• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Inline encryption support for fscrypt
4  *
5  * Copyright 2019 Google LLC
6  */
7 
8 /*
9  * With "inline encryption", the block layer handles the decryption/encryption
10  * as part of the bio, instead of the filesystem doing the crypto itself via
11  * crypto API.  See Documentation/block/inline-encryption.rst.  fscrypt still
12  * provides the key and IV to use.
13  */
14 
15 #include <linux/blk-crypto.h>
16 #include <linux/blkdev.h>
17 #include <linux/buffer_head.h>
18 #include <linux/keyslot-manager.h>
19 #include <linux/sched/mm.h>
20 #include <linux/slab.h>
21 #include <linux/uio.h>
22 
23 #include "fscrypt_private.h"
24 
25 struct fscrypt_blk_crypto_key {
26 	struct blk_crypto_key base;
27 	int num_devs;
28 	struct request_queue *devs[];
29 };
30 
fscrypt_get_num_devices(struct super_block * sb)31 static int fscrypt_get_num_devices(struct super_block *sb)
32 {
33 	if (sb->s_cop->get_num_devices)
34 		return sb->s_cop->get_num_devices(sb);
35 	return 1;
36 }
37 
fscrypt_get_devices(struct super_block * sb,int num_devs,struct request_queue ** devs)38 static void fscrypt_get_devices(struct super_block *sb, int num_devs,
39 				struct request_queue **devs)
40 {
41 	if (num_devs == 1)
42 		devs[0] = bdev_get_queue(sb->s_bdev);
43 	else
44 		sb->s_cop->get_devices(sb, devs);
45 }
46 
fscrypt_get_dun_bytes(const struct fscrypt_info * ci)47 static unsigned int fscrypt_get_dun_bytes(const struct fscrypt_info *ci)
48 {
49 	struct super_block *sb = ci->ci_inode->i_sb;
50 	unsigned int flags = fscrypt_policy_flags(&ci->ci_policy);
51 	int ino_bits = 64, lblk_bits = 64;
52 
53 	if (flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY)
54 		return offsetofend(union fscrypt_iv, nonce);
55 
56 	if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64)
57 		return sizeof(__le64);
58 
59 	if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32)
60 		return sizeof(__le32);
61 
62 	/* Default case: IVs are just the file logical block number */
63 	if (sb->s_cop->get_ino_and_lblk_bits)
64 		sb->s_cop->get_ino_and_lblk_bits(sb, &ino_bits, &lblk_bits);
65 	return DIV_ROUND_UP(lblk_bits, 8);
66 }
67 
68 /* Enable inline encryption for this file if supported. */
fscrypt_select_encryption_impl(struct fscrypt_info * ci,bool is_hw_wrapped_key)69 int fscrypt_select_encryption_impl(struct fscrypt_info *ci,
70 				   bool is_hw_wrapped_key)
71 {
72 	const struct inode *inode = ci->ci_inode;
73 	struct super_block *sb = inode->i_sb;
74 	struct blk_crypto_config crypto_cfg;
75 	int num_devs;
76 	struct request_queue **devs;
77 	int i;
78 
79 	/* The file must need contents encryption, not filenames encryption */
80 	if (!S_ISREG(inode->i_mode))
81 		return 0;
82 
83 	/* The crypto mode must have a blk-crypto counterpart */
84 	if (ci->ci_mode->blk_crypto_mode == BLK_ENCRYPTION_MODE_INVALID)
85 		return 0;
86 
87 	/* The filesystem must be mounted with -o inlinecrypt */
88 	if (!(sb->s_flags & SB_INLINECRYPT))
89 		return 0;
90 
91 	/*
92 	 * When a page contains multiple logically contiguous filesystem blocks,
93 	 * some filesystem code only calls fscrypt_mergeable_bio() for the first
94 	 * block in the page. This is fine for most of fscrypt's IV generation
95 	 * strategies, where contiguous blocks imply contiguous IVs. But it
96 	 * doesn't work with IV_INO_LBLK_32. For now, simply exclude
97 	 * IV_INO_LBLK_32 with blocksize != PAGE_SIZE from inline encryption.
98 	 */
99 	if ((fscrypt_policy_flags(&ci->ci_policy) &
100 	     FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) &&
101 	    sb->s_blocksize != PAGE_SIZE)
102 		return 0;
103 
104 	/*
105 	 * On all the filesystem's devices, blk-crypto must support the crypto
106 	 * configuration that the file would use.
107 	 */
108 	crypto_cfg.crypto_mode = ci->ci_mode->blk_crypto_mode;
109 	crypto_cfg.data_unit_size = sb->s_blocksize;
110 	crypto_cfg.dun_bytes = fscrypt_get_dun_bytes(ci);
111 	crypto_cfg.is_hw_wrapped = is_hw_wrapped_key;
112 	num_devs = fscrypt_get_num_devices(sb);
113 	devs = kmalloc_array(num_devs, sizeof(*devs), GFP_KERNEL);
114 	if (!devs)
115 		return -ENOMEM;
116 	fscrypt_get_devices(sb, num_devs, devs);
117 
118 	for (i = 0; i < num_devs; i++) {
119 		if (!blk_crypto_config_supported(devs[i], &crypto_cfg))
120 			goto out_free_devs;
121 	}
122 
123 	ci->ci_inlinecrypt = true;
124 out_free_devs:
125 	kfree(devs);
126 
127 	return 0;
128 }
129 
fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key * prep_key,const u8 * raw_key,unsigned int raw_key_size,bool is_hw_wrapped,const struct fscrypt_info * ci)130 int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
131 				     const u8 *raw_key,
132 				     unsigned int raw_key_size,
133 				     bool is_hw_wrapped,
134 				     const struct fscrypt_info *ci)
135 {
136 	const struct inode *inode = ci->ci_inode;
137 	struct super_block *sb = inode->i_sb;
138 	enum blk_crypto_mode_num crypto_mode = ci->ci_mode->blk_crypto_mode;
139 	int num_devs = fscrypt_get_num_devices(sb);
140 	int queue_refs = 0;
141 	struct fscrypt_blk_crypto_key *blk_key;
142 	int err;
143 	int i;
144 
145 	blk_key = kzalloc(struct_size(blk_key, devs, num_devs), GFP_KERNEL);
146 	if (!blk_key)
147 		return -ENOMEM;
148 
149 	blk_key->num_devs = num_devs;
150 	fscrypt_get_devices(sb, num_devs, blk_key->devs);
151 
152 	BUILD_BUG_ON(FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE >
153 		     BLK_CRYPTO_MAX_WRAPPED_KEY_SIZE);
154 
155 	err = blk_crypto_init_key(&blk_key->base, raw_key, raw_key_size,
156 				  is_hw_wrapped, crypto_mode,
157 				  fscrypt_get_dun_bytes(ci), sb->s_blocksize);
158 	if (err) {
159 		fscrypt_err(inode, "error %d initializing blk-crypto key", err);
160 		goto fail;
161 	}
162 
163 	/*
164 	 * We have to start using blk-crypto on all the filesystem's devices.
165 	 * We also have to save all the request_queue's for later so that the
166 	 * key can be evicted from them.  This is needed because some keys
167 	 * aren't destroyed until after the filesystem was already unmounted
168 	 * (namely, the per-mode keys in struct fscrypt_master_key).
169 	 */
170 	for (i = 0; i < num_devs; i++) {
171 		if (!blk_get_queue(blk_key->devs[i])) {
172 			fscrypt_err(inode, "couldn't get request_queue");
173 			err = -EAGAIN;
174 			goto fail;
175 		}
176 		queue_refs++;
177 
178 		err = blk_crypto_start_using_key(&blk_key->base,
179 						 blk_key->devs[i]);
180 		if (err) {
181 			fscrypt_err(inode,
182 				    "error %d starting to use blk-crypto", err);
183 			goto fail;
184 		}
185 	}
186 	/*
187 	 * Pairs with the smp_load_acquire() in fscrypt_is_key_prepared().
188 	 * I.e., here we publish ->blk_key with a RELEASE barrier so that
189 	 * concurrent tasks can ACQUIRE it.  Note that this concurrency is only
190 	 * possible for per-mode keys, not for per-file keys.
191 	 */
192 	smp_store_release(&prep_key->blk_key, blk_key);
193 	return 0;
194 
195 fail:
196 	for (i = 0; i < queue_refs; i++)
197 		blk_put_queue(blk_key->devs[i]);
198 	kfree_sensitive(blk_key);
199 	return err;
200 }
201 
fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key * prep_key)202 void fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key)
203 {
204 	struct fscrypt_blk_crypto_key *blk_key = prep_key->blk_key;
205 	int i;
206 
207 	if (blk_key) {
208 		for (i = 0; i < blk_key->num_devs; i++) {
209 			blk_crypto_evict_key(blk_key->devs[i], &blk_key->base);
210 			blk_put_queue(blk_key->devs[i]);
211 		}
212 		kfree_sensitive(blk_key);
213 	}
214 }
215 
fscrypt_derive_raw_secret(struct super_block * sb,const u8 * wrapped_key,unsigned int wrapped_key_size,u8 * raw_secret,unsigned int raw_secret_size)216 int fscrypt_derive_raw_secret(struct super_block *sb,
217 			      const u8 *wrapped_key,
218 			      unsigned int wrapped_key_size,
219 			      u8 *raw_secret, unsigned int raw_secret_size)
220 {
221 	struct request_queue *q;
222 
223 	q = bdev_get_queue(sb->s_bdev);
224 	if (!q->ksm)
225 		return -EOPNOTSUPP;
226 
227 	return blk_ksm_derive_raw_secret(q->ksm, wrapped_key, wrapped_key_size,
228 					 raw_secret, raw_secret_size);
229 }
230 
__fscrypt_inode_uses_inline_crypto(const struct inode * inode)231 bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode)
232 {
233 	return inode->i_crypt_info->ci_inlinecrypt;
234 }
235 EXPORT_SYMBOL_GPL(__fscrypt_inode_uses_inline_crypto);
236 
fscrypt_generate_dun(const struct fscrypt_info * ci,u64 lblk_num,u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE])237 static void fscrypt_generate_dun(const struct fscrypt_info *ci, u64 lblk_num,
238 				 u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE])
239 {
240 	union fscrypt_iv iv;
241 	int i;
242 
243 	fscrypt_generate_iv(&iv, lblk_num, ci);
244 
245 	BUILD_BUG_ON(FSCRYPT_MAX_IV_SIZE > BLK_CRYPTO_MAX_IV_SIZE);
246 	memset(dun, 0, BLK_CRYPTO_MAX_IV_SIZE);
247 	for (i = 0; i < ci->ci_mode->ivsize/sizeof(dun[0]); i++)
248 		dun[i] = le64_to_cpu(iv.dun[i]);
249 }
250 
251 /**
252  * fscrypt_set_bio_crypt_ctx() - prepare a file contents bio for inline crypto
253  * @bio: a bio which will eventually be submitted to the file
254  * @inode: the file's inode
255  * @first_lblk: the first file logical block number in the I/O
256  * @gfp_mask: memory allocation flags - these must be a waiting mask so that
257  *					bio_crypt_set_ctx can't fail.
258  *
259  * If the contents of the file should be encrypted (or decrypted) with inline
260  * encryption, then assign the appropriate encryption context to the bio.
261  *
262  * Normally the bio should be newly allocated (i.e. no pages added yet), as
263  * otherwise fscrypt_mergeable_bio() won't work as intended.
264  *
265  * The encryption context will be freed automatically when the bio is freed.
266  *
267  * This function also handles setting bi_skip_dm_default_key when needed.
268  */
fscrypt_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,u64 first_lblk,gfp_t gfp_mask)269 void fscrypt_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
270 			       u64 first_lblk, gfp_t gfp_mask)
271 {
272 	const struct fscrypt_info *ci;
273 	u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
274 
275 	if (fscrypt_inode_should_skip_dm_default_key(inode))
276 		bio_set_skip_dm_default_key(bio);
277 
278 	if (!fscrypt_inode_uses_inline_crypto(inode))
279 		return;
280 	ci = inode->i_crypt_info;
281 
282 	fscrypt_generate_dun(ci, first_lblk, dun);
283 	bio_crypt_set_ctx(bio, &ci->ci_enc_key.blk_key->base, dun, gfp_mask);
284 }
285 EXPORT_SYMBOL_GPL(fscrypt_set_bio_crypt_ctx);
286 
287 /* Extract the inode and logical block number from a buffer_head. */
bh_get_inode_and_lblk_num(const struct buffer_head * bh,const struct inode ** inode_ret,u64 * lblk_num_ret)288 static bool bh_get_inode_and_lblk_num(const struct buffer_head *bh,
289 				      const struct inode **inode_ret,
290 				      u64 *lblk_num_ret)
291 {
292 	struct page *page = bh->b_page;
293 	const struct address_space *mapping;
294 	const struct inode *inode;
295 
296 	/*
297 	 * The ext4 journal (jbd2) can submit a buffer_head it directly created
298 	 * for a non-pagecache page.  fscrypt doesn't care about these.
299 	 */
300 	mapping = page_mapping(page);
301 	if (!mapping)
302 		return false;
303 	inode = mapping->host;
304 
305 	*inode_ret = inode;
306 	*lblk_num_ret = ((u64)page->index << (PAGE_SHIFT - inode->i_blkbits)) +
307 			(bh_offset(bh) >> inode->i_blkbits);
308 	return true;
309 }
310 
311 /**
312  * fscrypt_set_bio_crypt_ctx_bh() - prepare a file contents bio for inline
313  *				    crypto
314  * @bio: a bio which will eventually be submitted to the file
315  * @first_bh: the first buffer_head for which I/O will be submitted
316  * @gfp_mask: memory allocation flags
317  *
318  * Same as fscrypt_set_bio_crypt_ctx(), except this takes a buffer_head instead
319  * of an inode and block number directly.
320  */
fscrypt_set_bio_crypt_ctx_bh(struct bio * bio,const struct buffer_head * first_bh,gfp_t gfp_mask)321 void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio,
322 				  const struct buffer_head *first_bh,
323 				  gfp_t gfp_mask)
324 {
325 	const struct inode *inode;
326 	u64 first_lblk;
327 
328 	if (bh_get_inode_and_lblk_num(first_bh, &inode, &first_lblk))
329 		fscrypt_set_bio_crypt_ctx(bio, inode, first_lblk, gfp_mask);
330 }
331 EXPORT_SYMBOL_GPL(fscrypt_set_bio_crypt_ctx_bh);
332 
333 /**
334  * fscrypt_mergeable_bio() - test whether data can be added to a bio
335  * @bio: the bio being built up
336  * @inode: the inode for the next part of the I/O
337  * @next_lblk: the next file logical block number in the I/O
338  *
339  * When building a bio which may contain data which should undergo inline
340  * encryption (or decryption) via fscrypt, filesystems should call this function
341  * to ensure that the resulting bio contains only contiguous data unit numbers.
342  * This will return false if the next part of the I/O cannot be merged with the
343  * bio because either the encryption key would be different or the encryption
344  * data unit numbers would be discontiguous.
345  *
346  * fscrypt_set_bio_crypt_ctx() must have already been called on the bio.
347  *
348  * This function also returns false if the next part of the I/O would need to
349  * have a different value for the bi_skip_dm_default_key flag.
350  *
351  * Return: true iff the I/O is mergeable
352  */
fscrypt_mergeable_bio(struct bio * bio,const struct inode * inode,u64 next_lblk)353 bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode,
354 			   u64 next_lblk)
355 {
356 	const struct bio_crypt_ctx *bc = bio->bi_crypt_context;
357 	u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
358 
359 	if (!!bc != fscrypt_inode_uses_inline_crypto(inode))
360 		return false;
361 	if (bio_should_skip_dm_default_key(bio) !=
362 	    fscrypt_inode_should_skip_dm_default_key(inode))
363 		return false;
364 	if (!bc)
365 		return true;
366 
367 	/*
368 	 * Comparing the key pointers is good enough, as all I/O for each key
369 	 * uses the same pointer.  I.e., there's currently no need to support
370 	 * merging requests where the keys are the same but the pointers differ.
371 	 */
372 	if (bc->bc_key != &inode->i_crypt_info->ci_enc_key.blk_key->base)
373 		return false;
374 
375 	fscrypt_generate_dun(inode->i_crypt_info, next_lblk, next_dun);
376 	return bio_crypt_dun_is_contiguous(bc, bio->bi_iter.bi_size, next_dun);
377 }
378 EXPORT_SYMBOL_GPL(fscrypt_mergeable_bio);
379 
380 /**
381  * fscrypt_mergeable_bio_bh() - test whether data can be added to a bio
382  * @bio: the bio being built up
383  * @next_bh: the next buffer_head for which I/O will be submitted
384  *
385  * Same as fscrypt_mergeable_bio(), except this takes a buffer_head instead of
386  * an inode and block number directly.
387  *
388  * Return: true iff the I/O is mergeable
389  */
fscrypt_mergeable_bio_bh(struct bio * bio,const struct buffer_head * next_bh)390 bool fscrypt_mergeable_bio_bh(struct bio *bio,
391 			      const struct buffer_head *next_bh)
392 {
393 	const struct inode *inode;
394 	u64 next_lblk;
395 
396 	if (!bh_get_inode_and_lblk_num(next_bh, &inode, &next_lblk))
397 		return !bio->bi_crypt_context &&
398 		       !bio_should_skip_dm_default_key(bio);
399 
400 	return fscrypt_mergeable_bio(bio, inode, next_lblk);
401 }
402 EXPORT_SYMBOL_GPL(fscrypt_mergeable_bio_bh);
403 
404 /**
405  * fscrypt_dio_supported() - check whether a direct I/O request is unsupported
406  *			     due to encryption constraints
407  * @iocb: the file and position the I/O is targeting
408  * @iter: the I/O data segment(s)
409  *
410  * Return: true if direct I/O is supported
411  */
fscrypt_dio_supported(struct kiocb * iocb,struct iov_iter * iter)412 bool fscrypt_dio_supported(struct kiocb *iocb, struct iov_iter *iter)
413 {
414 	const struct inode *inode = file_inode(iocb->ki_filp);
415 	const unsigned int blocksize = i_blocksize(inode);
416 
417 	/* If the file is unencrypted, no veto from us. */
418 	if (!fscrypt_needs_contents_encryption(inode))
419 		return true;
420 
421 	/* We only support direct I/O with inline crypto, not fs-layer crypto */
422 	if (!fscrypt_inode_uses_inline_crypto(inode))
423 		return false;
424 
425 	/*
426 	 * Since the granularity of encryption is filesystem blocks, the I/O
427 	 * must be block aligned -- not just disk sector aligned.
428 	 */
429 	if (!IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), blocksize))
430 		return false;
431 
432 	return true;
433 }
434 EXPORT_SYMBOL_GPL(fscrypt_dio_supported);
435 
436 /**
437  * fscrypt_limit_io_blocks() - limit I/O blocks to avoid discontiguous DUNs
438  * @inode: the file on which I/O is being done
439  * @lblk: the block at which the I/O is being started from
440  * @nr_blocks: the number of blocks we want to submit starting at @pos
441  *
442  * Determine the limit to the number of blocks that can be submitted in the bio
443  * targeting @pos without causing a data unit number (DUN) discontinuity.
444  *
445  * This is normally just @nr_blocks, as normally the DUNs just increment along
446  * with the logical blocks.  (Or the file is not encrypted.)
447  *
448  * In rare cases, fscrypt can be using an IV generation method that allows the
449  * DUN to wrap around within logically continuous blocks, and that wraparound
450  * will occur.  If this happens, a value less than @nr_blocks will be returned
451  * so that the wraparound doesn't occur in the middle of the bio.
452  *
453  * Return: the actual number of blocks that can be submitted
454  */
fscrypt_limit_io_blocks(const struct inode * inode,u64 lblk,u64 nr_blocks)455 u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, u64 nr_blocks)
456 {
457 	const struct fscrypt_info *ci = inode->i_crypt_info;
458 	u32 dun;
459 
460 	if (!fscrypt_inode_uses_inline_crypto(inode))
461 		return nr_blocks;
462 
463 	if (nr_blocks <= 1)
464 		return nr_blocks;
465 
466 	if (!(fscrypt_policy_flags(&ci->ci_policy) &
467 	      FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32))
468 		return nr_blocks;
469 
470 	/* With IV_INO_LBLK_32, the DUN can wrap around from U32_MAX to 0. */
471 
472 	dun = ci->ci_hashed_ino + lblk;
473 
474 	return min_t(u64, nr_blocks, (u64)U32_MAX + 1 - dun);
475 }
476 EXPORT_SYMBOL_GPL(fscrypt_limit_io_blocks);
477