• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   Copyright (C) 2017, Microsoft Corporation.
4  *
5  *   Author(s): Long Li <longli@microsoft.com>
6  */
7 #include <linux/module.h>
8 #include <linux/highmem.h>
9 #include "smbdirect.h"
10 #include "cifs_debug.h"
11 #include "cifsproto.h"
12 #include "smb2proto.h"
13 
14 static struct smbd_response *get_empty_queue_buffer(
15 		struct smbd_connection *info);
16 static struct smbd_response *get_receive_buffer(
17 		struct smbd_connection *info);
18 static void put_receive_buffer(
19 		struct smbd_connection *info,
20 		struct smbd_response *response);
21 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf);
22 static void destroy_receive_buffers(struct smbd_connection *info);
23 
24 static void put_empty_packet(
25 		struct smbd_connection *info, struct smbd_response *response);
26 static void enqueue_reassembly(
27 		struct smbd_connection *info,
28 		struct smbd_response *response, int data_length);
29 static struct smbd_response *_get_first_reassembly(
30 		struct smbd_connection *info);
31 
32 static int smbd_post_recv(
33 		struct smbd_connection *info,
34 		struct smbd_response *response);
35 
36 static int smbd_post_send_empty(struct smbd_connection *info);
37 static int smbd_post_send_data(
38 		struct smbd_connection *info,
39 		struct kvec *iov, int n_vec, int remaining_data_length);
40 static int smbd_post_send_page(struct smbd_connection *info,
41 		struct page *page, unsigned long offset,
42 		size_t size, int remaining_data_length);
43 
44 static void destroy_mr_list(struct smbd_connection *info);
45 static int allocate_mr_list(struct smbd_connection *info);
46 
47 /* SMBD version number */
48 #define SMBD_V1	0x0100
49 
50 /* Port numbers for SMBD transport */
51 #define SMB_PORT	445
52 #define SMBD_PORT	5445
53 
54 /* Address lookup and resolve timeout in ms */
55 #define RDMA_RESOLVE_TIMEOUT	5000
56 
57 /* SMBD negotiation timeout in seconds */
58 #define SMBD_NEGOTIATE_TIMEOUT	120
59 
60 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
61 #define SMBD_MIN_RECEIVE_SIZE		128
62 #define SMBD_MIN_FRAGMENTED_SIZE	131072
63 
64 /*
65  * Default maximum number of RDMA read/write outstanding on this connection
66  * This value is possibly decreased during QP creation on hardware limit
67  */
68 #define SMBD_CM_RESPONDER_RESOURCES	32
69 
70 /* Maximum number of retries on data transfer operations */
71 #define SMBD_CM_RETRY			6
72 /* No need to retry on Receiver Not Ready since SMBD manages credits */
73 #define SMBD_CM_RNR_RETRY		0
74 
75 /*
76  * User configurable initial values per SMBD transport connection
77  * as defined in [MS-SMBD] 3.1.1.1
78  * Those may change after a SMBD negotiation
79  */
80 /* The local peer's maximum number of credits to grant to the peer */
81 int smbd_receive_credit_max = 255;
82 
83 /* The remote peer's credit request of local peer */
84 int smbd_send_credit_target = 255;
85 
86 /* The maximum single message size can be sent to remote peer */
87 int smbd_max_send_size = 1364;
88 
89 /*  The maximum fragmented upper-layer payload receive size supported */
90 int smbd_max_fragmented_recv_size = 1024 * 1024;
91 
92 /*  The maximum single-message size which can be received */
93 int smbd_max_receive_size = 8192;
94 
95 /* The timeout to initiate send of a keepalive message on idle */
96 int smbd_keep_alive_interval = 120;
97 
98 /*
99  * User configurable initial values for RDMA transport
100  * The actual values used may be lower and are limited to hardware capabilities
101  */
102 /* Default maximum number of SGEs in a RDMA write/read */
103 int smbd_max_frmr_depth = 2048;
104 
105 /* If payload is less than this byte, use RDMA send/recv not read/write */
106 int rdma_readwrite_threshold = 4096;
107 
108 /* Transport logging functions
109  * Logging are defined as classes. They can be OR'ed to define the actual
110  * logging level via module parameter smbd_logging_class
111  * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
112  * log_rdma_event()
113  */
114 #define LOG_OUTGOING			0x1
115 #define LOG_INCOMING			0x2
116 #define LOG_READ			0x4
117 #define LOG_WRITE			0x8
118 #define LOG_RDMA_SEND			0x10
119 #define LOG_RDMA_RECV			0x20
120 #define LOG_KEEP_ALIVE			0x40
121 #define LOG_RDMA_EVENT			0x80
122 #define LOG_RDMA_MR			0x100
123 static unsigned int smbd_logging_class;
124 module_param(smbd_logging_class, uint, 0644);
125 MODULE_PARM_DESC(smbd_logging_class,
126 	"Logging class for SMBD transport 0x0 to 0x100");
127 
128 #define ERR		0x0
129 #define INFO		0x1
130 static unsigned int smbd_logging_level = ERR;
131 module_param(smbd_logging_level, uint, 0644);
132 MODULE_PARM_DESC(smbd_logging_level,
133 	"Logging level for SMBD transport, 0 (default): error, 1: info");
134 
135 #define log_rdma(level, class, fmt, args...)				\
136 do {									\
137 	if (level <= smbd_logging_level || class & smbd_logging_class)	\
138 		cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
139 } while (0)
140 
141 #define log_outgoing(level, fmt, args...) \
142 		log_rdma(level, LOG_OUTGOING, fmt, ##args)
143 #define log_incoming(level, fmt, args...) \
144 		log_rdma(level, LOG_INCOMING, fmt, ##args)
145 #define log_read(level, fmt, args...)	log_rdma(level, LOG_READ, fmt, ##args)
146 #define log_write(level, fmt, args...)	log_rdma(level, LOG_WRITE, fmt, ##args)
147 #define log_rdma_send(level, fmt, args...) \
148 		log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
149 #define log_rdma_recv(level, fmt, args...) \
150 		log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
151 #define log_keep_alive(level, fmt, args...) \
152 		log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
153 #define log_rdma_event(level, fmt, args...) \
154 		log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
155 #define log_rdma_mr(level, fmt, args...) \
156 		log_rdma(level, LOG_RDMA_MR, fmt, ##args)
157 
smbd_disconnect_rdma_work(struct work_struct * work)158 static void smbd_disconnect_rdma_work(struct work_struct *work)
159 {
160 	struct smbd_connection *info =
161 		container_of(work, struct smbd_connection, disconnect_work);
162 
163 	if (info->transport_status == SMBD_CONNECTED) {
164 		info->transport_status = SMBD_DISCONNECTING;
165 		rdma_disconnect(info->id);
166 	}
167 }
168 
smbd_disconnect_rdma_connection(struct smbd_connection * info)169 static void smbd_disconnect_rdma_connection(struct smbd_connection *info)
170 {
171 	queue_work(info->workqueue, &info->disconnect_work);
172 }
173 
174 /* Upcall from RDMA CM */
smbd_conn_upcall(struct rdma_cm_id * id,struct rdma_cm_event * event)175 static int smbd_conn_upcall(
176 		struct rdma_cm_id *id, struct rdma_cm_event *event)
177 {
178 	struct smbd_connection *info = id->context;
179 
180 	log_rdma_event(INFO, "event=%d status=%d\n",
181 		event->event, event->status);
182 
183 	switch (event->event) {
184 	case RDMA_CM_EVENT_ADDR_RESOLVED:
185 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
186 		info->ri_rc = 0;
187 		complete(&info->ri_done);
188 		break;
189 
190 	case RDMA_CM_EVENT_ADDR_ERROR:
191 		info->ri_rc = -EHOSTUNREACH;
192 		complete(&info->ri_done);
193 		break;
194 
195 	case RDMA_CM_EVENT_ROUTE_ERROR:
196 		info->ri_rc = -ENETUNREACH;
197 		complete(&info->ri_done);
198 		break;
199 
200 	case RDMA_CM_EVENT_ESTABLISHED:
201 		log_rdma_event(INFO, "connected event=%d\n", event->event);
202 		info->transport_status = SMBD_CONNECTED;
203 		wake_up_interruptible(&info->conn_wait);
204 		break;
205 
206 	case RDMA_CM_EVENT_CONNECT_ERROR:
207 	case RDMA_CM_EVENT_UNREACHABLE:
208 	case RDMA_CM_EVENT_REJECTED:
209 		log_rdma_event(INFO, "connecting failed event=%d\n", event->event);
210 		info->transport_status = SMBD_DISCONNECTED;
211 		wake_up_interruptible(&info->conn_wait);
212 		break;
213 
214 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
215 	case RDMA_CM_EVENT_DISCONNECTED:
216 		/* This happenes when we fail the negotiation */
217 		if (info->transport_status == SMBD_NEGOTIATE_FAILED) {
218 			info->transport_status = SMBD_DISCONNECTED;
219 			wake_up(&info->conn_wait);
220 			break;
221 		}
222 
223 		info->transport_status = SMBD_DISCONNECTED;
224 		wake_up_interruptible(&info->disconn_wait);
225 		wake_up_interruptible(&info->wait_reassembly_queue);
226 		wake_up_interruptible_all(&info->wait_send_queue);
227 		break;
228 
229 	default:
230 		break;
231 	}
232 
233 	return 0;
234 }
235 
236 /* Upcall from RDMA QP */
237 static void
smbd_qp_async_error_upcall(struct ib_event * event,void * context)238 smbd_qp_async_error_upcall(struct ib_event *event, void *context)
239 {
240 	struct smbd_connection *info = context;
241 
242 	log_rdma_event(ERR, "%s on device %s info %p\n",
243 		ib_event_msg(event->event), event->device->name, info);
244 
245 	switch (event->event) {
246 	case IB_EVENT_CQ_ERR:
247 	case IB_EVENT_QP_FATAL:
248 		smbd_disconnect_rdma_connection(info);
249 
250 	default:
251 		break;
252 	}
253 }
254 
smbd_request_payload(struct smbd_request * request)255 static inline void *smbd_request_payload(struct smbd_request *request)
256 {
257 	return (void *)request->packet;
258 }
259 
smbd_response_payload(struct smbd_response * response)260 static inline void *smbd_response_payload(struct smbd_response *response)
261 {
262 	return (void *)response->packet;
263 }
264 
265 /* Called when a RDMA send is done */
send_done(struct ib_cq * cq,struct ib_wc * wc)266 static void send_done(struct ib_cq *cq, struct ib_wc *wc)
267 {
268 	int i;
269 	struct smbd_request *request =
270 		container_of(wc->wr_cqe, struct smbd_request, cqe);
271 
272 	log_rdma_send(INFO, "smbd_request %p completed wc->status=%d\n",
273 		request, wc->status);
274 
275 	if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
276 		log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n",
277 			wc->status, wc->opcode);
278 		smbd_disconnect_rdma_connection(request->info);
279 	}
280 
281 	for (i = 0; i < request->num_sge; i++)
282 		ib_dma_unmap_single(request->info->id->device,
283 			request->sge[i].addr,
284 			request->sge[i].length,
285 			DMA_TO_DEVICE);
286 
287 	if (atomic_dec_and_test(&request->info->send_pending))
288 		wake_up(&request->info->wait_send_pending);
289 
290 	wake_up(&request->info->wait_post_send);
291 
292 	mempool_free(request, request->info->request_mempool);
293 }
294 
dump_smbd_negotiate_resp(struct smbd_negotiate_resp * resp)295 static void dump_smbd_negotiate_resp(struct smbd_negotiate_resp *resp)
296 {
297 	log_rdma_event(INFO, "resp message min_version %u max_version %u negotiated_version %u credits_requested %u credits_granted %u status %u max_readwrite_size %u preferred_send_size %u max_receive_size %u max_fragmented_size %u\n",
298 		       resp->min_version, resp->max_version,
299 		       resp->negotiated_version, resp->credits_requested,
300 		       resp->credits_granted, resp->status,
301 		       resp->max_readwrite_size, resp->preferred_send_size,
302 		       resp->max_receive_size, resp->max_fragmented_size);
303 }
304 
305 /*
306  * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
307  * response, packet_length: the negotiation response message
308  * return value: true if negotiation is a success, false if failed
309  */
process_negotiation_response(struct smbd_response * response,int packet_length)310 static bool process_negotiation_response(
311 		struct smbd_response *response, int packet_length)
312 {
313 	struct smbd_connection *info = response->info;
314 	struct smbd_negotiate_resp *packet = smbd_response_payload(response);
315 
316 	if (packet_length < sizeof(struct smbd_negotiate_resp)) {
317 		log_rdma_event(ERR,
318 			"error: packet_length=%d\n", packet_length);
319 		return false;
320 	}
321 
322 	if (le16_to_cpu(packet->negotiated_version) != SMBD_V1) {
323 		log_rdma_event(ERR, "error: negotiated_version=%x\n",
324 			le16_to_cpu(packet->negotiated_version));
325 		return false;
326 	}
327 	info->protocol = le16_to_cpu(packet->negotiated_version);
328 
329 	if (packet->credits_requested == 0) {
330 		log_rdma_event(ERR, "error: credits_requested==0\n");
331 		return false;
332 	}
333 	info->receive_credit_target = le16_to_cpu(packet->credits_requested);
334 
335 	if (packet->credits_granted == 0) {
336 		log_rdma_event(ERR, "error: credits_granted==0\n");
337 		return false;
338 	}
339 	atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted));
340 
341 	atomic_set(&info->receive_credits, 0);
342 
343 	if (le32_to_cpu(packet->preferred_send_size) > info->max_receive_size) {
344 		log_rdma_event(ERR, "error: preferred_send_size=%d\n",
345 			le32_to_cpu(packet->preferred_send_size));
346 		return false;
347 	}
348 	info->max_receive_size = le32_to_cpu(packet->preferred_send_size);
349 
350 	if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
351 		log_rdma_event(ERR, "error: max_receive_size=%d\n",
352 			le32_to_cpu(packet->max_receive_size));
353 		return false;
354 	}
355 	info->max_send_size = min_t(int, info->max_send_size,
356 					le32_to_cpu(packet->max_receive_size));
357 
358 	if (le32_to_cpu(packet->max_fragmented_size) <
359 			SMBD_MIN_FRAGMENTED_SIZE) {
360 		log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
361 			le32_to_cpu(packet->max_fragmented_size));
362 		return false;
363 	}
364 	info->max_fragmented_send_size =
365 		le32_to_cpu(packet->max_fragmented_size);
366 	info->rdma_readwrite_threshold =
367 		rdma_readwrite_threshold > info->max_fragmented_send_size ?
368 		info->max_fragmented_send_size :
369 		rdma_readwrite_threshold;
370 
371 
372 	info->max_readwrite_size = min_t(u32,
373 			le32_to_cpu(packet->max_readwrite_size),
374 			info->max_frmr_depth * PAGE_SIZE);
375 	info->max_frmr_depth = info->max_readwrite_size / PAGE_SIZE;
376 
377 	return true;
378 }
379 
smbd_post_send_credits(struct work_struct * work)380 static void smbd_post_send_credits(struct work_struct *work)
381 {
382 	int ret = 0;
383 	int use_receive_queue = 1;
384 	int rc;
385 	struct smbd_response *response;
386 	struct smbd_connection *info =
387 		container_of(work, struct smbd_connection,
388 			post_send_credits_work);
389 
390 	if (info->transport_status != SMBD_CONNECTED) {
391 		wake_up(&info->wait_receive_queues);
392 		return;
393 	}
394 
395 	if (info->receive_credit_target >
396 		atomic_read(&info->receive_credits)) {
397 		while (true) {
398 			if (use_receive_queue)
399 				response = get_receive_buffer(info);
400 			else
401 				response = get_empty_queue_buffer(info);
402 			if (!response) {
403 				/* now switch to emtpy packet queue */
404 				if (use_receive_queue) {
405 					use_receive_queue = 0;
406 					continue;
407 				} else
408 					break;
409 			}
410 
411 			response->type = SMBD_TRANSFER_DATA;
412 			response->first_segment = false;
413 			rc = smbd_post_recv(info, response);
414 			if (rc) {
415 				log_rdma_recv(ERR,
416 					"post_recv failed rc=%d\n", rc);
417 				put_receive_buffer(info, response);
418 				break;
419 			}
420 
421 			ret++;
422 		}
423 	}
424 
425 	spin_lock(&info->lock_new_credits_offered);
426 	info->new_credits_offered += ret;
427 	spin_unlock(&info->lock_new_credits_offered);
428 
429 	/* Promptly send an immediate packet as defined in [MS-SMBD] 3.1.1.1 */
430 	info->send_immediate = true;
431 	if (atomic_read(&info->receive_credits) <
432 		info->receive_credit_target - 1) {
433 		if (info->keep_alive_requested == KEEP_ALIVE_PENDING ||
434 		    info->send_immediate) {
435 			log_keep_alive(INFO, "send an empty message\n");
436 			smbd_post_send_empty(info);
437 		}
438 	}
439 }
440 
441 /* Called from softirq, when recv is done */
recv_done(struct ib_cq * cq,struct ib_wc * wc)442 static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
443 {
444 	struct smbd_data_transfer *data_transfer;
445 	struct smbd_response *response =
446 		container_of(wc->wr_cqe, struct smbd_response, cqe);
447 	struct smbd_connection *info = response->info;
448 	int data_length = 0;
449 
450 	log_rdma_recv(INFO, "response=%p type=%d wc status=%d wc opcode %d byte_len=%d pkey_index=%x\n",
451 		      response, response->type, wc->status, wc->opcode,
452 		      wc->byte_len, wc->pkey_index);
453 
454 	if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
455 		log_rdma_recv(INFO, "wc->status=%d opcode=%d\n",
456 			wc->status, wc->opcode);
457 		smbd_disconnect_rdma_connection(info);
458 		goto error;
459 	}
460 
461 	ib_dma_sync_single_for_cpu(
462 		wc->qp->device,
463 		response->sge.addr,
464 		response->sge.length,
465 		DMA_FROM_DEVICE);
466 
467 	switch (response->type) {
468 	/* SMBD negotiation response */
469 	case SMBD_NEGOTIATE_RESP:
470 		dump_smbd_negotiate_resp(smbd_response_payload(response));
471 		info->full_packet_received = true;
472 		info->negotiate_done =
473 			process_negotiation_response(response, wc->byte_len);
474 		complete(&info->negotiate_completion);
475 		break;
476 
477 	/* SMBD data transfer packet */
478 	case SMBD_TRANSFER_DATA:
479 		data_transfer = smbd_response_payload(response);
480 		data_length = le32_to_cpu(data_transfer->data_length);
481 
482 		/*
483 		 * If this is a packet with data playload place the data in
484 		 * reassembly queue and wake up the reading thread
485 		 */
486 		if (data_length) {
487 			if (info->full_packet_received)
488 				response->first_segment = true;
489 
490 			if (le32_to_cpu(data_transfer->remaining_data_length))
491 				info->full_packet_received = false;
492 			else
493 				info->full_packet_received = true;
494 
495 			enqueue_reassembly(
496 				info,
497 				response,
498 				data_length);
499 		} else
500 			put_empty_packet(info, response);
501 
502 		if (data_length)
503 			wake_up_interruptible(&info->wait_reassembly_queue);
504 
505 		atomic_dec(&info->receive_credits);
506 		info->receive_credit_target =
507 			le16_to_cpu(data_transfer->credits_requested);
508 		if (le16_to_cpu(data_transfer->credits_granted)) {
509 			atomic_add(le16_to_cpu(data_transfer->credits_granted),
510 				&info->send_credits);
511 			/*
512 			 * We have new send credits granted from remote peer
513 			 * If any sender is waiting for credits, unblock it
514 			 */
515 			wake_up_interruptible(&info->wait_send_queue);
516 		}
517 
518 		log_incoming(INFO, "data flags %d data_offset %d data_length %d remaining_data_length %d\n",
519 			     le16_to_cpu(data_transfer->flags),
520 			     le32_to_cpu(data_transfer->data_offset),
521 			     le32_to_cpu(data_transfer->data_length),
522 			     le32_to_cpu(data_transfer->remaining_data_length));
523 
524 		/* Send a KEEP_ALIVE response right away if requested */
525 		info->keep_alive_requested = KEEP_ALIVE_NONE;
526 		if (le16_to_cpu(data_transfer->flags) &
527 				SMB_DIRECT_RESPONSE_REQUESTED) {
528 			info->keep_alive_requested = KEEP_ALIVE_PENDING;
529 		}
530 
531 		return;
532 
533 	default:
534 		log_rdma_recv(ERR,
535 			"unexpected response type=%d\n", response->type);
536 	}
537 
538 error:
539 	put_receive_buffer(info, response);
540 }
541 
smbd_create_id(struct smbd_connection * info,struct sockaddr * dstaddr,int port)542 static struct rdma_cm_id *smbd_create_id(
543 		struct smbd_connection *info,
544 		struct sockaddr *dstaddr, int port)
545 {
546 	struct rdma_cm_id *id;
547 	int rc;
548 	__be16 *sport;
549 
550 	id = rdma_create_id(&init_net, smbd_conn_upcall, info,
551 		RDMA_PS_TCP, IB_QPT_RC);
552 	if (IS_ERR(id)) {
553 		rc = PTR_ERR(id);
554 		log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
555 		return id;
556 	}
557 
558 	if (dstaddr->sa_family == AF_INET6)
559 		sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
560 	else
561 		sport = &((struct sockaddr_in *)dstaddr)->sin_port;
562 
563 	*sport = htons(port);
564 
565 	init_completion(&info->ri_done);
566 	info->ri_rc = -ETIMEDOUT;
567 
568 	rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
569 		RDMA_RESOLVE_TIMEOUT);
570 	if (rc) {
571 		log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
572 		goto out;
573 	}
574 	rc = wait_for_completion_interruptible_timeout(
575 		&info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
576 	/* e.g. if interrupted returns -ERESTARTSYS */
577 	if (rc < 0) {
578 		log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
579 		goto out;
580 	}
581 	rc = info->ri_rc;
582 	if (rc) {
583 		log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
584 		goto out;
585 	}
586 
587 	info->ri_rc = -ETIMEDOUT;
588 	rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
589 	if (rc) {
590 		log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
591 		goto out;
592 	}
593 	rc = wait_for_completion_interruptible_timeout(
594 		&info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
595 	/* e.g. if interrupted returns -ERESTARTSYS */
596 	if (rc < 0)  {
597 		log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
598 		goto out;
599 	}
600 	rc = info->ri_rc;
601 	if (rc) {
602 		log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
603 		goto out;
604 	}
605 
606 	return id;
607 
608 out:
609 	rdma_destroy_id(id);
610 	return ERR_PTR(rc);
611 }
612 
613 /*
614  * Test if FRWR (Fast Registration Work Requests) is supported on the device
615  * This implementation requries FRWR on RDMA read/write
616  * return value: true if it is supported
617  */
frwr_is_supported(struct ib_device_attr * attrs)618 static bool frwr_is_supported(struct ib_device_attr *attrs)
619 {
620 	if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
621 		return false;
622 	if (attrs->max_fast_reg_page_list_len == 0)
623 		return false;
624 	return true;
625 }
626 
smbd_ia_open(struct smbd_connection * info,struct sockaddr * dstaddr,int port)627 static int smbd_ia_open(
628 		struct smbd_connection *info,
629 		struct sockaddr *dstaddr, int port)
630 {
631 	int rc;
632 
633 	info->id = smbd_create_id(info, dstaddr, port);
634 	if (IS_ERR(info->id)) {
635 		rc = PTR_ERR(info->id);
636 		goto out1;
637 	}
638 
639 	if (!frwr_is_supported(&info->id->device->attrs)) {
640 		log_rdma_event(ERR, "Fast Registration Work Requests (FRWR) is not supported\n");
641 		log_rdma_event(ERR, "Device capability flags = %llx max_fast_reg_page_list_len = %u\n",
642 			       info->id->device->attrs.device_cap_flags,
643 			       info->id->device->attrs.max_fast_reg_page_list_len);
644 		rc = -EPROTONOSUPPORT;
645 		goto out2;
646 	}
647 	info->max_frmr_depth = min_t(int,
648 		smbd_max_frmr_depth,
649 		info->id->device->attrs.max_fast_reg_page_list_len);
650 	info->mr_type = IB_MR_TYPE_MEM_REG;
651 	if (info->id->device->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG)
652 		info->mr_type = IB_MR_TYPE_SG_GAPS;
653 
654 	info->pd = ib_alloc_pd(info->id->device, 0);
655 	if (IS_ERR(info->pd)) {
656 		rc = PTR_ERR(info->pd);
657 		log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
658 		goto out2;
659 	}
660 
661 	return 0;
662 
663 out2:
664 	rdma_destroy_id(info->id);
665 	info->id = NULL;
666 
667 out1:
668 	return rc;
669 }
670 
671 /*
672  * Send a negotiation request message to the peer
673  * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
674  * After negotiation, the transport is connected and ready for
675  * carrying upper layer SMB payload
676  */
smbd_post_send_negotiate_req(struct smbd_connection * info)677 static int smbd_post_send_negotiate_req(struct smbd_connection *info)
678 {
679 	struct ib_send_wr send_wr;
680 	int rc = -ENOMEM;
681 	struct smbd_request *request;
682 	struct smbd_negotiate_req *packet;
683 
684 	request = mempool_alloc(info->request_mempool, GFP_KERNEL);
685 	if (!request)
686 		return rc;
687 
688 	request->info = info;
689 
690 	packet = smbd_request_payload(request);
691 	packet->min_version = cpu_to_le16(SMBD_V1);
692 	packet->max_version = cpu_to_le16(SMBD_V1);
693 	packet->reserved = 0;
694 	packet->credits_requested = cpu_to_le16(info->send_credit_target);
695 	packet->preferred_send_size = cpu_to_le32(info->max_send_size);
696 	packet->max_receive_size = cpu_to_le32(info->max_receive_size);
697 	packet->max_fragmented_size =
698 		cpu_to_le32(info->max_fragmented_recv_size);
699 
700 	request->num_sge = 1;
701 	request->sge[0].addr = ib_dma_map_single(
702 				info->id->device, (void *)packet,
703 				sizeof(*packet), DMA_TO_DEVICE);
704 	if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
705 		rc = -EIO;
706 		goto dma_mapping_failed;
707 	}
708 
709 	request->sge[0].length = sizeof(*packet);
710 	request->sge[0].lkey = info->pd->local_dma_lkey;
711 
712 	ib_dma_sync_single_for_device(
713 		info->id->device, request->sge[0].addr,
714 		request->sge[0].length, DMA_TO_DEVICE);
715 
716 	request->cqe.done = send_done;
717 
718 	send_wr.next = NULL;
719 	send_wr.wr_cqe = &request->cqe;
720 	send_wr.sg_list = request->sge;
721 	send_wr.num_sge = request->num_sge;
722 	send_wr.opcode = IB_WR_SEND;
723 	send_wr.send_flags = IB_SEND_SIGNALED;
724 
725 	log_rdma_send(INFO, "sge addr=%llx length=%x lkey=%x\n",
726 		request->sge[0].addr,
727 		request->sge[0].length, request->sge[0].lkey);
728 
729 	atomic_inc(&info->send_pending);
730 	rc = ib_post_send(info->id->qp, &send_wr, NULL);
731 	if (!rc)
732 		return 0;
733 
734 	/* if we reach here, post send failed */
735 	log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
736 	atomic_dec(&info->send_pending);
737 	ib_dma_unmap_single(info->id->device, request->sge[0].addr,
738 		request->sge[0].length, DMA_TO_DEVICE);
739 
740 	smbd_disconnect_rdma_connection(info);
741 
742 dma_mapping_failed:
743 	mempool_free(request, info->request_mempool);
744 	return rc;
745 }
746 
747 /*
748  * Extend the credits to remote peer
749  * This implements [MS-SMBD] 3.1.5.9
750  * The idea is that we should extend credits to remote peer as quickly as
751  * it's allowed, to maintain data flow. We allocate as much receive
752  * buffer as possible, and extend the receive credits to remote peer
753  * return value: the new credtis being granted.
754  */
manage_credits_prior_sending(struct smbd_connection * info)755 static int manage_credits_prior_sending(struct smbd_connection *info)
756 {
757 	int new_credits;
758 
759 	spin_lock(&info->lock_new_credits_offered);
760 	new_credits = info->new_credits_offered;
761 	info->new_credits_offered = 0;
762 	spin_unlock(&info->lock_new_credits_offered);
763 
764 	return new_credits;
765 }
766 
767 /*
768  * Check if we need to send a KEEP_ALIVE message
769  * The idle connection timer triggers a KEEP_ALIVE message when expires
770  * SMB_DIRECT_RESPONSE_REQUESTED is set in the message flag to have peer send
771  * back a response.
772  * return value:
773  * 1 if SMB_DIRECT_RESPONSE_REQUESTED needs to be set
774  * 0: otherwise
775  */
manage_keep_alive_before_sending(struct smbd_connection * info)776 static int manage_keep_alive_before_sending(struct smbd_connection *info)
777 {
778 	if (info->keep_alive_requested == KEEP_ALIVE_PENDING) {
779 		info->keep_alive_requested = KEEP_ALIVE_SENT;
780 		return 1;
781 	}
782 	return 0;
783 }
784 
785 /* Post the send request */
smbd_post_send(struct smbd_connection * info,struct smbd_request * request)786 static int smbd_post_send(struct smbd_connection *info,
787 		struct smbd_request *request)
788 {
789 	struct ib_send_wr send_wr;
790 	int rc, i;
791 
792 	for (i = 0; i < request->num_sge; i++) {
793 		log_rdma_send(INFO,
794 			"rdma_request sge[%d] addr=%llu length=%u\n",
795 			i, request->sge[i].addr, request->sge[i].length);
796 		ib_dma_sync_single_for_device(
797 			info->id->device,
798 			request->sge[i].addr,
799 			request->sge[i].length,
800 			DMA_TO_DEVICE);
801 	}
802 
803 	request->cqe.done = send_done;
804 
805 	send_wr.next = NULL;
806 	send_wr.wr_cqe = &request->cqe;
807 	send_wr.sg_list = request->sge;
808 	send_wr.num_sge = request->num_sge;
809 	send_wr.opcode = IB_WR_SEND;
810 	send_wr.send_flags = IB_SEND_SIGNALED;
811 
812 	rc = ib_post_send(info->id->qp, &send_wr, NULL);
813 	if (rc) {
814 		log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
815 		smbd_disconnect_rdma_connection(info);
816 		rc = -EAGAIN;
817 	} else
818 		/* Reset timer for idle connection after packet is sent */
819 		mod_delayed_work(info->workqueue, &info->idle_timer_work,
820 			info->keep_alive_interval*HZ);
821 
822 	return rc;
823 }
824 
smbd_post_send_sgl(struct smbd_connection * info,struct scatterlist * sgl,int data_length,int remaining_data_length)825 static int smbd_post_send_sgl(struct smbd_connection *info,
826 	struct scatterlist *sgl, int data_length, int remaining_data_length)
827 {
828 	int num_sgs;
829 	int i, rc;
830 	int header_length;
831 	struct smbd_request *request;
832 	struct smbd_data_transfer *packet;
833 	int new_credits;
834 	struct scatterlist *sg;
835 
836 wait_credit:
837 	/* Wait for send credits. A SMBD packet needs one credit */
838 	rc = wait_event_interruptible(info->wait_send_queue,
839 		atomic_read(&info->send_credits) > 0 ||
840 		info->transport_status != SMBD_CONNECTED);
841 	if (rc)
842 		goto err_wait_credit;
843 
844 	if (info->transport_status != SMBD_CONNECTED) {
845 		log_outgoing(ERR, "disconnected not sending on wait_credit\n");
846 		rc = -EAGAIN;
847 		goto err_wait_credit;
848 	}
849 	if (unlikely(atomic_dec_return(&info->send_credits) < 0)) {
850 		atomic_inc(&info->send_credits);
851 		goto wait_credit;
852 	}
853 
854 wait_send_queue:
855 	wait_event(info->wait_post_send,
856 		atomic_read(&info->send_pending) < info->send_credit_target ||
857 		info->transport_status != SMBD_CONNECTED);
858 
859 	if (info->transport_status != SMBD_CONNECTED) {
860 		log_outgoing(ERR, "disconnected not sending on wait_send_queue\n");
861 		rc = -EAGAIN;
862 		goto err_wait_send_queue;
863 	}
864 
865 	if (unlikely(atomic_inc_return(&info->send_pending) >
866 				info->send_credit_target)) {
867 		atomic_dec(&info->send_pending);
868 		goto wait_send_queue;
869 	}
870 
871 	request = mempool_alloc(info->request_mempool, GFP_KERNEL);
872 	if (!request) {
873 		rc = -ENOMEM;
874 		goto err_alloc;
875 	}
876 
877 	request->info = info;
878 
879 	/* Fill in the packet header */
880 	packet = smbd_request_payload(request);
881 	packet->credits_requested = cpu_to_le16(info->send_credit_target);
882 
883 	new_credits = manage_credits_prior_sending(info);
884 	atomic_add(new_credits, &info->receive_credits);
885 	packet->credits_granted = cpu_to_le16(new_credits);
886 
887 	info->send_immediate = false;
888 
889 	packet->flags = 0;
890 	if (manage_keep_alive_before_sending(info))
891 		packet->flags |= cpu_to_le16(SMB_DIRECT_RESPONSE_REQUESTED);
892 
893 	packet->reserved = 0;
894 	if (!data_length)
895 		packet->data_offset = 0;
896 	else
897 		packet->data_offset = cpu_to_le32(24);
898 	packet->data_length = cpu_to_le32(data_length);
899 	packet->remaining_data_length = cpu_to_le32(remaining_data_length);
900 	packet->padding = 0;
901 
902 	log_outgoing(INFO, "credits_requested=%d credits_granted=%d data_offset=%d data_length=%d remaining_data_length=%d\n",
903 		     le16_to_cpu(packet->credits_requested),
904 		     le16_to_cpu(packet->credits_granted),
905 		     le32_to_cpu(packet->data_offset),
906 		     le32_to_cpu(packet->data_length),
907 		     le32_to_cpu(packet->remaining_data_length));
908 
909 	/* Map the packet to DMA */
910 	header_length = sizeof(struct smbd_data_transfer);
911 	/* If this is a packet without payload, don't send padding */
912 	if (!data_length)
913 		header_length = offsetof(struct smbd_data_transfer, padding);
914 
915 	request->num_sge = 1;
916 	request->sge[0].addr = ib_dma_map_single(info->id->device,
917 						 (void *)packet,
918 						 header_length,
919 						 DMA_TO_DEVICE);
920 	if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
921 		rc = -EIO;
922 		request->sge[0].addr = 0;
923 		goto err_dma;
924 	}
925 
926 	request->sge[0].length = header_length;
927 	request->sge[0].lkey = info->pd->local_dma_lkey;
928 
929 	/* Fill in the packet data payload */
930 	num_sgs = sgl ? sg_nents(sgl) : 0;
931 	for_each_sg(sgl, sg, num_sgs, i) {
932 		request->sge[i+1].addr =
933 			ib_dma_map_page(info->id->device, sg_page(sg),
934 			       sg->offset, sg->length, DMA_TO_DEVICE);
935 		if (ib_dma_mapping_error(
936 				info->id->device, request->sge[i+1].addr)) {
937 			rc = -EIO;
938 			request->sge[i+1].addr = 0;
939 			goto err_dma;
940 		}
941 		request->sge[i+1].length = sg->length;
942 		request->sge[i+1].lkey = info->pd->local_dma_lkey;
943 		request->num_sge++;
944 	}
945 
946 	rc = smbd_post_send(info, request);
947 	if (!rc)
948 		return 0;
949 
950 err_dma:
951 	for (i = 0; i < request->num_sge; i++)
952 		if (request->sge[i].addr)
953 			ib_dma_unmap_single(info->id->device,
954 					    request->sge[i].addr,
955 					    request->sge[i].length,
956 					    DMA_TO_DEVICE);
957 	mempool_free(request, info->request_mempool);
958 
959 	/* roll back receive credits and credits to be offered */
960 	spin_lock(&info->lock_new_credits_offered);
961 	info->new_credits_offered += new_credits;
962 	spin_unlock(&info->lock_new_credits_offered);
963 	atomic_sub(new_credits, &info->receive_credits);
964 
965 err_alloc:
966 	if (atomic_dec_and_test(&info->send_pending))
967 		wake_up(&info->wait_send_pending);
968 
969 err_wait_send_queue:
970 	/* roll back send credits and pending */
971 	atomic_inc(&info->send_credits);
972 
973 err_wait_credit:
974 	return rc;
975 }
976 
977 /*
978  * Send a page
979  * page: the page to send
980  * offset: offset in the page to send
981  * size: length in the page to send
982  * remaining_data_length: remaining data to send in this payload
983  */
smbd_post_send_page(struct smbd_connection * info,struct page * page,unsigned long offset,size_t size,int remaining_data_length)984 static int smbd_post_send_page(struct smbd_connection *info, struct page *page,
985 		unsigned long offset, size_t size, int remaining_data_length)
986 {
987 	struct scatterlist sgl;
988 
989 	sg_init_table(&sgl, 1);
990 	sg_set_page(&sgl, page, size, offset);
991 
992 	return smbd_post_send_sgl(info, &sgl, size, remaining_data_length);
993 }
994 
995 /*
996  * Send an empty message
997  * Empty message is used to extend credits to peer to for keep live
998  * while there is no upper layer payload to send at the time
999  */
smbd_post_send_empty(struct smbd_connection * info)1000 static int smbd_post_send_empty(struct smbd_connection *info)
1001 {
1002 	info->count_send_empty++;
1003 	return smbd_post_send_sgl(info, NULL, 0, 0);
1004 }
1005 
1006 /*
1007  * Send a data buffer
1008  * iov: the iov array describing the data buffers
1009  * n_vec: number of iov array
1010  * remaining_data_length: remaining data to send following this packet
1011  * in segmented SMBD packet
1012  */
smbd_post_send_data(struct smbd_connection * info,struct kvec * iov,int n_vec,int remaining_data_length)1013 static int smbd_post_send_data(
1014 	struct smbd_connection *info, struct kvec *iov, int n_vec,
1015 	int remaining_data_length)
1016 {
1017 	int i;
1018 	u32 data_length = 0;
1019 	struct scatterlist sgl[SMBDIRECT_MAX_SGE];
1020 
1021 	if (n_vec > SMBDIRECT_MAX_SGE) {
1022 		cifs_dbg(VFS, "Can't fit data to SGL, n_vec=%d\n", n_vec);
1023 		return -EINVAL;
1024 	}
1025 
1026 	sg_init_table(sgl, n_vec);
1027 	for (i = 0; i < n_vec; i++) {
1028 		data_length += iov[i].iov_len;
1029 		sg_set_buf(&sgl[i], iov[i].iov_base, iov[i].iov_len);
1030 	}
1031 
1032 	return smbd_post_send_sgl(info, sgl, data_length, remaining_data_length);
1033 }
1034 
1035 /*
1036  * Post a receive request to the transport
1037  * The remote peer can only send data when a receive request is posted
1038  * The interaction is controlled by send/receive credit system
1039  */
smbd_post_recv(struct smbd_connection * info,struct smbd_response * response)1040 static int smbd_post_recv(
1041 		struct smbd_connection *info, struct smbd_response *response)
1042 {
1043 	struct ib_recv_wr recv_wr;
1044 	int rc = -EIO;
1045 
1046 	response->sge.addr = ib_dma_map_single(
1047 				info->id->device, response->packet,
1048 				info->max_receive_size, DMA_FROM_DEVICE);
1049 	if (ib_dma_mapping_error(info->id->device, response->sge.addr))
1050 		return rc;
1051 
1052 	response->sge.length = info->max_receive_size;
1053 	response->sge.lkey = info->pd->local_dma_lkey;
1054 
1055 	response->cqe.done = recv_done;
1056 
1057 	recv_wr.wr_cqe = &response->cqe;
1058 	recv_wr.next = NULL;
1059 	recv_wr.sg_list = &response->sge;
1060 	recv_wr.num_sge = 1;
1061 
1062 	rc = ib_post_recv(info->id->qp, &recv_wr, NULL);
1063 	if (rc) {
1064 		ib_dma_unmap_single(info->id->device, response->sge.addr,
1065 				    response->sge.length, DMA_FROM_DEVICE);
1066 		smbd_disconnect_rdma_connection(info);
1067 		log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1068 	}
1069 
1070 	return rc;
1071 }
1072 
1073 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
smbd_negotiate(struct smbd_connection * info)1074 static int smbd_negotiate(struct smbd_connection *info)
1075 {
1076 	int rc;
1077 	struct smbd_response *response = get_receive_buffer(info);
1078 
1079 	response->type = SMBD_NEGOTIATE_RESP;
1080 	rc = smbd_post_recv(info, response);
1081 	log_rdma_event(INFO, "smbd_post_recv rc=%d iov.addr=%llx iov.length=%x iov.lkey=%x\n",
1082 		       rc, response->sge.addr,
1083 		       response->sge.length, response->sge.lkey);
1084 	if (rc)
1085 		return rc;
1086 
1087 	init_completion(&info->negotiate_completion);
1088 	info->negotiate_done = false;
1089 	rc = smbd_post_send_negotiate_req(info);
1090 	if (rc)
1091 		return rc;
1092 
1093 	rc = wait_for_completion_interruptible_timeout(
1094 		&info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ);
1095 	log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc);
1096 
1097 	if (info->negotiate_done)
1098 		return 0;
1099 
1100 	if (rc == 0)
1101 		rc = -ETIMEDOUT;
1102 	else if (rc == -ERESTARTSYS)
1103 		rc = -EINTR;
1104 	else
1105 		rc = -ENOTCONN;
1106 
1107 	return rc;
1108 }
1109 
put_empty_packet(struct smbd_connection * info,struct smbd_response * response)1110 static void put_empty_packet(
1111 		struct smbd_connection *info, struct smbd_response *response)
1112 {
1113 	spin_lock(&info->empty_packet_queue_lock);
1114 	list_add_tail(&response->list, &info->empty_packet_queue);
1115 	info->count_empty_packet_queue++;
1116 	spin_unlock(&info->empty_packet_queue_lock);
1117 
1118 	queue_work(info->workqueue, &info->post_send_credits_work);
1119 }
1120 
1121 /*
1122  * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1123  * This is a queue for reassembling upper layer payload and present to upper
1124  * layer. All the inncoming payload go to the reassembly queue, regardless of
1125  * if reassembly is required. The uuper layer code reads from the queue for all
1126  * incoming payloads.
1127  * Put a received packet to the reassembly queue
1128  * response: the packet received
1129  * data_length: the size of payload in this packet
1130  */
enqueue_reassembly(struct smbd_connection * info,struct smbd_response * response,int data_length)1131 static void enqueue_reassembly(
1132 	struct smbd_connection *info,
1133 	struct smbd_response *response,
1134 	int data_length)
1135 {
1136 	spin_lock(&info->reassembly_queue_lock);
1137 	list_add_tail(&response->list, &info->reassembly_queue);
1138 	info->reassembly_queue_length++;
1139 	/*
1140 	 * Make sure reassembly_data_length is updated after list and
1141 	 * reassembly_queue_length are updated. On the dequeue side
1142 	 * reassembly_data_length is checked without a lock to determine
1143 	 * if reassembly_queue_length and list is up to date
1144 	 */
1145 	virt_wmb();
1146 	info->reassembly_data_length += data_length;
1147 	spin_unlock(&info->reassembly_queue_lock);
1148 	info->count_reassembly_queue++;
1149 	info->count_enqueue_reassembly_queue++;
1150 }
1151 
1152 /*
1153  * Get the first entry at the front of reassembly queue
1154  * Caller is responsible for locking
1155  * return value: the first entry if any, NULL if queue is empty
1156  */
_get_first_reassembly(struct smbd_connection * info)1157 static struct smbd_response *_get_first_reassembly(struct smbd_connection *info)
1158 {
1159 	struct smbd_response *ret = NULL;
1160 
1161 	if (!list_empty(&info->reassembly_queue)) {
1162 		ret = list_first_entry(
1163 			&info->reassembly_queue,
1164 			struct smbd_response, list);
1165 	}
1166 	return ret;
1167 }
1168 
get_empty_queue_buffer(struct smbd_connection * info)1169 static struct smbd_response *get_empty_queue_buffer(
1170 		struct smbd_connection *info)
1171 {
1172 	struct smbd_response *ret = NULL;
1173 	unsigned long flags;
1174 
1175 	spin_lock_irqsave(&info->empty_packet_queue_lock, flags);
1176 	if (!list_empty(&info->empty_packet_queue)) {
1177 		ret = list_first_entry(
1178 			&info->empty_packet_queue,
1179 			struct smbd_response, list);
1180 		list_del(&ret->list);
1181 		info->count_empty_packet_queue--;
1182 	}
1183 	spin_unlock_irqrestore(&info->empty_packet_queue_lock, flags);
1184 
1185 	return ret;
1186 }
1187 
1188 /*
1189  * Get a receive buffer
1190  * For each remote send, we need to post a receive. The receive buffers are
1191  * pre-allocated in advance.
1192  * return value: the receive buffer, NULL if none is available
1193  */
get_receive_buffer(struct smbd_connection * info)1194 static struct smbd_response *get_receive_buffer(struct smbd_connection *info)
1195 {
1196 	struct smbd_response *ret = NULL;
1197 	unsigned long flags;
1198 
1199 	spin_lock_irqsave(&info->receive_queue_lock, flags);
1200 	if (!list_empty(&info->receive_queue)) {
1201 		ret = list_first_entry(
1202 			&info->receive_queue,
1203 			struct smbd_response, list);
1204 		list_del(&ret->list);
1205 		info->count_receive_queue--;
1206 		info->count_get_receive_buffer++;
1207 	}
1208 	spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1209 
1210 	return ret;
1211 }
1212 
1213 /*
1214  * Return a receive buffer
1215  * Upon returning of a receive buffer, we can post new receive and extend
1216  * more receive credits to remote peer. This is done immediately after a
1217  * receive buffer is returned.
1218  */
put_receive_buffer(struct smbd_connection * info,struct smbd_response * response)1219 static void put_receive_buffer(
1220 	struct smbd_connection *info, struct smbd_response *response)
1221 {
1222 	unsigned long flags;
1223 
1224 	ib_dma_unmap_single(info->id->device, response->sge.addr,
1225 		response->sge.length, DMA_FROM_DEVICE);
1226 
1227 	spin_lock_irqsave(&info->receive_queue_lock, flags);
1228 	list_add_tail(&response->list, &info->receive_queue);
1229 	info->count_receive_queue++;
1230 	info->count_put_receive_buffer++;
1231 	spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1232 
1233 	queue_work(info->workqueue, &info->post_send_credits_work);
1234 }
1235 
1236 /* Preallocate all receive buffer on transport establishment */
allocate_receive_buffers(struct smbd_connection * info,int num_buf)1237 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf)
1238 {
1239 	int i;
1240 	struct smbd_response *response;
1241 
1242 	INIT_LIST_HEAD(&info->reassembly_queue);
1243 	spin_lock_init(&info->reassembly_queue_lock);
1244 	info->reassembly_data_length = 0;
1245 	info->reassembly_queue_length = 0;
1246 
1247 	INIT_LIST_HEAD(&info->receive_queue);
1248 	spin_lock_init(&info->receive_queue_lock);
1249 	info->count_receive_queue = 0;
1250 
1251 	INIT_LIST_HEAD(&info->empty_packet_queue);
1252 	spin_lock_init(&info->empty_packet_queue_lock);
1253 	info->count_empty_packet_queue = 0;
1254 
1255 	init_waitqueue_head(&info->wait_receive_queues);
1256 
1257 	for (i = 0; i < num_buf; i++) {
1258 		response = mempool_alloc(info->response_mempool, GFP_KERNEL);
1259 		if (!response)
1260 			goto allocate_failed;
1261 
1262 		response->info = info;
1263 		list_add_tail(&response->list, &info->receive_queue);
1264 		info->count_receive_queue++;
1265 	}
1266 
1267 	return 0;
1268 
1269 allocate_failed:
1270 	while (!list_empty(&info->receive_queue)) {
1271 		response = list_first_entry(
1272 				&info->receive_queue,
1273 				struct smbd_response, list);
1274 		list_del(&response->list);
1275 		info->count_receive_queue--;
1276 
1277 		mempool_free(response, info->response_mempool);
1278 	}
1279 	return -ENOMEM;
1280 }
1281 
destroy_receive_buffers(struct smbd_connection * info)1282 static void destroy_receive_buffers(struct smbd_connection *info)
1283 {
1284 	struct smbd_response *response;
1285 
1286 	while ((response = get_receive_buffer(info)))
1287 		mempool_free(response, info->response_mempool);
1288 
1289 	while ((response = get_empty_queue_buffer(info)))
1290 		mempool_free(response, info->response_mempool);
1291 }
1292 
1293 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
idle_connection_timer(struct work_struct * work)1294 static void idle_connection_timer(struct work_struct *work)
1295 {
1296 	struct smbd_connection *info = container_of(
1297 					work, struct smbd_connection,
1298 					idle_timer_work.work);
1299 
1300 	if (info->keep_alive_requested != KEEP_ALIVE_NONE) {
1301 		log_keep_alive(ERR,
1302 			"error status info->keep_alive_requested=%d\n",
1303 			info->keep_alive_requested);
1304 		smbd_disconnect_rdma_connection(info);
1305 		return;
1306 	}
1307 
1308 	log_keep_alive(INFO, "about to send an empty idle message\n");
1309 	smbd_post_send_empty(info);
1310 
1311 	/* Setup the next idle timeout work */
1312 	queue_delayed_work(info->workqueue, &info->idle_timer_work,
1313 			info->keep_alive_interval*HZ);
1314 }
1315 
1316 /*
1317  * Destroy the transport and related RDMA and memory resources
1318  * Need to go through all the pending counters and make sure on one is using
1319  * the transport while it is destroyed
1320  */
smbd_destroy(struct TCP_Server_Info * server)1321 void smbd_destroy(struct TCP_Server_Info *server)
1322 {
1323 	struct smbd_connection *info = server->smbd_conn;
1324 	struct smbd_response *response;
1325 	unsigned long flags;
1326 
1327 	if (!info) {
1328 		log_rdma_event(INFO, "rdma session already destroyed\n");
1329 		return;
1330 	}
1331 
1332 	log_rdma_event(INFO, "destroying rdma session\n");
1333 	if (info->transport_status != SMBD_DISCONNECTED) {
1334 		rdma_disconnect(server->smbd_conn->id);
1335 		log_rdma_event(INFO, "wait for transport being disconnected\n");
1336 		wait_event_interruptible(
1337 			info->disconn_wait,
1338 			info->transport_status == SMBD_DISCONNECTED);
1339 	}
1340 
1341 	log_rdma_event(INFO, "destroying qp\n");
1342 	ib_drain_qp(info->id->qp);
1343 	rdma_destroy_qp(info->id);
1344 
1345 	log_rdma_event(INFO, "cancelling idle timer\n");
1346 	cancel_delayed_work_sync(&info->idle_timer_work);
1347 
1348 	log_rdma_event(INFO, "wait for all send posted to IB to finish\n");
1349 	wait_event(info->wait_send_pending,
1350 		atomic_read(&info->send_pending) == 0);
1351 
1352 	/* It's not posssible for upper layer to get to reassembly */
1353 	log_rdma_event(INFO, "drain the reassembly queue\n");
1354 	do {
1355 		spin_lock_irqsave(&info->reassembly_queue_lock, flags);
1356 		response = _get_first_reassembly(info);
1357 		if (response) {
1358 			list_del(&response->list);
1359 			spin_unlock_irqrestore(
1360 				&info->reassembly_queue_lock, flags);
1361 			put_receive_buffer(info, response);
1362 		} else
1363 			spin_unlock_irqrestore(
1364 				&info->reassembly_queue_lock, flags);
1365 	} while (response);
1366 	info->reassembly_data_length = 0;
1367 
1368 	log_rdma_event(INFO, "free receive buffers\n");
1369 	wait_event(info->wait_receive_queues,
1370 		info->count_receive_queue + info->count_empty_packet_queue
1371 			== info->receive_credit_max);
1372 	destroy_receive_buffers(info);
1373 
1374 	/*
1375 	 * For performance reasons, memory registration and deregistration
1376 	 * are not locked by srv_mutex. It is possible some processes are
1377 	 * blocked on transport srv_mutex while holding memory registration.
1378 	 * Release the transport srv_mutex to allow them to hit the failure
1379 	 * path when sending data, and then release memory registartions.
1380 	 */
1381 	log_rdma_event(INFO, "freeing mr list\n");
1382 	wake_up_interruptible_all(&info->wait_mr);
1383 	while (atomic_read(&info->mr_used_count)) {
1384 		mutex_unlock(&server->srv_mutex);
1385 		msleep(1000);
1386 		mutex_lock(&server->srv_mutex);
1387 	}
1388 	destroy_mr_list(info);
1389 
1390 	ib_free_cq(info->send_cq);
1391 	ib_free_cq(info->recv_cq);
1392 	ib_dealloc_pd(info->pd);
1393 	rdma_destroy_id(info->id);
1394 
1395 	/* free mempools */
1396 	mempool_destroy(info->request_mempool);
1397 	kmem_cache_destroy(info->request_cache);
1398 
1399 	mempool_destroy(info->response_mempool);
1400 	kmem_cache_destroy(info->response_cache);
1401 
1402 	info->transport_status = SMBD_DESTROYED;
1403 
1404 	destroy_workqueue(info->workqueue);
1405 	log_rdma_event(INFO,  "rdma session destroyed\n");
1406 	kfree(info);
1407 	server->smbd_conn = NULL;
1408 }
1409 
1410 /*
1411  * Reconnect this SMBD connection, called from upper layer
1412  * return value: 0 on success, or actual error code
1413  */
smbd_reconnect(struct TCP_Server_Info * server)1414 int smbd_reconnect(struct TCP_Server_Info *server)
1415 {
1416 	log_rdma_event(INFO, "reconnecting rdma session\n");
1417 
1418 	if (!server->smbd_conn) {
1419 		log_rdma_event(INFO, "rdma session already destroyed\n");
1420 		goto create_conn;
1421 	}
1422 
1423 	/*
1424 	 * This is possible if transport is disconnected and we haven't received
1425 	 * notification from RDMA, but upper layer has detected timeout
1426 	 */
1427 	if (server->smbd_conn->transport_status == SMBD_CONNECTED) {
1428 		log_rdma_event(INFO, "disconnecting transport\n");
1429 		smbd_destroy(server);
1430 	}
1431 
1432 create_conn:
1433 	log_rdma_event(INFO, "creating rdma session\n");
1434 	server->smbd_conn = smbd_get_connection(
1435 		server, (struct sockaddr *) &server->dstaddr);
1436 
1437 	if (server->smbd_conn)
1438 		cifs_dbg(VFS, "RDMA transport re-established\n");
1439 
1440 	return server->smbd_conn ? 0 : -ENOENT;
1441 }
1442 
destroy_caches_and_workqueue(struct smbd_connection * info)1443 static void destroy_caches_and_workqueue(struct smbd_connection *info)
1444 {
1445 	destroy_receive_buffers(info);
1446 	destroy_workqueue(info->workqueue);
1447 	mempool_destroy(info->response_mempool);
1448 	kmem_cache_destroy(info->response_cache);
1449 	mempool_destroy(info->request_mempool);
1450 	kmem_cache_destroy(info->request_cache);
1451 }
1452 
1453 #define MAX_NAME_LEN	80
allocate_caches_and_workqueue(struct smbd_connection * info)1454 static int allocate_caches_and_workqueue(struct smbd_connection *info)
1455 {
1456 	char name[MAX_NAME_LEN];
1457 	int rc;
1458 
1459 	scnprintf(name, MAX_NAME_LEN, "smbd_request_%p", info);
1460 	info->request_cache =
1461 		kmem_cache_create(
1462 			name,
1463 			sizeof(struct smbd_request) +
1464 				sizeof(struct smbd_data_transfer),
1465 			0, SLAB_HWCACHE_ALIGN, NULL);
1466 	if (!info->request_cache)
1467 		return -ENOMEM;
1468 
1469 	info->request_mempool =
1470 		mempool_create(info->send_credit_target, mempool_alloc_slab,
1471 			mempool_free_slab, info->request_cache);
1472 	if (!info->request_mempool)
1473 		goto out1;
1474 
1475 	scnprintf(name, MAX_NAME_LEN, "smbd_response_%p", info);
1476 	info->response_cache =
1477 		kmem_cache_create(
1478 			name,
1479 			sizeof(struct smbd_response) +
1480 				info->max_receive_size,
1481 			0, SLAB_HWCACHE_ALIGN, NULL);
1482 	if (!info->response_cache)
1483 		goto out2;
1484 
1485 	info->response_mempool =
1486 		mempool_create(info->receive_credit_max, mempool_alloc_slab,
1487 		       mempool_free_slab, info->response_cache);
1488 	if (!info->response_mempool)
1489 		goto out3;
1490 
1491 	scnprintf(name, MAX_NAME_LEN, "smbd_%p", info);
1492 	info->workqueue = create_workqueue(name);
1493 	if (!info->workqueue)
1494 		goto out4;
1495 
1496 	rc = allocate_receive_buffers(info, info->receive_credit_max);
1497 	if (rc) {
1498 		log_rdma_event(ERR, "failed to allocate receive buffers\n");
1499 		goto out5;
1500 	}
1501 
1502 	return 0;
1503 
1504 out5:
1505 	destroy_workqueue(info->workqueue);
1506 out4:
1507 	mempool_destroy(info->response_mempool);
1508 out3:
1509 	kmem_cache_destroy(info->response_cache);
1510 out2:
1511 	mempool_destroy(info->request_mempool);
1512 out1:
1513 	kmem_cache_destroy(info->request_cache);
1514 	return -ENOMEM;
1515 }
1516 
1517 /* Create a SMBD connection, called by upper layer */
_smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr,int port)1518 static struct smbd_connection *_smbd_get_connection(
1519 	struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1520 {
1521 	int rc;
1522 	struct smbd_connection *info;
1523 	struct rdma_conn_param conn_param;
1524 	struct ib_qp_init_attr qp_attr;
1525 	struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
1526 	struct ib_port_immutable port_immutable;
1527 	u32 ird_ord_hdr[2];
1528 
1529 	info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1530 	if (!info)
1531 		return NULL;
1532 
1533 	info->transport_status = SMBD_CONNECTING;
1534 	rc = smbd_ia_open(info, dstaddr, port);
1535 	if (rc) {
1536 		log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1537 		goto create_id_failed;
1538 	}
1539 
1540 	if (smbd_send_credit_target > info->id->device->attrs.max_cqe ||
1541 	    smbd_send_credit_target > info->id->device->attrs.max_qp_wr) {
1542 		log_rdma_event(ERR, "consider lowering send_credit_target = %d. Possible CQE overrun, device reporting max_cpe %d max_qp_wr %d\n",
1543 			       smbd_send_credit_target,
1544 			       info->id->device->attrs.max_cqe,
1545 			       info->id->device->attrs.max_qp_wr);
1546 		goto config_failed;
1547 	}
1548 
1549 	if (smbd_receive_credit_max > info->id->device->attrs.max_cqe ||
1550 	    smbd_receive_credit_max > info->id->device->attrs.max_qp_wr) {
1551 		log_rdma_event(ERR, "consider lowering receive_credit_max = %d. Possible CQE overrun, device reporting max_cpe %d max_qp_wr %d\n",
1552 			       smbd_receive_credit_max,
1553 			       info->id->device->attrs.max_cqe,
1554 			       info->id->device->attrs.max_qp_wr);
1555 		goto config_failed;
1556 	}
1557 
1558 	info->receive_credit_max = smbd_receive_credit_max;
1559 	info->send_credit_target = smbd_send_credit_target;
1560 	info->max_send_size = smbd_max_send_size;
1561 	info->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1562 	info->max_receive_size = smbd_max_receive_size;
1563 	info->keep_alive_interval = smbd_keep_alive_interval;
1564 
1565 	if (info->id->device->attrs.max_send_sge < SMBDIRECT_MAX_SGE) {
1566 		log_rdma_event(ERR,
1567 			"warning: device max_send_sge = %d too small\n",
1568 			info->id->device->attrs.max_send_sge);
1569 		log_rdma_event(ERR, "Queue Pair creation may fail\n");
1570 	}
1571 	if (info->id->device->attrs.max_recv_sge < SMBDIRECT_MAX_SGE) {
1572 		log_rdma_event(ERR,
1573 			"warning: device max_recv_sge = %d too small\n",
1574 			info->id->device->attrs.max_recv_sge);
1575 		log_rdma_event(ERR, "Queue Pair creation may fail\n");
1576 	}
1577 
1578 	info->send_cq = NULL;
1579 	info->recv_cq = NULL;
1580 	info->send_cq =
1581 		ib_alloc_cq_any(info->id->device, info,
1582 				info->send_credit_target, IB_POLL_SOFTIRQ);
1583 	if (IS_ERR(info->send_cq)) {
1584 		info->send_cq = NULL;
1585 		goto alloc_cq_failed;
1586 	}
1587 
1588 	info->recv_cq =
1589 		ib_alloc_cq_any(info->id->device, info,
1590 				info->receive_credit_max, IB_POLL_SOFTIRQ);
1591 	if (IS_ERR(info->recv_cq)) {
1592 		info->recv_cq = NULL;
1593 		goto alloc_cq_failed;
1594 	}
1595 
1596 	memset(&qp_attr, 0, sizeof(qp_attr));
1597 	qp_attr.event_handler = smbd_qp_async_error_upcall;
1598 	qp_attr.qp_context = info;
1599 	qp_attr.cap.max_send_wr = info->send_credit_target;
1600 	qp_attr.cap.max_recv_wr = info->receive_credit_max;
1601 	qp_attr.cap.max_send_sge = SMBDIRECT_MAX_SGE;
1602 	qp_attr.cap.max_recv_sge = SMBDIRECT_MAX_SGE;
1603 	qp_attr.cap.max_inline_data = 0;
1604 	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1605 	qp_attr.qp_type = IB_QPT_RC;
1606 	qp_attr.send_cq = info->send_cq;
1607 	qp_attr.recv_cq = info->recv_cq;
1608 	qp_attr.port_num = ~0;
1609 
1610 	rc = rdma_create_qp(info->id, info->pd, &qp_attr);
1611 	if (rc) {
1612 		log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1613 		goto create_qp_failed;
1614 	}
1615 
1616 	memset(&conn_param, 0, sizeof(conn_param));
1617 	conn_param.initiator_depth = 0;
1618 
1619 	conn_param.responder_resources =
1620 		info->id->device->attrs.max_qp_rd_atom
1621 			< SMBD_CM_RESPONDER_RESOURCES ?
1622 		info->id->device->attrs.max_qp_rd_atom :
1623 		SMBD_CM_RESPONDER_RESOURCES;
1624 	info->responder_resources = conn_param.responder_resources;
1625 	log_rdma_mr(INFO, "responder_resources=%d\n",
1626 		info->responder_resources);
1627 
1628 	/* Need to send IRD/ORD in private data for iWARP */
1629 	info->id->device->ops.get_port_immutable(
1630 		info->id->device, info->id->port_num, &port_immutable);
1631 	if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1632 		ird_ord_hdr[0] = info->responder_resources;
1633 		ird_ord_hdr[1] = 1;
1634 		conn_param.private_data = ird_ord_hdr;
1635 		conn_param.private_data_len = sizeof(ird_ord_hdr);
1636 	} else {
1637 		conn_param.private_data = NULL;
1638 		conn_param.private_data_len = 0;
1639 	}
1640 
1641 	conn_param.retry_count = SMBD_CM_RETRY;
1642 	conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1643 	conn_param.flow_control = 0;
1644 
1645 	log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1646 		&addr_in->sin_addr, port);
1647 
1648 	init_waitqueue_head(&info->conn_wait);
1649 	init_waitqueue_head(&info->disconn_wait);
1650 	init_waitqueue_head(&info->wait_reassembly_queue);
1651 	rc = rdma_connect(info->id, &conn_param);
1652 	if (rc) {
1653 		log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1654 		goto rdma_connect_failed;
1655 	}
1656 
1657 	wait_event_interruptible(
1658 		info->conn_wait, info->transport_status != SMBD_CONNECTING);
1659 
1660 	if (info->transport_status != SMBD_CONNECTED) {
1661 		log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1662 		goto rdma_connect_failed;
1663 	}
1664 
1665 	log_rdma_event(INFO, "rdma_connect connected\n");
1666 
1667 	rc = allocate_caches_and_workqueue(info);
1668 	if (rc) {
1669 		log_rdma_event(ERR, "cache allocation failed\n");
1670 		goto allocate_cache_failed;
1671 	}
1672 
1673 	init_waitqueue_head(&info->wait_send_queue);
1674 	INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer);
1675 	queue_delayed_work(info->workqueue, &info->idle_timer_work,
1676 		info->keep_alive_interval*HZ);
1677 
1678 	init_waitqueue_head(&info->wait_send_pending);
1679 	atomic_set(&info->send_pending, 0);
1680 
1681 	init_waitqueue_head(&info->wait_post_send);
1682 
1683 	INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work);
1684 	INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits);
1685 	info->new_credits_offered = 0;
1686 	spin_lock_init(&info->lock_new_credits_offered);
1687 
1688 	rc = smbd_negotiate(info);
1689 	if (rc) {
1690 		log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1691 		goto negotiation_failed;
1692 	}
1693 
1694 	rc = allocate_mr_list(info);
1695 	if (rc) {
1696 		log_rdma_mr(ERR, "memory registration allocation failed\n");
1697 		goto allocate_mr_failed;
1698 	}
1699 
1700 	return info;
1701 
1702 allocate_mr_failed:
1703 	/* At this point, need to a full transport shutdown */
1704 	server->smbd_conn = info;
1705 	smbd_destroy(server);
1706 	return NULL;
1707 
1708 negotiation_failed:
1709 	cancel_delayed_work_sync(&info->idle_timer_work);
1710 	destroy_caches_and_workqueue(info);
1711 	info->transport_status = SMBD_NEGOTIATE_FAILED;
1712 	init_waitqueue_head(&info->conn_wait);
1713 	rdma_disconnect(info->id);
1714 	wait_event(info->conn_wait,
1715 		info->transport_status == SMBD_DISCONNECTED);
1716 
1717 allocate_cache_failed:
1718 rdma_connect_failed:
1719 	rdma_destroy_qp(info->id);
1720 
1721 create_qp_failed:
1722 alloc_cq_failed:
1723 	if (info->send_cq)
1724 		ib_free_cq(info->send_cq);
1725 	if (info->recv_cq)
1726 		ib_free_cq(info->recv_cq);
1727 
1728 config_failed:
1729 	ib_dealloc_pd(info->pd);
1730 	rdma_destroy_id(info->id);
1731 
1732 create_id_failed:
1733 	kfree(info);
1734 	return NULL;
1735 }
1736 
smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr)1737 struct smbd_connection *smbd_get_connection(
1738 	struct TCP_Server_Info *server, struct sockaddr *dstaddr)
1739 {
1740 	struct smbd_connection *ret;
1741 	int port = SMBD_PORT;
1742 
1743 try_again:
1744 	ret = _smbd_get_connection(server, dstaddr, port);
1745 
1746 	/* Try SMB_PORT if SMBD_PORT doesn't work */
1747 	if (!ret && port == SMBD_PORT) {
1748 		port = SMB_PORT;
1749 		goto try_again;
1750 	}
1751 	return ret;
1752 }
1753 
1754 /*
1755  * Receive data from receive reassembly queue
1756  * All the incoming data packets are placed in reassembly queue
1757  * buf: the buffer to read data into
1758  * size: the length of data to read
1759  * return value: actual data read
1760  * Note: this implementation copies the data from reassebmly queue to receive
1761  * buffers used by upper layer. This is not the optimal code path. A better way
1762  * to do it is to not have upper layer allocate its receive buffers but rather
1763  * borrow the buffer from reassembly queue, and return it after data is
1764  * consumed. But this will require more changes to upper layer code, and also
1765  * need to consider packet boundaries while they still being reassembled.
1766  */
smbd_recv_buf(struct smbd_connection * info,char * buf,unsigned int size)1767 static int smbd_recv_buf(struct smbd_connection *info, char *buf,
1768 		unsigned int size)
1769 {
1770 	struct smbd_response *response;
1771 	struct smbd_data_transfer *data_transfer;
1772 	int to_copy, to_read, data_read, offset;
1773 	u32 data_length, remaining_data_length, data_offset;
1774 	int rc;
1775 
1776 again:
1777 	/*
1778 	 * No need to hold the reassembly queue lock all the time as we are
1779 	 * the only one reading from the front of the queue. The transport
1780 	 * may add more entries to the back of the queue at the same time
1781 	 */
1782 	log_read(INFO, "size=%d info->reassembly_data_length=%d\n", size,
1783 		info->reassembly_data_length);
1784 	if (info->reassembly_data_length >= size) {
1785 		int queue_length;
1786 		int queue_removed = 0;
1787 
1788 		/*
1789 		 * Need to make sure reassembly_data_length is read before
1790 		 * reading reassembly_queue_length and calling
1791 		 * _get_first_reassembly. This call is lock free
1792 		 * as we never read at the end of the queue which are being
1793 		 * updated in SOFTIRQ as more data is received
1794 		 */
1795 		virt_rmb();
1796 		queue_length = info->reassembly_queue_length;
1797 		data_read = 0;
1798 		to_read = size;
1799 		offset = info->first_entry_offset;
1800 		while (data_read < size) {
1801 			response = _get_first_reassembly(info);
1802 			data_transfer = smbd_response_payload(response);
1803 			data_length = le32_to_cpu(data_transfer->data_length);
1804 			remaining_data_length =
1805 				le32_to_cpu(
1806 					data_transfer->remaining_data_length);
1807 			data_offset = le32_to_cpu(data_transfer->data_offset);
1808 
1809 			/*
1810 			 * The upper layer expects RFC1002 length at the
1811 			 * beginning of the payload. Return it to indicate
1812 			 * the total length of the packet. This minimize the
1813 			 * change to upper layer packet processing logic. This
1814 			 * will be eventually remove when an intermediate
1815 			 * transport layer is added
1816 			 */
1817 			if (response->first_segment && size == 4) {
1818 				unsigned int rfc1002_len =
1819 					data_length + remaining_data_length;
1820 				*((__be32 *)buf) = cpu_to_be32(rfc1002_len);
1821 				data_read = 4;
1822 				response->first_segment = false;
1823 				log_read(INFO, "returning rfc1002 length %d\n",
1824 					rfc1002_len);
1825 				goto read_rfc1002_done;
1826 			}
1827 
1828 			to_copy = min_t(int, data_length - offset, to_read);
1829 			memcpy(
1830 				buf + data_read,
1831 				(char *)data_transfer + data_offset + offset,
1832 				to_copy);
1833 
1834 			/* move on to the next buffer? */
1835 			if (to_copy == data_length - offset) {
1836 				queue_length--;
1837 				/*
1838 				 * No need to lock if we are not at the
1839 				 * end of the queue
1840 				 */
1841 				if (queue_length)
1842 					list_del(&response->list);
1843 				else {
1844 					spin_lock_irq(
1845 						&info->reassembly_queue_lock);
1846 					list_del(&response->list);
1847 					spin_unlock_irq(
1848 						&info->reassembly_queue_lock);
1849 				}
1850 				queue_removed++;
1851 				info->count_reassembly_queue--;
1852 				info->count_dequeue_reassembly_queue++;
1853 				put_receive_buffer(info, response);
1854 				offset = 0;
1855 				log_read(INFO, "put_receive_buffer offset=0\n");
1856 			} else
1857 				offset += to_copy;
1858 
1859 			to_read -= to_copy;
1860 			data_read += to_copy;
1861 
1862 			log_read(INFO, "_get_first_reassembly memcpy %d bytes data_transfer_length-offset=%d after that to_read=%d data_read=%d offset=%d\n",
1863 				 to_copy, data_length - offset,
1864 				 to_read, data_read, offset);
1865 		}
1866 
1867 		spin_lock_irq(&info->reassembly_queue_lock);
1868 		info->reassembly_data_length -= data_read;
1869 		info->reassembly_queue_length -= queue_removed;
1870 		spin_unlock_irq(&info->reassembly_queue_lock);
1871 
1872 		info->first_entry_offset = offset;
1873 		log_read(INFO, "returning to thread data_read=%d reassembly_data_length=%d first_entry_offset=%d\n",
1874 			 data_read, info->reassembly_data_length,
1875 			 info->first_entry_offset);
1876 read_rfc1002_done:
1877 		return data_read;
1878 	}
1879 
1880 	log_read(INFO, "wait_event on more data\n");
1881 	rc = wait_event_interruptible(
1882 		info->wait_reassembly_queue,
1883 		info->reassembly_data_length >= size ||
1884 			info->transport_status != SMBD_CONNECTED);
1885 	/* Don't return any data if interrupted */
1886 	if (rc)
1887 		return rc;
1888 
1889 	if (info->transport_status != SMBD_CONNECTED) {
1890 		log_read(ERR, "disconnected\n");
1891 		return -ECONNABORTED;
1892 	}
1893 
1894 	goto again;
1895 }
1896 
1897 /*
1898  * Receive a page from receive reassembly queue
1899  * page: the page to read data into
1900  * to_read: the length of data to read
1901  * return value: actual data read
1902  */
smbd_recv_page(struct smbd_connection * info,struct page * page,unsigned int page_offset,unsigned int to_read)1903 static int smbd_recv_page(struct smbd_connection *info,
1904 		struct page *page, unsigned int page_offset,
1905 		unsigned int to_read)
1906 {
1907 	int ret;
1908 	char *to_address;
1909 	void *page_address;
1910 
1911 	/* make sure we have the page ready for read */
1912 	ret = wait_event_interruptible(
1913 		info->wait_reassembly_queue,
1914 		info->reassembly_data_length >= to_read ||
1915 			info->transport_status != SMBD_CONNECTED);
1916 	if (ret)
1917 		return ret;
1918 
1919 	/* now we can read from reassembly queue and not sleep */
1920 	page_address = kmap_atomic(page);
1921 	to_address = (char *) page_address + page_offset;
1922 
1923 	log_read(INFO, "reading from page=%p address=%p to_read=%d\n",
1924 		page, to_address, to_read);
1925 
1926 	ret = smbd_recv_buf(info, to_address, to_read);
1927 	kunmap_atomic(page_address);
1928 
1929 	return ret;
1930 }
1931 
1932 /*
1933  * Receive data from transport
1934  * msg: a msghdr point to the buffer, can be ITER_KVEC or ITER_BVEC
1935  * return: total bytes read, or 0. SMB Direct will not do partial read.
1936  */
smbd_recv(struct smbd_connection * info,struct msghdr * msg)1937 int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
1938 {
1939 	char *buf;
1940 	struct page *page;
1941 	unsigned int to_read, page_offset;
1942 	int rc;
1943 
1944 	if (iov_iter_rw(&msg->msg_iter) == WRITE) {
1945 		/* It's a bug in upper layer to get there */
1946 		cifs_dbg(VFS, "Invalid msg iter dir %u\n",
1947 			 iov_iter_rw(&msg->msg_iter));
1948 		rc = -EINVAL;
1949 		goto out;
1950 	}
1951 
1952 	switch (iov_iter_type(&msg->msg_iter)) {
1953 	case ITER_KVEC:
1954 		buf = msg->msg_iter.kvec->iov_base;
1955 		to_read = msg->msg_iter.kvec->iov_len;
1956 		rc = smbd_recv_buf(info, buf, to_read);
1957 		break;
1958 
1959 	case ITER_BVEC:
1960 		page = msg->msg_iter.bvec->bv_page;
1961 		page_offset = msg->msg_iter.bvec->bv_offset;
1962 		to_read = msg->msg_iter.bvec->bv_len;
1963 		rc = smbd_recv_page(info, page, page_offset, to_read);
1964 		break;
1965 
1966 	default:
1967 		/* It's a bug in upper layer to get there */
1968 		cifs_dbg(VFS, "Invalid msg type %d\n",
1969 			 iov_iter_type(&msg->msg_iter));
1970 		rc = -EINVAL;
1971 	}
1972 
1973 out:
1974 	/* SMBDirect will read it all or nothing */
1975 	if (rc > 0)
1976 		msg->msg_iter.count = 0;
1977 	return rc;
1978 }
1979 
1980 /*
1981  * Send data to transport
1982  * Each rqst is transported as a SMBDirect payload
1983  * rqst: the data to write
1984  * return value: 0 if successfully write, otherwise error code
1985  */
smbd_send(struct TCP_Server_Info * server,int num_rqst,struct smb_rqst * rqst_array)1986 int smbd_send(struct TCP_Server_Info *server,
1987 	int num_rqst, struct smb_rqst *rqst_array)
1988 {
1989 	struct smbd_connection *info = server->smbd_conn;
1990 	struct kvec vec;
1991 	int nvecs;
1992 	int size;
1993 	unsigned int buflen, remaining_data_length;
1994 	int start, i, j;
1995 	int max_iov_size =
1996 		info->max_send_size - sizeof(struct smbd_data_transfer);
1997 	struct kvec *iov;
1998 	int rc;
1999 	struct smb_rqst *rqst;
2000 	int rqst_idx;
2001 
2002 	if (info->transport_status != SMBD_CONNECTED) {
2003 		rc = -EAGAIN;
2004 		goto done;
2005 	}
2006 
2007 	/*
2008 	 * Add in the page array if there is one. The caller needs to set
2009 	 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and
2010 	 * ends at page boundary
2011 	 */
2012 	remaining_data_length = 0;
2013 	for (i = 0; i < num_rqst; i++)
2014 		remaining_data_length += smb_rqst_len(server, &rqst_array[i]);
2015 
2016 	if (remaining_data_length > info->max_fragmented_send_size) {
2017 		log_write(ERR, "payload size %d > max size %d\n",
2018 			remaining_data_length, info->max_fragmented_send_size);
2019 		rc = -EINVAL;
2020 		goto done;
2021 	}
2022 
2023 	log_write(INFO, "num_rqst=%d total length=%u\n",
2024 			num_rqst, remaining_data_length);
2025 
2026 	rqst_idx = 0;
2027 next_rqst:
2028 	rqst = &rqst_array[rqst_idx];
2029 	iov = rqst->rq_iov;
2030 
2031 	cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n",
2032 		rqst_idx, smb_rqst_len(server, rqst));
2033 	for (i = 0; i < rqst->rq_nvec; i++)
2034 		dump_smb(iov[i].iov_base, iov[i].iov_len);
2035 
2036 
2037 	log_write(INFO, "rqst_idx=%d nvec=%d rqst->rq_npages=%d rq_pagesz=%d rq_tailsz=%d buflen=%lu\n",
2038 		  rqst_idx, rqst->rq_nvec, rqst->rq_npages, rqst->rq_pagesz,
2039 		  rqst->rq_tailsz, smb_rqst_len(server, rqst));
2040 
2041 	start = i = 0;
2042 	buflen = 0;
2043 	while (true) {
2044 		buflen += iov[i].iov_len;
2045 		if (buflen > max_iov_size) {
2046 			if (i > start) {
2047 				remaining_data_length -=
2048 					(buflen-iov[i].iov_len);
2049 				log_write(INFO, "sending iov[] from start=%d i=%d nvecs=%d remaining_data_length=%d\n",
2050 					  start, i, i - start,
2051 					  remaining_data_length);
2052 				rc = smbd_post_send_data(
2053 					info, &iov[start], i-start,
2054 					remaining_data_length);
2055 				if (rc)
2056 					goto done;
2057 			} else {
2058 				/* iov[start] is too big, break it */
2059 				nvecs = (buflen+max_iov_size-1)/max_iov_size;
2060 				log_write(INFO, "iov[%d] iov_base=%p buflen=%d break to %d vectors\n",
2061 					  start, iov[start].iov_base,
2062 					  buflen, nvecs);
2063 				for (j = 0; j < nvecs; j++) {
2064 					vec.iov_base =
2065 						(char *)iov[start].iov_base +
2066 						j*max_iov_size;
2067 					vec.iov_len = max_iov_size;
2068 					if (j == nvecs-1)
2069 						vec.iov_len =
2070 							buflen -
2071 							max_iov_size*(nvecs-1);
2072 					remaining_data_length -= vec.iov_len;
2073 					log_write(INFO,
2074 						"sending vec j=%d iov_base=%p iov_len=%zu remaining_data_length=%d\n",
2075 						  j, vec.iov_base, vec.iov_len,
2076 						  remaining_data_length);
2077 					rc = smbd_post_send_data(
2078 						info, &vec, 1,
2079 						remaining_data_length);
2080 					if (rc)
2081 						goto done;
2082 				}
2083 				i++;
2084 				if (i == rqst->rq_nvec)
2085 					break;
2086 			}
2087 			start = i;
2088 			buflen = 0;
2089 		} else {
2090 			i++;
2091 			if (i == rqst->rq_nvec) {
2092 				/* send out all remaining vecs */
2093 				remaining_data_length -= buflen;
2094 				log_write(INFO, "sending iov[] from start=%d i=%d nvecs=%d remaining_data_length=%d\n",
2095 					  start, i, i - start,
2096 					  remaining_data_length);
2097 				rc = smbd_post_send_data(info, &iov[start],
2098 					i-start, remaining_data_length);
2099 				if (rc)
2100 					goto done;
2101 				break;
2102 			}
2103 		}
2104 		log_write(INFO, "looping i=%d buflen=%d\n", i, buflen);
2105 	}
2106 
2107 	/* now sending pages if there are any */
2108 	for (i = 0; i < rqst->rq_npages; i++) {
2109 		unsigned int offset;
2110 
2111 		rqst_page_get_length(rqst, i, &buflen, &offset);
2112 		nvecs = (buflen + max_iov_size - 1) / max_iov_size;
2113 		log_write(INFO, "sending pages buflen=%d nvecs=%d\n",
2114 			buflen, nvecs);
2115 		for (j = 0; j < nvecs; j++) {
2116 			size = max_iov_size;
2117 			if (j == nvecs-1)
2118 				size = buflen - j*max_iov_size;
2119 			remaining_data_length -= size;
2120 			log_write(INFO, "sending pages i=%d offset=%d size=%d remaining_data_length=%d\n",
2121 				  i, j * max_iov_size + offset, size,
2122 				  remaining_data_length);
2123 			rc = smbd_post_send_page(
2124 				info, rqst->rq_pages[i],
2125 				j*max_iov_size + offset,
2126 				size, remaining_data_length);
2127 			if (rc)
2128 				goto done;
2129 		}
2130 	}
2131 
2132 	rqst_idx++;
2133 	if (rqst_idx < num_rqst)
2134 		goto next_rqst;
2135 
2136 done:
2137 	/*
2138 	 * As an optimization, we don't wait for individual I/O to finish
2139 	 * before sending the next one.
2140 	 * Send them all and wait for pending send count to get to 0
2141 	 * that means all the I/Os have been out and we are good to return
2142 	 */
2143 
2144 	wait_event(info->wait_send_pending,
2145 		atomic_read(&info->send_pending) == 0);
2146 
2147 	return rc;
2148 }
2149 
register_mr_done(struct ib_cq * cq,struct ib_wc * wc)2150 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
2151 {
2152 	struct smbd_mr *mr;
2153 	struct ib_cqe *cqe;
2154 
2155 	if (wc->status) {
2156 		log_rdma_mr(ERR, "status=%d\n", wc->status);
2157 		cqe = wc->wr_cqe;
2158 		mr = container_of(cqe, struct smbd_mr, cqe);
2159 		smbd_disconnect_rdma_connection(mr->conn);
2160 	}
2161 }
2162 
2163 /*
2164  * The work queue function that recovers MRs
2165  * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
2166  * again. Both calls are slow, so finish them in a workqueue. This will not
2167  * block I/O path.
2168  * There is one workqueue that recovers MRs, there is no need to lock as the
2169  * I/O requests calling smbd_register_mr will never update the links in the
2170  * mr_list.
2171  */
smbd_mr_recovery_work(struct work_struct * work)2172 static void smbd_mr_recovery_work(struct work_struct *work)
2173 {
2174 	struct smbd_connection *info =
2175 		container_of(work, struct smbd_connection, mr_recovery_work);
2176 	struct smbd_mr *smbdirect_mr;
2177 	int rc;
2178 
2179 	list_for_each_entry(smbdirect_mr, &info->mr_list, list) {
2180 		if (smbdirect_mr->state == MR_ERROR) {
2181 
2182 			/* recover this MR entry */
2183 			rc = ib_dereg_mr(smbdirect_mr->mr);
2184 			if (rc) {
2185 				log_rdma_mr(ERR,
2186 					"ib_dereg_mr failed rc=%x\n",
2187 					rc);
2188 				smbd_disconnect_rdma_connection(info);
2189 				continue;
2190 			}
2191 
2192 			smbdirect_mr->mr = ib_alloc_mr(
2193 				info->pd, info->mr_type,
2194 				info->max_frmr_depth);
2195 			if (IS_ERR(smbdirect_mr->mr)) {
2196 				log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2197 					    info->mr_type,
2198 					    info->max_frmr_depth);
2199 				smbd_disconnect_rdma_connection(info);
2200 				continue;
2201 			}
2202 		} else
2203 			/* This MR is being used, don't recover it */
2204 			continue;
2205 
2206 		smbdirect_mr->state = MR_READY;
2207 
2208 		/* smbdirect_mr->state is updated by this function
2209 		 * and is read and updated by I/O issuing CPUs trying
2210 		 * to get a MR, the call to atomic_inc_return
2211 		 * implicates a memory barrier and guarantees this
2212 		 * value is updated before waking up any calls to
2213 		 * get_mr() from the I/O issuing CPUs
2214 		 */
2215 		if (atomic_inc_return(&info->mr_ready_count) == 1)
2216 			wake_up_interruptible(&info->wait_mr);
2217 	}
2218 }
2219 
destroy_mr_list(struct smbd_connection * info)2220 static void destroy_mr_list(struct smbd_connection *info)
2221 {
2222 	struct smbd_mr *mr, *tmp;
2223 
2224 	cancel_work_sync(&info->mr_recovery_work);
2225 	list_for_each_entry_safe(mr, tmp, &info->mr_list, list) {
2226 		if (mr->state == MR_INVALIDATED)
2227 			ib_dma_unmap_sg(info->id->device, mr->sgl,
2228 				mr->sgl_count, mr->dir);
2229 		ib_dereg_mr(mr->mr);
2230 		kfree(mr->sgl);
2231 		kfree(mr);
2232 	}
2233 }
2234 
2235 /*
2236  * Allocate MRs used for RDMA read/write
2237  * The number of MRs will not exceed hardware capability in responder_resources
2238  * All MRs are kept in mr_list. The MR can be recovered after it's used
2239  * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2240  * as MRs are used and recovered for I/O, but the list links will not change
2241  */
allocate_mr_list(struct smbd_connection * info)2242 static int allocate_mr_list(struct smbd_connection *info)
2243 {
2244 	int i;
2245 	struct smbd_mr *smbdirect_mr, *tmp;
2246 
2247 	INIT_LIST_HEAD(&info->mr_list);
2248 	init_waitqueue_head(&info->wait_mr);
2249 	spin_lock_init(&info->mr_list_lock);
2250 	atomic_set(&info->mr_ready_count, 0);
2251 	atomic_set(&info->mr_used_count, 0);
2252 	init_waitqueue_head(&info->wait_for_mr_cleanup);
2253 	INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work);
2254 	/* Allocate more MRs (2x) than hardware responder_resources */
2255 	for (i = 0; i < info->responder_resources * 2; i++) {
2256 		smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL);
2257 		if (!smbdirect_mr)
2258 			goto out;
2259 		smbdirect_mr->mr = ib_alloc_mr(info->pd, info->mr_type,
2260 					info->max_frmr_depth);
2261 		if (IS_ERR(smbdirect_mr->mr)) {
2262 			log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2263 				    info->mr_type, info->max_frmr_depth);
2264 			goto out;
2265 		}
2266 		smbdirect_mr->sgl = kcalloc(
2267 					info->max_frmr_depth,
2268 					sizeof(struct scatterlist),
2269 					GFP_KERNEL);
2270 		if (!smbdirect_mr->sgl) {
2271 			log_rdma_mr(ERR, "failed to allocate sgl\n");
2272 			ib_dereg_mr(smbdirect_mr->mr);
2273 			goto out;
2274 		}
2275 		smbdirect_mr->state = MR_READY;
2276 		smbdirect_mr->conn = info;
2277 
2278 		list_add_tail(&smbdirect_mr->list, &info->mr_list);
2279 		atomic_inc(&info->mr_ready_count);
2280 	}
2281 	return 0;
2282 
2283 out:
2284 	kfree(smbdirect_mr);
2285 
2286 	list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) {
2287 		list_del(&smbdirect_mr->list);
2288 		ib_dereg_mr(smbdirect_mr->mr);
2289 		kfree(smbdirect_mr->sgl);
2290 		kfree(smbdirect_mr);
2291 	}
2292 	return -ENOMEM;
2293 }
2294 
2295 /*
2296  * Get a MR from mr_list. This function waits until there is at least one
2297  * MR available in the list. It may access the list while the
2298  * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2299  * as they never modify the same places. However, there may be several CPUs
2300  * issueing I/O trying to get MR at the same time, mr_list_lock is used to
2301  * protect this situation.
2302  */
get_mr(struct smbd_connection * info)2303 static struct smbd_mr *get_mr(struct smbd_connection *info)
2304 {
2305 	struct smbd_mr *ret;
2306 	int rc;
2307 again:
2308 	rc = wait_event_interruptible(info->wait_mr,
2309 		atomic_read(&info->mr_ready_count) ||
2310 		info->transport_status != SMBD_CONNECTED);
2311 	if (rc) {
2312 		log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2313 		return NULL;
2314 	}
2315 
2316 	if (info->transport_status != SMBD_CONNECTED) {
2317 		log_rdma_mr(ERR, "info->transport_status=%x\n",
2318 			info->transport_status);
2319 		return NULL;
2320 	}
2321 
2322 	spin_lock(&info->mr_list_lock);
2323 	list_for_each_entry(ret, &info->mr_list, list) {
2324 		if (ret->state == MR_READY) {
2325 			ret->state = MR_REGISTERED;
2326 			spin_unlock(&info->mr_list_lock);
2327 			atomic_dec(&info->mr_ready_count);
2328 			atomic_inc(&info->mr_used_count);
2329 			return ret;
2330 		}
2331 	}
2332 
2333 	spin_unlock(&info->mr_list_lock);
2334 	/*
2335 	 * It is possible that we could fail to get MR because other processes may
2336 	 * try to acquire a MR at the same time. If this is the case, retry it.
2337 	 */
2338 	goto again;
2339 }
2340 
2341 /*
2342  * Register memory for RDMA read/write
2343  * pages[]: the list of pages to register memory with
2344  * num_pages: the number of pages to register
2345  * tailsz: if non-zero, the bytes to register in the last page
2346  * writing: true if this is a RDMA write (SMB read), false for RDMA read
2347  * need_invalidate: true if this MR needs to be locally invalidated after I/O
2348  * return value: the MR registered, NULL if failed.
2349  */
smbd_register_mr(struct smbd_connection * info,struct page * pages[],int num_pages,int offset,int tailsz,bool writing,bool need_invalidate)2350 struct smbd_mr *smbd_register_mr(
2351 	struct smbd_connection *info, struct page *pages[], int num_pages,
2352 	int offset, int tailsz, bool writing, bool need_invalidate)
2353 {
2354 	struct smbd_mr *smbdirect_mr;
2355 	int rc, i;
2356 	enum dma_data_direction dir;
2357 	struct ib_reg_wr *reg_wr;
2358 
2359 	if (num_pages > info->max_frmr_depth) {
2360 		log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2361 			num_pages, info->max_frmr_depth);
2362 		return NULL;
2363 	}
2364 
2365 	smbdirect_mr = get_mr(info);
2366 	if (!smbdirect_mr) {
2367 		log_rdma_mr(ERR, "get_mr returning NULL\n");
2368 		return NULL;
2369 	}
2370 	smbdirect_mr->need_invalidate = need_invalidate;
2371 	smbdirect_mr->sgl_count = num_pages;
2372 	sg_init_table(smbdirect_mr->sgl, num_pages);
2373 
2374 	log_rdma_mr(INFO, "num_pages=0x%x offset=0x%x tailsz=0x%x\n",
2375 			num_pages, offset, tailsz);
2376 
2377 	if (num_pages == 1) {
2378 		sg_set_page(&smbdirect_mr->sgl[0], pages[0], tailsz, offset);
2379 		goto skip_multiple_pages;
2380 	}
2381 
2382 	/* We have at least two pages to register */
2383 	sg_set_page(
2384 		&smbdirect_mr->sgl[0], pages[0], PAGE_SIZE - offset, offset);
2385 	i = 1;
2386 	while (i < num_pages - 1) {
2387 		sg_set_page(&smbdirect_mr->sgl[i], pages[i], PAGE_SIZE, 0);
2388 		i++;
2389 	}
2390 	sg_set_page(&smbdirect_mr->sgl[i], pages[i],
2391 		tailsz ? tailsz : PAGE_SIZE, 0);
2392 
2393 skip_multiple_pages:
2394 	dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2395 	smbdirect_mr->dir = dir;
2396 	rc = ib_dma_map_sg(info->id->device, smbdirect_mr->sgl, num_pages, dir);
2397 	if (!rc) {
2398 		log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2399 			num_pages, dir, rc);
2400 		goto dma_map_error;
2401 	}
2402 
2403 	rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgl, num_pages,
2404 		NULL, PAGE_SIZE);
2405 	if (rc != num_pages) {
2406 		log_rdma_mr(ERR,
2407 			"ib_map_mr_sg failed rc = %d num_pages = %x\n",
2408 			rc, num_pages);
2409 		goto map_mr_error;
2410 	}
2411 
2412 	ib_update_fast_reg_key(smbdirect_mr->mr,
2413 		ib_inc_rkey(smbdirect_mr->mr->rkey));
2414 	reg_wr = &smbdirect_mr->wr;
2415 	reg_wr->wr.opcode = IB_WR_REG_MR;
2416 	smbdirect_mr->cqe.done = register_mr_done;
2417 	reg_wr->wr.wr_cqe = &smbdirect_mr->cqe;
2418 	reg_wr->wr.num_sge = 0;
2419 	reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2420 	reg_wr->mr = smbdirect_mr->mr;
2421 	reg_wr->key = smbdirect_mr->mr->rkey;
2422 	reg_wr->access = writing ?
2423 			IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2424 			IB_ACCESS_REMOTE_READ;
2425 
2426 	/*
2427 	 * There is no need for waiting for complemtion on ib_post_send
2428 	 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2429 	 * on the next ib_post_send when we actaully send I/O to remote peer
2430 	 */
2431 	rc = ib_post_send(info->id->qp, &reg_wr->wr, NULL);
2432 	if (!rc)
2433 		return smbdirect_mr;
2434 
2435 	log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2436 		rc, reg_wr->key);
2437 
2438 	/* If all failed, attempt to recover this MR by setting it MR_ERROR*/
2439 map_mr_error:
2440 	ib_dma_unmap_sg(info->id->device, smbdirect_mr->sgl,
2441 		smbdirect_mr->sgl_count, smbdirect_mr->dir);
2442 
2443 dma_map_error:
2444 	smbdirect_mr->state = MR_ERROR;
2445 	if (atomic_dec_and_test(&info->mr_used_count))
2446 		wake_up(&info->wait_for_mr_cleanup);
2447 
2448 	smbd_disconnect_rdma_connection(info);
2449 
2450 	return NULL;
2451 }
2452 
local_inv_done(struct ib_cq * cq,struct ib_wc * wc)2453 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2454 {
2455 	struct smbd_mr *smbdirect_mr;
2456 	struct ib_cqe *cqe;
2457 
2458 	cqe = wc->wr_cqe;
2459 	smbdirect_mr = container_of(cqe, struct smbd_mr, cqe);
2460 	smbdirect_mr->state = MR_INVALIDATED;
2461 	if (wc->status != IB_WC_SUCCESS) {
2462 		log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2463 		smbdirect_mr->state = MR_ERROR;
2464 	}
2465 	complete(&smbdirect_mr->invalidate_done);
2466 }
2467 
2468 /*
2469  * Deregister a MR after I/O is done
2470  * This function may wait if remote invalidation is not used
2471  * and we have to locally invalidate the buffer to prevent data is being
2472  * modified by remote peer after upper layer consumes it
2473  */
smbd_deregister_mr(struct smbd_mr * smbdirect_mr)2474 int smbd_deregister_mr(struct smbd_mr *smbdirect_mr)
2475 {
2476 	struct ib_send_wr *wr;
2477 	struct smbd_connection *info = smbdirect_mr->conn;
2478 	int rc = 0;
2479 
2480 	if (smbdirect_mr->need_invalidate) {
2481 		/* Need to finish local invalidation before returning */
2482 		wr = &smbdirect_mr->inv_wr;
2483 		wr->opcode = IB_WR_LOCAL_INV;
2484 		smbdirect_mr->cqe.done = local_inv_done;
2485 		wr->wr_cqe = &smbdirect_mr->cqe;
2486 		wr->num_sge = 0;
2487 		wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey;
2488 		wr->send_flags = IB_SEND_SIGNALED;
2489 
2490 		init_completion(&smbdirect_mr->invalidate_done);
2491 		rc = ib_post_send(info->id->qp, wr, NULL);
2492 		if (rc) {
2493 			log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2494 			smbd_disconnect_rdma_connection(info);
2495 			goto done;
2496 		}
2497 		wait_for_completion(&smbdirect_mr->invalidate_done);
2498 		smbdirect_mr->need_invalidate = false;
2499 	} else
2500 		/*
2501 		 * For remote invalidation, just set it to MR_INVALIDATED
2502 		 * and defer to mr_recovery_work to recover the MR for next use
2503 		 */
2504 		smbdirect_mr->state = MR_INVALIDATED;
2505 
2506 	if (smbdirect_mr->state == MR_INVALIDATED) {
2507 		ib_dma_unmap_sg(
2508 			info->id->device, smbdirect_mr->sgl,
2509 			smbdirect_mr->sgl_count,
2510 			smbdirect_mr->dir);
2511 		smbdirect_mr->state = MR_READY;
2512 		if (atomic_inc_return(&info->mr_ready_count) == 1)
2513 			wake_up_interruptible(&info->wait_mr);
2514 	} else
2515 		/*
2516 		 * Schedule the work to do MR recovery for future I/Os MR
2517 		 * recovery is slow and don't want it to block current I/O
2518 		 */
2519 		queue_work(info->workqueue, &info->mr_recovery_work);
2520 
2521 done:
2522 	if (atomic_dec_and_test(&info->mr_used_count))
2523 		wake_up(&info->wait_for_mr_cleanup);
2524 
2525 	return rc;
2526 }
2527