDCCR - clears bits in UDCCR
375 * @udc: udc device
376 * @mask: bit to clear in UDCCR
377 *
378 * Clears bits in UDCCR, leaving DME and FST bits as they were.
379 */
udc_clear_mask_UDCCR(struct pxa_udc * udc,int mask)380 static inline void udc_clear_mask_UDCCR(struct pxa_udc *udc, int mask)
381 {
382 u32 udccr = udc_readl(udc, UDCCR);
383 udc_writel(udc, UDCCR,
384 (udccr & UDCCR_MASK_BITS) & ~(mask & UDCCR_MASK_BITS));
385 }
386
387 /**
388 * ep_write_UDCCSR - set bits in UDCCSR
389 * @ep: udc endpoint
390 * @mask: bits to set in UDCCR
391 *
392 * Sets bits in UDCCSR (UDCCSR0 and UDCCSR*).
393 *
394 * A specific case is applied to ep0 : the ACM bit is always set to 1, for
395 * SET_INTERFACE and SET_CONFIGURATION.
396 */
ep_write_UDCCSR(struct pxa_ep * ep,int mask)397 static inline void ep_write_UDCCSR(struct pxa_ep *ep, int mask)
398 {
399 if (is_ep0(ep))
400 mask |= UDCCSR0_ACM;
401 udc_ep_writel(ep, UDCCSR, mask);
402 }
403
404 /**
405 * ep_count_bytes_remain - get how many bytes in udc endpoint
406 * @ep: udc endpoint
407 *
408 * Returns number of bytes in OUT fifos. Broken for IN fifos (-EOPNOTSUPP)
409 */
ep_count_bytes_remain(struct pxa_ep * ep)410 static int ep_count_bytes_remain(struct pxa_ep *ep)
411 {
412 if (ep->dir_in)
413 return -EOPNOTSUPP;
414 return udc_ep_readl(ep, UDCBCR) & 0x3ff;
415 }
416
417 /**
418 * ep_is_empty - checks if ep has byte ready for reading
419 * @ep: udc endpoint
420 *
421 * If endpoint is the control endpoint, checks if there are bytes in the
422 * control endpoint fifo. If endpoint is a data endpoint, checks if bytes
423 * are ready for reading on OUT endpoint.
424 *
425 * Returns 0 if ep not empty, 1 if ep empty, -EOPNOTSUPP if IN endpoint
426 */
ep_is_empty(struct pxa_ep * ep)427 static int ep_is_empty(struct pxa_ep *ep)
428 {
429 int ret;
430
431 if (!is_ep0(ep) && ep->dir_in)
432 return -EOPNOTSUPP;
433 if (is_ep0(ep))
434 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR0_RNE);
435 else
436 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNE);
437 return ret;
438 }
439
440 /**
441 * ep_is_full - checks if ep has place to write bytes
442 * @ep: udc endpoint
443 *
444 * If endpoint is not the control endpoint and is an IN endpoint, checks if
445 * there is place to write bytes into the endpoint.
446 *
447 * Returns 0 if ep not full, 1 if ep full, -EOPNOTSUPP if OUT endpoint
448 */
ep_is_full(struct pxa_ep * ep)449 static int ep_is_full(struct pxa_ep *ep)
450 {
451 if (is_ep0(ep))
452 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_IPR);
453 if (!ep->dir_in)
454 return -EOPNOTSUPP;
455 return (!(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNF));
456 }
457
458 /**
459 * epout_has_pkt - checks if OUT endpoint fifo has a packet available
460 * @ep: pxa endpoint
461 *
462 * Returns 1 if a complete packet is available, 0 if not, -EOPNOTSUPP for IN ep.
463 */
epout_has_pkt(struct pxa_ep * ep)464 static int epout_has_pkt(struct pxa_ep *ep)
465 {
466 if (!is_ep0(ep) && ep->dir_in)
467 return -EOPNOTSUPP;
468 if (is_ep0(ep))
469 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_OPC);
470 return (udc_ep_readl(ep, UDCCSR) & UDCCSR_PC);
471 }
472
473 /**
474 * set_ep0state - Set ep0 automata state
475 * @udc: udc device
476 * @state: state
477 */
set_ep0state(struct pxa_udc * udc,int state)478 static void set_ep0state(struct pxa_udc *udc, int state)
479 {
480 struct pxa_ep *ep = &udc->pxa_ep[0];
481 char *old_stname = EP0_STNAME(udc);
482
483 udc->ep0state = state;
484 ep_dbg(ep, "state=%s->%s, udccsr0=0x%03x, udcbcr=%d\n", old_stname,
485 EP0_STNAME(udc), udc_ep_readl(ep, UDCCSR),
486 udc_ep_readl(ep, UDCBCR));
487 }
488
489 /**
490 * ep0_idle - Put control endpoint into idle state
491 * @dev: udc device
492 */
ep0_idle(struct pxa_udc * dev)493 static void ep0_idle(struct pxa_udc *dev)
494 {
495 set_ep0state(dev, WAIT_FOR_SETUP);
496 }
497
498 /**
499 * inc_ep_stats_reqs - Update ep stats counts
500 * @ep: physical endpoint
501 * @is_in: ep direction (USB_DIR_IN or 0)
502 *
503 */
inc_ep_stats_reqs(struct pxa_ep * ep,int is_in)504 static void inc_ep_stats_reqs(struct pxa_ep *ep, int is_in)
505 {
506 if (is_in)
507 ep->stats.in_ops++;
508 else
509 ep->stats.out_ops++;
510 }
511
512 /**
513 * inc_ep_stats_bytes - Update ep stats counts
514 * @ep: physical endpoint
515 * @count: bytes transferred on endpoint
516 * @is_in: ep direction (USB_DIR_IN or 0)
517 */
inc_ep_stats_bytes(struct pxa_ep * ep,int count,int is_in)518 static void inc_ep_stats_bytes(struct pxa_ep *ep, int count, int is_in)
519 {
520 if (is_in)
521 ep->stats.in_bytes += count;
522 else
523 ep->stats.out_bytes += count;
524 }
525
526 /**
527 * pxa_ep_setup - Sets up an usb physical endpoint
528 * @ep: pxa27x physical endpoint
529 *
530 * Find the physical pxa27x ep, and setup its UDCCR
531 */
pxa_ep_setup(struct pxa_ep * ep)532 static void pxa_ep_setup(struct pxa_ep *ep)
533 {
534 u32 new_udccr;
535
536 new_udccr = ((ep->config << UDCCONR_CN_S) & UDCCONR_CN)
537 | ((ep->interface << UDCCONR_IN_S) & UDCCONR_IN)
538 | ((ep->alternate << UDCCONR_AISN_S) & UDCCONR_AISN)
539 | ((EPADDR(ep) << UDCCONR_EN_S) & UDCCONR_EN)
540 | ((EPXFERTYPE(ep) << UDCCONR_ET_S) & UDCCONR_ET)
541 | ((ep->dir_in) ? UDCCONR_ED : 0)
542 | ((ep->fifo_size << UDCCONR_MPS_S) & UDCCONR_MPS)
543 | UDCCONR_EE;
544
545 udc_ep_writel(ep, UDCCR, new_udccr);
546 }
547
548 /**
549 * pxa_eps_setup - Sets up all usb physical endpoints
550 * @dev: udc device
551 *
552 * Setup all pxa physical endpoints, except ep0
553 */
pxa_eps_setup(struct pxa_udc * dev)554 static void pxa_eps_setup(struct pxa_udc *dev)
555 {
556 unsigned int i;
557
558 dev_dbg(dev->dev, "%s: dev=%p\n", __func__, dev);
559
560 for (i = 1; i < NR_PXA_ENDPOINTS; i++)
561 pxa_ep_setup(&dev->pxa_ep[i]);
562 }
563
564 /**
565 * pxa_ep_alloc_request - Allocate usb request
566 * @_ep: usb endpoint
567 * @gfp_flags:
568 *
569 * For the pxa27x, these can just wrap kmalloc/kfree. gadget drivers
570 * must still pass correctly initialized endpoints, since other controller
571 * drivers may care about how it's currently set up (dma issues etc).
572 */
573 static struct usb_request *
pxa_ep_alloc_request(struct usb_ep * _ep,gfp_t gfp_flags)574 pxa_ep_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
575 {
576 struct pxa27x_request *req;
577
578 req = kzalloc(sizeof *req, gfp_flags);
579 if (!req)
580 return NULL;
581
582 INIT_LIST_HEAD(&req->queue);
583 req->in_use = 0;
584 req->udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
585
586 return &req->req;
587 }
588
589 /**
590 * pxa_ep_free_request - Free usb request
591 * @_ep: usb endpoint
592 * @_req: usb request
593 *
594 * Wrapper around kfree to free _req
595 */
pxa_ep_free_request(struct usb_ep * _ep,struct usb_request * _req)596 static void pxa_ep_free_request(struct usb_ep *_ep, struct usb_request *_req)
597 {
598 struct pxa27x_request *req;
599
600 req = container_of(_req, struct pxa27x_request, req);
601 WARN_ON(!list_empty(&req->queue));
602 kfree(req);
603 }
604
605 /**
606 * ep_add_request - add a request to the endpoint's queue
607 * @ep: usb endpoint
608 * @req: usb request
609 *
610 * Context: ep->lock held
611 *
612 * Queues the request in the endpoint's queue, and enables the interrupts
613 * on the endpoint.
614 */
ep_add_request(struct pxa_ep * ep,struct pxa27x_request * req)615 static void ep_add_request(struct pxa_ep *ep, struct pxa27x_request *req)
616 {
617 if (unlikely(!req))
618 return;
619 ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req,
620 req->req.length, udc_ep_readl(ep, UDCCSR));
621
622 req->in_use = 1;
623 list_add_tail(&req->queue, &ep->queue);
624 pio_irq_enable(ep);
625 }
626
627 /**
628 * ep_del_request - removes a request from the endpoint's queue
629 * @ep: usb endpoint
630 * @req: usb request
631 *
632 * Context: ep->lock held
633 *
634 * Unqueue the request from the endpoint's queue. If there are no more requests
635 * on the endpoint, and if it's not the control endpoint, interrupts are
636 * disabled on the endpoint.
637 */
ep_del_request(struct pxa_ep * ep,struct pxa27x_request * req)638 static void ep_del_request(struct pxa_ep *ep, struct pxa27x_request *req)
639 {
640 if (unlikely(!req))
641 return;
642 ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req,
643 req->req.length, udc_ep_readl(ep, UDCCSR));
644
645 list_del_init(&req->queue);
646 req->in_use = 0;
647 if (!is_ep0(ep) && list_empty(&ep->queue))
648 pio_irq_disable(ep);
649 }
650
651 /**
652 * req_done - Complete an usb request
653 * @ep: pxa physical endpoint
654 * @req: pxa request
655 * @status: usb request status sent to gadget API
656 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
657 *
658 * Context: ep->lock held if flags not NULL, else ep->lock released
659 *
660 * Retire a pxa27x usb request. Endpoint must be locked.
661 */
req_done(struct pxa_ep * ep,struct pxa27x_request * req,int status,unsigned long * pflags)662 static void req_done(struct pxa_ep *ep, struct pxa27x_request *req, int status,
663 unsigned long *pflags)
664 {
665 unsigned long flags;
666
667 ep_del_request(ep, req);
668 if (likely(req->req.status == -EINPROGRESS))
669 req->req.status = status;
670 else
671 status = req->req.status;
672
673 if (status && status != -ESHUTDOWN)
674 ep_dbg(ep, "complete req %p stat %d len %u/%u\n",
675 &req->req, status,
676 req->req.actual, req->req.length);
677
678 if (pflags)
679 spin_unlock_irqrestore(&ep->lock, *pflags);
680 local_irq_save(flags);
681 usb_gadget_giveback_request(&req->udc_usb_ep->usb_ep, &req->req);
682 local_irq_restore(flags);
683 if (pflags)
684 spin_lock_irqsave(&ep->lock, *pflags);
685 }
686
687 /**
688 * ep_end_out_req - Ends endpoint OUT request
689 * @ep: physical endpoint
690 * @req: pxa request
691 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
692 *
693 * Context: ep->lock held or released (see req_done())
694 *
695 * Ends endpoint OUT request (completes usb request).
696 */
ep_end_out_req(struct pxa_ep * ep,struct pxa27x_request * req,unsigned long * pflags)697 static void ep_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req,
698 unsigned long *pflags)
699 {
700 inc_ep_stats_reqs(ep, !USB_DIR_IN);
701 req_done(ep, req, 0, pflags);
702 }
703
704 /**
705 * ep0_end_out_req - Ends control endpoint OUT request (ends data stage)
706 * @ep: physical endpoint
707 * @req: pxa request
708 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
709 *
710 * Context: ep->lock held or released (see req_done())
711 *
712 * Ends control endpoint OUT request (completes usb request), and puts
713 * control endpoint into idle state
714 */
ep0_end_out_req(struct pxa_ep * ep,struct pxa27x_request * req,unsigned long * pflags)715 static void ep0_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req,
716 unsigned long *pflags)
717 {
718 set_ep0state(ep->dev, OUT_STATUS_STAGE);
719 ep_end_out_req(ep, req, pflags);
720 ep0_idle(ep->dev);
721 }
722
723 /**
724 * ep_end_in_req - Ends endpoint IN request
725 * @ep: physical endpoint
726 * @req: pxa request
727 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
728 *
729 * Context: ep->lock held or released (see req_done())
730 *
731 * Ends endpoint IN request (completes usb request).
732 */
ep_end_in_req(struct pxa_ep * ep,struct pxa27x_request * req,unsigned long * pflags)733 static void ep_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req,
734 unsigned long *pflags)
735 {
736 inc_ep_stats_reqs(ep, USB_DIR_IN);
737 req_done(ep, req, 0, pflags);
738 }
739
740 /**
741 * ep0_end_in_req - Ends control endpoint IN request (ends data stage)
742 * @ep: physical endpoint
743 * @req: pxa request
744 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
745 *
746 * Context: ep->lock held or released (see req_done())
747 *
748 * Ends control endpoint IN request (completes usb request), and puts
749 * control endpoint into status state
750 */
ep0_end_in_req(struct pxa_ep * ep,struct pxa27x_request * req,unsigned long * pflags)751 static void ep0_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req,
752 unsigned long *pflags)
753 {
754 set_ep0state(ep->dev, IN_STATUS_STAGE);
755 ep_end_in_req(ep, req, pflags);
756 }
757
758 /**
759 * nuke - Dequeue all requests
760 * @ep: pxa endpoint
761 * @status: usb request status
762 *
763 * Context: ep->lock released
764 *
765 * Dequeues all requests on an endpoint. As a side effect, interrupts will be
766 * disabled on that endpoint (because no more requests).
767 */
nuke(struct pxa_ep * ep,int status)768 static void nuke(struct pxa_ep *ep, int status)
769 {
770 struct pxa27x_request *req;
771 unsigned long flags;
772
773 spin_lock_irqsave(&ep->lock, flags);
774 while (!list_empty(&ep->queue)) {
775 req = list_entry(ep->queue.next, struct pxa27x_request, queue);
776 req_done(ep, req, status, &flags);
777 }
778 spin_unlock_irqrestore(&ep->lock, flags);
779 }
780
781 /**
782 * read_packet - transfer 1 packet from an OUT endpoint into request
783 * @ep: pxa physical endpoint
784 * @req: usb request
785 *
786 * Takes bytes from OUT endpoint and transfers them info the usb request.
787 * If there is less space in request than bytes received in OUT endpoint,
788 * bytes are left in the OUT endpoint.
789 *
790 * Returns how many bytes were actually transferred
791 */
read_packet(struct pxa_ep * ep,struct pxa27x_request * req)792 static int read_packet(struct pxa_ep *ep, struct pxa27x_request *req)
793 {
794 u32 *buf;
795 int bytes_ep, bufferspace, count, i;
796
797 bytes_ep = ep_count_bytes_remain(ep);
798 bufferspace = req->req.length - req->req.actual;
799
800 buf = (u32 *)(req->req.buf + req->req.actual);
801 prefetchw(buf);
802
803 if (likely(!ep_is_empty(ep)))
804 count = min(bytes_ep, bufferspace);
805 else /* zlp */
806 count = 0;
807
808 for (i = count; i > 0; i -= 4)
809 *buf++ = udc_ep_readl(ep, UDCDR);
810 req->req.actual += count;
811
812 ep_write_UDCCSR(ep, UDCCSR_PC);
813
814 return count;
815 }
816
817 /**
818 * write_packet - transfer 1 packet from request into an IN endpoint
819 * @ep: pxa physical endpoint
820 * @req: usb request
821 * @max: max bytes that fit into endpoint
822 *
823 * Takes bytes from usb request, and transfers them into the physical
824 * endpoint. If there are no bytes to transfer, doesn't write anything
825 * to physical endpoint.
826 *
827 * Returns how many bytes were actually transferred.
828 */
write_packet(struct pxa_ep * ep,struct pxa27x_request * req,unsigned int max)829 static int write_packet(struct pxa_ep *ep, struct pxa27x_request *req,
830 unsigned int max)
831 {
832 int length, count, remain, i;
833 u32 *buf;
834 u8 *buf_8;
835
836 buf = (u32 *)(req->req.buf + req->req.actual);
837 prefetch(buf);
838
839 length = min(req->req.length - req->req.actual, max);
840 req->req.actual += length;
841
842 remain = length & 0x3;
843 count = length & ~(0x3);
844 for (i = count; i > 0 ; i -= 4)
845 udc_ep_writel(ep, UDCDR, *buf++);
846
847 buf_8 = (u8 *)buf;
848 for (i = remain; i > 0; i--)
849 udc_ep_writeb(ep, UDCDR, *buf_8++);
850
851 ep_vdbg(ep, "length=%d+%d, udccsr=0x%03x\n", count, remain,
852 udc_ep_readl(ep, UDCCSR));
853
854 return length;
855 }
856
857 /**
858 * read_fifo - Transfer packets from OUT endpoint into usb request
859 * @ep: pxa physical endpoint
860 * @req: usb request
861 *
862 * Context: callable when in_interrupt()
863 *
864 * Unload as many packets as possible from the fifo we use for usb OUT
865 * transfers and put them into the request. Caller should have made sure
866 * there's at least one packet ready.
867 * Doesn't complete the request, that's the caller's job
868 *
869 * Returns 1 if the request completed, 0 otherwise
870 */
read_fifo(struct pxa_ep * ep,struct pxa27x_request * req)871 static int read_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
872 {
873 int count, is_short, completed = 0;
874
875 while (epout_has_pkt(ep)) {
876 count = read_packet(ep, req);
877 inc_ep_stats_bytes(ep, count, !USB_DIR_IN);
878
879 is_short = (count < ep->fifo_size);
880 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n",
881 udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "",
882 &req->req, req->req.actual, req->req.length);
883
884 /* completion */
885 if (is_short || req->req.actual == req->req.length) {
886 completed = 1;
887 break;
888 }
889 /* finished that packet. the next one may be waiting... */
890 }
891 return completed;
892 }
893
894 /**
895 * write_fifo - transfer packets from usb request into an IN endpoint
896 * @ep: pxa physical endpoint
897 * @req: pxa usb request
898 *
899 * Write to an IN endpoint fifo, as many packets as possible.
900 * irqs will use this to write the rest later.
901 * caller guarantees at least one packet buffer is ready (or a zlp).
902 * Doesn't complete the request, that's the caller's job
903 *
904 * Returns 1 if request fully transferred, 0 if partial transfer
905 */
write_fifo(struct pxa_ep * ep,struct pxa27x_request * req)906 static int write_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
907 {
908 unsigned max;
909 int count, is_short, is_last = 0, completed = 0, totcount = 0;
910 u32 udccsr;
911
912 max = ep->fifo_size;
913 do {
914 udccsr = udc_ep_readl(ep, UDCCSR);
915 if (udccsr & UDCCSR_PC) {
916 ep_vdbg(ep, "Clearing Transmit Complete, udccsr=%x\n",
917 udccsr);
918 ep_write_UDCCSR(ep, UDCCSR_PC);
919 }
920 if (udccsr & UDCCSR_TRN) {
921 ep_vdbg(ep, "Clearing Underrun on, udccsr=%x\n",
922 udccsr);
923 ep_write_UDCCSR(ep, UDCCSR_TRN);
924 }
925
926 count = write_packet(ep, req, max);
927 inc_ep_stats_bytes(ep, count, USB_DIR_IN);
928 totcount += count;
929
930 /* last packet is usually short (or a zlp) */
931 if (unlikely(count < max)) {
932 is_last = 1;
933 is_short = 1;
934 } else {
935 if (likely(req->req.length > req->req.actual)
936 || req->req.zero)
937 is_last = 0;
938 else
939 is_last = 1;
940 /* interrupt/iso maxpacket may not fill the fifo */
941 is_short = unlikely(max < ep->fifo_size);
942 }
943
944 if (is_short)
945 ep_write_UDCCSR(ep, UDCCSR_SP);
946
947 /* requests complete when all IN data is in the FIFO */
948 if (is_last) {
949 completed = 1;
950 break;
951 }
952 } while (!ep_is_full(ep));
953
954 ep_dbg(ep, "wrote count:%d bytes%s%s, left:%d req=%p\n",
955 totcount, is_last ? "/L" : "", is_short ? "/S" : "",
956 req->req.length - req->req.actual, &req->req);
957
958 return completed;
959 }
960
961 /**
962 * read_ep0_fifo - Transfer packets from control endpoint into usb request
963 * @ep: control endpoint
964 * @req: pxa usb request
965 *
966 * Special ep0 version of the above read_fifo. Reads as many bytes from control
967 * endpoint as can be read, and stores them into usb request (limited by request
968 * maximum length).
969 *
970 * Returns 0 if usb request only partially filled, 1 if fully filled
971 */
read_ep0_fifo(struct pxa_ep * ep,struct pxa27x_request * req)972 static int read_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
973 {
974 int count, is_short, completed = 0;
975
976 while (epout_has_pkt(ep)) {
977 count = read_packet(ep, req);
978 ep_write_UDCCSR(ep, UDCCSR0_OPC);
979 inc_ep_stats_bytes(ep, count, !USB_DIR_IN);
980
981 is_short = (count < ep->fifo_size);
982 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n",
983 udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "",
984 &req->req, req->req.actual, req->req.length);
985
986 if (is_short || req->req.actual >= req->req.length) {
987 completed = 1;
988 break;
989 }
990 }
991
992 return completed;
993 }
994
995 /**
996 * write_ep0_fifo - Send a request to control endpoint (ep0 in)
997 * @ep: control endpoint
998 * @req: request
999 *
1000 * Context: callable when in_interrupt()
1001 *
1002 * Sends a request (or a part of the request) to the control endpoint (ep0 in).
1003 * If the request doesn't fit, the remaining part will be sent from irq.
1004 * The request is considered fully written only if either :
1005 * - last write transferred all remaining bytes, but fifo was not fully filled
1006 * - last write was a 0 length write
1007 *
1008 * Returns 1 if request fully written, 0 if request only partially sent
1009 */
write_ep0_fifo(struct pxa_ep * ep,struct pxa27x_request * req)1010 static int write_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
1011 {
1012 unsigned count;
1013 int is_last, is_short;
1014
1015 count = write_packet(ep, req, EP0_FIFO_SIZE);
1016 inc_ep_stats_bytes(ep, count, USB_DIR_IN);
1017
1018 is_short = (count < EP0_FIFO_SIZE);
1019 is_last = ((count == 0) || (count < EP0_FIFO_SIZE));
1020
1021 /* Sends either a short packet or a 0 length packet */
1022 if (unlikely(is_short))
1023 ep_write_UDCCSR(ep, UDCCSR0_IPR);
1024
1025 ep_dbg(ep, "in %d bytes%s%s, %d left, req=%p, udccsr0=0x%03x\n",
1026 count, is_short ? "/S" : "", is_last ? "/L" : "",
1027 req->req.length - req->req.actual,
1028 &req->req, udc_ep_readl(ep, UDCCSR));
1029
1030 return is_last;
1031 }
1032
1033 /**
1034 * pxa_ep_queue - Queue a request into an IN endpoint
1035 * @_ep: usb endpoint
1036 * @_req: usb request
1037 * @gfp_flags: flags
1038 *
1039 * Context: normally called when !in_interrupt, but callable when in_interrupt()
1040 * in the special case of ep0 setup :
1041 * (irq->handle_ep0_ctrl_req->gadget_setup->pxa_ep_queue)
1042 *
1043 * Returns 0 if succedeed, error otherwise
1044 */
pxa_ep_queue(struct usb_ep * _ep,struct usb_request * _req,gfp_t gfp_flags)1045 static int pxa_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
1046 gfp_t gfp_flags)
1047 {
1048 struct udc_usb_ep *udc_usb_ep;
1049 struct pxa_ep *ep;
1050 struct pxa27x_request *req;
1051 struct pxa_udc *dev;
1052 unsigned long flags;
1053 int rc = 0;
1054 int is_first_req;
1055 unsigned length;
1056 int recursion_detected;
1057
1058 req = container_of(_req, struct pxa27x_request, req);
1059 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1060
1061 if (unlikely(!_req || !_req->complete || !_req->buf))
1062 return -EINVAL;
1063
1064 if (unlikely(!_ep))
1065 return -EINVAL;
1066
1067 ep = udc_usb_ep->pxa_ep;
1068 if (unlikely(!ep))
1069 return -EINVAL;
1070
1071 dev = ep->dev;
1072 if (unlikely(!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)) {
1073 ep_dbg(ep, "bogus device state\n");
1074 return -ESHUTDOWN;
1075 }
1076
1077 /* iso is always one packet per request, that's the only way
1078 * we can report per-packet status. that also helps with dma.
1079 */
1080 if (unlikely(EPXFERTYPE_is_ISO(ep)
1081 && req->req.length > ep->fifo_size))
1082 return -EMSGSIZE;
1083
1084 spin_lock_irqsave(&ep->lock, flags);
1085 recursion_detected = ep->in_handle_ep;
1086
1087 is_first_req = list_empty(&ep->queue);
1088 ep_dbg(ep, "queue req %p(first=%s), len %d buf %p\n",
1089 _req, is_first_req ? "yes" : "no",
1090 _req->length, _req->buf);
1091
1092 if (!ep->enabled) {
1093 _req->status = -ESHUTDOWN;
1094 rc = -ESHUTDOWN;
1095 goto out_locked;
1096 }
1097
1098 if (req->in_use) {
1099 ep_err(ep, "refusing to queue req %p (already queued)\n", req);
1100 goto out_locked;
1101 }
1102
1103 length = _req->length;
1104 _req->status = -EINPROGRESS;
1105 _req->actual = 0;
1106
1107 ep_add_request(ep, req);
1108 spin_unlock_irqrestore(&ep->lock, flags);
1109
1110 if (is_ep0(ep)) {
1111 switch (dev->ep0state) {
1112 case WAIT_ACK_SET_CONF_INTERF:
1113 if (length == 0) {
1114 ep_end_in_req(ep, req, NULL);
1115 } else {
1116 ep_err(ep, "got a request of %d bytes while"
1117 "in state WAIT_ACK_SET_CONF_INTERF\n",
1118 length);
1119 ep_del_request(ep, req);
1120 rc = -EL2HLT;
1121 }
1122 ep0_idle(ep->dev);
1123 break;
1124 case IN_DATA_STAGE:
1125 if (!ep_is_full(ep))
1126 if (write_ep0_fifo(ep, req))
1127 ep0_end_in_req(ep, req, NULL);
1128 break;
1129 case OUT_DATA_STAGE:
1130 if ((length == 0) || !epout_has_pkt(ep))
1131 if (read_ep0_fifo(ep, req))
1132 ep0_end_out_req(ep, req, NULL);
1133 break;
1134 default:
1135 ep_err(ep, "odd state %s to send me a request\n",
1136 EP0_STNAME(ep->dev));
1137 ep_del_request(ep, req);
1138 rc = -EL2HLT;
1139 break;
1140 }
1141 } else {
1142 if (!recursion_detected)
1143 handle_ep(ep);
1144 }
1145
1146 out:
1147 return rc;
1148 out_locked:
1149 spin_unlock_irqrestore(&ep->lock, flags);
1150 goto out;
1151 }
1152
1153 /**
1154 * pxa_ep_dequeue - Dequeue one request
1155 * @_ep: usb endpoint
1156 * @_req: usb request
1157 *
1158 * Return 0 if no error, -EINVAL or -ECONNRESET otherwise
1159 */
pxa_ep_dequeue(struct usb_ep * _ep,struct usb_request * _req)1160 static int pxa_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1161 {
1162 struct pxa_ep *ep;
1163 struct udc_usb_ep *udc_usb_ep;
1164 struct pxa27x_request *req;
1165 unsigned long flags;
1166 int rc = -EINVAL;
1167
1168 if (!_ep)
1169 return rc;
1170 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1171 ep = udc_usb_ep->pxa_ep;
1172 if (!ep || is_ep0(ep))
1173 return rc;
1174
1175 spin_lock_irqsave(&ep->lock, flags);
1176
1177 /* make sure it's actually queued on this endpoint */
1178 list_for_each_entry(req, &ep->queue, queue) {
1179 if (&req->req == _req) {
1180 rc = 0;
1181 break;
1182 }
1183 }
1184
1185 spin_unlock_irqrestore(&ep->lock, flags);
1186 if (!rc)
1187 req_done(ep, req, -ECONNRESET, NULL);
1188 return rc;
1189 }
1190
1191 /**
1192 * pxa_ep_set_halt - Halts operations on one endpoint
1193 * @_ep: usb endpoint
1194 * @value:
1195 *
1196 * Returns 0 if no error, -EINVAL, -EROFS, -EAGAIN otherwise
1197 */
pxa_ep_set_halt(struct usb_ep * _ep,int value)1198 static int pxa_ep_set_halt(struct usb_ep *_ep, int value)
1199 {
1200 struct pxa_ep *ep;
1201 struct udc_usb_ep *udc_usb_ep;
1202 unsigned long flags;
1203 int rc;
1204
1205
1206 if (!_ep)
1207 return -EINVAL;
1208 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1209 ep = udc_usb_ep->pxa_ep;
1210 if (!ep || is_ep0(ep))
1211 return -EINVAL;
1212
1213 if (value == 0) {
1214 /*
1215 * This path (reset toggle+halt) is needed to implement
1216 * SET_INTERFACE on normal hardware. but it can't be
1217 * done from software on the PXA UDC, and the hardware
1218 * forgets to do it as part of SET_INTERFACE automagic.
1219 */
1220 ep_dbg(ep, "only host can clear halt\n");
1221 return -EROFS;
1222 }
1223
1224 spin_lock_irqsave(&ep->lock, flags);
1225
1226 rc = -EAGAIN;
1227 if (ep->dir_in && (ep_is_full(ep) || !list_empty(&ep->queue)))
1228 goto out;
1229
1230 /* FST, FEF bits are the same for control and non control endpoints */
1231 rc = 0;
1232 ep_write_UDCCSR(ep, UDCCSR_FST | UDCCSR_FEF);
1233 if (is_ep0(ep))
1234 set_ep0state(ep->dev, STALL);
1235
1236 out:
1237 spin_unlock_irqrestore(&ep->lock, flags);
1238 return rc;
1239 }
1240
1241 /**
1242 * pxa_ep_fifo_status - Get how many bytes in physical endpoint
1243 * @_ep: usb endpoint
1244 *
1245 * Returns number of bytes in OUT fifos. Broken for IN fifos.
1246 */
pxa_ep_fifo_status(struct usb_ep * _ep)1247 static int pxa_ep_fifo_status(struct usb_ep *_ep)
1248 {
1249 struct pxa_ep *ep;
1250 struct udc_usb_ep *udc_usb_ep;
1251
1252 if (!_ep)
1253 return -ENODEV;
1254 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1255 ep = udc_usb_ep->pxa_ep;
1256 if (!ep || is_ep0(ep))
1257 return -ENODEV;
1258
1259 if (ep->dir_in)
1260 return -EOPNOTSUPP;
1261 if (ep->dev->gadget.speed == USB_SPEED_UNKNOWN || ep_is_empty(ep))
1262 return 0;
1263 else
1264 return ep_count_bytes_remain(ep) + 1;
1265 }
1266
1267 /**
1268 * pxa_ep_fifo_flush - Flushes one endpoint
1269 * @_ep: usb endpoint
1270 *
1271 * Discards all data in one endpoint(IN or OUT), except control endpoint.
1272 */
pxa_ep_fifo_flush(struct usb_ep * _ep)1273 static void pxa_ep_fifo_flush(struct usb_ep *_ep)
1274 {
1275 struct pxa_ep *ep;
1276 struct udc_usb_ep *udc_usb_ep;
1277 unsigned long flags;
1278
1279 if (!_ep)
1280 return;
1281 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1282 ep = udc_usb_ep->pxa_ep;
1283 if (!ep || is_ep0(ep))
1284 return;
1285
1286 spin_lock_irqsave(&ep->lock, flags);
1287
1288 if (unlikely(!list_empty(&ep->queue)))
1289 ep_dbg(ep, "called while queue list not empty\n");
1290 ep_dbg(ep, "called\n");
1291
1292 /* for OUT, just read and discard the FIFO contents. */
1293 if (!ep->dir_in) {
1294 while (!ep_is_empty(ep))
1295 udc_ep_readl(ep, UDCDR);
1296 } else {
1297 /* most IN status is the same, but ISO can't stall */
1298 ep_write_UDCCSR(ep,
1299 UDCCSR_PC | UDCCSR_FEF | UDCCSR_TRN
1300 | (EPXFERTYPE_is_ISO(ep) ? 0 : UDCCSR_SST));
1301 }
1302
1303 spin_unlock_irqrestore(&ep->lock, flags);
1304 }
1305
1306 /**
1307 * pxa_ep_enable - Enables usb endpoint
1308 * @_ep: usb endpoint
1309 * @desc: usb endpoint descriptor
1310 *
1311 * Nothing much to do here, as ep configuration is done once and for all
1312 * before udc is enabled. After udc enable, no physical endpoint configuration
1313 * can be changed.
1314 * Function makes sanity checks and flushes the endpoint.
1315 */
pxa_ep_enable(struct usb_ep * _ep,const struct usb_endpoint_descriptor * desc)1316 static int pxa_ep_enable(struct usb_ep *_ep,
1317 const struct usb_endpoint_descriptor *desc)
1318 {
1319 struct pxa_ep *ep;
1320 struct udc_usb_ep *udc_usb_ep;
1321 struct pxa_udc *udc;
1322
1323 if (!_ep || !desc)
1324 return -EINVAL;
1325
1326 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1327 if (udc_usb_ep->pxa_ep) {
1328 ep = udc_usb_ep->pxa_ep;
1329 ep_warn(ep, "usb_ep %s already enabled, doing nothing\n",
1330 _ep->name);
1331 } else {
1332 ep = find_pxa_ep(udc_usb_ep->dev, udc_usb_ep);
1333 }
1334
1335 if (!ep || is_ep0(ep)) {
1336 dev_err(udc_usb_ep->dev->dev,
1337 "unable to match pxa_ep for ep %s\n",
1338 _ep->name);
1339 return -EINVAL;
1340 }
1341
1342 if ((desc->bDescriptorType != USB_DT_ENDPOINT)
1343 || (ep->type != usb_endpoint_type(desc))) {
1344 ep_err(ep, "type mismatch\n");
1345 return -EINVAL;
1346 }
1347
1348 if (ep->fifo_size < usb_endpoint_maxp(desc)) {
1349 ep_err(ep, "bad maxpacket\n");
1350 return -ERANGE;
1351 }
1352
1353 udc_usb_ep->pxa_ep = ep;
1354 udc = ep->dev;
1355
1356 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1357 ep_err(ep, "bogus device state\n");
1358 return -ESHUTDOWN;
1359 }
1360
1361 ep->enabled = 1;
1362
1363 /* flush fifo (mostly for OUT buffers) */
1364 pxa_ep_fifo_flush(_ep);
1365
1366 ep_dbg(ep, "enabled\n");
1367 return 0;
1368 }
1369
1370 /**
1371 * pxa_ep_disable - Disable usb endpoint
1372 * @_ep: usb endpoint
1373 *
1374 * Same as for pxa_ep_enable, no physical endpoint configuration can be
1375 * changed.
1376 * Function flushes the endpoint and related requests.
1377 */
pxa_ep_disable(struct usb_ep * _ep)1378 static int pxa_ep_disable(struct usb_ep *_ep)
1379 {
1380 struct pxa_ep *ep;
1381 struct udc_usb_ep *udc_usb_ep;
1382
1383 if (!_ep)
1384 return -EINVAL;
1385
1386 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1387 ep = udc_usb_ep->pxa_ep;
1388 if (!ep || is_ep0(ep) || !list_empty(&ep->queue))
1389 return -EINVAL;
1390
1391 ep->enabled = 0;
1392 nuke(ep, -ESHUTDOWN);
1393
1394 pxa_ep_fifo_flush(_ep);
1395 udc_usb_ep->pxa_ep = NULL;
1396
1397 ep_dbg(ep, "disabled\n");
1398 return 0;
1399 }
1400
1401 static const struct usb_ep_ops pxa_ep_ops = {
1402 .enable = pxa_ep_enable,
1403 .disable = pxa_ep_disable,
1404
1405 .alloc_request = pxa_ep_alloc_request,
1406 .free_request = pxa_ep_free_request,
1407
1408 .queue = pxa_ep_queue,
1409 .dequeue = pxa_ep_dequeue,
1410
1411 .set_halt = pxa_ep_set_halt,
1412 .fifo_status = pxa_ep_fifo_status,
1413 .fifo_flush = pxa_ep_fifo_flush,
1414 };
1415
1416 /**
1417 * dplus_pullup - Connect or disconnect pullup resistor to D+ pin
1418 * @udc: udc device
1419 * @on: 0 if disconnect pullup resistor, 1 otherwise
1420 * Context: any
1421 *
1422 * Handle D+ pullup resistor, make the device visible to the usb bus, and
1423 * declare it as a full speed usb device
1424 */
dplus_pullup(struct pxa_udc * udc,int on)1425 static void dplus_pullup(struct pxa_udc *udc, int on)
1426 {
1427 if (udc->gpiod) {
1428 gpiod_set_value(udc->gpiod, on);
1429 } else if (udc->udc_command) {
1430 if (on)
1431 udc->udc_command(PXA2XX_UDC_CMD_CONNECT);
1432 else
1433 udc->udc_command(PXA2XX_UDC_CMD_DISCONNECT);
1434 }
1435 udc->pullup_on = on;
1436 }
1437
1438 /**
1439 * pxa_udc_get_frame - Returns usb frame number
1440 * @_gadget: usb gadget
1441 */
pxa_udc_get_frame(struct usb_gadget * _gadget)1442 static int pxa_udc_get_frame(struct usb_gadget *_gadget)
1443 {
1444 struct pxa_udc *udc = to_gadget_udc(_gadget);
1445
1446 return (udc_readl(udc, UDCFNR) & 0x7ff);
1447 }
1448
1449 /**
1450 * pxa_udc_wakeup - Force udc device out of suspend
1451 * @_gadget: usb gadget
1452 *
1453 * Returns 0 if successful, error code otherwise
1454 */
pxa_udc_wakeup(struct usb_gadget * _gadget)1455 static int pxa_udc_wakeup(struct usb_gadget *_gadget)
1456 {
1457 struct pxa_udc *udc = to_gadget_udc(_gadget);
1458
1459 /* host may not have enabled remote wakeup */
1460 if ((udc_readl(udc, UDCCR) & UDCCR_DWRE) == 0)
1461 return -EHOSTUNREACH;
1462 udc_set_mask_UDCCR(udc, UDCCR_UDR);
1463 return 0;
1464 }
1465
1466 static void udc_enable(struct pxa_udc *udc);
1467 static void udc_disable(struct pxa_udc *udc);
1468
1469 /**
1470 * should_enable_udc - Tells if UDC should be enabled
1471 * @udc: udc device
1472 * Context: any
1473 *
1474 * The UDC should be enabled if :
1475 * - the pullup resistor is connected
1476 * - and a gadget driver is bound
1477 * - and vbus is sensed (or no vbus sense is available)
1478 *
1479 * Returns 1 if UDC should be enabled, 0 otherwise
1480 */
should_enable_udc(struct pxa_udc * udc)1481 static int should_enable_udc(struct pxa_udc *udc)
1482 {
1483 int put_on;
1484
1485 put_on = ((udc->pullup_on) && (udc->driver));
1486 put_on &= ((udc->vbus_sensed) || (IS_ERR_OR_NULL(udc->transceiver)));
1487 return put_on;
1488 }
1489
1490 /**
1491 * should_disable_udc - Tells if UDC should be disabled
1492 * @udc: udc device
1493 * Context: any
1494 *
1495 * The UDC should be disabled if :
1496 * - the pullup resistor is not connected
1497 * - or no gadget driver is bound
1498 * - or no vbus is sensed (when vbus sesing is available)
1499 *
1500 * Returns 1 if UDC should be disabled
1501 */
should_disable_udc(struct pxa_udc * udc)1502 static int should_disable_udc(struct pxa_udc *udc)
1503 {
1504 int put_off;
1505
1506 put_off = ((!udc->pullup_on) || (!udc->driver));
1507 put_off |= ((!udc->vbus_sensed) && (!IS_ERR_OR_NULL(udc->transceiver)));
1508 return put_off;
1509 }
1510
1511 /**
1512 * pxa_udc_pullup - Offer manual D+ pullup control
1513 * @_gadget: usb gadget using the control
1514 * @is_active: 0 if disconnect, else connect D+ pullup resistor
1515 * Context: !in_interrupt()
1516 *
1517 * Returns 0 if OK, -EOPNOTSUPP if udc driver doesn't handle D+ pullup
1518 */
pxa_udc_pullup(struct usb_gadget * _gadget,int is_active)1519 static int pxa_udc_pullup(struct usb_gadget *_gadget, int is_active)
1520 {
1521 struct pxa_udc *udc = to_gadget_udc(_gadget);
1522
1523 if (!udc->gpiod && !udc->udc_command)
1524 return -EOPNOTSUPP;
1525
1526 dplus_pullup(udc, is_active);
1527
1528 if (should_enable_udc(udc))
1529 udc_enable(udc);
1530 if (should_disable_udc(udc))
1531 udc_disable(udc);
1532 return 0;
1533 }
1534
1535 /**
1536 * pxa_udc_vbus_session - Called by external transceiver to enable/disable udc
1537 * @_gadget: usb gadget
1538 * @is_active: 0 if should disable the udc, 1 if should enable
1539 *
1540 * Enables the udc, and optionnaly activates D+ pullup resistor. Or disables the
1541 * udc, and deactivates D+ pullup resistor.
1542 *
1543 * Returns 0
1544 */
pxa_udc_vbus_session(struct usb_gadget * _gadget,int is_active)1545 static int pxa_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
1546 {
1547 struct pxa_udc *udc = to_gadget_udc(_gadget);
1548
1549 udc->vbus_sensed = is_active;
1550 if (should_enable_udc(udc))
1551 udc_enable(udc);
1552 if (should_disable_udc(udc))
1553 udc_disable(udc);
1554
1555 return 0;
1556 }
1557
1558 /**
1559 * pxa_udc_vbus_draw - Called by gadget driver after SET_CONFIGURATION completed
1560 * @_gadget: usb gadget
1561 * @mA: current drawn
1562 *
1563 * Context: !in_interrupt()
1564 *
1565 * Called after a configuration was chosen by a USB host, to inform how much
1566 * current can be drawn by the device from VBus line.
1567 *
1568 * Returns 0 or -EOPNOTSUPP if no transceiver is handling the udc
1569 */
pxa_udc_vbus_draw(struct usb_gadget * _gadget,unsigned mA)1570 static int pxa_udc_vbus_draw(struct usb_gadget *_gadget, unsigned mA)
1571 {
1572 struct pxa_udc *udc;
1573
1574 udc = to_gadget_udc(_gadget);
1575 if (!IS_ERR_OR_NULL(udc->transceiver))
1576 return usb_phy_set_power(udc->transceiver, mA);
1577 return -EOPNOTSUPP;
1578 }
1579
1580 /**
1581 * pxa_udc_phy_event - Called by phy upon VBus event
1582 * @nb: notifier block
1583 * @action: phy action, is vbus connect or disconnect
1584 * @data: the usb_gadget structure in pxa_udc
1585 *
1586 * Called by the USB Phy when a cable connect or disconnect is sensed.
1587 *
1588 * Returns 0
1589 */
pxa_udc_phy_event(struct notifier_block * nb,unsigned long action,void * data)1590 static int pxa_udc_phy_event(struct notifier_block *nb, unsigned long action,
1591 void *data)
1592 {
1593 struct usb_gadget *gadget = data;
1594
1595 switch (action) {
1596 case USB_EVENT_VBUS:
1597 usb_gadget_vbus_connect(gadget);
1598 return NOTIFY_OK;
1599 case USB_EVENT_NONE:
1600 usb_gadget_vbus_disconnect(gadget);
1601 return NOTIFY_OK;
1602 default:
1603 return NOTIFY_DONE;
1604 }
1605 }
1606
1607 static struct notifier_block pxa27x_udc_phy = {
1608 .notifier_call = pxa_udc_phy_event,
1609 };
1610
1611 static int pxa27x_udc_start(struct usb_gadget *g,
1612 struct usb_gadget_driver *driver);
1613 static int pxa27x_udc_stop(struct usb_gadget *g);
1614
1615 static const struct usb_gadget_ops pxa_udc_ops = {
1616 .get_frame = pxa_udc_get_frame,
1617 .wakeup = pxa_udc_wakeup,
1618 .pullup = pxa_udc_pullup,
1619 .vbus_session = pxa_udc_vbus_session,
1620 .vbus_draw = pxa_udc_vbus_draw,
1621 .udc_start = pxa27x_udc_start,
1622 .udc_stop = pxa27x_udc_stop,
1623 };
1624
1625 /**
1626 * udc_disable - disable udc device controller
1627 * @udc: udc device
1628 * Context: any
1629 *
1630 * Disables the udc device : disables clocks, udc interrupts, control endpoint
1631 * interrupts.
1632 */
udc_disable(struct pxa_udc * udc)1633 static void udc_disable(struct pxa_udc *udc)
1634 {
1635 if (!udc->enabled)
1636 return;
1637
1638 udc_writel(udc, UDCICR0, 0);
1639 udc_writel(udc, UDCICR1, 0);
1640
1641 udc_clear_mask_UDCCR(udc, UDCCR_UDE);
1642
1643 ep0_idle(udc);
1644 udc->gadget.speed = USB_SPEED_UNKNOWN;
1645 clk_disable(udc->clk);
1646
1647 udc->enabled = 0;
1648 }
1649
1650 /**
1651 * udc_init_data - Initialize udc device data structures
1652 * @dev: udc device
1653 *
1654 * Initializes gadget endpoint list, endpoints locks. No action is taken
1655 * on the hardware.
1656 */
udc_init_data(struct pxa_udc * dev)1657 static void udc_init_data(struct pxa_udc *dev)
1658 {
1659 int i;
1660 struct pxa_ep *ep;
1661
1662 /* device/ep0 records init */
1663 INIT_LIST_HEAD(&dev->gadget.ep_list);
1664 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1665 dev->udc_usb_ep[0].pxa_ep = &dev->pxa_ep[0];
1666 dev->gadget.quirk_altset_not_supp = 1;
1667 ep0_idle(dev);
1668
1669 /* PXA endpoints init */
1670 for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
1671 ep = &dev->pxa_ep[i];
1672
1673 ep->enabled = is_ep0(ep);
1674 INIT_LIST_HEAD(&ep->queue);
1675 spin_lock_init(&ep->lock);
1676 }
1677
1678 /* USB endpoints init */
1679 for (i = 1; i < NR_USB_ENDPOINTS; i++) {
1680 list_add_tail(&dev->udc_usb_ep[i].usb_ep.ep_list,
1681 &dev->gadget.ep_list);
1682 usb_ep_set_maxpacket_limit(&dev->udc_usb_ep[i].usb_ep,
1683 dev->udc_usb_ep[i].usb_ep.maxpacket);
1684 }
1685 }
1686
1687 /**
1688 * udc_enable - Enables the udc device
1689 * @udc: udc device
1690 *
1691 * Enables the udc device : enables clocks, udc interrupts, control endpoint
1692 * interrupts, sets usb as UDC client and setups endpoints.
1693 */
udc_enable(struct pxa_udc * udc)1694 static void udc_enable(struct pxa_udc *udc)
1695 {
1696 if (udc->enabled)
1697 return;
1698
1699 clk_enable(udc->clk);
1700 udc_writel(udc, UDCICR0, 0);
1701 udc_writel(udc, UDCICR1, 0);
1702 udc_clear_mask_UDCCR(udc, UDCCR_UDE);
1703
1704 ep0_idle(udc);
1705 udc->gadget.speed = USB_SPEED_FULL;
1706 memset(&udc->stats, 0, sizeof(udc->stats));
1707
1708 pxa_eps_setup(udc);
1709 udc_set_mask_UDCCR(udc, UDCCR_UDE);
1710 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_ACM);
1711 udelay(2);
1712 if (udc_readl(udc, UDCCR) & UDCCR_EMCE)
1713 dev_err(udc->dev, "Configuration errors, udc disabled\n");
1714
1715 /*
1716 * Caller must be able to sleep in order to cope with startup transients
1717 */
1718 msleep(100);
1719
1720 /* enable suspend/resume and reset irqs */
1721 udc_writel(udc, UDCICR1,
1722 UDCICR1_IECC | UDCICR1_IERU
1723 | UDCICR1_IESU | UDCICR1_IERS);
1724
1725 /* enable ep0 irqs */
1726 pio_irq_enable(&udc->pxa_ep[0]);
1727
1728 udc->enabled = 1;
1729 }
1730
1731 /**
1732 * pxa27x_start - Register gadget driver
1733 * @g: gadget
1734 * @driver: gadget driver
1735 *
1736 * When a driver is successfully registered, it will receive control requests
1737 * including set_configuration(), which enables non-control requests. Then
1738 * usb traffic follows until a disconnect is reported. Then a host may connect
1739 * again, or the driver might get unbound.
1740 *
1741 * Note that the udc is not automatically enabled. Check function
1742 * should_enable_udc().
1743 *
1744 * Returns 0 if no error, -EINVAL, -ENODEV, -EBUSY otherwise
1745 */
pxa27x_udc_start(struct usb_gadget * g,struct usb_gadget_driver * driver)1746 static int pxa27x_udc_start(struct usb_gadget *g,
1747 struct usb_gadget_driver *driver)
1748 {
1749 struct pxa_udc *udc = to_pxa(g);
1750 int retval;
1751
1752 /* first hook up the driver ... */
1753 udc->driver = driver;
1754
1755 if (!IS_ERR_OR_NULL(udc->transceiver)) {
1756 retval = otg_set_peripheral(udc->transceiver->otg,
1757 &udc->gadget);
1758 if (retval) {
1759 dev_err(udc->dev, "can't bind to transceiver\n");
1760 goto fail;
1761 }
1762 }
1763
1764 if (should_enable_udc(udc))
1765 udc_enable(udc);
1766 return 0;
1767
1768 fail:
1769 udc->driver = NULL;
1770 return retval;
1771 }
1772
1773 /**
1774 * stop_activity - Stops udc endpoints
1775 * @udc: udc device
1776 *
1777 * Disables all udc endpoints (even control endpoint), report disconnect to
1778 * the gadget user.
1779 */
stop_activity(struct pxa_udc * udc)1780 static void stop_activity(struct pxa_udc *udc)
1781 {
1782 int i;
1783
1784 udc->gadget.speed = USB_SPEED_UNKNOWN;
1785
1786 for (i = 0; i < NR_USB_ENDPOINTS; i++)
1787 pxa_ep_disable(&udc->udc_usb_ep[i].usb_ep);
1788 }
1789
1790 /**
1791 * pxa27x_udc_stop - Unregister the gadget driver
1792 * @g: gadget
1793 *
1794 * Returns 0 if no error, -ENODEV, -EINVAL otherwise
1795 */
pxa27x_udc_stop(struct usb_gadget * g)1796 static int pxa27x_udc_stop(struct usb_gadget *g)
1797 {
1798 struct pxa_udc *udc = to_pxa(g);
1799
1800 stop_activity(udc);
1801 udc_disable(udc);
1802
1803 udc->driver = NULL;
1804
1805 if (!IS_ERR_OR_NULL(udc->transceiver))
1806 return otg_set_peripheral(udc->transceiver->otg, NULL);
1807 return 0;
1808 }
1809
1810 /**
1811 * handle_ep0_ctrl_req - handle control endpoint control request
1812 * @udc: udc device
1813 * @req: control request
1814 */
handle_ep0_ctrl_req(struct pxa_udc * udc,struct pxa27x_request * req)1815 static void handle_ep0_ctrl_req(struct pxa_udc *udc,
1816 struct pxa27x_request *req)
1817 {
1818 struct pxa_ep *ep = &udc->pxa_ep[0];
1819 union {
1820 struct usb_ctrlrequest r;
1821 u32 word[2];
1822 } u;
1823 int i;
1824 int have_extrabytes = 0;
1825 unsigned long flags;
1826
1827 nuke(ep, -EPROTO);
1828 spin_lock_irqsave(&ep->lock, flags);
1829
1830 /*
1831 * In the PXA320 manual, in the section about Back-to-Back setup
1832 * packets, it describes this situation. The solution is to set OPC to
1833 * get rid of the status packet, and then continue with the setup
1834 * packet. Generalize to pxa27x CPUs.
1835 */
1836 if (epout_has_pkt(ep) && (ep_count_bytes_remain(ep) == 0))
1837 ep_write_UDCCSR(ep, UDCCSR0_OPC);
1838
1839 /* read SETUP packet */
1840 for (i = 0; i < 2; i++) {
1841 if (unlikely(ep_is_empty(ep)))
1842 goto stall;
1843 u.word[i] = udc_ep_readl(ep, UDCDR);
1844 }
1845
1846 have_extrabytes = !ep_is_empty(ep);
1847 while (!ep_is_empty(ep)) {
1848 i = udc_ep_readl(ep, UDCDR);
1849 ep_err(ep, "wrong to have extra bytes for setup : 0x%08x\n", i);
1850 }
1851
1852 ep_dbg(ep, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1853 u.r.bRequestType, u.r.bRequest,
1854 le16_to_cpu(u.r.wValue), le16_to_cpu(u.r.wIndex),
1855 le16_to_cpu(u.r.wLength));
1856 if (unlikely(have_extrabytes))
1857 goto stall;
1858
1859 if (u.r.bRequestType & USB_DIR_IN)
1860 set_ep0state(udc, IN_DATA_STAGE);
1861 else
1862 set_ep0state(udc, OUT_DATA_STAGE);
1863
1864 /* Tell UDC to enter Data Stage */
1865 ep_write_UDCCSR(ep, UDCCSR0_SA | UDCCSR0_OPC);
1866
1867 spin_unlock_irqrestore(&ep->lock, flags);
1868 i = udc->driver->setup(&udc->gadget, &u.r);
1869 spin_lock_irqsave(&ep->lock, flags);
1870 if (i < 0)
1871 goto stall;
1872 out:
1873 spin_unlock_irqrestore(&ep->lock, flags);
1874 return;
1875 stall:
1876 ep_dbg(ep, "protocol STALL, udccsr0=%03x err %d\n",
1877 udc_ep_readl(ep, UDCCSR), i);
1878 ep_write_UDCCSR(ep, UDCCSR0_FST | UDCCSR0_FTF);
1879 set_ep0state(udc, STALL);
1880 goto out;
1881 }
1882
1883 /**
1884 * handle_ep0 - Handle control endpoint data transfers
1885 * @udc: udc device
1886 * @fifo_irq: 1 if triggered by fifo service type irq
1887 * @opc_irq: 1 if triggered by output packet complete type irq
1888 *
1889 * Context : when in_interrupt() or with ep->lock held
1890 *
1891 * Tries to transfer all pending request data into the endpoint and/or
1892 * transfer all pending data in the endpoint into usb requests.
1893 * Handles states of ep0 automata.
1894 *
1895 * PXA27x hardware handles several standard usb control requests without
1896 * driver notification. The requests fully handled by hardware are :
1897 * SET_ADDRESS, SET_FEATURE, CLEAR_FEATURE, GET_CONFIGURATION, GET_INTERFACE,
1898 * GET_STATUS
1899 * The requests handled by hardware, but with irq notification are :
1900 * SYNCH_FRAME, SET_CONFIGURATION, SET_INTERFACE
1901 * The remaining standard requests really handled by handle_ep0 are :
1902 * GET_DESCRIPTOR, SET_DESCRIPTOR, specific requests.
1903 * Requests standardized outside of USB 2.0 chapter 9 are handled more
1904 * uniformly, by gadget drivers.
1905 *
1906 * The control endpoint state machine is _not_ USB spec compliant, it's even
1907 * hardly compliant with Intel PXA270 developers guide.
1908 * The key points which inferred this state machine are :
1909 * - on every setup token, bit UDCCSR0_SA is raised and held until cleared by
1910 * software.
1911 * - on every OUT packet received, UDCCSR0_OPC is raised and held until
1912 * cleared by software.
1913 * - clearing UDCCSR0_OPC always flushes ep0. If in setup stage, never do it
1914 * before reading ep0.
1915 * This is true only for PXA27x. This is not true anymore for PXA3xx family
1916 * (check Back-to-Back setup packet in developers guide).
1917 * - irq can be called on a "packet complete" event (opc_irq=1), while
1918 * UDCCSR0_OPC is not yet raised (delta can be as big as 100ms
1919 * from experimentation).
1920 * - as UDCCSR0_SA can be activated while in irq handling, and clearing
1921 * UDCCSR0_OPC would flush the setup data, we almost never clear UDCCSR0_OPC
1922 * => we never actually read the "status stage" packet of an IN data stage
1923 * => this is not documented in Intel documentation
1924 * - hardware as no idea of STATUS STAGE, it only handle SETUP STAGE and DATA
1925 * STAGE. The driver add STATUS STAGE to send last zero length packet in
1926 * OUT_STATUS_STAGE.
1927 * - special attention was needed for IN_STATUS_STAGE. If a packet complete
1928 * event is detected, we terminate the status stage without ackowledging the
1929 * packet (not to risk to loose a potential SETUP packet)
1930 */
handle_ep0(struct pxa_udc * udc,int fifo_irq,int opc_irq)1931 static void handle_ep0(struct pxa_udc *udc, int fifo_irq, int opc_irq)
1932 {
1933 u32 udccsr0;
1934 struct pxa_ep *ep = &udc->pxa_ep[0];
1935 struct pxa27x_request *req = NULL;
1936 int completed = 0;
1937
1938 if (!list_empty(&ep->queue))
1939 req = list_entry(ep->queue.next, struct pxa27x_request, queue);
1940
1941 udccsr0 = udc_ep_readl(ep, UDCCSR);
1942 ep_dbg(ep, "state=%s, req=%p, udccsr0=0x%03x, udcbcr=%d, irq_msk=%x\n",
1943 EP0_STNAME(udc), req, udccsr0, udc_ep_readl(ep, UDCBCR),
1944 (fifo_irq << 1 | opc_irq));
1945
1946 if (udccsr0 & UDCCSR0_SST) {
1947 ep_dbg(ep, "clearing stall status\n");
1948 nuke(ep, -EPIPE);
1949 ep_write_UDCCSR(ep, UDCCSR0_SST);
1950 ep0_idle(udc);
1951 }
1952
1953 if (udccsr0 & UDCCSR0_SA) {
1954 nuke(ep, 0);
1955 set_ep0state(udc, SETUP_STAGE);
1956 }
1957
1958 switch (udc->ep0state) {
1959 case WAIT_FOR_SETUP:
1960 /*
1961 * Hardware bug : beware, we cannot clear OPC, since we would
1962 * miss a potential OPC irq for a setup packet.
1963 * So, we only do ... nothing, and hope for a next irq with
1964 * UDCCSR0_SA set.
1965 */
1966 break;
1967 case SETUP_STAGE:
1968 udccsr0 &= UDCCSR0_CTRL_REQ_MASK;
1969 if (likely(udccsr0 == UDCCSR0_CTRL_REQ_MASK))
1970 handle_ep0_ctrl_req(udc, req);
1971 break;
1972 case IN_DATA_STAGE: /* GET_DESCRIPTOR */
1973 if (epout_has_pkt(ep))
1974 ep_write_UDCCSR(ep, UDCCSR0_OPC);
1975 if (req && !ep_is_full(ep))
1976 completed = write_ep0_fifo(ep, req);
1977 if (completed)
1978 ep0_end_in_req(ep, req, NULL);
1979 break;
1980 case OUT_DATA_STAGE: /* SET_DESCRIPTOR */
1981 if (epout_has_pkt(ep) && req)
1982 completed = read_ep0_fifo(ep, req);
1983 if (completed)
1984 ep0_end_out_req(ep, req, NULL);
1985 break;
1986 case STALL:
1987 ep_write_UDCCSR(ep, UDCCSR0_FST);
1988 break;
1989 case IN_STATUS_STAGE:
1990 /*
1991 * Hardware bug : beware, we cannot clear OPC, since we would
1992 * miss a potential PC irq for a setup packet.
1993 * So, we only put the ep0 into WAIT_FOR_SETUP state.
1994 */
1995 if (opc_irq)
1996 ep0_idle(udc);
1997 break;
1998 case OUT_STATUS_STAGE:
1999 case WAIT_ACK_SET_CONF_INTERF:
2000 ep_warn(ep, "should never get in %s state here!!!\n",
2001 EP0_STNAME(ep->dev));
2002 ep0_idle(udc);
2003 break;
2004 }
2005 }
2006
2007 /**
2008 * handle_ep - Handle endpoint data tranfers
2009 * @ep: pxa physical endpoint
2010 *
2011 * Tries to transfer all pending request data into the endpoint and/or
2012 * transfer all pending data in the endpoint into usb requests.
2013 *
2014 * Is always called when in_interrupt() and with ep->lock released.
2015 */
handle_ep(struct pxa_ep * ep)2016 static void handle_ep(struct pxa_ep *ep)
2017 {
2018 struct pxa27x_request *req;
2019 int completed;
2020 u32 udccsr;
2021 int is_in = ep->dir_in;
2022 int loop = 0;
2023 unsigned long flags;
2024
2025 spin_lock_irqsave(&ep->lock, flags);
2026 if (ep->in_handle_ep)
2027 goto recursion_detected;
2028 ep->in_handle_ep = 1;
2029
2030 do {
2031 completed = 0;
2032 udccsr = udc_ep_readl(ep, UDCCSR);
2033
2034 if (likely(!list_empty(&ep->queue)))
2035 req = list_entry(ep->queue.next,
2036 struct pxa27x_request, queue);
2037 else
2038 req = NULL;
2039
2040 ep_dbg(ep, "req:%p, udccsr 0x%03x loop=%d\n",
2041 req, udccsr, loop++);
2042
2043 if (unlikely(udccsr & (UDCCSR_SST | UDCCSR_TRN)))
2044 udc_ep_writel(ep, UDCCSR,
2045 udccsr & (UDCCSR_SST | UDCCSR_TRN));
2046 if (!req)
2047 break;
2048
2049 if (unlikely(is_in)) {
2050 if (likely(!ep_is_full(ep)))
2051 completed = write_fifo(ep, req);
2052 } else {
2053 if (likely(epout_has_pkt(ep)))
2054 completed = read_fifo(ep, req);
2055 }
2056
2057 if (completed) {
2058 if (is_in)
2059 ep_end_in_req(ep, req, &flags);
2060 else
2061 ep_end_out_req(ep, req, &flags);
2062 }
2063 } while (completed);
2064
2065 ep->in_handle_ep = 0;
2066 recursion_detected:
2067 spin_unlock_irqrestore(&ep->lock, flags);
2068 }
2069
2070 /**
2071 * pxa27x_change_configuration - Handle SET_CONF usb request notification
2072 * @udc: udc device
2073 * @config: usb configuration
2074 *
2075 * Post the request to upper level.
2076 * Don't use any pxa specific harware configuration capabilities
2077 */
pxa27x_change_configuration(struct pxa_udc * udc,int config)2078 static void pxa27x_change_configuration(struct pxa_udc *udc, int config)
2079 {
2080 struct usb_ctrlrequest req ;
2081
2082 dev_dbg(udc->dev, "config=%d\n", config);
2083
2084 udc->config = config;
2085 udc->last_interface = 0;
2086 udc->last_alternate = 0;
2087
2088 req.bRequestType = 0;
2089 req.bRequest = USB_REQ_SET_CONFIGURATION;
2090 req.wValue = config;
2091 req.wIndex = 0;
2092 req.wLength = 0;
2093
2094 set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF);
2095 udc->driver->setup(&udc->gadget, &req);
2096 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN);
2097 }
2098
2099 /**
2100 * pxa27x_change_interface - Handle SET_INTERF usb request notification
2101 * @udc: udc device
2102 * @iface: interface number
2103 * @alt: alternate setting number
2104 *
2105 * Post the request to upper level.
2106 * Don't use any pxa specific harware configuration capabilities
2107 */
pxa27x_change_interface(struct pxa_udc * udc,int iface,int alt)2108 static void pxa27x_change_interface(struct pxa_udc *udc, int iface, int alt)
2109 {
2110 struct usb_ctrlrequest req;
2111
2112 dev_dbg(udc->dev, "interface=%d, alternate setting=%d\n", iface, alt);
2113
2114 udc->last_interface = iface;
2115 udc->last_alternate = alt;
2116
2117 req.bRequestType = USB_RECIP_INTERFACE;
2118 req.bRequest = USB_REQ_SET_INTERFACE;
2119 req.wValue = alt;
2120 req.wIndex = iface;
2121 req.wLength = 0;
2122
2123 set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF);
2124 udc->driver->setup(&udc->gadget, &req);
2125 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN);
2126 }
2127
2128 /*
2129 * irq_handle_data - Handle data transfer
2130 * @irq: irq IRQ number
2131 * @udc: dev pxa_udc device structure
2132 *
2133 * Called from irq handler, transferts data to or from endpoint to queue
2134 */
irq_handle_data(int irq,struct pxa_udc * udc)2135 static void irq_handle_data(int irq, struct pxa_udc *udc)
2136 {
2137 int i;
2138 struct pxa_ep *ep;
2139 u32 udcisr0 = udc_readl(udc, UDCISR0) & UDCCISR0_EP_MASK;
2140 u32 udcisr1 = udc_readl(udc, UDCISR1) & UDCCISR1_EP_MASK;
2141
2142 if (udcisr0 & UDCISR_INT_MASK) {
2143 udc->pxa_ep[0].stats.irqs++;
2144 udc_writel(udc, UDCISR0, UDCISR_INT(0, UDCISR_INT_MASK));
2145 handle_ep0(udc, !!(udcisr0 & UDCICR_FIFOERR),
2146 !!(udcisr0 & UDCICR_PKTCOMPL));
2147 }
2148
2149 udcisr0 >>= 2;
2150 for (i = 1; udcisr0 != 0 && i < 16; udcisr0 >>= 2, i++) {
2151 if (!(udcisr0 & UDCISR_INT_MASK))
2152 continue;
2153
2154 udc_writel(udc, UDCISR0, UDCISR_INT(i, UDCISR_INT_MASK));
2155
2156 WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep));
2157 if (i < ARRAY_SIZE(udc->pxa_ep)) {
2158 ep = &udc->pxa_ep[i];
2159 ep->stats.irqs++;
2160 handle_ep(ep);
2161 }
2162 }
2163
2164 for (i = 16; udcisr1 != 0 && i < 24; udcisr1 >>= 2, i++) {
2165 udc_writel(udc, UDCISR1, UDCISR_INT(i - 16, UDCISR_INT_MASK));
2166 if (!(udcisr1 & UDCISR_INT_MASK))
2167 continue;
2168
2169 WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep));
2170 if (i < ARRAY_SIZE(udc->pxa_ep)) {
2171 ep = &udc->pxa_ep[i];
2172 ep->stats.irqs++;
2173 handle_ep(ep);
2174 }
2175 }
2176
2177 }
2178
2179 /**
2180 * irq_udc_suspend - Handle IRQ "UDC Suspend"
2181 * @udc: udc device
2182 */
irq_udc_suspend(struct pxa_udc * udc)2183 static void irq_udc_suspend(struct pxa_udc *udc)
2184 {
2185 udc_writel(udc, UDCISR1, UDCISR1_IRSU);
2186 udc->stats.irqs_suspend++;
2187
2188 if (udc->gadget.speed != USB_SPEED_UNKNOWN
2189 && udc->driver && udc->driver->suspend)
2190 udc->driver->suspend(&udc->gadget);
2191 ep0_idle(udc);
2192 }
2193
2194 /**
2195 * irq_udc_resume - Handle IRQ "UDC Resume"
2196 * @udc: udc device
2197 */
irq_udc_resume(struct pxa_udc * udc)2198 static void irq_udc_resume(struct pxa_udc *udc)
2199 {
2200 udc_writel(udc, UDCISR1, UDCISR1_IRRU);
2201 udc->stats.irqs_resume++;
2202
2203 if (udc->gadget.speed != USB_SPEED_UNKNOWN
2204 && udc->driver && udc->driver->resume)
2205 udc->driver->resume(&udc->gadget);
2206 }
2207
2208 /**
2209 * irq_udc_reconfig - Handle IRQ "UDC Change Configuration"
2210 * @udc: udc device
2211 */
irq_udc_reconfig(struct pxa_udc * udc)2212 static void irq_udc_reconfig(struct pxa_udc *udc)
2213 {
2214 unsigned config, interface, alternate, config_change;
2215 u32 udccr = udc_readl(udc, UDCCR);
2216
2217 udc_writel(udc, UDCISR1, UDCISR1_IRCC);
2218 udc->stats.irqs_reconfig++;
2219
2220 config = (udccr & UDCCR_ACN) >> UDCCR_ACN_S;
2221 config_change = (config != udc->config);
2222 pxa27x_change_configuration(udc, config);
2223
2224 interface = (udccr & UDCCR_AIN) >> UDCCR_AIN_S;
2225 alternate = (udccr & UDCCR_AAISN) >> UDCCR_AAISN_S;
2226 pxa27x_change_interface(udc, interface, alternate);
2227
2228 if (config_change)
2229 update_pxa_ep_matches(udc);
2230 udc_set_mask_UDCCR(udc, UDCCR_SMAC);
2231 }
2232
2233 /**
2234 * irq_udc_reset - Handle IRQ "UDC Reset"
2235 * @udc: udc device
2236 */
irq_udc_reset(struct pxa_udc * udc)2237 static void irq_udc_reset(struct pxa_udc *udc)
2238 {
2239 u32 udccr = udc_readl(udc, UDCCR);
2240 struct pxa_ep *ep = &udc->pxa_ep[0];
2241
2242 dev_info(udc->dev, "USB reset\n");
2243 udc_writel(udc, UDCISR1, UDCISR1_IRRS);
2244 udc->stats.irqs_reset++;
2245
2246 if ((udccr & UDCCR_UDA) == 0) {
2247 dev_dbg(udc->dev, "USB reset start\n");
2248 stop_activity(udc);
2249 }
2250 udc->gadget.speed = USB_SPEED_FULL;
2251 memset(&udc->stats, 0, sizeof udc->stats);
2252
2253 nuke(ep, -EPROTO);
2254 ep_write_UDCCSR(ep, UDCCSR0_FTF | UDCCSR0_OPC);
2255 ep0_idle(udc);
2256 }
2257
2258 /**
2259 * pxa_udc_irq - Main irq handler
2260 * @irq: irq number
2261 * @_dev: udc device
2262 *
2263 * Handles all udc interrupts
2264 */
pxa_udc_irq(int irq,void * _dev)2265 static irqreturn_t pxa_udc_irq(int irq, void *_dev)
2266 {
2267 struct pxa_udc *udc = _dev;
2268 u32 udcisr0 = udc_readl(udc, UDCISR0);
2269 u32 udcisr1 = udc_readl(udc, UDCISR1);
2270 u32 udccr = udc_readl(udc, UDCCR);
2271 u32 udcisr1_spec;
2272
2273 dev_vdbg(udc->dev, "Interrupt, UDCISR0:0x%08x, UDCISR1:0x%08x, "
2274 "UDCCR:0x%08x\n", udcisr0, udcisr1, udccr);
2275
2276 udcisr1_spec = udcisr1 & 0xf8000000;
2277 if (unlikely(udcisr1_spec & UDCISR1_IRSU))
2278 irq_udc_suspend(udc);
2279 if (unlikely(udcisr1_spec & UDCISR1_IRRU))
2280 irq_udc_resume(udc);
2281 if (unlikely(udcisr1_spec & UDCISR1_IRCC))
2282 irq_udc_reconfig(udc);
2283 if (unlikely(udcisr1_spec & UDCISR1_IRRS))
2284 irq_udc_reset(udc);
2285
2286 if ((udcisr0 & UDCCISR0_EP_MASK) | (udcisr1 & UDCCISR1_EP_MASK))
2287 irq_handle_data(irq, udc);
2288
2289 return IRQ_HANDLED;
2290 }
2291
2292 static struct pxa_udc memory = {
2293 .gadget = {
2294 .ops = &pxa_udc_ops,
2295 .ep0 = &memory.udc_usb_ep[0].usb_ep,
2296 .name = driver_name,
2297 .dev = {
2298 .init_name = "gadget",
2299 },
2300 },
2301
2302 .udc_usb_ep = {
2303 USB_EP_CTRL,
2304 USB_EP_OUT_BULK(1),
2305 USB_EP_IN_BULK(2),
2306 USB_EP_IN_ISO(3),
2307 USB_EP_OUT_ISO(4),
2308 USB_EP_IN_INT(5),
2309 },
2310
2311 .pxa_ep = {
2312 PXA_EP_CTRL,
2313 /* Endpoints for gadget zero */
2314 PXA_EP_OUT_BULK(1, 1, 3, 0, 0),
2315 PXA_EP_IN_BULK(2, 2, 3, 0, 0),
2316 /* Endpoints for ether gadget, file storage gadget */
2317 PXA_EP_OUT_BULK(3, 1, 1, 0, 0),
2318 PXA_EP_IN_BULK(4, 2, 1, 0, 0),
2319 PXA_EP_IN_ISO(5, 3, 1, 0, 0),
2320 PXA_EP_OUT_ISO(6, 4, 1, 0, 0),
2321 PXA_EP_IN_INT(7, 5, 1, 0, 0),
2322 /* Endpoints for RNDIS, serial */
2323 PXA_EP_OUT_BULK(8, 1, 2, 0, 0),
2324 PXA_EP_IN_BULK(9, 2, 2, 0, 0),
2325 PXA_EP_IN_INT(10, 5, 2, 0, 0),
2326 /*
2327 * All the following endpoints are only for completion. They
2328 * won't never work, as multiple interfaces are really broken on
2329 * the pxa.
2330 */
2331 PXA_EP_OUT_BULK(11, 1, 2, 1, 0),
2332 PXA_EP_IN_BULK(12, 2, 2, 1, 0),
2333 /* Endpoint for CDC Ether */
2334 PXA_EP_OUT_BULK(13, 1, 1, 1, 1),
2335 PXA_EP_IN_BULK(14, 2, 1, 1, 1),
2336 }
2337 };
2338
2339 #if defined(CONFIG_OF)
2340 static const struct of_device_id udc_pxa_dt_ids[] = {
2341 { .compatible = "marvell,pxa270-udc" },
2342 {}
2343 };
2344 MODULE_DEVICE_TABLE(of, udc_pxa_dt_ids);
2345 #endif
2346
2347 /**
2348 * pxa_udc_probe - probes the udc device
2349 * @pdev: platform device
2350 *
2351 * Perform basic init : allocates udc clock, creates sysfs files, requests
2352 * irq.
2353 */
pxa_udc_probe(struct platform_device * pdev)2354 static int pxa_udc_probe(struct platform_device *pdev)
2355 {
2356 struct pxa_udc *udc = &memory;
2357 int retval = 0, gpio;
2358 struct pxa2xx_udc_mach_info *mach = dev_get_platdata(&pdev->dev);
2359 unsigned long gpio_flags;
2360
2361 if (mach) {
2362 gpio_flags = mach->gpio_pullup_inverted ? GPIOF_ACTIVE_LOW : 0;
2363 gpio = mach->gpio_pullup;
2364 if (gpio_is_valid(gpio)) {
2365 retval = devm_gpio_request_one(&pdev->dev, gpio,
2366 gpio_flags,
2367 "USB D+ pullup");
2368 if (retval)
2369 return retval;
2370 udc->gpiod = gpio_to_desc(mach->gpio_pullup);
2371 }
2372 udc->udc_command = mach->udc_command;
2373 } else {
2374 udc->gpiod = devm_gpiod_get(&pdev->dev, NULL, GPIOD_ASIS);
2375 }
2376
2377 udc->regs = devm_platform_ioremap_resource(pdev, 0);
2378 if (IS_ERR(udc->regs))
2379 return PTR_ERR(udc->regs);
2380 udc->irq = platform_get_irq(pdev, 0);
2381 if (udc->irq < 0)
2382 return udc->irq;
2383
2384 udc->dev = &pdev->dev;
2385 if (of_have_populated_dt()) {
2386 udc->transceiver =
2387 devm_usb_get_phy_by_phandle(udc->dev, "phys", 0);
2388 if (IS_ERR(udc->transceiver))
2389 return PTR_ERR(udc->transceiver);
2390 } else {
2391 udc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2);
2392 }
2393
2394 if (IS_ERR(udc->gpiod)) {
2395 dev_err(&pdev->dev, "Couldn't find or request D+ gpio : %ld\n",
2396 PTR_ERR(udc->gpiod));
2397 return PTR_ERR(udc->gpiod);
2398 }
2399 if (udc->gpiod)
2400 gpiod_direction_output(udc->gpiod, 0);
2401
2402 udc->clk = devm_clk_get(&pdev->dev, NULL);
2403 if (IS_ERR(udc->clk))
2404 return PTR_ERR(udc->clk);
2405
2406 retval = clk_prepare(udc->clk);
2407 if (retval)
2408 return retval;
2409
2410 udc->vbus_sensed = 0;
2411
2412 the_controller = udc;
2413 platform_set_drvdata(pdev, udc);
2414 udc_init_data(udc);
2415
2416 /* irq setup after old hardware state is cleaned up */
2417 retval = devm_request_irq(&pdev->dev, udc->irq, pxa_udc_irq,
2418 IRQF_SHARED, driver_name, udc);
2419 if (retval != 0) {
2420 dev_err(udc->dev, "%s: can't get irq %i, err %d\n",
2421 driver_name, udc->irq, retval);
2422 goto err;
2423 }
2424
2425 if (!IS_ERR_OR_NULL(udc->transceiver))
2426 usb_register_notifier(udc->transceiver, &pxa27x_udc_phy);
2427 retval = usb_add_gadget_udc(&pdev->dev, &udc->gadget);
2428 if (retval)
2429 goto err_add_gadget;
2430
2431 pxa_init_debugfs(udc);
2432 if (should_enable_udc(udc))
2433 udc_enable(udc);
2434 return 0;
2435
2436 err_add_gadget:
2437 if (!IS_ERR_OR_NULL(udc->transceiver))
2438 usb_unregister_notifier(udc->transceiver, &pxa27x_udc_phy);
2439 err:
2440 clk_unprepare(udc->clk);
2441 return retval;
2442 }
2443
2444 /**
2445 * pxa_udc_remove - removes the udc device driver
2446 * @_dev: platform device
2447 */
pxa_udc_remove(struct platform_device * _dev)2448 static int pxa_udc_remove(struct platform_device *_dev)
2449 {
2450 struct pxa_udc *udc = platform_get_drvdata(_dev);
2451
2452 usb_del_gadget_udc(&udc->gadget);
2453 pxa_cleanup_debugfs(udc);
2454
2455 if (!IS_ERR_OR_NULL(udc->transceiver)) {
2456 usb_unregister_notifier(udc->transceiver, &pxa27x_udc_phy);
2457 usb_put_phy(udc->transceiver);
2458 }
2459
2460 udc->transceiver = NULL;
2461 the_controller = NULL;
2462 clk_unprepare(udc->clk);
2463
2464 return 0;
2465 }
2466
pxa_udc_shutdown(struct platform_device * _dev)2467 static void pxa_udc_shutdown(struct platform_device *_dev)
2468 {
2469 struct pxa_udc *udc = platform_get_drvdata(_dev);
2470
2471 if (udc_readl(udc, UDCCR) & UDCCR_UDE)
2472 udc_disable(udc);
2473 }
2474
2475 #ifdef CONFIG_PXA27x
2476 extern void pxa27x_clear_otgph(void);
2477 #else
2478 #define pxa27x_clear_otgph() do {} while (0)
2479 #endif
2480
2481 #ifdef CONFIG_PM
2482 /**
2483 * pxa_udc_suspend - Suspend udc device
2484 * @_dev: platform device
2485 * @state: suspend state
2486 *
2487 * Suspends udc : saves configuration registers (UDCCR*), then disables the udc
2488 * device.
2489 */
pxa_udc_suspend(struct platform_device * _dev,pm_message_t state)2490 static int pxa_udc_suspend(struct platform_device *_dev, pm_message_t state)
2491 {
2492 struct pxa_udc *udc = platform_get_drvdata(_dev);
2493 struct pxa_ep *ep;
2494
2495 ep = &udc->pxa_ep[0];
2496 udc->udccsr0 = udc_ep_readl(ep, UDCCSR);
2497
2498 udc_disable(udc);
2499 udc->pullup_resume = udc->pullup_on;
2500 dplus_pullup(udc, 0);
2501
2502 if (udc->driver)
2503 udc->driver->disconnect(&udc->gadget);
2504
2505 return 0;
2506 }
2507
2508 /**
2509 * pxa_udc_resume - Resume udc device
2510 * @_dev: platform device
2511 *
2512 * Resumes udc : restores configuration registers (UDCCR*), then enables the udc
2513 * device.
2514 */
pxa_udc_resume(struct platform_device * _dev)2515 static int pxa_udc_resume(struct platform_device *_dev)
2516 {
2517 struct pxa_udc *udc = platform_get_drvdata(_dev);
2518 struct pxa_ep *ep;
2519
2520 ep = &udc->pxa_ep[0];
2521 udc_ep_writel(ep, UDCCSR, udc->udccsr0 & (UDCCSR0_FST | UDCCSR0_DME));
2522
2523 dplus_pullup(udc, udc->pullup_resume);
2524 if (should_enable_udc(udc))
2525 udc_enable(udc);
2526 /*
2527 * We do not handle OTG yet.
2528 *
2529 * OTGPH bit is set when sleep mode is entered.
2530 * it indicates that OTG pad is retaining its state.
2531 * Upon exit from sleep mode and before clearing OTGPH,
2532 * Software must configure the USB OTG pad, UDC, and UHC
2533 * to the state they were in before entering sleep mode.
2534 */
2535 pxa27x_clear_otgph();
2536
2537 return 0;
2538 }
2539 #endif
2540
2541 /* work with hotplug and coldplug */
2542 MODULE_ALIAS("platform:pxa27x-udc");
2543
2544 static struct platform_driver udc_driver = {
2545 .driver = {
2546 .name = "pxa27x-udc",
2547 .of_match_table = of_match_ptr(udc_pxa_dt_ids),
2548 },
2549 .probe = pxa_udc_probe,
2550 .remove = pxa_udc_remove,
2551 .shutdown = pxa_udc_shutdown,
2552 #ifdef CONFIG_PM
2553 .suspend = pxa_udc_suspend,
2554 .resume = pxa_udc_resume
2555 #endif
2556 };
2557
2558 module_platform_driver(udc_driver);
2559
2560 MODULE_DESCRIPTION(DRIVER_DESC);
2561 MODULE_AUTHOR("Robert Jarzmik");
2562 MODULE_LICENSE("GPL");
2563