1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12
13 /*
14 * HOW DOES SPACE RESERVATION WORK
15 *
16 * If you want to know about delalloc specifically, there is a separate comment
17 * for that with the delalloc code. This comment is about how the whole system
18 * works generally.
19 *
20 * BASIC CONCEPTS
21 *
22 * 1) space_info. This is the ultimate arbiter of how much space we can use.
23 * There's a description of the bytes_ fields with the struct declaration,
24 * refer to that for specifics on each field. Suffice it to say that for
25 * reservations we care about total_bytes - SUM(space_info->bytes_) when
26 * determining if there is space to make an allocation. There is a space_info
27 * for METADATA, SYSTEM, and DATA areas.
28 *
29 * 2) block_rsv's. These are basically buckets for every different type of
30 * metadata reservation we have. You can see the comment in the block_rsv
31 * code on the rules for each type, but generally block_rsv->reserved is how
32 * much space is accounted for in space_info->bytes_may_use.
33 *
34 * 3) btrfs_calc*_size. These are the worst case calculations we used based
35 * on the number of items we will want to modify. We have one for changing
36 * items, and one for inserting new items. Generally we use these helpers to
37 * determine the size of the block reserves, and then use the actual bytes
38 * values to adjust the space_info counters.
39 *
40 * MAKING RESERVATIONS, THE NORMAL CASE
41 *
42 * We call into either btrfs_reserve_data_bytes() or
43 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44 * num_bytes we want to reserve.
45 *
46 * ->reserve
47 * space_info->bytes_may_reserve += num_bytes
48 *
49 * ->extent allocation
50 * Call btrfs_add_reserved_bytes() which does
51 * space_info->bytes_may_reserve -= num_bytes
52 * space_info->bytes_reserved += extent_bytes
53 *
54 * ->insert reference
55 * Call btrfs_update_block_group() which does
56 * space_info->bytes_reserved -= extent_bytes
57 * space_info->bytes_used += extent_bytes
58 *
59 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60 *
61 * Assume we are unable to simply make the reservation because we do not have
62 * enough space
63 *
64 * -> __reserve_bytes
65 * create a reserve_ticket with ->bytes set to our reservation, add it to
66 * the tail of space_info->tickets, kick async flush thread
67 *
68 * ->handle_reserve_ticket
69 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70 * on the ticket.
71 *
72 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73 * Flushes various things attempting to free up space.
74 *
75 * -> btrfs_try_granting_tickets()
76 * This is called by anything that either subtracts space from
77 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78 * space_info->total_bytes. This loops through the ->priority_tickets and
79 * then the ->tickets list checking to see if the reservation can be
80 * completed. If it can the space is added to space_info->bytes_may_use and
81 * the ticket is woken up.
82 *
83 * -> ticket wakeup
84 * Check if ->bytes == 0, if it does we got our reservation and we can carry
85 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86 * were interrupted.)
87 *
88 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89 *
90 * Same as the above, except we add ourselves to the
91 * space_info->priority_tickets, and we do not use ticket->wait, we simply
92 * call flush_space() ourselves for the states that are safe for us to call
93 * without deadlocking and hope for the best.
94 *
95 * THE FLUSHING STATES
96 *
97 * Generally speaking we will have two cases for each state, a "nice" state
98 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to
99 * reduce the locking over head on the various trees, and even to keep from
100 * doing any work at all in the case of delayed refs. Each of these delayed
101 * things however hold reservations, and so letting them run allows us to
102 * reclaim space so we can make new reservations.
103 *
104 * FLUSH_DELAYED_ITEMS
105 * Every inode has a delayed item to update the inode. Take a simple write
106 * for example, we would update the inode item at write time to update the
107 * mtime, and then again at finish_ordered_io() time in order to update the
108 * isize or bytes. We keep these delayed items to coalesce these operations
109 * into a single operation done on demand. These are an easy way to reclaim
110 * metadata space.
111 *
112 * FLUSH_DELALLOC
113 * Look at the delalloc comment to get an idea of how much space is reserved
114 * for delayed allocation. We can reclaim some of this space simply by
115 * running delalloc, but usually we need to wait for ordered extents to
116 * reclaim the bulk of this space.
117 *
118 * FLUSH_DELAYED_REFS
119 * We have a block reserve for the outstanding delayed refs space, and every
120 * delayed ref operation holds a reservation. Running these is a quick way
121 * to reclaim space, but we want to hold this until the end because COW can
122 * churn a lot and we can avoid making some extent tree modifications if we
123 * are able to delay for as long as possible.
124 *
125 * ALLOC_CHUNK
126 * We will skip this the first time through space reservation, because of
127 * overcommit and we don't want to have a lot of useless metadata space when
128 * our worst case reservations will likely never come true.
129 *
130 * RUN_DELAYED_IPUTS
131 * If we're freeing inodes we're likely freeing checksums, file extent
132 * items, and extent tree items. Loads of space could be freed up by these
133 * operations, however they won't be usable until the transaction commits.
134 *
135 * COMMIT_TRANS
136 * may_commit_transaction() is the ultimate arbiter on whether we commit the
137 * transaction or not. In order to avoid constantly churning we do all the
138 * above flushing first and then commit the transaction as the last resort.
139 * However we need to take into account things like pinned space that would
140 * be freed, plus any delayed work we may not have gotten rid of in the case
141 * of metadata.
142 *
143 * OVERCOMMIT
144 *
145 * Because we hold so many reservations for metadata we will allow you to
146 * reserve more space than is currently free in the currently allocate
147 * metadata space. This only happens with metadata, data does not allow
148 * overcommitting.
149 *
150 * You can see the current logic for when we allow overcommit in
151 * btrfs_can_overcommit(), but it only applies to unallocated space. If there
152 * is no unallocated space to be had, all reservations are kept within the
153 * free space in the allocated metadata chunks.
154 *
155 * Because of overcommitting, you generally want to use the
156 * btrfs_can_overcommit() logic for metadata allocations, as it does the right
157 * thing with or without extra unallocated space.
158 */
159
btrfs_space_info_used(struct btrfs_space_info * s_info,bool may_use_included)160 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
161 bool may_use_included)
162 {
163 ASSERT(s_info);
164 return s_info->bytes_used + s_info->bytes_reserved +
165 s_info->bytes_pinned + s_info->bytes_readonly +
166 (may_use_included ? s_info->bytes_may_use : 0);
167 }
168
169 /*
170 * after adding space to the filesystem, we need to clear the full flags
171 * on all the space infos.
172 */
btrfs_clear_space_info_full(struct btrfs_fs_info * info)173 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
174 {
175 struct list_head *head = &info->space_info;
176 struct btrfs_space_info *found;
177
178 list_for_each_entry(found, head, list)
179 found->full = 0;
180 }
181
create_space_info(struct btrfs_fs_info * info,u64 flags)182 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
183 {
184
185 struct btrfs_space_info *space_info;
186 int i;
187 int ret;
188
189 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
190 if (!space_info)
191 return -ENOMEM;
192
193 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
194 GFP_KERNEL);
195 if (ret) {
196 kfree(space_info);
197 return ret;
198 }
199
200 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
201 INIT_LIST_HEAD(&space_info->block_groups[i]);
202 init_rwsem(&space_info->groups_sem);
203 spin_lock_init(&space_info->lock);
204 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
205 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
206 INIT_LIST_HEAD(&space_info->ro_bgs);
207 INIT_LIST_HEAD(&space_info->tickets);
208 INIT_LIST_HEAD(&space_info->priority_tickets);
209
210 ret = btrfs_sysfs_add_space_info_type(info, space_info);
211 if (ret)
212 return ret;
213
214 list_add(&space_info->list, &info->space_info);
215 if (flags & BTRFS_BLOCK_GROUP_DATA)
216 info->data_sinfo = space_info;
217
218 return ret;
219 }
220
btrfs_init_space_info(struct btrfs_fs_info * fs_info)221 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
222 {
223 struct btrfs_super_block *disk_super;
224 u64 features;
225 u64 flags;
226 int mixed = 0;
227 int ret;
228
229 disk_super = fs_info->super_copy;
230 if (!btrfs_super_root(disk_super))
231 return -EINVAL;
232
233 features = btrfs_super_incompat_flags(disk_super);
234 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
235 mixed = 1;
236
237 flags = BTRFS_BLOCK_GROUP_SYSTEM;
238 ret = create_space_info(fs_info, flags);
239 if (ret)
240 goto out;
241
242 if (mixed) {
243 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
244 ret = create_space_info(fs_info, flags);
245 } else {
246 flags = BTRFS_BLOCK_GROUP_METADATA;
247 ret = create_space_info(fs_info, flags);
248 if (ret)
249 goto out;
250
251 flags = BTRFS_BLOCK_GROUP_DATA;
252 ret = create_space_info(fs_info, flags);
253 }
254 out:
255 return ret;
256 }
257
btrfs_update_space_info(struct btrfs_fs_info * info,u64 flags,u64 total_bytes,u64 bytes_used,u64 bytes_readonly,struct btrfs_space_info ** space_info)258 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
259 u64 total_bytes, u64 bytes_used,
260 u64 bytes_readonly,
261 struct btrfs_space_info **space_info)
262 {
263 struct btrfs_space_info *found;
264 int factor;
265
266 factor = btrfs_bg_type_to_factor(flags);
267
268 found = btrfs_find_space_info(info, flags);
269 ASSERT(found);
270 spin_lock(&found->lock);
271 found->total_bytes += total_bytes;
272 found->disk_total += total_bytes * factor;
273 found->bytes_used += bytes_used;
274 found->disk_used += bytes_used * factor;
275 found->bytes_readonly += bytes_readonly;
276 if (total_bytes > 0)
277 found->full = 0;
278 btrfs_try_granting_tickets(info, found);
279 spin_unlock(&found->lock);
280 *space_info = found;
281 }
282
btrfs_find_space_info(struct btrfs_fs_info * info,u64 flags)283 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
284 u64 flags)
285 {
286 struct list_head *head = &info->space_info;
287 struct btrfs_space_info *found;
288
289 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
290
291 list_for_each_entry(found, head, list) {
292 if (found->flags & flags)
293 return found;
294 }
295 return NULL;
296 }
297
calc_available_free_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,enum btrfs_reserve_flush_enum flush)298 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
299 struct btrfs_space_info *space_info,
300 enum btrfs_reserve_flush_enum flush)
301 {
302 u64 profile;
303 u64 avail;
304 int factor;
305
306 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
307 profile = btrfs_system_alloc_profile(fs_info);
308 else
309 profile = btrfs_metadata_alloc_profile(fs_info);
310
311 avail = atomic64_read(&fs_info->free_chunk_space);
312
313 /*
314 * If we have dup, raid1 or raid10 then only half of the free
315 * space is actually usable. For raid56, the space info used
316 * doesn't include the parity drive, so we don't have to
317 * change the math
318 */
319 factor = btrfs_bg_type_to_factor(profile);
320 avail = div_u64(avail, factor);
321
322 /*
323 * If we aren't flushing all things, let us overcommit up to
324 * 1/2th of the space. If we can flush, don't let us overcommit
325 * too much, let it overcommit up to 1/8 of the space.
326 */
327 if (flush == BTRFS_RESERVE_FLUSH_ALL)
328 avail >>= 3;
329 else
330 avail >>= 1;
331 return avail;
332 }
333
btrfs_can_overcommit(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 bytes,enum btrfs_reserve_flush_enum flush)334 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
335 struct btrfs_space_info *space_info, u64 bytes,
336 enum btrfs_reserve_flush_enum flush)
337 {
338 u64 avail;
339 u64 used;
340
341 /* Don't overcommit when in mixed mode */
342 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
343 return 0;
344
345 used = btrfs_space_info_used(space_info, true);
346 avail = calc_available_free_space(fs_info, space_info, flush);
347
348 if (used + bytes < space_info->total_bytes + avail)
349 return 1;
350 return 0;
351 }
352
remove_ticket(struct btrfs_space_info * space_info,struct reserve_ticket * ticket)353 static void remove_ticket(struct btrfs_space_info *space_info,
354 struct reserve_ticket *ticket)
355 {
356 if (!list_empty(&ticket->list)) {
357 list_del_init(&ticket->list);
358 ASSERT(space_info->reclaim_size >= ticket->bytes);
359 space_info->reclaim_size -= ticket->bytes;
360 }
361 }
362
363 /*
364 * This is for space we already have accounted in space_info->bytes_may_use, so
365 * basically when we're returning space from block_rsv's.
366 */
btrfs_try_granting_tickets(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)367 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
368 struct btrfs_space_info *space_info)
369 {
370 struct list_head *head;
371 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
372
373 lockdep_assert_held(&space_info->lock);
374
375 head = &space_info->priority_tickets;
376 again:
377 while (!list_empty(head)) {
378 struct reserve_ticket *ticket;
379 u64 used = btrfs_space_info_used(space_info, true);
380
381 ticket = list_first_entry(head, struct reserve_ticket, list);
382
383 /* Check and see if our ticket can be satisified now. */
384 if ((used + ticket->bytes <= space_info->total_bytes) ||
385 btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
386 flush)) {
387 btrfs_space_info_update_bytes_may_use(fs_info,
388 space_info,
389 ticket->bytes);
390 remove_ticket(space_info, ticket);
391 ticket->bytes = 0;
392 space_info->tickets_id++;
393 wake_up(&ticket->wait);
394 } else {
395 break;
396 }
397 }
398
399 if (head == &space_info->priority_tickets) {
400 head = &space_info->tickets;
401 flush = BTRFS_RESERVE_FLUSH_ALL;
402 goto again;
403 }
404 }
405
406 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \
407 do { \
408 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \
409 spin_lock(&__rsv->lock); \
410 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \
411 __rsv->size, __rsv->reserved); \
412 spin_unlock(&__rsv->lock); \
413 } while (0)
414
__btrfs_dump_space_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * info)415 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
416 struct btrfs_space_info *info)
417 {
418 lockdep_assert_held(&info->lock);
419
420 /* The free space could be negative in case of overcommit */
421 btrfs_info(fs_info, "space_info %llu has %lld free, is %sfull",
422 info->flags,
423 (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
424 info->full ? "" : "not ");
425 btrfs_info(fs_info,
426 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
427 info->total_bytes, info->bytes_used, info->bytes_pinned,
428 info->bytes_reserved, info->bytes_may_use,
429 info->bytes_readonly);
430
431 DUMP_BLOCK_RSV(fs_info, global_block_rsv);
432 DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
433 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
434 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
435 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
436
437 }
438
btrfs_dump_space_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * info,u64 bytes,int dump_block_groups)439 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
440 struct btrfs_space_info *info, u64 bytes,
441 int dump_block_groups)
442 {
443 struct btrfs_block_group *cache;
444 int index = 0;
445
446 spin_lock(&info->lock);
447 __btrfs_dump_space_info(fs_info, info);
448 spin_unlock(&info->lock);
449
450 if (!dump_block_groups)
451 return;
452
453 down_read(&info->groups_sem);
454 again:
455 list_for_each_entry(cache, &info->block_groups[index], list) {
456 spin_lock(&cache->lock);
457 btrfs_info(fs_info,
458 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
459 cache->start, cache->length, cache->used, cache->pinned,
460 cache->reserved, cache->ro ? "[readonly]" : "");
461 spin_unlock(&cache->lock);
462 btrfs_dump_free_space(cache, bytes);
463 }
464 if (++index < BTRFS_NR_RAID_TYPES)
465 goto again;
466 up_read(&info->groups_sem);
467 }
468
calc_reclaim_items_nr(struct btrfs_fs_info * fs_info,u64 to_reclaim)469 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
470 u64 to_reclaim)
471 {
472 u64 bytes;
473 u64 nr;
474
475 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
476 nr = div64_u64(to_reclaim, bytes);
477 if (!nr)
478 nr = 1;
479 return nr;
480 }
481
482 #define EXTENT_SIZE_PER_ITEM SZ_256K
483
484 /*
485 * shrink metadata reservation for delalloc
486 */
shrink_delalloc(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 to_reclaim,bool wait_ordered)487 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
488 struct btrfs_space_info *space_info,
489 u64 to_reclaim, bool wait_ordered)
490 {
491 struct btrfs_trans_handle *trans;
492 u64 delalloc_bytes;
493 u64 dio_bytes;
494 u64 items;
495 long time_left;
496 int loops;
497
498 /* Calc the number of the pages we need flush for space reservation */
499 if (to_reclaim == U64_MAX) {
500 items = U64_MAX;
501 } else {
502 /*
503 * to_reclaim is set to however much metadata we need to
504 * reclaim, but reclaiming that much data doesn't really track
505 * exactly, so increase the amount to reclaim by 2x in order to
506 * make sure we're flushing enough delalloc to hopefully reclaim
507 * some metadata reservations.
508 */
509 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
510 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
511 }
512
513 trans = (struct btrfs_trans_handle *)current->journal_info;
514
515 delalloc_bytes = percpu_counter_sum_positive(
516 &fs_info->delalloc_bytes);
517 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
518 if (delalloc_bytes == 0 && dio_bytes == 0) {
519 if (trans)
520 return;
521 if (wait_ordered)
522 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
523 return;
524 }
525
526 /*
527 * If we are doing more ordered than delalloc we need to just wait on
528 * ordered extents, otherwise we'll waste time trying to flush delalloc
529 * that likely won't give us the space back we need.
530 */
531 if (dio_bytes > delalloc_bytes)
532 wait_ordered = true;
533
534 loops = 0;
535 while ((delalloc_bytes || dio_bytes) && loops < 3) {
536 u64 nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
537
538 btrfs_start_delalloc_roots(fs_info, nr_pages, true);
539
540 loops++;
541 if (wait_ordered && !trans) {
542 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
543 } else {
544 time_left = schedule_timeout_killable(1);
545 if (time_left)
546 break;
547 }
548
549 spin_lock(&space_info->lock);
550 if (list_empty(&space_info->tickets) &&
551 list_empty(&space_info->priority_tickets)) {
552 spin_unlock(&space_info->lock);
553 break;
554 }
555 spin_unlock(&space_info->lock);
556
557 delalloc_bytes = percpu_counter_sum_positive(
558 &fs_info->delalloc_bytes);
559 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
560 }
561 }
562
563 /**
564 * maybe_commit_transaction - possibly commit the transaction if its ok to
565 * @root - the root we're allocating for
566 * @bytes - the number of bytes we want to reserve
567 * @force - force the commit
568 *
569 * This will check to make sure that committing the transaction will actually
570 * get us somewhere and then commit the transaction if it does. Otherwise it
571 * will return -ENOSPC.
572 */
may_commit_transaction(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)573 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
574 struct btrfs_space_info *space_info)
575 {
576 struct reserve_ticket *ticket = NULL;
577 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
578 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
579 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
580 struct btrfs_trans_handle *trans;
581 u64 reclaim_bytes = 0;
582 u64 bytes_needed = 0;
583 u64 cur_free_bytes = 0;
584
585 trans = (struct btrfs_trans_handle *)current->journal_info;
586 if (trans)
587 return -EAGAIN;
588
589 spin_lock(&space_info->lock);
590 cur_free_bytes = btrfs_space_info_used(space_info, true);
591 if (cur_free_bytes < space_info->total_bytes)
592 cur_free_bytes = space_info->total_bytes - cur_free_bytes;
593 else
594 cur_free_bytes = 0;
595
596 if (!list_empty(&space_info->priority_tickets))
597 ticket = list_first_entry(&space_info->priority_tickets,
598 struct reserve_ticket, list);
599 else if (!list_empty(&space_info->tickets))
600 ticket = list_first_entry(&space_info->tickets,
601 struct reserve_ticket, list);
602 if (ticket)
603 bytes_needed = ticket->bytes;
604
605 if (bytes_needed > cur_free_bytes)
606 bytes_needed -= cur_free_bytes;
607 else
608 bytes_needed = 0;
609 spin_unlock(&space_info->lock);
610
611 if (!bytes_needed)
612 return 0;
613
614 trans = btrfs_join_transaction(fs_info->extent_root);
615 if (IS_ERR(trans))
616 return PTR_ERR(trans);
617
618 /*
619 * See if there is enough pinned space to make this reservation, or if
620 * we have block groups that are going to be freed, allowing us to
621 * possibly do a chunk allocation the next loop through.
622 */
623 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
624 __percpu_counter_compare(&space_info->total_bytes_pinned,
625 bytes_needed,
626 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
627 goto commit;
628
629 /*
630 * See if there is some space in the delayed insertion reserve for this
631 * reservation. If the space_info's don't match (like for DATA or
632 * SYSTEM) then just go enospc, reclaiming this space won't recover any
633 * space to satisfy those reservations.
634 */
635 if (space_info != delayed_rsv->space_info)
636 goto enospc;
637
638 spin_lock(&delayed_rsv->lock);
639 reclaim_bytes += delayed_rsv->reserved;
640 spin_unlock(&delayed_rsv->lock);
641
642 spin_lock(&delayed_refs_rsv->lock);
643 reclaim_bytes += delayed_refs_rsv->reserved;
644 spin_unlock(&delayed_refs_rsv->lock);
645
646 spin_lock(&trans_rsv->lock);
647 reclaim_bytes += trans_rsv->reserved;
648 spin_unlock(&trans_rsv->lock);
649
650 if (reclaim_bytes >= bytes_needed)
651 goto commit;
652 bytes_needed -= reclaim_bytes;
653
654 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
655 bytes_needed,
656 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
657 goto enospc;
658
659 commit:
660 return btrfs_commit_transaction(trans);
661 enospc:
662 btrfs_end_transaction(trans);
663 return -ENOSPC;
664 }
665
666 /*
667 * Try to flush some data based on policy set by @state. This is only advisory
668 * and may fail for various reasons. The caller is supposed to examine the
669 * state of @space_info to detect the outcome.
670 */
flush_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 num_bytes,int state)671 static void flush_space(struct btrfs_fs_info *fs_info,
672 struct btrfs_space_info *space_info, u64 num_bytes,
673 int state)
674 {
675 struct btrfs_root *root = fs_info->extent_root;
676 struct btrfs_trans_handle *trans;
677 int nr;
678 int ret = 0;
679
680 switch (state) {
681 case FLUSH_DELAYED_ITEMS_NR:
682 case FLUSH_DELAYED_ITEMS:
683 if (state == FLUSH_DELAYED_ITEMS_NR)
684 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
685 else
686 nr = -1;
687
688 trans = btrfs_join_transaction(root);
689 if (IS_ERR(trans)) {
690 ret = PTR_ERR(trans);
691 break;
692 }
693 ret = btrfs_run_delayed_items_nr(trans, nr);
694 btrfs_end_transaction(trans);
695 break;
696 case FLUSH_DELALLOC:
697 case FLUSH_DELALLOC_WAIT:
698 shrink_delalloc(fs_info, space_info, num_bytes,
699 state == FLUSH_DELALLOC_WAIT);
700 break;
701 case FLUSH_DELAYED_REFS_NR:
702 case FLUSH_DELAYED_REFS:
703 trans = btrfs_join_transaction(root);
704 if (IS_ERR(trans)) {
705 ret = PTR_ERR(trans);
706 break;
707 }
708 if (state == FLUSH_DELAYED_REFS_NR)
709 nr = calc_reclaim_items_nr(fs_info, num_bytes);
710 else
711 nr = 0;
712 btrfs_run_delayed_refs(trans, nr);
713 btrfs_end_transaction(trans);
714 break;
715 case ALLOC_CHUNK:
716 case ALLOC_CHUNK_FORCE:
717 trans = btrfs_join_transaction(root);
718 if (IS_ERR(trans)) {
719 ret = PTR_ERR(trans);
720 break;
721 }
722 ret = btrfs_chunk_alloc(trans,
723 btrfs_get_alloc_profile(fs_info, space_info->flags),
724 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
725 CHUNK_ALLOC_FORCE);
726 btrfs_end_transaction(trans);
727 if (ret > 0 || ret == -ENOSPC)
728 ret = 0;
729 break;
730 case RUN_DELAYED_IPUTS:
731 /*
732 * If we have pending delayed iputs then we could free up a
733 * bunch of pinned space, so make sure we run the iputs before
734 * we do our pinned bytes check below.
735 */
736 btrfs_run_delayed_iputs(fs_info);
737 btrfs_wait_on_delayed_iputs(fs_info);
738 break;
739 case COMMIT_TRANS:
740 ret = may_commit_transaction(fs_info, space_info);
741 break;
742 default:
743 ret = -ENOSPC;
744 break;
745 }
746
747 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
748 ret);
749 return;
750 }
751
752 static inline u64
btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)753 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
754 struct btrfs_space_info *space_info)
755 {
756 u64 used;
757 u64 avail;
758 u64 expected;
759 u64 to_reclaim = space_info->reclaim_size;
760
761 lockdep_assert_held(&space_info->lock);
762
763 avail = calc_available_free_space(fs_info, space_info,
764 BTRFS_RESERVE_FLUSH_ALL);
765 used = btrfs_space_info_used(space_info, true);
766
767 /*
768 * We may be flushing because suddenly we have less space than we had
769 * before, and now we're well over-committed based on our current free
770 * space. If that's the case add in our overage so we make sure to put
771 * appropriate pressure on the flushing state machine.
772 */
773 if (space_info->total_bytes + avail < used)
774 to_reclaim += used - (space_info->total_bytes + avail);
775
776 if (to_reclaim)
777 return to_reclaim;
778
779 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
780 if (btrfs_can_overcommit(fs_info, space_info, to_reclaim,
781 BTRFS_RESERVE_FLUSH_ALL))
782 return 0;
783
784 used = btrfs_space_info_used(space_info, true);
785
786 if (btrfs_can_overcommit(fs_info, space_info, SZ_1M,
787 BTRFS_RESERVE_FLUSH_ALL))
788 expected = div_factor_fine(space_info->total_bytes, 95);
789 else
790 expected = div_factor_fine(space_info->total_bytes, 90);
791
792 if (used > expected)
793 to_reclaim = used - expected;
794 else
795 to_reclaim = 0;
796 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
797 space_info->bytes_reserved);
798 return to_reclaim;
799 }
800
need_do_async_reclaim(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 used)801 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
802 struct btrfs_space_info *space_info,
803 u64 used)
804 {
805 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
806
807 /* If we're just plain full then async reclaim just slows us down. */
808 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
809 return 0;
810
811 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info))
812 return 0;
813
814 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
815 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
816 }
817
steal_from_global_rsv(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket)818 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
819 struct btrfs_space_info *space_info,
820 struct reserve_ticket *ticket)
821 {
822 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
823 u64 min_bytes;
824
825 if (global_rsv->space_info != space_info)
826 return false;
827
828 spin_lock(&global_rsv->lock);
829 min_bytes = div_factor(global_rsv->size, 1);
830 if (global_rsv->reserved < min_bytes + ticket->bytes) {
831 spin_unlock(&global_rsv->lock);
832 return false;
833 }
834 global_rsv->reserved -= ticket->bytes;
835 remove_ticket(space_info, ticket);
836 ticket->bytes = 0;
837 wake_up(&ticket->wait);
838 space_info->tickets_id++;
839 if (global_rsv->reserved < global_rsv->size)
840 global_rsv->full = 0;
841 spin_unlock(&global_rsv->lock);
842
843 return true;
844 }
845
846 /*
847 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
848 * @fs_info - fs_info for this fs
849 * @space_info - the space info we were flushing
850 *
851 * We call this when we've exhausted our flushing ability and haven't made
852 * progress in satisfying tickets. The reservation code handles tickets in
853 * order, so if there is a large ticket first and then smaller ones we could
854 * very well satisfy the smaller tickets. This will attempt to wake up any
855 * tickets in the list to catch this case.
856 *
857 * This function returns true if it was able to make progress by clearing out
858 * other tickets, or if it stumbles across a ticket that was smaller than the
859 * first ticket.
860 */
maybe_fail_all_tickets(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)861 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
862 struct btrfs_space_info *space_info)
863 {
864 struct reserve_ticket *ticket;
865 u64 tickets_id = space_info->tickets_id;
866 u64 first_ticket_bytes = 0;
867
868 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
869 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
870 __btrfs_dump_space_info(fs_info, space_info);
871 }
872
873 while (!list_empty(&space_info->tickets) &&
874 tickets_id == space_info->tickets_id) {
875 ticket = list_first_entry(&space_info->tickets,
876 struct reserve_ticket, list);
877
878 if (ticket->steal &&
879 steal_from_global_rsv(fs_info, space_info, ticket))
880 return true;
881
882 /*
883 * may_commit_transaction will avoid committing the transaction
884 * if it doesn't feel like the space reclaimed by the commit
885 * would result in the ticket succeeding. However if we have a
886 * smaller ticket in the queue it may be small enough to be
887 * satisified by committing the transaction, so if any
888 * subsequent ticket is smaller than the first ticket go ahead
889 * and send us back for another loop through the enospc flushing
890 * code.
891 */
892 if (first_ticket_bytes == 0)
893 first_ticket_bytes = ticket->bytes;
894 else if (first_ticket_bytes > ticket->bytes)
895 return true;
896
897 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
898 btrfs_info(fs_info, "failing ticket with %llu bytes",
899 ticket->bytes);
900
901 remove_ticket(space_info, ticket);
902 ticket->error = -ENOSPC;
903 wake_up(&ticket->wait);
904
905 /*
906 * We're just throwing tickets away, so more flushing may not
907 * trip over btrfs_try_granting_tickets, so we need to call it
908 * here to see if we can make progress with the next ticket in
909 * the list.
910 */
911 btrfs_try_granting_tickets(fs_info, space_info);
912 }
913 return (tickets_id != space_info->tickets_id);
914 }
915
916 /*
917 * This is for normal flushers, we can wait all goddamned day if we want to. We
918 * will loop and continuously try to flush as long as we are making progress.
919 * We count progress as clearing off tickets each time we have to loop.
920 */
btrfs_async_reclaim_metadata_space(struct work_struct * work)921 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
922 {
923 struct btrfs_fs_info *fs_info;
924 struct btrfs_space_info *space_info;
925 u64 to_reclaim;
926 int flush_state;
927 int commit_cycles = 0;
928 u64 last_tickets_id;
929
930 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
931 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
932
933 spin_lock(&space_info->lock);
934 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
935 if (!to_reclaim) {
936 space_info->flush = 0;
937 spin_unlock(&space_info->lock);
938 return;
939 }
940 last_tickets_id = space_info->tickets_id;
941 spin_unlock(&space_info->lock);
942
943 flush_state = FLUSH_DELAYED_ITEMS_NR;
944 do {
945 flush_space(fs_info, space_info, to_reclaim, flush_state);
946 spin_lock(&space_info->lock);
947 if (list_empty(&space_info->tickets)) {
948 space_info->flush = 0;
949 spin_unlock(&space_info->lock);
950 return;
951 }
952 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
953 space_info);
954 if (last_tickets_id == space_info->tickets_id) {
955 flush_state++;
956 } else {
957 last_tickets_id = space_info->tickets_id;
958 flush_state = FLUSH_DELAYED_ITEMS_NR;
959 if (commit_cycles)
960 commit_cycles--;
961 }
962
963 /*
964 * We don't want to force a chunk allocation until we've tried
965 * pretty hard to reclaim space. Think of the case where we
966 * freed up a bunch of space and so have a lot of pinned space
967 * to reclaim. We would rather use that than possibly create a
968 * underutilized metadata chunk. So if this is our first run
969 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
970 * commit the transaction. If nothing has changed the next go
971 * around then we can force a chunk allocation.
972 */
973 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
974 flush_state++;
975
976 if (flush_state > COMMIT_TRANS) {
977 commit_cycles++;
978 if (commit_cycles > 2) {
979 if (maybe_fail_all_tickets(fs_info, space_info)) {
980 flush_state = FLUSH_DELAYED_ITEMS_NR;
981 commit_cycles--;
982 } else {
983 space_info->flush = 0;
984 }
985 } else {
986 flush_state = FLUSH_DELAYED_ITEMS_NR;
987 }
988 }
989 spin_unlock(&space_info->lock);
990 } while (flush_state <= COMMIT_TRANS);
991 }
992
993 /*
994 * FLUSH_DELALLOC_WAIT:
995 * Space is freed from flushing delalloc in one of two ways.
996 *
997 * 1) compression is on and we allocate less space than we reserved
998 * 2) we are overwriting existing space
999 *
1000 * For #1 that extra space is reclaimed as soon as the delalloc pages are
1001 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1002 * length to ->bytes_reserved, and subtracts the reserved space from
1003 * ->bytes_may_use.
1004 *
1005 * For #2 this is trickier. Once the ordered extent runs we will drop the
1006 * extent in the range we are overwriting, which creates a delayed ref for
1007 * that freed extent. This however is not reclaimed until the transaction
1008 * commits, thus the next stages.
1009 *
1010 * RUN_DELAYED_IPUTS
1011 * If we are freeing inodes, we want to make sure all delayed iputs have
1012 * completed, because they could have been on an inode with i_nlink == 0, and
1013 * thus have been truncated and freed up space. But again this space is not
1014 * immediately re-usable, it comes in the form of a delayed ref, which must be
1015 * run and then the transaction must be committed.
1016 *
1017 * FLUSH_DELAYED_REFS
1018 * The above two cases generate delayed refs that will affect
1019 * ->total_bytes_pinned. However this counter can be inconsistent with
1020 * reality if there are outstanding delayed refs. This is because we adjust
1021 * the counter based solely on the current set of delayed refs and disregard
1022 * any on-disk state which might include more refs. So for example, if we
1023 * have an extent with 2 references, but we only drop 1, we'll see that there
1024 * is a negative delayed ref count for the extent and assume that the space
1025 * will be freed, and thus increase ->total_bytes_pinned.
1026 *
1027 * Running the delayed refs gives us the actual real view of what will be
1028 * freed at the transaction commit time. This stage will not actually free
1029 * space for us, it just makes sure that may_commit_transaction() has all of
1030 * the information it needs to make the right decision.
1031 *
1032 * COMMIT_TRANS
1033 * This is where we reclaim all of the pinned space generated by the previous
1034 * two stages. We will not commit the transaction if we don't think we're
1035 * likely to satisfy our request, which means if our current free space +
1036 * total_bytes_pinned < reservation we will not commit. This is why the
1037 * previous states are actually important, to make sure we know for sure
1038 * whether committing the transaction will allow us to make progress.
1039 *
1040 * ALLOC_CHUNK_FORCE
1041 * For data we start with alloc chunk force, however we could have been full
1042 * before, and then the transaction commit could have freed new block groups,
1043 * so if we now have space to allocate do the force chunk allocation.
1044 */
1045 static const enum btrfs_flush_state data_flush_states[] = {
1046 FLUSH_DELALLOC_WAIT,
1047 RUN_DELAYED_IPUTS,
1048 FLUSH_DELAYED_REFS,
1049 COMMIT_TRANS,
1050 ALLOC_CHUNK_FORCE,
1051 };
1052
btrfs_async_reclaim_data_space(struct work_struct * work)1053 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1054 {
1055 struct btrfs_fs_info *fs_info;
1056 struct btrfs_space_info *space_info;
1057 u64 last_tickets_id;
1058 int flush_state = 0;
1059
1060 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1061 space_info = fs_info->data_sinfo;
1062
1063 spin_lock(&space_info->lock);
1064 if (list_empty(&space_info->tickets)) {
1065 space_info->flush = 0;
1066 spin_unlock(&space_info->lock);
1067 return;
1068 }
1069 last_tickets_id = space_info->tickets_id;
1070 spin_unlock(&space_info->lock);
1071
1072 while (!space_info->full) {
1073 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE);
1074 spin_lock(&space_info->lock);
1075 if (list_empty(&space_info->tickets)) {
1076 space_info->flush = 0;
1077 spin_unlock(&space_info->lock);
1078 return;
1079 }
1080 last_tickets_id = space_info->tickets_id;
1081 spin_unlock(&space_info->lock);
1082 }
1083
1084 while (flush_state < ARRAY_SIZE(data_flush_states)) {
1085 flush_space(fs_info, space_info, U64_MAX,
1086 data_flush_states[flush_state]);
1087 spin_lock(&space_info->lock);
1088 if (list_empty(&space_info->tickets)) {
1089 space_info->flush = 0;
1090 spin_unlock(&space_info->lock);
1091 return;
1092 }
1093
1094 if (last_tickets_id == space_info->tickets_id) {
1095 flush_state++;
1096 } else {
1097 last_tickets_id = space_info->tickets_id;
1098 flush_state = 0;
1099 }
1100
1101 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1102 if (space_info->full) {
1103 if (maybe_fail_all_tickets(fs_info, space_info))
1104 flush_state = 0;
1105 else
1106 space_info->flush = 0;
1107 } else {
1108 flush_state = 0;
1109 }
1110 }
1111 spin_unlock(&space_info->lock);
1112 }
1113 }
1114
btrfs_init_async_reclaim_work(struct btrfs_fs_info * fs_info)1115 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1116 {
1117 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1118 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1119 }
1120
1121 static const enum btrfs_flush_state priority_flush_states[] = {
1122 FLUSH_DELAYED_ITEMS_NR,
1123 FLUSH_DELAYED_ITEMS,
1124 ALLOC_CHUNK,
1125 };
1126
1127 static const enum btrfs_flush_state evict_flush_states[] = {
1128 FLUSH_DELAYED_ITEMS_NR,
1129 FLUSH_DELAYED_ITEMS,
1130 FLUSH_DELAYED_REFS_NR,
1131 FLUSH_DELAYED_REFS,
1132 FLUSH_DELALLOC,
1133 FLUSH_DELALLOC_WAIT,
1134 ALLOC_CHUNK,
1135 COMMIT_TRANS,
1136 };
1137
priority_reclaim_metadata_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket,const enum btrfs_flush_state * states,int states_nr)1138 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1139 struct btrfs_space_info *space_info,
1140 struct reserve_ticket *ticket,
1141 const enum btrfs_flush_state *states,
1142 int states_nr)
1143 {
1144 u64 to_reclaim;
1145 int flush_state;
1146
1147 spin_lock(&space_info->lock);
1148 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1149 if (!to_reclaim) {
1150 spin_unlock(&space_info->lock);
1151 return;
1152 }
1153 spin_unlock(&space_info->lock);
1154
1155 flush_state = 0;
1156 do {
1157 flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
1158 flush_state++;
1159 spin_lock(&space_info->lock);
1160 if (ticket->bytes == 0) {
1161 spin_unlock(&space_info->lock);
1162 return;
1163 }
1164 spin_unlock(&space_info->lock);
1165 } while (flush_state < states_nr);
1166 }
1167
priority_reclaim_data_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket)1168 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1169 struct btrfs_space_info *space_info,
1170 struct reserve_ticket *ticket)
1171 {
1172 while (!space_info->full) {
1173 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE);
1174 spin_lock(&space_info->lock);
1175 if (ticket->bytes == 0) {
1176 spin_unlock(&space_info->lock);
1177 return;
1178 }
1179 spin_unlock(&space_info->lock);
1180 }
1181 }
1182
wait_reserve_ticket(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket)1183 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1184 struct btrfs_space_info *space_info,
1185 struct reserve_ticket *ticket)
1186
1187 {
1188 DEFINE_WAIT(wait);
1189 int ret = 0;
1190
1191 spin_lock(&space_info->lock);
1192 while (ticket->bytes > 0 && ticket->error == 0) {
1193 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1194 if (ret) {
1195 /*
1196 * Delete us from the list. After we unlock the space
1197 * info, we don't want the async reclaim job to reserve
1198 * space for this ticket. If that would happen, then the
1199 * ticket's task would not known that space was reserved
1200 * despite getting an error, resulting in a space leak
1201 * (bytes_may_use counter of our space_info).
1202 */
1203 remove_ticket(space_info, ticket);
1204 ticket->error = -EINTR;
1205 break;
1206 }
1207 spin_unlock(&space_info->lock);
1208
1209 schedule();
1210
1211 finish_wait(&ticket->wait, &wait);
1212 spin_lock(&space_info->lock);
1213 }
1214 spin_unlock(&space_info->lock);
1215 }
1216
1217 /**
1218 * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
1219 * @fs_info - the fs
1220 * @space_info - the space_info for the reservation
1221 * @ticket - the ticket for the reservation
1222 * @flush - how much we can flush
1223 *
1224 * This does the work of figuring out how to flush for the ticket, waiting for
1225 * the reservation, and returning the appropriate error if there is one.
1226 */
handle_reserve_ticket(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket,enum btrfs_reserve_flush_enum flush)1227 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1228 struct btrfs_space_info *space_info,
1229 struct reserve_ticket *ticket,
1230 enum btrfs_reserve_flush_enum flush)
1231 {
1232 int ret;
1233
1234 switch (flush) {
1235 case BTRFS_RESERVE_FLUSH_DATA:
1236 case BTRFS_RESERVE_FLUSH_ALL:
1237 case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1238 wait_reserve_ticket(fs_info, space_info, ticket);
1239 break;
1240 case BTRFS_RESERVE_FLUSH_LIMIT:
1241 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1242 priority_flush_states,
1243 ARRAY_SIZE(priority_flush_states));
1244 break;
1245 case BTRFS_RESERVE_FLUSH_EVICT:
1246 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1247 evict_flush_states,
1248 ARRAY_SIZE(evict_flush_states));
1249 break;
1250 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1251 priority_reclaim_data_space(fs_info, space_info, ticket);
1252 break;
1253 default:
1254 ASSERT(0);
1255 break;
1256 }
1257
1258 spin_lock(&space_info->lock);
1259 ret = ticket->error;
1260 if (ticket->bytes || ticket->error) {
1261 /*
1262 * We were a priority ticket, so we need to delete ourselves
1263 * from the list. Because we could have other priority tickets
1264 * behind us that require less space, run
1265 * btrfs_try_granting_tickets() to see if their reservations can
1266 * now be made.
1267 */
1268 if (!list_empty(&ticket->list)) {
1269 remove_ticket(space_info, ticket);
1270 btrfs_try_granting_tickets(fs_info, space_info);
1271 }
1272
1273 if (!ret)
1274 ret = -ENOSPC;
1275 }
1276 spin_unlock(&space_info->lock);
1277 ASSERT(list_empty(&ticket->list));
1278 /*
1279 * Check that we can't have an error set if the reservation succeeded,
1280 * as that would confuse tasks and lead them to error out without
1281 * releasing reserved space (if an error happens the expectation is that
1282 * space wasn't reserved at all).
1283 */
1284 ASSERT(!(ticket->bytes == 0 && ticket->error));
1285 return ret;
1286 }
1287
1288 /*
1289 * This returns true if this flush state will go through the ordinary flushing
1290 * code.
1291 */
is_normal_flushing(enum btrfs_reserve_flush_enum flush)1292 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1293 {
1294 return (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1295 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1296 }
1297
1298 /**
1299 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1300 * @root - the root we're allocating for
1301 * @space_info - the space info we want to allocate from
1302 * @orig_bytes - the number of bytes we want
1303 * @flush - whether or not we can flush to make our reservation
1304 *
1305 * This will reserve orig_bytes number of bytes from the space info associated
1306 * with the block_rsv. If there is not enough space it will make an attempt to
1307 * flush out space to make room. It will do this by flushing delalloc if
1308 * possible or committing the transaction. If flush is 0 then no attempts to
1309 * regain reservations will be made and this will fail if there is not enough
1310 * space already.
1311 */
__reserve_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)1312 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1313 struct btrfs_space_info *space_info, u64 orig_bytes,
1314 enum btrfs_reserve_flush_enum flush)
1315 {
1316 struct work_struct *async_work;
1317 struct reserve_ticket ticket;
1318 u64 used;
1319 int ret = 0;
1320 bool pending_tickets;
1321
1322 ASSERT(orig_bytes);
1323 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1324
1325 if (flush == BTRFS_RESERVE_FLUSH_DATA)
1326 async_work = &fs_info->async_data_reclaim_work;
1327 else
1328 async_work = &fs_info->async_reclaim_work;
1329
1330 spin_lock(&space_info->lock);
1331 ret = -ENOSPC;
1332 used = btrfs_space_info_used(space_info, true);
1333
1334 /*
1335 * We don't want NO_FLUSH allocations to jump everybody, they can
1336 * generally handle ENOSPC in a different way, so treat them the same as
1337 * normal flushers when it comes to skipping pending tickets.
1338 */
1339 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1340 pending_tickets = !list_empty(&space_info->tickets) ||
1341 !list_empty(&space_info->priority_tickets);
1342 else
1343 pending_tickets = !list_empty(&space_info->priority_tickets);
1344
1345 /*
1346 * Carry on if we have enough space (short-circuit) OR call
1347 * can_overcommit() to ensure we can overcommit to continue.
1348 */
1349 if (!pending_tickets &&
1350 ((used + orig_bytes <= space_info->total_bytes) ||
1351 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1352 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1353 orig_bytes);
1354 ret = 0;
1355 }
1356
1357 /*
1358 * If we couldn't make a reservation then setup our reservation ticket
1359 * and kick the async worker if it's not already running.
1360 *
1361 * If we are a priority flusher then we just need to add our ticket to
1362 * the list and we will do our own flushing further down.
1363 */
1364 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1365 ticket.bytes = orig_bytes;
1366 ticket.error = 0;
1367 space_info->reclaim_size += ticket.bytes;
1368 init_waitqueue_head(&ticket.wait);
1369 ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1370 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1371 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1372 flush == BTRFS_RESERVE_FLUSH_DATA) {
1373 list_add_tail(&ticket.list, &space_info->tickets);
1374 if (!space_info->flush) {
1375 space_info->flush = 1;
1376 trace_btrfs_trigger_flush(fs_info,
1377 space_info->flags,
1378 orig_bytes, flush,
1379 "enospc");
1380 queue_work(system_unbound_wq, async_work);
1381 }
1382 } else {
1383 list_add_tail(&ticket.list,
1384 &space_info->priority_tickets);
1385 }
1386 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1387 used += orig_bytes;
1388 /*
1389 * We will do the space reservation dance during log replay,
1390 * which means we won't have fs_info->fs_root set, so don't do
1391 * the async reclaim as we will panic.
1392 */
1393 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1394 need_do_async_reclaim(fs_info, space_info, used) &&
1395 !work_busy(&fs_info->async_reclaim_work)) {
1396 trace_btrfs_trigger_flush(fs_info, space_info->flags,
1397 orig_bytes, flush, "preempt");
1398 queue_work(system_unbound_wq,
1399 &fs_info->async_reclaim_work);
1400 }
1401 }
1402 spin_unlock(&space_info->lock);
1403 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1404 return ret;
1405
1406 return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1407 }
1408
1409 /**
1410 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1411 * @root - the root we're allocating for
1412 * @block_rsv - the block_rsv we're allocating for
1413 * @orig_bytes - the number of bytes we want
1414 * @flush - whether or not we can flush to make our reservation
1415 *
1416 * This will reserve orig_bytes number of bytes from the space info associated
1417 * with the block_rsv. If there is not enough space it will make an attempt to
1418 * flush out space to make room. It will do this by flushing delalloc if
1419 * possible or committing the transaction. If flush is 0 then no attempts to
1420 * regain reservations will be made and this will fail if there is not enough
1421 * space already.
1422 */
btrfs_reserve_metadata_bytes(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)1423 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1424 struct btrfs_block_rsv *block_rsv,
1425 u64 orig_bytes,
1426 enum btrfs_reserve_flush_enum flush)
1427 {
1428 struct btrfs_fs_info *fs_info = root->fs_info;
1429 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1430 int ret;
1431
1432 ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1433 if (ret == -ENOSPC &&
1434 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1435 if (block_rsv != global_rsv &&
1436 !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1437 ret = 0;
1438 }
1439 if (ret == -ENOSPC) {
1440 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1441 block_rsv->space_info->flags,
1442 orig_bytes, 1);
1443
1444 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1445 btrfs_dump_space_info(fs_info, block_rsv->space_info,
1446 orig_bytes, 0);
1447 }
1448 return ret;
1449 }
1450
1451 /**
1452 * btrfs_reserve_data_bytes - try to reserve data bytes for an allocation
1453 * @fs_info - the filesystem
1454 * @bytes - the number of bytes we need
1455 * @flush - how we are allowed to flush
1456 *
1457 * This will reserve bytes from the data space info. If there is not enough
1458 * space then we will attempt to flush space as specified by flush.
1459 */
btrfs_reserve_data_bytes(struct btrfs_fs_info * fs_info,u64 bytes,enum btrfs_reserve_flush_enum flush)1460 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1461 enum btrfs_reserve_flush_enum flush)
1462 {
1463 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1464 int ret;
1465
1466 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1467 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
1468 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1469
1470 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1471 if (ret == -ENOSPC) {
1472 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1473 data_sinfo->flags, bytes, 1);
1474 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1475 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1476 }
1477 return ret;
1478 }
1479