1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2017, Microsoft Corporation.
4 *
5 * Author(s): Long Li <longli@microsoft.com>
6 */
7 #include <linux/module.h>
8 #include <linux/highmem.h>
9 #include "smbdirect.h"
10 #include "cifs_debug.h"
11 #include "cifsproto.h"
12 #include "smb2proto.h"
13
14 static struct smbd_response *get_empty_queue_buffer(
15 struct smbd_connection *info);
16 static struct smbd_response *get_receive_buffer(
17 struct smbd_connection *info);
18 static void put_receive_buffer(
19 struct smbd_connection *info,
20 struct smbd_response *response);
21 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf);
22 static void destroy_receive_buffers(struct smbd_connection *info);
23
24 static void put_empty_packet(
25 struct smbd_connection *info, struct smbd_response *response);
26 static void enqueue_reassembly(
27 struct smbd_connection *info,
28 struct smbd_response *response, int data_length);
29 static struct smbd_response *_get_first_reassembly(
30 struct smbd_connection *info);
31
32 static int smbd_post_recv(
33 struct smbd_connection *info,
34 struct smbd_response *response);
35
36 static int smbd_post_send_empty(struct smbd_connection *info);
37 static int smbd_post_send_data(
38 struct smbd_connection *info,
39 struct kvec *iov, int n_vec, int remaining_data_length);
40 static int smbd_post_send_page(struct smbd_connection *info,
41 struct page *page, unsigned long offset,
42 size_t size, int remaining_data_length);
43
44 static void destroy_mr_list(struct smbd_connection *info);
45 static int allocate_mr_list(struct smbd_connection *info);
46
47 /* SMBD version number */
48 #define SMBD_V1 0x0100
49
50 /* Port numbers for SMBD transport */
51 #define SMB_PORT 445
52 #define SMBD_PORT 5445
53
54 /* Address lookup and resolve timeout in ms */
55 #define RDMA_RESOLVE_TIMEOUT 5000
56
57 /* SMBD negotiation timeout in seconds */
58 #define SMBD_NEGOTIATE_TIMEOUT 120
59
60 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
61 #define SMBD_MIN_RECEIVE_SIZE 128
62 #define SMBD_MIN_FRAGMENTED_SIZE 131072
63
64 /*
65 * Default maximum number of RDMA read/write outstanding on this connection
66 * This value is possibly decreased during QP creation on hardware limit
67 */
68 #define SMBD_CM_RESPONDER_RESOURCES 32
69
70 /* Maximum number of retries on data transfer operations */
71 #define SMBD_CM_RETRY 6
72 /* No need to retry on Receiver Not Ready since SMBD manages credits */
73 #define SMBD_CM_RNR_RETRY 0
74
75 /*
76 * User configurable initial values per SMBD transport connection
77 * as defined in [MS-SMBD] 3.1.1.1
78 * Those may change after a SMBD negotiation
79 */
80 /* The local peer's maximum number of credits to grant to the peer */
81 int smbd_receive_credit_max = 255;
82
83 /* The remote peer's credit request of local peer */
84 int smbd_send_credit_target = 255;
85
86 /* The maximum single message size can be sent to remote peer */
87 int smbd_max_send_size = 1364;
88
89 /* The maximum fragmented upper-layer payload receive size supported */
90 int smbd_max_fragmented_recv_size = 1024 * 1024;
91
92 /* The maximum single-message size which can be received */
93 int smbd_max_receive_size = 8192;
94
95 /* The timeout to initiate send of a keepalive message on idle */
96 int smbd_keep_alive_interval = 120;
97
98 /*
99 * User configurable initial values for RDMA transport
100 * The actual values used may be lower and are limited to hardware capabilities
101 */
102 /* Default maximum number of SGEs in a RDMA write/read */
103 int smbd_max_frmr_depth = 2048;
104
105 /* If payload is less than this byte, use RDMA send/recv not read/write */
106 int rdma_readwrite_threshold = 4096;
107
108 /* Transport logging functions
109 * Logging are defined as classes. They can be OR'ed to define the actual
110 * logging level via module parameter smbd_logging_class
111 * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
112 * log_rdma_event()
113 */
114 #define LOG_OUTGOING 0x1
115 #define LOG_INCOMING 0x2
116 #define LOG_READ 0x4
117 #define LOG_WRITE 0x8
118 #define LOG_RDMA_SEND 0x10
119 #define LOG_RDMA_RECV 0x20
120 #define LOG_KEEP_ALIVE 0x40
121 #define LOG_RDMA_EVENT 0x80
122 #define LOG_RDMA_MR 0x100
123 static unsigned int smbd_logging_class;
124 module_param(smbd_logging_class, uint, 0644);
125 MODULE_PARM_DESC(smbd_logging_class,
126 "Logging class for SMBD transport 0x0 to 0x100");
127
128 #define ERR 0x0
129 #define INFO 0x1
130 static unsigned int smbd_logging_level = ERR;
131 module_param(smbd_logging_level, uint, 0644);
132 MODULE_PARM_DESC(smbd_logging_level,
133 "Logging level for SMBD transport, 0 (default): error, 1: info");
134
135 #define log_rdma(level, class, fmt, args...) \
136 do { \
137 if (level <= smbd_logging_level || class & smbd_logging_class) \
138 cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
139 } while (0)
140
141 #define log_outgoing(level, fmt, args...) \
142 log_rdma(level, LOG_OUTGOING, fmt, ##args)
143 #define log_incoming(level, fmt, args...) \
144 log_rdma(level, LOG_INCOMING, fmt, ##args)
145 #define log_read(level, fmt, args...) log_rdma(level, LOG_READ, fmt, ##args)
146 #define log_write(level, fmt, args...) log_rdma(level, LOG_WRITE, fmt, ##args)
147 #define log_rdma_send(level, fmt, args...) \
148 log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
149 #define log_rdma_recv(level, fmt, args...) \
150 log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
151 #define log_keep_alive(level, fmt, args...) \
152 log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
153 #define log_rdma_event(level, fmt, args...) \
154 log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
155 #define log_rdma_mr(level, fmt, args...) \
156 log_rdma(level, LOG_RDMA_MR, fmt, ##args)
157
smbd_disconnect_rdma_work(struct work_struct * work)158 static void smbd_disconnect_rdma_work(struct work_struct *work)
159 {
160 struct smbd_connection *info =
161 container_of(work, struct smbd_connection, disconnect_work);
162
163 if (info->transport_status == SMBD_CONNECTED) {
164 info->transport_status = SMBD_DISCONNECTING;
165 rdma_disconnect(info->id);
166 }
167 }
168
smbd_disconnect_rdma_connection(struct smbd_connection * info)169 static void smbd_disconnect_rdma_connection(struct smbd_connection *info)
170 {
171 queue_work(info->workqueue, &info->disconnect_work);
172 }
173
174 /* Upcall from RDMA CM */
smbd_conn_upcall(struct rdma_cm_id * id,struct rdma_cm_event * event)175 static int smbd_conn_upcall(
176 struct rdma_cm_id *id, struct rdma_cm_event *event)
177 {
178 struct smbd_connection *info = id->context;
179
180 log_rdma_event(INFO, "event=%d status=%d\n",
181 event->event, event->status);
182
183 switch (event->event) {
184 case RDMA_CM_EVENT_ADDR_RESOLVED:
185 case RDMA_CM_EVENT_ROUTE_RESOLVED:
186 info->ri_rc = 0;
187 complete(&info->ri_done);
188 break;
189
190 case RDMA_CM_EVENT_ADDR_ERROR:
191 info->ri_rc = -EHOSTUNREACH;
192 complete(&info->ri_done);
193 break;
194
195 case RDMA_CM_EVENT_ROUTE_ERROR:
196 info->ri_rc = -ENETUNREACH;
197 complete(&info->ri_done);
198 break;
199
200 case RDMA_CM_EVENT_ESTABLISHED:
201 log_rdma_event(INFO, "connected event=%d\n", event->event);
202 info->transport_status = SMBD_CONNECTED;
203 wake_up_interruptible(&info->conn_wait);
204 break;
205
206 case RDMA_CM_EVENT_CONNECT_ERROR:
207 case RDMA_CM_EVENT_UNREACHABLE:
208 case RDMA_CM_EVENT_REJECTED:
209 log_rdma_event(INFO, "connecting failed event=%d\n", event->event);
210 info->transport_status = SMBD_DISCONNECTED;
211 wake_up_interruptible(&info->conn_wait);
212 break;
213
214 case RDMA_CM_EVENT_DEVICE_REMOVAL:
215 case RDMA_CM_EVENT_DISCONNECTED:
216 /* This happenes when we fail the negotiation */
217 if (info->transport_status == SMBD_NEGOTIATE_FAILED) {
218 info->transport_status = SMBD_DISCONNECTED;
219 wake_up(&info->conn_wait);
220 break;
221 }
222
223 info->transport_status = SMBD_DISCONNECTED;
224 wake_up_interruptible(&info->disconn_wait);
225 wake_up_interruptible(&info->wait_reassembly_queue);
226 wake_up_interruptible_all(&info->wait_send_queue);
227 break;
228
229 default:
230 break;
231 }
232
233 return 0;
234 }
235
236 /* Upcall from RDMA QP */
237 static void
smbd_qp_async_error_upcall(struct ib_event * event,void * context)238 smbd_qp_async_error_upcall(struct ib_event *event, void *context)
239 {
240 struct smbd_connection *info = context;
241
242 log_rdma_event(ERR, "%s on device %s info %p\n",
243 ib_event_msg(event->event), event->device->name, info);
244
245 switch (event->event) {
246 case IB_EVENT_CQ_ERR:
247 case IB_EVENT_QP_FATAL:
248 smbd_disconnect_rdma_connection(info);
249
250 default:
251 break;
252 }
253 }
254
smbd_request_payload(struct smbd_request * request)255 static inline void *smbd_request_payload(struct smbd_request *request)
256 {
257 return (void *)request->packet;
258 }
259
smbd_response_payload(struct smbd_response * response)260 static inline void *smbd_response_payload(struct smbd_response *response)
261 {
262 return (void *)response->packet;
263 }
264
265 /* Called when a RDMA send is done */
send_done(struct ib_cq * cq,struct ib_wc * wc)266 static void send_done(struct ib_cq *cq, struct ib_wc *wc)
267 {
268 int i;
269 struct smbd_request *request =
270 container_of(wc->wr_cqe, struct smbd_request, cqe);
271
272 log_rdma_send(INFO, "smbd_request %p completed wc->status=%d\n",
273 request, wc->status);
274
275 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
276 log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n",
277 wc->status, wc->opcode);
278 smbd_disconnect_rdma_connection(request->info);
279 }
280
281 for (i = 0; i < request->num_sge; i++)
282 ib_dma_unmap_single(request->info->id->device,
283 request->sge[i].addr,
284 request->sge[i].length,
285 DMA_TO_DEVICE);
286
287 if (atomic_dec_and_test(&request->info->send_pending))
288 wake_up(&request->info->wait_send_pending);
289
290 wake_up(&request->info->wait_post_send);
291
292 mempool_free(request, request->info->request_mempool);
293 }
294
dump_smbd_negotiate_resp(struct smbd_negotiate_resp * resp)295 static void dump_smbd_negotiate_resp(struct smbd_negotiate_resp *resp)
296 {
297 log_rdma_event(INFO, "resp message min_version %u max_version %u negotiated_version %u credits_requested %u credits_granted %u status %u max_readwrite_size %u preferred_send_size %u max_receive_size %u max_fragmented_size %u\n",
298 resp->min_version, resp->max_version,
299 resp->negotiated_version, resp->credits_requested,
300 resp->credits_granted, resp->status,
301 resp->max_readwrite_size, resp->preferred_send_size,
302 resp->max_receive_size, resp->max_fragmented_size);
303 }
304
305 /*
306 * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
307 * response, packet_length: the negotiation response message
308 * return value: true if negotiation is a success, false if failed
309 */
process_negotiation_response(struct smbd_response * response,int packet_length)310 static bool process_negotiation_response(
311 struct smbd_response *response, int packet_length)
312 {
313 struct smbd_connection *info = response->info;
314 struct smbd_negotiate_resp *packet = smbd_response_payload(response);
315
316 if (packet_length < sizeof(struct smbd_negotiate_resp)) {
317 log_rdma_event(ERR,
318 "error: packet_length=%d\n", packet_length);
319 return false;
320 }
321
322 if (le16_to_cpu(packet->negotiated_version) != SMBD_V1) {
323 log_rdma_event(ERR, "error: negotiated_version=%x\n",
324 le16_to_cpu(packet->negotiated_version));
325 return false;
326 }
327 info->protocol = le16_to_cpu(packet->negotiated_version);
328
329 if (packet->credits_requested == 0) {
330 log_rdma_event(ERR, "error: credits_requested==0\n");
331 return false;
332 }
333 info->receive_credit_target = le16_to_cpu(packet->credits_requested);
334
335 if (packet->credits_granted == 0) {
336 log_rdma_event(ERR, "error: credits_granted==0\n");
337 return false;
338 }
339 atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted));
340
341 atomic_set(&info->receive_credits, 0);
342
343 if (le32_to_cpu(packet->preferred_send_size) > info->max_receive_size) {
344 log_rdma_event(ERR, "error: preferred_send_size=%d\n",
345 le32_to_cpu(packet->preferred_send_size));
346 return false;
347 }
348 info->max_receive_size = le32_to_cpu(packet->preferred_send_size);
349
350 if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
351 log_rdma_event(ERR, "error: max_receive_size=%d\n",
352 le32_to_cpu(packet->max_receive_size));
353 return false;
354 }
355 info->max_send_size = min_t(int, info->max_send_size,
356 le32_to_cpu(packet->max_receive_size));
357
358 if (le32_to_cpu(packet->max_fragmented_size) <
359 SMBD_MIN_FRAGMENTED_SIZE) {
360 log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
361 le32_to_cpu(packet->max_fragmented_size));
362 return false;
363 }
364 info->max_fragmented_send_size =
365 le32_to_cpu(packet->max_fragmented_size);
366 info->rdma_readwrite_threshold =
367 rdma_readwrite_threshold > info->max_fragmented_send_size ?
368 info->max_fragmented_send_size :
369 rdma_readwrite_threshold;
370
371
372 info->max_readwrite_size = min_t(u32,
373 le32_to_cpu(packet->max_readwrite_size),
374 info->max_frmr_depth * PAGE_SIZE);
375 info->max_frmr_depth = info->max_readwrite_size / PAGE_SIZE;
376
377 return true;
378 }
379
smbd_post_send_credits(struct work_struct * work)380 static void smbd_post_send_credits(struct work_struct *work)
381 {
382 int ret = 0;
383 int use_receive_queue = 1;
384 int rc;
385 struct smbd_response *response;
386 struct smbd_connection *info =
387 container_of(work, struct smbd_connection,
388 post_send_credits_work);
389
390 if (info->transport_status != SMBD_CONNECTED) {
391 wake_up(&info->wait_receive_queues);
392 return;
393 }
394
395 if (info->receive_credit_target >
396 atomic_read(&info->receive_credits)) {
397 while (true) {
398 if (use_receive_queue)
399 response = get_receive_buffer(info);
400 else
401 response = get_empty_queue_buffer(info);
402 if (!response) {
403 /* now switch to emtpy packet queue */
404 if (use_receive_queue) {
405 use_receive_queue = 0;
406 continue;
407 } else
408 break;
409 }
410
411 response->type = SMBD_TRANSFER_DATA;
412 response->first_segment = false;
413 rc = smbd_post_recv(info, response);
414 if (rc) {
415 log_rdma_recv(ERR,
416 "post_recv failed rc=%d\n", rc);
417 put_receive_buffer(info, response);
418 break;
419 }
420
421 ret++;
422 }
423 }
424
425 spin_lock(&info->lock_new_credits_offered);
426 info->new_credits_offered += ret;
427 spin_unlock(&info->lock_new_credits_offered);
428
429 /* Promptly send an immediate packet as defined in [MS-SMBD] 3.1.1.1 */
430 info->send_immediate = true;
431 if (atomic_read(&info->receive_credits) <
432 info->receive_credit_target - 1) {
433 if (info->keep_alive_requested == KEEP_ALIVE_PENDING ||
434 info->send_immediate) {
435 log_keep_alive(INFO, "send an empty message\n");
436 smbd_post_send_empty(info);
437 }
438 }
439 }
440
441 /* Called from softirq, when recv is done */
recv_done(struct ib_cq * cq,struct ib_wc * wc)442 static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
443 {
444 struct smbd_data_transfer *data_transfer;
445 struct smbd_response *response =
446 container_of(wc->wr_cqe, struct smbd_response, cqe);
447 struct smbd_connection *info = response->info;
448 int data_length = 0;
449
450 log_rdma_recv(INFO, "response=%p type=%d wc status=%d wc opcode %d byte_len=%d pkey_index=%x\n",
451 response, response->type, wc->status, wc->opcode,
452 wc->byte_len, wc->pkey_index);
453
454 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
455 log_rdma_recv(INFO, "wc->status=%d opcode=%d\n",
456 wc->status, wc->opcode);
457 smbd_disconnect_rdma_connection(info);
458 goto error;
459 }
460
461 ib_dma_sync_single_for_cpu(
462 wc->qp->device,
463 response->sge.addr,
464 response->sge.length,
465 DMA_FROM_DEVICE);
466
467 switch (response->type) {
468 /* SMBD negotiation response */
469 case SMBD_NEGOTIATE_RESP:
470 dump_smbd_negotiate_resp(smbd_response_payload(response));
471 info->full_packet_received = true;
472 info->negotiate_done =
473 process_negotiation_response(response, wc->byte_len);
474 complete(&info->negotiate_completion);
475 break;
476
477 /* SMBD data transfer packet */
478 case SMBD_TRANSFER_DATA:
479 data_transfer = smbd_response_payload(response);
480 data_length = le32_to_cpu(data_transfer->data_length);
481
482 /*
483 * If this is a packet with data playload place the data in
484 * reassembly queue and wake up the reading thread
485 */
486 if (data_length) {
487 if (info->full_packet_received)
488 response->first_segment = true;
489
490 if (le32_to_cpu(data_transfer->remaining_data_length))
491 info->full_packet_received = false;
492 else
493 info->full_packet_received = true;
494
495 enqueue_reassembly(
496 info,
497 response,
498 data_length);
499 } else
500 put_empty_packet(info, response);
501
502 if (data_length)
503 wake_up_interruptible(&info->wait_reassembly_queue);
504
505 atomic_dec(&info->receive_credits);
506 info->receive_credit_target =
507 le16_to_cpu(data_transfer->credits_requested);
508 if (le16_to_cpu(data_transfer->credits_granted)) {
509 atomic_add(le16_to_cpu(data_transfer->credits_granted),
510 &info->send_credits);
511 /*
512 * We have new send credits granted from remote peer
513 * If any sender is waiting for credits, unblock it
514 */
515 wake_up_interruptible(&info->wait_send_queue);
516 }
517
518 log_incoming(INFO, "data flags %d data_offset %d data_length %d remaining_data_length %d\n",
519 le16_to_cpu(data_transfer->flags),
520 le32_to_cpu(data_transfer->data_offset),
521 le32_to_cpu(data_transfer->data_length),
522 le32_to_cpu(data_transfer->remaining_data_length));
523
524 /* Send a KEEP_ALIVE response right away if requested */
525 info->keep_alive_requested = KEEP_ALIVE_NONE;
526 if (le16_to_cpu(data_transfer->flags) &
527 SMB_DIRECT_RESPONSE_REQUESTED) {
528 info->keep_alive_requested = KEEP_ALIVE_PENDING;
529 }
530
531 return;
532
533 default:
534 log_rdma_recv(ERR,
535 "unexpected response type=%d\n", response->type);
536 }
537
538 error:
539 put_receive_buffer(info, response);
540 }
541
smbd_create_id(struct smbd_connection * info,struct sockaddr * dstaddr,int port)542 static struct rdma_cm_id *smbd_create_id(
543 struct smbd_connection *info,
544 struct sockaddr *dstaddr, int port)
545 {
546 struct rdma_cm_id *id;
547 int rc;
548 __be16 *sport;
549
550 id = rdma_create_id(&init_net, smbd_conn_upcall, info,
551 RDMA_PS_TCP, IB_QPT_RC);
552 if (IS_ERR(id)) {
553 rc = PTR_ERR(id);
554 log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
555 return id;
556 }
557
558 if (dstaddr->sa_family == AF_INET6)
559 sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
560 else
561 sport = &((struct sockaddr_in *)dstaddr)->sin_port;
562
563 *sport = htons(port);
564
565 init_completion(&info->ri_done);
566 info->ri_rc = -ETIMEDOUT;
567
568 rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
569 RDMA_RESOLVE_TIMEOUT);
570 if (rc) {
571 log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
572 goto out;
573 }
574 rc = wait_for_completion_interruptible_timeout(
575 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
576 /* e.g. if interrupted returns -ERESTARTSYS */
577 if (rc < 0) {
578 log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
579 goto out;
580 }
581 rc = info->ri_rc;
582 if (rc) {
583 log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
584 goto out;
585 }
586
587 info->ri_rc = -ETIMEDOUT;
588 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
589 if (rc) {
590 log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
591 goto out;
592 }
593 rc = wait_for_completion_interruptible_timeout(
594 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
595 /* e.g. if interrupted returns -ERESTARTSYS */
596 if (rc < 0) {
597 log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
598 goto out;
599 }
600 rc = info->ri_rc;
601 if (rc) {
602 log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
603 goto out;
604 }
605
606 return id;
607
608 out:
609 rdma_destroy_id(id);
610 return ERR_PTR(rc);
611 }
612
613 /*
614 * Test if FRWR (Fast Registration Work Requests) is supported on the device
615 * This implementation requries FRWR on RDMA read/write
616 * return value: true if it is supported
617 */
frwr_is_supported(struct ib_device_attr * attrs)618 static bool frwr_is_supported(struct ib_device_attr *attrs)
619 {
620 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
621 return false;
622 if (attrs->max_fast_reg_page_list_len == 0)
623 return false;
624 return true;
625 }
626
smbd_ia_open(struct smbd_connection * info,struct sockaddr * dstaddr,int port)627 static int smbd_ia_open(
628 struct smbd_connection *info,
629 struct sockaddr *dstaddr, int port)
630 {
631 int rc;
632
633 info->id = smbd_create_id(info, dstaddr, port);
634 if (IS_ERR(info->id)) {
635 rc = PTR_ERR(info->id);
636 goto out1;
637 }
638
639 if (!frwr_is_supported(&info->id->device->attrs)) {
640 log_rdma_event(ERR, "Fast Registration Work Requests (FRWR) is not supported\n");
641 log_rdma_event(ERR, "Device capability flags = %llx max_fast_reg_page_list_len = %u\n",
642 info->id->device->attrs.device_cap_flags,
643 info->id->device->attrs.max_fast_reg_page_list_len);
644 rc = -EPROTONOSUPPORT;
645 goto out2;
646 }
647 info->max_frmr_depth = min_t(int,
648 smbd_max_frmr_depth,
649 info->id->device->attrs.max_fast_reg_page_list_len);
650 info->mr_type = IB_MR_TYPE_MEM_REG;
651 if (info->id->device->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG)
652 info->mr_type = IB_MR_TYPE_SG_GAPS;
653
654 info->pd = ib_alloc_pd(info->id->device, 0);
655 if (IS_ERR(info->pd)) {
656 rc = PTR_ERR(info->pd);
657 log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
658 goto out2;
659 }
660
661 return 0;
662
663 out2:
664 rdma_destroy_id(info->id);
665 info->id = NULL;
666
667 out1:
668 return rc;
669 }
670
671 /*
672 * Send a negotiation request message to the peer
673 * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
674 * After negotiation, the transport is connected and ready for
675 * carrying upper layer SMB payload
676 */
smbd_post_send_negotiate_req(struct smbd_connection * info)677 static int smbd_post_send_negotiate_req(struct smbd_connection *info)
678 {
679 struct ib_send_wr send_wr;
680 int rc = -ENOMEM;
681 struct smbd_request *request;
682 struct smbd_negotiate_req *packet;
683
684 request = mempool_alloc(info->request_mempool, GFP_KERNEL);
685 if (!request)
686 return rc;
687
688 request->info = info;
689
690 packet = smbd_request_payload(request);
691 packet->min_version = cpu_to_le16(SMBD_V1);
692 packet->max_version = cpu_to_le16(SMBD_V1);
693 packet->reserved = 0;
694 packet->credits_requested = cpu_to_le16(info->send_credit_target);
695 packet->preferred_send_size = cpu_to_le32(info->max_send_size);
696 packet->max_receive_size = cpu_to_le32(info->max_receive_size);
697 packet->max_fragmented_size =
698 cpu_to_le32(info->max_fragmented_recv_size);
699
700 request->num_sge = 1;
701 request->sge[0].addr = ib_dma_map_single(
702 info->id->device, (void *)packet,
703 sizeof(*packet), DMA_TO_DEVICE);
704 if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
705 rc = -EIO;
706 goto dma_mapping_failed;
707 }
708
709 request->sge[0].length = sizeof(*packet);
710 request->sge[0].lkey = info->pd->local_dma_lkey;
711
712 ib_dma_sync_single_for_device(
713 info->id->device, request->sge[0].addr,
714 request->sge[0].length, DMA_TO_DEVICE);
715
716 request->cqe.done = send_done;
717
718 send_wr.next = NULL;
719 send_wr.wr_cqe = &request->cqe;
720 send_wr.sg_list = request->sge;
721 send_wr.num_sge = request->num_sge;
722 send_wr.opcode = IB_WR_SEND;
723 send_wr.send_flags = IB_SEND_SIGNALED;
724
725 log_rdma_send(INFO, "sge addr=%llx length=%x lkey=%x\n",
726 request->sge[0].addr,
727 request->sge[0].length, request->sge[0].lkey);
728
729 atomic_inc(&info->send_pending);
730 rc = ib_post_send(info->id->qp, &send_wr, NULL);
731 if (!rc)
732 return 0;
733
734 /* if we reach here, post send failed */
735 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
736 atomic_dec(&info->send_pending);
737 ib_dma_unmap_single(info->id->device, request->sge[0].addr,
738 request->sge[0].length, DMA_TO_DEVICE);
739
740 smbd_disconnect_rdma_connection(info);
741
742 dma_mapping_failed:
743 mempool_free(request, info->request_mempool);
744 return rc;
745 }
746
747 /*
748 * Extend the credits to remote peer
749 * This implements [MS-SMBD] 3.1.5.9
750 * The idea is that we should extend credits to remote peer as quickly as
751 * it's allowed, to maintain data flow. We allocate as much receive
752 * buffer as possible, and extend the receive credits to remote peer
753 * return value: the new credtis being granted.
754 */
manage_credits_prior_sending(struct smbd_connection * info)755 static int manage_credits_prior_sending(struct smbd_connection *info)
756 {
757 int new_credits;
758
759 spin_lock(&info->lock_new_credits_offered);
760 new_credits = info->new_credits_offered;
761 info->new_credits_offered = 0;
762 spin_unlock(&info->lock_new_credits_offered);
763
764 return new_credits;
765 }
766
767 /*
768 * Check if we need to send a KEEP_ALIVE message
769 * The idle connection timer triggers a KEEP_ALIVE message when expires
770 * SMB_DIRECT_RESPONSE_REQUESTED is set in the message flag to have peer send
771 * back a response.
772 * return value:
773 * 1 if SMB_DIRECT_RESPONSE_REQUESTED needs to be set
774 * 0: otherwise
775 */
manage_keep_alive_before_sending(struct smbd_connection * info)776 static int manage_keep_alive_before_sending(struct smbd_connection *info)
777 {
778 if (info->keep_alive_requested == KEEP_ALIVE_PENDING) {
779 info->keep_alive_requested = KEEP_ALIVE_SENT;
780 return 1;
781 }
782 return 0;
783 }
784
785 /* Post the send request */
smbd_post_send(struct smbd_connection * info,struct smbd_request * request)786 static int smbd_post_send(struct smbd_connection *info,
787 struct smbd_request *request)
788 {
789 struct ib_send_wr send_wr;
790 int rc, i;
791
792 for (i = 0; i < request->num_sge; i++) {
793 log_rdma_send(INFO,
794 "rdma_request sge[%d] addr=%llu length=%u\n",
795 i, request->sge[i].addr, request->sge[i].length);
796 ib_dma_sync_single_for_device(
797 info->id->device,
798 request->sge[i].addr,
799 request->sge[i].length,
800 DMA_TO_DEVICE);
801 }
802
803 request->cqe.done = send_done;
804
805 send_wr.next = NULL;
806 send_wr.wr_cqe = &request->cqe;
807 send_wr.sg_list = request->sge;
808 send_wr.num_sge = request->num_sge;
809 send_wr.opcode = IB_WR_SEND;
810 send_wr.send_flags = IB_SEND_SIGNALED;
811
812 rc = ib_post_send(info->id->qp, &send_wr, NULL);
813 if (rc) {
814 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
815 smbd_disconnect_rdma_connection(info);
816 rc = -EAGAIN;
817 } else
818 /* Reset timer for idle connection after packet is sent */
819 mod_delayed_work(info->workqueue, &info->idle_timer_work,
820 info->keep_alive_interval*HZ);
821
822 return rc;
823 }
824
smbd_post_send_sgl(struct smbd_connection * info,struct scatterlist * sgl,int data_length,int remaining_data_length)825 static int smbd_post_send_sgl(struct smbd_connection *info,
826 struct scatterlist *sgl, int data_length, int remaining_data_length)
827 {
828 int num_sgs;
829 int i, rc;
830 int header_length;
831 struct smbd_request *request;
832 struct smbd_data_transfer *packet;
833 int new_credits;
834 struct scatterlist *sg;
835
836 wait_credit:
837 /* Wait for send credits. A SMBD packet needs one credit */
838 rc = wait_event_interruptible(info->wait_send_queue,
839 atomic_read(&info->send_credits) > 0 ||
840 info->transport_status != SMBD_CONNECTED);
841 if (rc)
842 goto err_wait_credit;
843
844 if (info->transport_status != SMBD_CONNECTED) {
845 log_outgoing(ERR, "disconnected not sending on wait_credit\n");
846 rc = -EAGAIN;
847 goto err_wait_credit;
848 }
849 if (unlikely(atomic_dec_return(&info->send_credits) < 0)) {
850 atomic_inc(&info->send_credits);
851 goto wait_credit;
852 }
853
854 wait_send_queue:
855 wait_event(info->wait_post_send,
856 atomic_read(&info->send_pending) < info->send_credit_target ||
857 info->transport_status != SMBD_CONNECTED);
858
859 if (info->transport_status != SMBD_CONNECTED) {
860 log_outgoing(ERR, "disconnected not sending on wait_send_queue\n");
861 rc = -EAGAIN;
862 goto err_wait_send_queue;
863 }
864
865 if (unlikely(atomic_inc_return(&info->send_pending) >
866 info->send_credit_target)) {
867 atomic_dec(&info->send_pending);
868 goto wait_send_queue;
869 }
870
871 request = mempool_alloc(info->request_mempool, GFP_KERNEL);
872 if (!request) {
873 rc = -ENOMEM;
874 goto err_alloc;
875 }
876
877 request->info = info;
878
879 /* Fill in the packet header */
880 packet = smbd_request_payload(request);
881 packet->credits_requested = cpu_to_le16(info->send_credit_target);
882
883 new_credits = manage_credits_prior_sending(info);
884 atomic_add(new_credits, &info->receive_credits);
885 packet->credits_granted = cpu_to_le16(new_credits);
886
887 info->send_immediate = false;
888
889 packet->flags = 0;
890 if (manage_keep_alive_before_sending(info))
891 packet->flags |= cpu_to_le16(SMB_DIRECT_RESPONSE_REQUESTED);
892
893 packet->reserved = 0;
894 if (!data_length)
895 packet->data_offset = 0;
896 else
897 packet->data_offset = cpu_to_le32(24);
898 packet->data_length = cpu_to_le32(data_length);
899 packet->remaining_data_length = cpu_to_le32(remaining_data_length);
900 packet->padding = 0;
901
902 log_outgoing(INFO, "credits_requested=%d credits_granted=%d data_offset=%d data_length=%d remaining_data_length=%d\n",
903 le16_to_cpu(packet->credits_requested),
904 le16_to_cpu(packet->credits_granted),
905 le32_to_cpu(packet->data_offset),
906 le32_to_cpu(packet->data_length),
907 le32_to_cpu(packet->remaining_data_length));
908
909 /* Map the packet to DMA */
910 header_length = sizeof(struct smbd_data_transfer);
911 /* If this is a packet without payload, don't send padding */
912 if (!data_length)
913 header_length = offsetof(struct smbd_data_transfer, padding);
914
915 request->num_sge = 1;
916 request->sge[0].addr = ib_dma_map_single(info->id->device,
917 (void *)packet,
918 header_length,
919 DMA_TO_DEVICE);
920 if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
921 rc = -EIO;
922 request->sge[0].addr = 0;
923 goto err_dma;
924 }
925
926 request->sge[0].length = header_length;
927 request->sge[0].lkey = info->pd->local_dma_lkey;
928
929 /* Fill in the packet data payload */
930 num_sgs = sgl ? sg_nents(sgl) : 0;
931 for_each_sg(sgl, sg, num_sgs, i) {
932 request->sge[i+1].addr =
933 ib_dma_map_page(info->id->device, sg_page(sg),
934 sg->offset, sg->length, DMA_TO_DEVICE);
935 if (ib_dma_mapping_error(
936 info->id->device, request->sge[i+1].addr)) {
937 rc = -EIO;
938 request->sge[i+1].addr = 0;
939 goto err_dma;
940 }
941 request->sge[i+1].length = sg->length;
942 request->sge[i+1].lkey = info->pd->local_dma_lkey;
943 request->num_sge++;
944 }
945
946 rc = smbd_post_send(info, request);
947 if (!rc)
948 return 0;
949
950 err_dma:
951 for (i = 0; i < request->num_sge; i++)
952 if (request->sge[i].addr)
953 ib_dma_unmap_single(info->id->device,
954 request->sge[i].addr,
955 request->sge[i].length,
956 DMA_TO_DEVICE);
957 mempool_free(request, info->request_mempool);
958
959 /* roll back receive credits and credits to be offered */
960 spin_lock(&info->lock_new_credits_offered);
961 info->new_credits_offered += new_credits;
962 spin_unlock(&info->lock_new_credits_offered);
963 atomic_sub(new_credits, &info->receive_credits);
964
965 err_alloc:
966 if (atomic_dec_and_test(&info->send_pending))
967 wake_up(&info->wait_send_pending);
968
969 err_wait_send_queue:
970 /* roll back send credits and pending */
971 atomic_inc(&info->send_credits);
972
973 err_wait_credit:
974 return rc;
975 }
976
977 /*
978 * Send a page
979 * page: the page to send
980 * offset: offset in the page to send
981 * size: length in the page to send
982 * remaining_data_length: remaining data to send in this payload
983 */
smbd_post_send_page(struct smbd_connection * info,struct page * page,unsigned long offset,size_t size,int remaining_data_length)984 static int smbd_post_send_page(struct smbd_connection *info, struct page *page,
985 unsigned long offset, size_t size, int remaining_data_length)
986 {
987 struct scatterlist sgl;
988
989 sg_init_table(&sgl, 1);
990 sg_set_page(&sgl, page, size, offset);
991
992 return smbd_post_send_sgl(info, &sgl, size, remaining_data_length);
993 }
994
995 /*
996 * Send an empty message
997 * Empty message is used to extend credits to peer to for keep live
998 * while there is no upper layer payload to send at the time
999 */
smbd_post_send_empty(struct smbd_connection * info)1000 static int smbd_post_send_empty(struct smbd_connection *info)
1001 {
1002 info->count_send_empty++;
1003 return smbd_post_send_sgl(info, NULL, 0, 0);
1004 }
1005
1006 /*
1007 * Send a data buffer
1008 * iov: the iov array describing the data buffers
1009 * n_vec: number of iov array
1010 * remaining_data_length: remaining data to send following this packet
1011 * in segmented SMBD packet
1012 */
smbd_post_send_data(struct smbd_connection * info,struct kvec * iov,int n_vec,int remaining_data_length)1013 static int smbd_post_send_data(
1014 struct smbd_connection *info, struct kvec *iov, int n_vec,
1015 int remaining_data_length)
1016 {
1017 int i;
1018 u32 data_length = 0;
1019 struct scatterlist sgl[SMBDIRECT_MAX_SGE];
1020
1021 if (n_vec > SMBDIRECT_MAX_SGE) {
1022 cifs_dbg(VFS, "Can't fit data to SGL, n_vec=%d\n", n_vec);
1023 return -EINVAL;
1024 }
1025
1026 sg_init_table(sgl, n_vec);
1027 for (i = 0; i < n_vec; i++) {
1028 data_length += iov[i].iov_len;
1029 sg_set_buf(&sgl[i], iov[i].iov_base, iov[i].iov_len);
1030 }
1031
1032 return smbd_post_send_sgl(info, sgl, data_length, remaining_data_length);
1033 }
1034
1035 /*
1036 * Post a receive request to the transport
1037 * The remote peer can only send data when a receive request is posted
1038 * The interaction is controlled by send/receive credit system
1039 */
smbd_post_recv(struct smbd_connection * info,struct smbd_response * response)1040 static int smbd_post_recv(
1041 struct smbd_connection *info, struct smbd_response *response)
1042 {
1043 struct ib_recv_wr recv_wr;
1044 int rc = -EIO;
1045
1046 response->sge.addr = ib_dma_map_single(
1047 info->id->device, response->packet,
1048 info->max_receive_size, DMA_FROM_DEVICE);
1049 if (ib_dma_mapping_error(info->id->device, response->sge.addr))
1050 return rc;
1051
1052 response->sge.length = info->max_receive_size;
1053 response->sge.lkey = info->pd->local_dma_lkey;
1054
1055 response->cqe.done = recv_done;
1056
1057 recv_wr.wr_cqe = &response->cqe;
1058 recv_wr.next = NULL;
1059 recv_wr.sg_list = &response->sge;
1060 recv_wr.num_sge = 1;
1061
1062 rc = ib_post_recv(info->id->qp, &recv_wr, NULL);
1063 if (rc) {
1064 ib_dma_unmap_single(info->id->device, response->sge.addr,
1065 response->sge.length, DMA_FROM_DEVICE);
1066 smbd_disconnect_rdma_connection(info);
1067 log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1068 }
1069
1070 return rc;
1071 }
1072
1073 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
smbd_negotiate(struct smbd_connection * info)1074 static int smbd_negotiate(struct smbd_connection *info)
1075 {
1076 int rc;
1077 struct smbd_response *response = get_receive_buffer(info);
1078
1079 response->type = SMBD_NEGOTIATE_RESP;
1080 rc = smbd_post_recv(info, response);
1081 log_rdma_event(INFO, "smbd_post_recv rc=%d iov.addr=%llx iov.length=%x iov.lkey=%x\n",
1082 rc, response->sge.addr,
1083 response->sge.length, response->sge.lkey);
1084 if (rc)
1085 return rc;
1086
1087 init_completion(&info->negotiate_completion);
1088 info->negotiate_done = false;
1089 rc = smbd_post_send_negotiate_req(info);
1090 if (rc)
1091 return rc;
1092
1093 rc = wait_for_completion_interruptible_timeout(
1094 &info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ);
1095 log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc);
1096
1097 if (info->negotiate_done)
1098 return 0;
1099
1100 if (rc == 0)
1101 rc = -ETIMEDOUT;
1102 else if (rc == -ERESTARTSYS)
1103 rc = -EINTR;
1104 else
1105 rc = -ENOTCONN;
1106
1107 return rc;
1108 }
1109
put_empty_packet(struct smbd_connection * info,struct smbd_response * response)1110 static void put_empty_packet(
1111 struct smbd_connection *info, struct smbd_response *response)
1112 {
1113 spin_lock(&info->empty_packet_queue_lock);
1114 list_add_tail(&response->list, &info->empty_packet_queue);
1115 info->count_empty_packet_queue++;
1116 spin_unlock(&info->empty_packet_queue_lock);
1117
1118 queue_work(info->workqueue, &info->post_send_credits_work);
1119 }
1120
1121 /*
1122 * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1123 * This is a queue for reassembling upper layer payload and present to upper
1124 * layer. All the inncoming payload go to the reassembly queue, regardless of
1125 * if reassembly is required. The uuper layer code reads from the queue for all
1126 * incoming payloads.
1127 * Put a received packet to the reassembly queue
1128 * response: the packet received
1129 * data_length: the size of payload in this packet
1130 */
enqueue_reassembly(struct smbd_connection * info,struct smbd_response * response,int data_length)1131 static void enqueue_reassembly(
1132 struct smbd_connection *info,
1133 struct smbd_response *response,
1134 int data_length)
1135 {
1136 spin_lock(&info->reassembly_queue_lock);
1137 list_add_tail(&response->list, &info->reassembly_queue);
1138 info->reassembly_queue_length++;
1139 /*
1140 * Make sure reassembly_data_length is updated after list and
1141 * reassembly_queue_length are updated. On the dequeue side
1142 * reassembly_data_length is checked without a lock to determine
1143 * if reassembly_queue_length and list is up to date
1144 */
1145 virt_wmb();
1146 info->reassembly_data_length += data_length;
1147 spin_unlock(&info->reassembly_queue_lock);
1148 info->count_reassembly_queue++;
1149 info->count_enqueue_reassembly_queue++;
1150 }
1151
1152 /*
1153 * Get the first entry at the front of reassembly queue
1154 * Caller is responsible for locking
1155 * return value: the first entry if any, NULL if queue is empty
1156 */
_get_first_reassembly(struct smbd_connection * info)1157 static struct smbd_response *_get_first_reassembly(struct smbd_connection *info)
1158 {
1159 struct smbd_response *ret = NULL;
1160
1161 if (!list_empty(&info->reassembly_queue)) {
1162 ret = list_first_entry(
1163 &info->reassembly_queue,
1164 struct smbd_response, list);
1165 }
1166 return ret;
1167 }
1168
get_empty_queue_buffer(struct smbd_connection * info)1169 static struct smbd_response *get_empty_queue_buffer(
1170 struct smbd_connection *info)
1171 {
1172 struct smbd_response *ret = NULL;
1173 unsigned long flags;
1174
1175 spin_lock_irqsave(&info->empty_packet_queue_lock, flags);
1176 if (!list_empty(&info->empty_packet_queue)) {
1177 ret = list_first_entry(
1178 &info->empty_packet_queue,
1179 struct smbd_response, list);
1180 list_del(&ret->list);
1181 info->count_empty_packet_queue--;
1182 }
1183 spin_unlock_irqrestore(&info->empty_packet_queue_lock, flags);
1184
1185 return ret;
1186 }
1187
1188 /*
1189 * Get a receive buffer
1190 * For each remote send, we need to post a receive. The receive buffers are
1191 * pre-allocated in advance.
1192 * return value: the receive buffer, NULL if none is available
1193 */
get_receive_buffer(struct smbd_connection * info)1194 static struct smbd_response *get_receive_buffer(struct smbd_connection *info)
1195 {
1196 struct smbd_response *ret = NULL;
1197 unsigned long flags;
1198
1199 spin_lock_irqsave(&info->receive_queue_lock, flags);
1200 if (!list_empty(&info->receive_queue)) {
1201 ret = list_first_entry(
1202 &info->receive_queue,
1203 struct smbd_response, list);
1204 list_del(&ret->list);
1205 info->count_receive_queue--;
1206 info->count_get_receive_buffer++;
1207 }
1208 spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1209
1210 return ret;
1211 }
1212
1213 /*
1214 * Return a receive buffer
1215 * Upon returning of a receive buffer, we can post new receive and extend
1216 * more receive credits to remote peer. This is done immediately after a
1217 * receive buffer is returned.
1218 */
put_receive_buffer(struct smbd_connection * info,struct smbd_response * response)1219 static void put_receive_buffer(
1220 struct smbd_connection *info, struct smbd_response *response)
1221 {
1222 unsigned long flags;
1223
1224 ib_dma_unmap_single(info->id->device, response->sge.addr,
1225 response->sge.length, DMA_FROM_DEVICE);
1226
1227 spin_lock_irqsave(&info->receive_queue_lock, flags);
1228 list_add_tail(&response->list, &info->receive_queue);
1229 info->count_receive_queue++;
1230 info->count_put_receive_buffer++;
1231 spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1232
1233 queue_work(info->workqueue, &info->post_send_credits_work);
1234 }
1235
1236 /* Preallocate all receive buffer on transport establishment */
allocate_receive_buffers(struct smbd_connection * info,int num_buf)1237 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf)
1238 {
1239 int i;
1240 struct smbd_response *response;
1241
1242 INIT_LIST_HEAD(&info->reassembly_queue);
1243 spin_lock_init(&info->reassembly_queue_lock);
1244 info->reassembly_data_length = 0;
1245 info->reassembly_queue_length = 0;
1246
1247 INIT_LIST_HEAD(&info->receive_queue);
1248 spin_lock_init(&info->receive_queue_lock);
1249 info->count_receive_queue = 0;
1250
1251 INIT_LIST_HEAD(&info->empty_packet_queue);
1252 spin_lock_init(&info->empty_packet_queue_lock);
1253 info->count_empty_packet_queue = 0;
1254
1255 init_waitqueue_head(&info->wait_receive_queues);
1256
1257 for (i = 0; i < num_buf; i++) {
1258 response = mempool_alloc(info->response_mempool, GFP_KERNEL);
1259 if (!response)
1260 goto allocate_failed;
1261
1262 response->info = info;
1263 list_add_tail(&response->list, &info->receive_queue);
1264 info->count_receive_queue++;
1265 }
1266
1267 return 0;
1268
1269 allocate_failed:
1270 while (!list_empty(&info->receive_queue)) {
1271 response = list_first_entry(
1272 &info->receive_queue,
1273 struct smbd_response, list);
1274 list_del(&response->list);
1275 info->count_receive_queue--;
1276
1277 mempool_free(response, info->response_mempool);
1278 }
1279 return -ENOMEM;
1280 }
1281
destroy_receive_buffers(struct smbd_connection * info)1282 static void destroy_receive_buffers(struct smbd_connection *info)
1283 {
1284 struct smbd_response *response;
1285
1286 while ((response = get_receive_buffer(info)))
1287 mempool_free(response, info->response_mempool);
1288
1289 while ((response = get_empty_queue_buffer(info)))
1290 mempool_free(response, info->response_mempool);
1291 }
1292
1293 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
idle_connection_timer(struct work_struct * work)1294 static void idle_connection_timer(struct work_struct *work)
1295 {
1296 struct smbd_connection *info = container_of(
1297 work, struct smbd_connection,
1298 idle_timer_work.work);
1299
1300 if (info->keep_alive_requested != KEEP_ALIVE_NONE) {
1301 log_keep_alive(ERR,
1302 "error status info->keep_alive_requested=%d\n",
1303 info->keep_alive_requested);
1304 smbd_disconnect_rdma_connection(info);
1305 return;
1306 }
1307
1308 log_keep_alive(INFO, "about to send an empty idle message\n");
1309 smbd_post_send_empty(info);
1310
1311 /* Setup the next idle timeout work */
1312 queue_delayed_work(info->workqueue, &info->idle_timer_work,
1313 info->keep_alive_interval*HZ);
1314 }
1315
1316 /*
1317 * Destroy the transport and related RDMA and memory resources
1318 * Need to go through all the pending counters and make sure on one is using
1319 * the transport while it is destroyed
1320 */
smbd_destroy(struct TCP_Server_Info * server)1321 void smbd_destroy(struct TCP_Server_Info *server)
1322 {
1323 struct smbd_connection *info = server->smbd_conn;
1324 struct smbd_response *response;
1325 unsigned long flags;
1326
1327 if (!info) {
1328 log_rdma_event(INFO, "rdma session already destroyed\n");
1329 return;
1330 }
1331
1332 log_rdma_event(INFO, "destroying rdma session\n");
1333 if (info->transport_status != SMBD_DISCONNECTED) {
1334 rdma_disconnect(server->smbd_conn->id);
1335 log_rdma_event(INFO, "wait for transport being disconnected\n");
1336 wait_event_interruptible(
1337 info->disconn_wait,
1338 info->transport_status == SMBD_DISCONNECTED);
1339 }
1340
1341 log_rdma_event(INFO, "destroying qp\n");
1342 ib_drain_qp(info->id->qp);
1343 rdma_destroy_qp(info->id);
1344
1345 log_rdma_event(INFO, "cancelling idle timer\n");
1346 cancel_delayed_work_sync(&info->idle_timer_work);
1347
1348 log_rdma_event(INFO, "wait for all send posted to IB to finish\n");
1349 wait_event(info->wait_send_pending,
1350 atomic_read(&info->send_pending) == 0);
1351
1352 /* It's not posssible for upper layer to get to reassembly */
1353 log_rdma_event(INFO, "drain the reassembly queue\n");
1354 do {
1355 spin_lock_irqsave(&info->reassembly_queue_lock, flags);
1356 response = _get_first_reassembly(info);
1357 if (response) {
1358 list_del(&response->list);
1359 spin_unlock_irqrestore(
1360 &info->reassembly_queue_lock, flags);
1361 put_receive_buffer(info, response);
1362 } else
1363 spin_unlock_irqrestore(
1364 &info->reassembly_queue_lock, flags);
1365 } while (response);
1366 info->reassembly_data_length = 0;
1367
1368 log_rdma_event(INFO, "free receive buffers\n");
1369 wait_event(info->wait_receive_queues,
1370 info->count_receive_queue + info->count_empty_packet_queue
1371 == info->receive_credit_max);
1372 destroy_receive_buffers(info);
1373
1374 /*
1375 * For performance reasons, memory registration and deregistration
1376 * are not locked by srv_mutex. It is possible some processes are
1377 * blocked on transport srv_mutex while holding memory registration.
1378 * Release the transport srv_mutex to allow them to hit the failure
1379 * path when sending data, and then release memory registartions.
1380 */
1381 log_rdma_event(INFO, "freeing mr list\n");
1382 wake_up_interruptible_all(&info->wait_mr);
1383 while (atomic_read(&info->mr_used_count)) {
1384 mutex_unlock(&server->srv_mutex);
1385 msleep(1000);
1386 mutex_lock(&server->srv_mutex);
1387 }
1388 destroy_mr_list(info);
1389
1390 ib_free_cq(info->send_cq);
1391 ib_free_cq(info->recv_cq);
1392 ib_dealloc_pd(info->pd);
1393 rdma_destroy_id(info->id);
1394
1395 /* free mempools */
1396 mempool_destroy(info->request_mempool);
1397 kmem_cache_destroy(info->request_cache);
1398
1399 mempool_destroy(info->response_mempool);
1400 kmem_cache_destroy(info->response_cache);
1401
1402 info->transport_status = SMBD_DESTROYED;
1403
1404 destroy_workqueue(info->workqueue);
1405 log_rdma_event(INFO, "rdma session destroyed\n");
1406 kfree(info);
1407 server->smbd_conn = NULL;
1408 }
1409
1410 /*
1411 * Reconnect this SMBD connection, called from upper layer
1412 * return value: 0 on success, or actual error code
1413 */
smbd_reconnect(struct TCP_Server_Info * server)1414 int smbd_reconnect(struct TCP_Server_Info *server)
1415 {
1416 log_rdma_event(INFO, "reconnecting rdma session\n");
1417
1418 if (!server->smbd_conn) {
1419 log_rdma_event(INFO, "rdma session already destroyed\n");
1420 goto create_conn;
1421 }
1422
1423 /*
1424 * This is possible if transport is disconnected and we haven't received
1425 * notification from RDMA, but upper layer has detected timeout
1426 */
1427 if (server->smbd_conn->transport_status == SMBD_CONNECTED) {
1428 log_rdma_event(INFO, "disconnecting transport\n");
1429 smbd_destroy(server);
1430 }
1431
1432 create_conn:
1433 log_rdma_event(INFO, "creating rdma session\n");
1434 server->smbd_conn = smbd_get_connection(
1435 server, (struct sockaddr *) &server->dstaddr);
1436
1437 if (server->smbd_conn)
1438 cifs_dbg(VFS, "RDMA transport re-established\n");
1439
1440 return server->smbd_conn ? 0 : -ENOENT;
1441 }
1442
destroy_caches_and_workqueue(struct smbd_connection * info)1443 static void destroy_caches_and_workqueue(struct smbd_connection *info)
1444 {
1445 destroy_receive_buffers(info);
1446 destroy_workqueue(info->workqueue);
1447 mempool_destroy(info->response_mempool);
1448 kmem_cache_destroy(info->response_cache);
1449 mempool_destroy(info->request_mempool);
1450 kmem_cache_destroy(info->request_cache);
1451 }
1452
1453 #define MAX_NAME_LEN 80
allocate_caches_and_workqueue(struct smbd_connection * info)1454 static int allocate_caches_and_workqueue(struct smbd_connection *info)
1455 {
1456 char name[MAX_NAME_LEN];
1457 int rc;
1458
1459 scnprintf(name, MAX_NAME_LEN, "smbd_request_%p", info);
1460 info->request_cache =
1461 kmem_cache_create(
1462 name,
1463 sizeof(struct smbd_request) +
1464 sizeof(struct smbd_data_transfer),
1465 0, SLAB_HWCACHE_ALIGN, NULL);
1466 if (!info->request_cache)
1467 return -ENOMEM;
1468
1469 info->request_mempool =
1470 mempool_create(info->send_credit_target, mempool_alloc_slab,
1471 mempool_free_slab, info->request_cache);
1472 if (!info->request_mempool)
1473 goto out1;
1474
1475 scnprintf(name, MAX_NAME_LEN, "smbd_response_%p", info);
1476 info->response_cache =
1477 kmem_cache_create(
1478 name,
1479 sizeof(struct smbd_response) +
1480 info->max_receive_size,
1481 0, SLAB_HWCACHE_ALIGN, NULL);
1482 if (!info->response_cache)
1483 goto out2;
1484
1485 info->response_mempool =
1486 mempool_create(info->receive_credit_max, mempool_alloc_slab,
1487 mempool_free_slab, info->response_cache);
1488 if (!info->response_mempool)
1489 goto out3;
1490
1491 scnprintf(name, MAX_NAME_LEN, "smbd_%p", info);
1492 info->workqueue = create_workqueue(name);
1493 if (!info->workqueue)
1494 goto out4;
1495
1496 rc = allocate_receive_buffers(info, info->receive_credit_max);
1497 if (rc) {
1498 log_rdma_event(ERR, "failed to allocate receive buffers\n");
1499 goto out5;
1500 }
1501
1502 return 0;
1503
1504 out5:
1505 destroy_workqueue(info->workqueue);
1506 out4:
1507 mempool_destroy(info->response_mempool);
1508 out3:
1509 kmem_cache_destroy(info->response_cache);
1510 out2:
1511 mempool_destroy(info->request_mempool);
1512 out1:
1513 kmem_cache_destroy(info->request_cache);
1514 return -ENOMEM;
1515 }
1516
1517 /* Create a SMBD connection, called by upper layer */
_smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr,int port)1518 static struct smbd_connection *_smbd_get_connection(
1519 struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1520 {
1521 int rc;
1522 struct smbd_connection *info;
1523 struct rdma_conn_param conn_param;
1524 struct ib_qp_init_attr qp_attr;
1525 struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
1526 struct ib_port_immutable port_immutable;
1527 u32 ird_ord_hdr[2];
1528
1529 info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1530 if (!info)
1531 return NULL;
1532
1533 info->transport_status = SMBD_CONNECTING;
1534 rc = smbd_ia_open(info, dstaddr, port);
1535 if (rc) {
1536 log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1537 goto create_id_failed;
1538 }
1539
1540 if (smbd_send_credit_target > info->id->device->attrs.max_cqe ||
1541 smbd_send_credit_target > info->id->device->attrs.max_qp_wr) {
1542 log_rdma_event(ERR, "consider lowering send_credit_target = %d. Possible CQE overrun, device reporting max_cpe %d max_qp_wr %d\n",
1543 smbd_send_credit_target,
1544 info->id->device->attrs.max_cqe,
1545 info->id->device->attrs.max_qp_wr);
1546 goto config_failed;
1547 }
1548
1549 if (smbd_receive_credit_max > info->id->device->attrs.max_cqe ||
1550 smbd_receive_credit_max > info->id->device->attrs.max_qp_wr) {
1551 log_rdma_event(ERR, "consider lowering receive_credit_max = %d. Possible CQE overrun, device reporting max_cpe %d max_qp_wr %d\n",
1552 smbd_receive_credit_max,
1553 info->id->device->attrs.max_cqe,
1554 info->id->device->attrs.max_qp_wr);
1555 goto config_failed;
1556 }
1557
1558 info->receive_credit_max = smbd_receive_credit_max;
1559 info->send_credit_target = smbd_send_credit_target;
1560 info->max_send_size = smbd_max_send_size;
1561 info->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1562 info->max_receive_size = smbd_max_receive_size;
1563 info->keep_alive_interval = smbd_keep_alive_interval;
1564
1565 if (info->id->device->attrs.max_send_sge < SMBDIRECT_MAX_SGE) {
1566 log_rdma_event(ERR,
1567 "warning: device max_send_sge = %d too small\n",
1568 info->id->device->attrs.max_send_sge);
1569 log_rdma_event(ERR, "Queue Pair creation may fail\n");
1570 }
1571 if (info->id->device->attrs.max_recv_sge < SMBDIRECT_MAX_SGE) {
1572 log_rdma_event(ERR,
1573 "warning: device max_recv_sge = %d too small\n",
1574 info->id->device->attrs.max_recv_sge);
1575 log_rdma_event(ERR, "Queue Pair creation may fail\n");
1576 }
1577
1578 info->send_cq = NULL;
1579 info->recv_cq = NULL;
1580 info->send_cq =
1581 ib_alloc_cq_any(info->id->device, info,
1582 info->send_credit_target, IB_POLL_SOFTIRQ);
1583 if (IS_ERR(info->send_cq)) {
1584 info->send_cq = NULL;
1585 goto alloc_cq_failed;
1586 }
1587
1588 info->recv_cq =
1589 ib_alloc_cq_any(info->id->device, info,
1590 info->receive_credit_max, IB_POLL_SOFTIRQ);
1591 if (IS_ERR(info->recv_cq)) {
1592 info->recv_cq = NULL;
1593 goto alloc_cq_failed;
1594 }
1595
1596 memset(&qp_attr, 0, sizeof(qp_attr));
1597 qp_attr.event_handler = smbd_qp_async_error_upcall;
1598 qp_attr.qp_context = info;
1599 qp_attr.cap.max_send_wr = info->send_credit_target;
1600 qp_attr.cap.max_recv_wr = info->receive_credit_max;
1601 qp_attr.cap.max_send_sge = SMBDIRECT_MAX_SGE;
1602 qp_attr.cap.max_recv_sge = SMBDIRECT_MAX_SGE;
1603 qp_attr.cap.max_inline_data = 0;
1604 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1605 qp_attr.qp_type = IB_QPT_RC;
1606 qp_attr.send_cq = info->send_cq;
1607 qp_attr.recv_cq = info->recv_cq;
1608 qp_attr.port_num = ~0;
1609
1610 rc = rdma_create_qp(info->id, info->pd, &qp_attr);
1611 if (rc) {
1612 log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1613 goto create_qp_failed;
1614 }
1615
1616 memset(&conn_param, 0, sizeof(conn_param));
1617 conn_param.initiator_depth = 0;
1618
1619 conn_param.responder_resources =
1620 info->id->device->attrs.max_qp_rd_atom
1621 < SMBD_CM_RESPONDER_RESOURCES ?
1622 info->id->device->attrs.max_qp_rd_atom :
1623 SMBD_CM_RESPONDER_RESOURCES;
1624 info->responder_resources = conn_param.responder_resources;
1625 log_rdma_mr(INFO, "responder_resources=%d\n",
1626 info->responder_resources);
1627
1628 /* Need to send IRD/ORD in private data for iWARP */
1629 info->id->device->ops.get_port_immutable(
1630 info->id->device, info->id->port_num, &port_immutable);
1631 if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1632 ird_ord_hdr[0] = info->responder_resources;
1633 ird_ord_hdr[1] = 1;
1634 conn_param.private_data = ird_ord_hdr;
1635 conn_param.private_data_len = sizeof(ird_ord_hdr);
1636 } else {
1637 conn_param.private_data = NULL;
1638 conn_param.private_data_len = 0;
1639 }
1640
1641 conn_param.retry_count = SMBD_CM_RETRY;
1642 conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1643 conn_param.flow_control = 0;
1644
1645 log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1646 &addr_in->sin_addr, port);
1647
1648 init_waitqueue_head(&info->conn_wait);
1649 init_waitqueue_head(&info->disconn_wait);
1650 init_waitqueue_head(&info->wait_reassembly_queue);
1651 rc = rdma_connect(info->id, &conn_param);
1652 if (rc) {
1653 log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1654 goto rdma_connect_failed;
1655 }
1656
1657 wait_event_interruptible(
1658 info->conn_wait, info->transport_status != SMBD_CONNECTING);
1659
1660 if (info->transport_status != SMBD_CONNECTED) {
1661 log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1662 goto rdma_connect_failed;
1663 }
1664
1665 log_rdma_event(INFO, "rdma_connect connected\n");
1666
1667 rc = allocate_caches_and_workqueue(info);
1668 if (rc) {
1669 log_rdma_event(ERR, "cache allocation failed\n");
1670 goto allocate_cache_failed;
1671 }
1672
1673 init_waitqueue_head(&info->wait_send_queue);
1674 INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer);
1675 queue_delayed_work(info->workqueue, &info->idle_timer_work,
1676 info->keep_alive_interval*HZ);
1677
1678 init_waitqueue_head(&info->wait_send_pending);
1679 atomic_set(&info->send_pending, 0);
1680
1681 init_waitqueue_head(&info->wait_post_send);
1682
1683 INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work);
1684 INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits);
1685 info->new_credits_offered = 0;
1686 spin_lock_init(&info->lock_new_credits_offered);
1687
1688 rc = smbd_negotiate(info);
1689 if (rc) {
1690 log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1691 goto negotiation_failed;
1692 }
1693
1694 rc = allocate_mr_list(info);
1695 if (rc) {
1696 log_rdma_mr(ERR, "memory registration allocation failed\n");
1697 goto allocate_mr_failed;
1698 }
1699
1700 return info;
1701
1702 allocate_mr_failed:
1703 /* At this point, need to a full transport shutdown */
1704 server->smbd_conn = info;
1705 smbd_destroy(server);
1706 return NULL;
1707
1708 negotiation_failed:
1709 cancel_delayed_work_sync(&info->idle_timer_work);
1710 destroy_caches_and_workqueue(info);
1711 info->transport_status = SMBD_NEGOTIATE_FAILED;
1712 init_waitqueue_head(&info->conn_wait);
1713 rdma_disconnect(info->id);
1714 wait_event(info->conn_wait,
1715 info->transport_status == SMBD_DISCONNECTED);
1716
1717 allocate_cache_failed:
1718 rdma_connect_failed:
1719 rdma_destroy_qp(info->id);
1720
1721 create_qp_failed:
1722 alloc_cq_failed:
1723 if (info->send_cq)
1724 ib_free_cq(info->send_cq);
1725 if (info->recv_cq)
1726 ib_free_cq(info->recv_cq);
1727
1728 config_failed:
1729 ib_dealloc_pd(info->pd);
1730 rdma_destroy_id(info->id);
1731
1732 create_id_failed:
1733 kfree(info);
1734 return NULL;
1735 }
1736
smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr)1737 struct smbd_connection *smbd_get_connection(
1738 struct TCP_Server_Info *server, struct sockaddr *dstaddr)
1739 {
1740 struct smbd_connection *ret;
1741 int port = SMBD_PORT;
1742
1743 try_again:
1744 ret = _smbd_get_connection(server, dstaddr, port);
1745
1746 /* Try SMB_PORT if SMBD_PORT doesn't work */
1747 if (!ret && port == SMBD_PORT) {
1748 port = SMB_PORT;
1749 goto try_again;
1750 }
1751 return ret;
1752 }
1753
1754 /*
1755 * Receive data from receive reassembly queue
1756 * All the incoming data packets are placed in reassembly queue
1757 * buf: the buffer to read data into
1758 * size: the length of data to read
1759 * return value: actual data read
1760 * Note: this implementation copies the data from reassebmly queue to receive
1761 * buffers used by upper layer. This is not the optimal code path. A better way
1762 * to do it is to not have upper layer allocate its receive buffers but rather
1763 * borrow the buffer from reassembly queue, and return it after data is
1764 * consumed. But this will require more changes to upper layer code, and also
1765 * need to consider packet boundaries while they still being reassembled.
1766 */
smbd_recv_buf(struct smbd_connection * info,char * buf,unsigned int size)1767 static int smbd_recv_buf(struct smbd_connection *info, char *buf,
1768 unsigned int size)
1769 {
1770 struct smbd_response *response;
1771 struct smbd_data_transfer *data_transfer;
1772 int to_copy, to_read, data_read, offset;
1773 u32 data_length, remaining_data_length, data_offset;
1774 int rc;
1775
1776 again:
1777 /*
1778 * No need to hold the reassembly queue lock all the time as we are
1779 * the only one reading from the front of the queue. The transport
1780 * may add more entries to the back of the queue at the same time
1781 */
1782 log_read(INFO, "size=%d info->reassembly_data_length=%d\n", size,
1783 info->reassembly_data_length);
1784 if (info->reassembly_data_length >= size) {
1785 int queue_length;
1786 int queue_removed = 0;
1787
1788 /*
1789 * Need to make sure reassembly_data_length is read before
1790 * reading reassembly_queue_length and calling
1791 * _get_first_reassembly. This call is lock free
1792 * as we never read at the end of the queue which are being
1793 * updated in SOFTIRQ as more data is received
1794 */
1795 virt_rmb();
1796 queue_length = info->reassembly_queue_length;
1797 data_read = 0;
1798 to_read = size;
1799 offset = info->first_entry_offset;
1800 while (data_read < size) {
1801 response = _get_first_reassembly(info);
1802 data_transfer = smbd_response_payload(response);
1803 data_length = le32_to_cpu(data_transfer->data_length);
1804 remaining_data_length =
1805 le32_to_cpu(
1806 data_transfer->remaining_data_length);
1807 data_offset = le32_to_cpu(data_transfer->data_offset);
1808
1809 /*
1810 * The upper layer expects RFC1002 length at the
1811 * beginning of the payload. Return it to indicate
1812 * the total length of the packet. This minimize the
1813 * change to upper layer packet processing logic. This
1814 * will be eventually remove when an intermediate
1815 * transport layer is added
1816 */
1817 if (response->first_segment && size == 4) {
1818 unsigned int rfc1002_len =
1819 data_length + remaining_data_length;
1820 *((__be32 *)buf) = cpu_to_be32(rfc1002_len);
1821 data_read = 4;
1822 response->first_segment = false;
1823 log_read(INFO, "returning rfc1002 length %d\n",
1824 rfc1002_len);
1825 goto read_rfc1002_done;
1826 }
1827
1828 to_copy = min_t(int, data_length - offset, to_read);
1829 memcpy(
1830 buf + data_read,
1831 (char *)data_transfer + data_offset + offset,
1832 to_copy);
1833
1834 /* move on to the next buffer? */
1835 if (to_copy == data_length - offset) {
1836 queue_length--;
1837 /*
1838 * No need to lock if we are not at the
1839 * end of the queue
1840 */
1841 if (queue_length)
1842 list_del(&response->list);
1843 else {
1844 spin_lock_irq(
1845 &info->reassembly_queue_lock);
1846 list_del(&response->list);
1847 spin_unlock_irq(
1848 &info->reassembly_queue_lock);
1849 }
1850 queue_removed++;
1851 info->count_reassembly_queue--;
1852 info->count_dequeue_reassembly_queue++;
1853 put_receive_buffer(info, response);
1854 offset = 0;
1855 log_read(INFO, "put_receive_buffer offset=0\n");
1856 } else
1857 offset += to_copy;
1858
1859 to_read -= to_copy;
1860 data_read += to_copy;
1861
1862 log_read(INFO, "_get_first_reassembly memcpy %d bytes data_transfer_length-offset=%d after that to_read=%d data_read=%d offset=%d\n",
1863 to_copy, data_length - offset,
1864 to_read, data_read, offset);
1865 }
1866
1867 spin_lock_irq(&info->reassembly_queue_lock);
1868 info->reassembly_data_length -= data_read;
1869 info->reassembly_queue_length -= queue_removed;
1870 spin_unlock_irq(&info->reassembly_queue_lock);
1871
1872 info->first_entry_offset = offset;
1873 log_read(INFO, "returning to thread data_read=%d reassembly_data_length=%d first_entry_offset=%d\n",
1874 data_read, info->reassembly_data_length,
1875 info->first_entry_offset);
1876 read_rfc1002_done:
1877 return data_read;
1878 }
1879
1880 log_read(INFO, "wait_event on more data\n");
1881 rc = wait_event_interruptible(
1882 info->wait_reassembly_queue,
1883 info->reassembly_data_length >= size ||
1884 info->transport_status != SMBD_CONNECTED);
1885 /* Don't return any data if interrupted */
1886 if (rc)
1887 return rc;
1888
1889 if (info->transport_status != SMBD_CONNECTED) {
1890 log_read(ERR, "disconnected\n");
1891 return -ECONNABORTED;
1892 }
1893
1894 goto again;
1895 }
1896
1897 /*
1898 * Receive a page from receive reassembly queue
1899 * page: the page to read data into
1900 * to_read: the length of data to read
1901 * return value: actual data read
1902 */
smbd_recv_page(struct smbd_connection * info,struct page * page,unsigned int page_offset,unsigned int to_read)1903 static int smbd_recv_page(struct smbd_connection *info,
1904 struct page *page, unsigned int page_offset,
1905 unsigned int to_read)
1906 {
1907 int ret;
1908 char *to_address;
1909 void *page_address;
1910
1911 /* make sure we have the page ready for read */
1912 ret = wait_event_interruptible(
1913 info->wait_reassembly_queue,
1914 info->reassembly_data_length >= to_read ||
1915 info->transport_status != SMBD_CONNECTED);
1916 if (ret)
1917 return ret;
1918
1919 /* now we can read from reassembly queue and not sleep */
1920 page_address = kmap_atomic(page);
1921 to_address = (char *) page_address + page_offset;
1922
1923 log_read(INFO, "reading from page=%p address=%p to_read=%d\n",
1924 page, to_address, to_read);
1925
1926 ret = smbd_recv_buf(info, to_address, to_read);
1927 kunmap_atomic(page_address);
1928
1929 return ret;
1930 }
1931
1932 /*
1933 * Receive data from transport
1934 * msg: a msghdr point to the buffer, can be ITER_KVEC or ITER_BVEC
1935 * return: total bytes read, or 0. SMB Direct will not do partial read.
1936 */
smbd_recv(struct smbd_connection * info,struct msghdr * msg)1937 int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
1938 {
1939 char *buf;
1940 struct page *page;
1941 unsigned int to_read, page_offset;
1942 int rc;
1943
1944 if (iov_iter_rw(&msg->msg_iter) == WRITE) {
1945 /* It's a bug in upper layer to get there */
1946 cifs_dbg(VFS, "Invalid msg iter dir %u\n",
1947 iov_iter_rw(&msg->msg_iter));
1948 rc = -EINVAL;
1949 goto out;
1950 }
1951
1952 switch (iov_iter_type(&msg->msg_iter)) {
1953 case ITER_KVEC:
1954 buf = msg->msg_iter.kvec->iov_base;
1955 to_read = msg->msg_iter.kvec->iov_len;
1956 rc = smbd_recv_buf(info, buf, to_read);
1957 break;
1958
1959 case ITER_BVEC:
1960 page = msg->msg_iter.bvec->bv_page;
1961 page_offset = msg->msg_iter.bvec->bv_offset;
1962 to_read = msg->msg_iter.bvec->bv_len;
1963 rc = smbd_recv_page(info, page, page_offset, to_read);
1964 break;
1965
1966 default:
1967 /* It's a bug in upper layer to get there */
1968 cifs_dbg(VFS, "Invalid msg type %d\n",
1969 iov_iter_type(&msg->msg_iter));
1970 rc = -EINVAL;
1971 }
1972
1973 out:
1974 /* SMBDirect will read it all or nothing */
1975 if (rc > 0)
1976 msg->msg_iter.count = 0;
1977 return rc;
1978 }
1979
1980 /*
1981 * Send data to transport
1982 * Each rqst is transported as a SMBDirect payload
1983 * rqst: the data to write
1984 * return value: 0 if successfully write, otherwise error code
1985 */
smbd_send(struct TCP_Server_Info * server,int num_rqst,struct smb_rqst * rqst_array)1986 int smbd_send(struct TCP_Server_Info *server,
1987 int num_rqst, struct smb_rqst *rqst_array)
1988 {
1989 struct smbd_connection *info = server->smbd_conn;
1990 struct kvec vec;
1991 int nvecs;
1992 int size;
1993 unsigned int buflen, remaining_data_length;
1994 int start, i, j;
1995 int max_iov_size =
1996 info->max_send_size - sizeof(struct smbd_data_transfer);
1997 struct kvec *iov;
1998 int rc;
1999 struct smb_rqst *rqst;
2000 int rqst_idx;
2001
2002 if (info->transport_status != SMBD_CONNECTED) {
2003 rc = -EAGAIN;
2004 goto done;
2005 }
2006
2007 /*
2008 * Add in the page array if there is one. The caller needs to set
2009 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and
2010 * ends at page boundary
2011 */
2012 remaining_data_length = 0;
2013 for (i = 0; i < num_rqst; i++)
2014 remaining_data_length += smb_rqst_len(server, &rqst_array[i]);
2015
2016 if (remaining_data_length > info->max_fragmented_send_size) {
2017 log_write(ERR, "payload size %d > max size %d\n",
2018 remaining_data_length, info->max_fragmented_send_size);
2019 rc = -EINVAL;
2020 goto done;
2021 }
2022
2023 log_write(INFO, "num_rqst=%d total length=%u\n",
2024 num_rqst, remaining_data_length);
2025
2026 rqst_idx = 0;
2027 next_rqst:
2028 rqst = &rqst_array[rqst_idx];
2029 iov = rqst->rq_iov;
2030
2031 cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n",
2032 rqst_idx, smb_rqst_len(server, rqst));
2033 for (i = 0; i < rqst->rq_nvec; i++)
2034 dump_smb(iov[i].iov_base, iov[i].iov_len);
2035
2036
2037 log_write(INFO, "rqst_idx=%d nvec=%d rqst->rq_npages=%d rq_pagesz=%d rq_tailsz=%d buflen=%lu\n",
2038 rqst_idx, rqst->rq_nvec, rqst->rq_npages, rqst->rq_pagesz,
2039 rqst->rq_tailsz, smb_rqst_len(server, rqst));
2040
2041 start = i = 0;
2042 buflen = 0;
2043 while (true) {
2044 buflen += iov[i].iov_len;
2045 if (buflen > max_iov_size) {
2046 if (i > start) {
2047 remaining_data_length -=
2048 (buflen-iov[i].iov_len);
2049 log_write(INFO, "sending iov[] from start=%d i=%d nvecs=%d remaining_data_length=%d\n",
2050 start, i, i - start,
2051 remaining_data_length);
2052 rc = smbd_post_send_data(
2053 info, &iov[start], i-start,
2054 remaining_data_length);
2055 if (rc)
2056 goto done;
2057 } else {
2058 /* iov[start] is too big, break it */
2059 nvecs = (buflen+max_iov_size-1)/max_iov_size;
2060 log_write(INFO, "iov[%d] iov_base=%p buflen=%d break to %d vectors\n",
2061 start, iov[start].iov_base,
2062 buflen, nvecs);
2063 for (j = 0; j < nvecs; j++) {
2064 vec.iov_base =
2065 (char *)iov[start].iov_base +
2066 j*max_iov_size;
2067 vec.iov_len = max_iov_size;
2068 if (j == nvecs-1)
2069 vec.iov_len =
2070 buflen -
2071 max_iov_size*(nvecs-1);
2072 remaining_data_length -= vec.iov_len;
2073 log_write(INFO,
2074 "sending vec j=%d iov_base=%p iov_len=%zu remaining_data_length=%d\n",
2075 j, vec.iov_base, vec.iov_len,
2076 remaining_data_length);
2077 rc = smbd_post_send_data(
2078 info, &vec, 1,
2079 remaining_data_length);
2080 if (rc)
2081 goto done;
2082 }
2083 i++;
2084 if (i == rqst->rq_nvec)
2085 break;
2086 }
2087 start = i;
2088 buflen = 0;
2089 } else {
2090 i++;
2091 if (i == rqst->rq_nvec) {
2092 /* send out all remaining vecs */
2093 remaining_data_length -= buflen;
2094 log_write(INFO, "sending iov[] from start=%d i=%d nvecs=%d remaining_data_length=%d\n",
2095 start, i, i - start,
2096 remaining_data_length);
2097 rc = smbd_post_send_data(info, &iov[start],
2098 i-start, remaining_data_length);
2099 if (rc)
2100 goto done;
2101 break;
2102 }
2103 }
2104 log_write(INFO, "looping i=%d buflen=%d\n", i, buflen);
2105 }
2106
2107 /* now sending pages if there are any */
2108 for (i = 0; i < rqst->rq_npages; i++) {
2109 unsigned int offset;
2110
2111 rqst_page_get_length(rqst, i, &buflen, &offset);
2112 nvecs = (buflen + max_iov_size - 1) / max_iov_size;
2113 log_write(INFO, "sending pages buflen=%d nvecs=%d\n",
2114 buflen, nvecs);
2115 for (j = 0; j < nvecs; j++) {
2116 size = max_iov_size;
2117 if (j == nvecs-1)
2118 size = buflen - j*max_iov_size;
2119 remaining_data_length -= size;
2120 log_write(INFO, "sending pages i=%d offset=%d size=%d remaining_data_length=%d\n",
2121 i, j * max_iov_size + offset, size,
2122 remaining_data_length);
2123 rc = smbd_post_send_page(
2124 info, rqst->rq_pages[i],
2125 j*max_iov_size + offset,
2126 size, remaining_data_length);
2127 if (rc)
2128 goto done;
2129 }
2130 }
2131
2132 rqst_idx++;
2133 if (rqst_idx < num_rqst)
2134 goto next_rqst;
2135
2136 done:
2137 /*
2138 * As an optimization, we don't wait for individual I/O to finish
2139 * before sending the next one.
2140 * Send them all and wait for pending send count to get to 0
2141 * that means all the I/Os have been out and we are good to return
2142 */
2143
2144 wait_event(info->wait_send_pending,
2145 atomic_read(&info->send_pending) == 0);
2146
2147 return rc;
2148 }
2149
register_mr_done(struct ib_cq * cq,struct ib_wc * wc)2150 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
2151 {
2152 struct smbd_mr *mr;
2153 struct ib_cqe *cqe;
2154
2155 if (wc->status) {
2156 log_rdma_mr(ERR, "status=%d\n", wc->status);
2157 cqe = wc->wr_cqe;
2158 mr = container_of(cqe, struct smbd_mr, cqe);
2159 smbd_disconnect_rdma_connection(mr->conn);
2160 }
2161 }
2162
2163 /*
2164 * The work queue function that recovers MRs
2165 * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
2166 * again. Both calls are slow, so finish them in a workqueue. This will not
2167 * block I/O path.
2168 * There is one workqueue that recovers MRs, there is no need to lock as the
2169 * I/O requests calling smbd_register_mr will never update the links in the
2170 * mr_list.
2171 */
smbd_mr_recovery_work(struct work_struct * work)2172 static void smbd_mr_recovery_work(struct work_struct *work)
2173 {
2174 struct smbd_connection *info =
2175 container_of(work, struct smbd_connection, mr_recovery_work);
2176 struct smbd_mr *smbdirect_mr;
2177 int rc;
2178
2179 list_for_each_entry(smbdirect_mr, &info->mr_list, list) {
2180 if (smbdirect_mr->state == MR_ERROR) {
2181
2182 /* recover this MR entry */
2183 rc = ib_dereg_mr(smbdirect_mr->mr);
2184 if (rc) {
2185 log_rdma_mr(ERR,
2186 "ib_dereg_mr failed rc=%x\n",
2187 rc);
2188 smbd_disconnect_rdma_connection(info);
2189 continue;
2190 }
2191
2192 smbdirect_mr->mr = ib_alloc_mr(
2193 info->pd, info->mr_type,
2194 info->max_frmr_depth);
2195 if (IS_ERR(smbdirect_mr->mr)) {
2196 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2197 info->mr_type,
2198 info->max_frmr_depth);
2199 smbd_disconnect_rdma_connection(info);
2200 continue;
2201 }
2202 } else
2203 /* This MR is being used, don't recover it */
2204 continue;
2205
2206 smbdirect_mr->state = MR_READY;
2207
2208 /* smbdirect_mr->state is updated by this function
2209 * and is read and updated by I/O issuing CPUs trying
2210 * to get a MR, the call to atomic_inc_return
2211 * implicates a memory barrier and guarantees this
2212 * value is updated before waking up any calls to
2213 * get_mr() from the I/O issuing CPUs
2214 */
2215 if (atomic_inc_return(&info->mr_ready_count) == 1)
2216 wake_up_interruptible(&info->wait_mr);
2217 }
2218 }
2219
destroy_mr_list(struct smbd_connection * info)2220 static void destroy_mr_list(struct smbd_connection *info)
2221 {
2222 struct smbd_mr *mr, *tmp;
2223
2224 cancel_work_sync(&info->mr_recovery_work);
2225 list_for_each_entry_safe(mr, tmp, &info->mr_list, list) {
2226 if (mr->state == MR_INVALIDATED)
2227 ib_dma_unmap_sg(info->id->device, mr->sgl,
2228 mr->sgl_count, mr->dir);
2229 ib_dereg_mr(mr->mr);
2230 kfree(mr->sgl);
2231 kfree(mr);
2232 }
2233 }
2234
2235 /*
2236 * Allocate MRs used for RDMA read/write
2237 * The number of MRs will not exceed hardware capability in responder_resources
2238 * All MRs are kept in mr_list. The MR can be recovered after it's used
2239 * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2240 * as MRs are used and recovered for I/O, but the list links will not change
2241 */
allocate_mr_list(struct smbd_connection * info)2242 static int allocate_mr_list(struct smbd_connection *info)
2243 {
2244 int i;
2245 struct smbd_mr *smbdirect_mr, *tmp;
2246
2247 INIT_LIST_HEAD(&info->mr_list);
2248 init_waitqueue_head(&info->wait_mr);
2249 spin_lock_init(&info->mr_list_lock);
2250 atomic_set(&info->mr_ready_count, 0);
2251 atomic_set(&info->mr_used_count, 0);
2252 init_waitqueue_head(&info->wait_for_mr_cleanup);
2253 INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work);
2254 /* Allocate more MRs (2x) than hardware responder_resources */
2255 for (i = 0; i < info->responder_resources * 2; i++) {
2256 smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL);
2257 if (!smbdirect_mr)
2258 goto out;
2259 smbdirect_mr->mr = ib_alloc_mr(info->pd, info->mr_type,
2260 info->max_frmr_depth);
2261 if (IS_ERR(smbdirect_mr->mr)) {
2262 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2263 info->mr_type, info->max_frmr_depth);
2264 goto out;
2265 }
2266 smbdirect_mr->sgl = kcalloc(
2267 info->max_frmr_depth,
2268 sizeof(struct scatterlist),
2269 GFP_KERNEL);
2270 if (!smbdirect_mr->sgl) {
2271 log_rdma_mr(ERR, "failed to allocate sgl\n");
2272 ib_dereg_mr(smbdirect_mr->mr);
2273 goto out;
2274 }
2275 smbdirect_mr->state = MR_READY;
2276 smbdirect_mr->conn = info;
2277
2278 list_add_tail(&smbdirect_mr->list, &info->mr_list);
2279 atomic_inc(&info->mr_ready_count);
2280 }
2281 return 0;
2282
2283 out:
2284 kfree(smbdirect_mr);
2285
2286 list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) {
2287 list_del(&smbdirect_mr->list);
2288 ib_dereg_mr(smbdirect_mr->mr);
2289 kfree(smbdirect_mr->sgl);
2290 kfree(smbdirect_mr);
2291 }
2292 return -ENOMEM;
2293 }
2294
2295 /*
2296 * Get a MR from mr_list. This function waits until there is at least one
2297 * MR available in the list. It may access the list while the
2298 * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2299 * as they never modify the same places. However, there may be several CPUs
2300 * issueing I/O trying to get MR at the same time, mr_list_lock is used to
2301 * protect this situation.
2302 */
get_mr(struct smbd_connection * info)2303 static struct smbd_mr *get_mr(struct smbd_connection *info)
2304 {
2305 struct smbd_mr *ret;
2306 int rc;
2307 again:
2308 rc = wait_event_interruptible(info->wait_mr,
2309 atomic_read(&info->mr_ready_count) ||
2310 info->transport_status != SMBD_CONNECTED);
2311 if (rc) {
2312 log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2313 return NULL;
2314 }
2315
2316 if (info->transport_status != SMBD_CONNECTED) {
2317 log_rdma_mr(ERR, "info->transport_status=%x\n",
2318 info->transport_status);
2319 return NULL;
2320 }
2321
2322 spin_lock(&info->mr_list_lock);
2323 list_for_each_entry(ret, &info->mr_list, list) {
2324 if (ret->state == MR_READY) {
2325 ret->state = MR_REGISTERED;
2326 spin_unlock(&info->mr_list_lock);
2327 atomic_dec(&info->mr_ready_count);
2328 atomic_inc(&info->mr_used_count);
2329 return ret;
2330 }
2331 }
2332
2333 spin_unlock(&info->mr_list_lock);
2334 /*
2335 * It is possible that we could fail to get MR because other processes may
2336 * try to acquire a MR at the same time. If this is the case, retry it.
2337 */
2338 goto again;
2339 }
2340
2341 /*
2342 * Register memory for RDMA read/write
2343 * pages[]: the list of pages to register memory with
2344 * num_pages: the number of pages to register
2345 * tailsz: if non-zero, the bytes to register in the last page
2346 * writing: true if this is a RDMA write (SMB read), false for RDMA read
2347 * need_invalidate: true if this MR needs to be locally invalidated after I/O
2348 * return value: the MR registered, NULL if failed.
2349 */
smbd_register_mr(struct smbd_connection * info,struct page * pages[],int num_pages,int offset,int tailsz,bool writing,bool need_invalidate)2350 struct smbd_mr *smbd_register_mr(
2351 struct smbd_connection *info, struct page *pages[], int num_pages,
2352 int offset, int tailsz, bool writing, bool need_invalidate)
2353 {
2354 struct smbd_mr *smbdirect_mr;
2355 int rc, i;
2356 enum dma_data_direction dir;
2357 struct ib_reg_wr *reg_wr;
2358
2359 if (num_pages > info->max_frmr_depth) {
2360 log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2361 num_pages, info->max_frmr_depth);
2362 return NULL;
2363 }
2364
2365 smbdirect_mr = get_mr(info);
2366 if (!smbdirect_mr) {
2367 log_rdma_mr(ERR, "get_mr returning NULL\n");
2368 return NULL;
2369 }
2370 smbdirect_mr->need_invalidate = need_invalidate;
2371 smbdirect_mr->sgl_count = num_pages;
2372 sg_init_table(smbdirect_mr->sgl, num_pages);
2373
2374 log_rdma_mr(INFO, "num_pages=0x%x offset=0x%x tailsz=0x%x\n",
2375 num_pages, offset, tailsz);
2376
2377 if (num_pages == 1) {
2378 sg_set_page(&smbdirect_mr->sgl[0], pages[0], tailsz, offset);
2379 goto skip_multiple_pages;
2380 }
2381
2382 /* We have at least two pages to register */
2383 sg_set_page(
2384 &smbdirect_mr->sgl[0], pages[0], PAGE_SIZE - offset, offset);
2385 i = 1;
2386 while (i < num_pages - 1) {
2387 sg_set_page(&smbdirect_mr->sgl[i], pages[i], PAGE_SIZE, 0);
2388 i++;
2389 }
2390 sg_set_page(&smbdirect_mr->sgl[i], pages[i],
2391 tailsz ? tailsz : PAGE_SIZE, 0);
2392
2393 skip_multiple_pages:
2394 dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2395 smbdirect_mr->dir = dir;
2396 rc = ib_dma_map_sg(info->id->device, smbdirect_mr->sgl, num_pages, dir);
2397 if (!rc) {
2398 log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2399 num_pages, dir, rc);
2400 goto dma_map_error;
2401 }
2402
2403 rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgl, num_pages,
2404 NULL, PAGE_SIZE);
2405 if (rc != num_pages) {
2406 log_rdma_mr(ERR,
2407 "ib_map_mr_sg failed rc = %d num_pages = %x\n",
2408 rc, num_pages);
2409 goto map_mr_error;
2410 }
2411
2412 ib_update_fast_reg_key(smbdirect_mr->mr,
2413 ib_inc_rkey(smbdirect_mr->mr->rkey));
2414 reg_wr = &smbdirect_mr->wr;
2415 reg_wr->wr.opcode = IB_WR_REG_MR;
2416 smbdirect_mr->cqe.done = register_mr_done;
2417 reg_wr->wr.wr_cqe = &smbdirect_mr->cqe;
2418 reg_wr->wr.num_sge = 0;
2419 reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2420 reg_wr->mr = smbdirect_mr->mr;
2421 reg_wr->key = smbdirect_mr->mr->rkey;
2422 reg_wr->access = writing ?
2423 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2424 IB_ACCESS_REMOTE_READ;
2425
2426 /*
2427 * There is no need for waiting for complemtion on ib_post_send
2428 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2429 * on the next ib_post_send when we actaully send I/O to remote peer
2430 */
2431 rc = ib_post_send(info->id->qp, ®_wr->wr, NULL);
2432 if (!rc)
2433 return smbdirect_mr;
2434
2435 log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2436 rc, reg_wr->key);
2437
2438 /* If all failed, attempt to recover this MR by setting it MR_ERROR*/
2439 map_mr_error:
2440 ib_dma_unmap_sg(info->id->device, smbdirect_mr->sgl,
2441 smbdirect_mr->sgl_count, smbdirect_mr->dir);
2442
2443 dma_map_error:
2444 smbdirect_mr->state = MR_ERROR;
2445 if (atomic_dec_and_test(&info->mr_used_count))
2446 wake_up(&info->wait_for_mr_cleanup);
2447
2448 smbd_disconnect_rdma_connection(info);
2449
2450 return NULL;
2451 }
2452
local_inv_done(struct ib_cq * cq,struct ib_wc * wc)2453 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2454 {
2455 struct smbd_mr *smbdirect_mr;
2456 struct ib_cqe *cqe;
2457
2458 cqe = wc->wr_cqe;
2459 smbdirect_mr = container_of(cqe, struct smbd_mr, cqe);
2460 smbdirect_mr->state = MR_INVALIDATED;
2461 if (wc->status != IB_WC_SUCCESS) {
2462 log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2463 smbdirect_mr->state = MR_ERROR;
2464 }
2465 complete(&smbdirect_mr->invalidate_done);
2466 }
2467
2468 /*
2469 * Deregister a MR after I/O is done
2470 * This function may wait if remote invalidation is not used
2471 * and we have to locally invalidate the buffer to prevent data is being
2472 * modified by remote peer after upper layer consumes it
2473 */
smbd_deregister_mr(struct smbd_mr * smbdirect_mr)2474 int smbd_deregister_mr(struct smbd_mr *smbdirect_mr)
2475 {
2476 struct ib_send_wr *wr;
2477 struct smbd_connection *info = smbdirect_mr->conn;
2478 int rc = 0;
2479
2480 if (smbdirect_mr->need_invalidate) {
2481 /* Need to finish local invalidation before returning */
2482 wr = &smbdirect_mr->inv_wr;
2483 wr->opcode = IB_WR_LOCAL_INV;
2484 smbdirect_mr->cqe.done = local_inv_done;
2485 wr->wr_cqe = &smbdirect_mr->cqe;
2486 wr->num_sge = 0;
2487 wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey;
2488 wr->send_flags = IB_SEND_SIGNALED;
2489
2490 init_completion(&smbdirect_mr->invalidate_done);
2491 rc = ib_post_send(info->id->qp, wr, NULL);
2492 if (rc) {
2493 log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2494 smbd_disconnect_rdma_connection(info);
2495 goto done;
2496 }
2497 wait_for_completion(&smbdirect_mr->invalidate_done);
2498 smbdirect_mr->need_invalidate = false;
2499 } else
2500 /*
2501 * For remote invalidation, just set it to MR_INVALIDATED
2502 * and defer to mr_recovery_work to recover the MR for next use
2503 */
2504 smbdirect_mr->state = MR_INVALIDATED;
2505
2506 if (smbdirect_mr->state == MR_INVALIDATED) {
2507 ib_dma_unmap_sg(
2508 info->id->device, smbdirect_mr->sgl,
2509 smbdirect_mr->sgl_count,
2510 smbdirect_mr->dir);
2511 smbdirect_mr->state = MR_READY;
2512 if (atomic_inc_return(&info->mr_ready_count) == 1)
2513 wake_up_interruptible(&info->wait_mr);
2514 } else
2515 /*
2516 * Schedule the work to do MR recovery for future I/Os MR
2517 * recovery is slow and don't want it to block current I/O
2518 */
2519 queue_work(info->workqueue, &info->mr_recovery_work);
2520
2521 done:
2522 if (atomic_dec_and_test(&info->mr_used_count))
2523 wake_up(&info->wait_for_mr_cleanup);
2524
2525 return rc;
2526 }
2527