• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>		/* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39 
40 #include <linux/uaccess.h>
41 #include <linux/sched/mm.h>
42 
43 static const struct super_operations hugetlbfs_ops;
44 static const struct address_space_operations hugetlbfs_aops;
45 const struct file_operations hugetlbfs_file_operations;
46 static const struct inode_operations hugetlbfs_dir_inode_operations;
47 static const struct inode_operations hugetlbfs_inode_operations;
48 
49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
50 
51 struct hugetlbfs_fs_context {
52 	struct hstate		*hstate;
53 	unsigned long long	max_size_opt;
54 	unsigned long long	min_size_opt;
55 	long			max_hpages;
56 	long			nr_inodes;
57 	long			min_hpages;
58 	enum hugetlbfs_size_type max_val_type;
59 	enum hugetlbfs_size_type min_val_type;
60 	kuid_t			uid;
61 	kgid_t			gid;
62 	umode_t			mode;
63 };
64 
65 int sysctl_hugetlb_shm_group;
66 
67 enum hugetlb_param {
68 	Opt_gid,
69 	Opt_min_size,
70 	Opt_mode,
71 	Opt_nr_inodes,
72 	Opt_pagesize,
73 	Opt_size,
74 	Opt_uid,
75 };
76 
77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
78 	fsparam_u32   ("gid",		Opt_gid),
79 	fsparam_string("min_size",	Opt_min_size),
80 	fsparam_u32oct("mode",		Opt_mode),
81 	fsparam_string("nr_inodes",	Opt_nr_inodes),
82 	fsparam_string("pagesize",	Opt_pagesize),
83 	fsparam_string("size",		Opt_size),
84 	fsparam_u32   ("uid",		Opt_uid),
85 	{}
86 };
87 
88 #ifdef CONFIG_NUMA
hugetlb_set_vma_policy(struct vm_area_struct * vma,struct inode * inode,pgoff_t index)89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90 					struct inode *inode, pgoff_t index)
91 {
92 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93 							index);
94 }
95 
hugetlb_drop_vma_policy(struct vm_area_struct * vma)96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 	mpol_cond_put(vma->vm_policy);
99 }
100 #else
hugetlb_set_vma_policy(struct vm_area_struct * vma,struct inode * inode,pgoff_t index)101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102 					struct inode *inode, pgoff_t index)
103 {
104 }
105 
hugetlb_drop_vma_policy(struct vm_area_struct * vma)106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110 
huge_pagevec_release(struct pagevec * pvec)111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113 	int i;
114 
115 	for (i = 0; i < pagevec_count(pvec); ++i)
116 		put_page(pvec->pages[i]);
117 
118 	pagevec_reinit(pvec);
119 }
120 
121 /*
122  * Mask used when checking the page offset value passed in via system
123  * calls.  This value will be converted to a loff_t which is signed.
124  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125  * value.  The extra bit (- 1 in the shift value) is to take the sign
126  * bit into account.
127  */
128 #define PGOFF_LOFFT_MAX \
129 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
130 
hugetlbfs_file_mmap(struct file * file,struct vm_area_struct * vma)131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
132 {
133 	struct inode *inode = file_inode(file);
134 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
135 	loff_t len, vma_len;
136 	int ret;
137 	struct hstate *h = hstate_file(file);
138 	vm_flags_t vm_flags;
139 
140 	/*
141 	 * vma address alignment (but not the pgoff alignment) has
142 	 * already been checked by prepare_hugepage_range.  If you add
143 	 * any error returns here, do so after setting VM_HUGETLB, so
144 	 * is_vm_hugetlb_page tests below unmap_region go the right
145 	 * way when do_mmap unwinds (may be important on powerpc
146 	 * and ia64).
147 	 */
148 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
149 	vma->vm_ops = &hugetlb_vm_ops;
150 
151 	ret = seal_check_future_write(info->seals, vma);
152 	if (ret)
153 		return ret;
154 
155 	/*
156 	 * page based offset in vm_pgoff could be sufficiently large to
157 	 * overflow a loff_t when converted to byte offset.  This can
158 	 * only happen on architectures where sizeof(loff_t) ==
159 	 * sizeof(unsigned long).  So, only check in those instances.
160 	 */
161 	if (sizeof(unsigned long) == sizeof(loff_t)) {
162 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
163 			return -EINVAL;
164 	}
165 
166 	/* must be huge page aligned */
167 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
168 		return -EINVAL;
169 
170 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
171 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
172 	/* check for overflow */
173 	if (len < vma_len)
174 		return -EINVAL;
175 
176 	inode_lock(inode);
177 	file_accessed(file);
178 
179 	ret = -ENOMEM;
180 
181 	vm_flags = vma->vm_flags;
182 	/*
183 	 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip
184 	 * reserving here. Note: only for SHM hugetlbfs file, the inode
185 	 * flag S_PRIVATE is set.
186 	 */
187 	if (inode->i_flags & S_PRIVATE)
188 		vm_flags |= VM_NORESERVE;
189 
190 	if (!hugetlb_reserve_pages(inode,
191 				vma->vm_pgoff >> huge_page_order(h),
192 				len >> huge_page_shift(h), vma,
193 				vm_flags))
194 		goto out;
195 
196 	ret = 0;
197 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
198 		i_size_write(inode, len);
199 out:
200 	inode_unlock(inode);
201 
202 	return ret;
203 }
204 
205 /*
206  * Called under mmap_write_lock(mm).
207  */
208 
209 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
210 static unsigned long
hugetlb_get_unmapped_area_bottomup(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)211 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
212 		unsigned long len, unsigned long pgoff, unsigned long flags)
213 {
214 	struct hstate *h = hstate_file(file);
215 	struct vm_unmapped_area_info info;
216 
217 	info.flags = 0;
218 	info.length = len;
219 	info.low_limit = current->mm->mmap_base;
220 	info.high_limit = arch_get_mmap_end(addr);
221 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
222 	info.align_offset = 0;
223 	return vm_unmapped_area(&info);
224 }
225 
226 static unsigned long
hugetlb_get_unmapped_area_topdown(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)227 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
228 		unsigned long len, unsigned long pgoff, unsigned long flags)
229 {
230 	struct hstate *h = hstate_file(file);
231 	struct vm_unmapped_area_info info;
232 
233 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
234 	info.length = len;
235 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
236 	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
237 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
238 	info.align_offset = 0;
239 	addr = vm_unmapped_area(&info);
240 
241 	/*
242 	 * A failed mmap() very likely causes application failure,
243 	 * so fall back to the bottom-up function here. This scenario
244 	 * can happen with large stack limits and large mmap()
245 	 * allocations.
246 	 */
247 	if (unlikely(offset_in_page(addr))) {
248 		VM_BUG_ON(addr != -ENOMEM);
249 		info.flags = 0;
250 		info.low_limit = current->mm->mmap_base;
251 		info.high_limit = arch_get_mmap_end(addr);
252 		addr = vm_unmapped_area(&info);
253 	}
254 
255 	return addr;
256 }
257 
258 static unsigned long
hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)259 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
260 		unsigned long len, unsigned long pgoff, unsigned long flags)
261 {
262 	struct mm_struct *mm = current->mm;
263 	struct vm_area_struct *vma;
264 	struct hstate *h = hstate_file(file);
265 	const unsigned long mmap_end = arch_get_mmap_end(addr);
266 
267 	if (len & ~huge_page_mask(h))
268 		return -EINVAL;
269 	if (len > TASK_SIZE)
270 		return -ENOMEM;
271 
272 	if (flags & MAP_FIXED) {
273 		if (prepare_hugepage_range(file, addr, len))
274 			return -EINVAL;
275 		return addr;
276 	}
277 
278 	if (addr) {
279 		addr = ALIGN(addr, huge_page_size(h));
280 		vma = find_vma(mm, addr);
281 		if (mmap_end - len >= addr &&
282 		    (!vma || addr + len <= vm_start_gap(vma)))
283 			return addr;
284 	}
285 
286 	/*
287 	 * Use mm->get_unmapped_area value as a hint to use topdown routine.
288 	 * If architectures have special needs, they should define their own
289 	 * version of hugetlb_get_unmapped_area.
290 	 */
291 	if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
292 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
293 				pgoff, flags);
294 	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
295 			pgoff, flags);
296 }
297 #endif
298 
299 static size_t
hugetlbfs_read_actor(struct page * page,unsigned long offset,struct iov_iter * to,unsigned long size)300 hugetlbfs_read_actor(struct page *page, unsigned long offset,
301 			struct iov_iter *to, unsigned long size)
302 {
303 	size_t copied = 0;
304 	int i, chunksize;
305 
306 	/* Find which 4k chunk and offset with in that chunk */
307 	i = offset >> PAGE_SHIFT;
308 	offset = offset & ~PAGE_MASK;
309 
310 	while (size) {
311 		size_t n;
312 		chunksize = PAGE_SIZE;
313 		if (offset)
314 			chunksize -= offset;
315 		if (chunksize > size)
316 			chunksize = size;
317 		n = copy_page_to_iter(&page[i], offset, chunksize, to);
318 		copied += n;
319 		if (n != chunksize)
320 			return copied;
321 		offset = 0;
322 		size -= chunksize;
323 		i++;
324 	}
325 	return copied;
326 }
327 
328 /*
329  * Support for read() - Find the page attached to f_mapping and copy out the
330  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
331  * since it has PAGE_SIZE assumptions.
332  */
hugetlbfs_read_iter(struct kiocb * iocb,struct iov_iter * to)333 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
334 {
335 	struct file *file = iocb->ki_filp;
336 	struct hstate *h = hstate_file(file);
337 	struct address_space *mapping = file->f_mapping;
338 	struct inode *inode = mapping->host;
339 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
340 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
341 	unsigned long end_index;
342 	loff_t isize;
343 	ssize_t retval = 0;
344 
345 	while (iov_iter_count(to)) {
346 		struct page *page;
347 		size_t nr, copied;
348 
349 		/* nr is the maximum number of bytes to copy from this page */
350 		nr = huge_page_size(h);
351 		isize = i_size_read(inode);
352 		if (!isize)
353 			break;
354 		end_index = (isize - 1) >> huge_page_shift(h);
355 		if (index > end_index)
356 			break;
357 		if (index == end_index) {
358 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
359 			if (nr <= offset)
360 				break;
361 		}
362 		nr = nr - offset;
363 
364 		/* Find the page */
365 		page = find_lock_page(mapping, index);
366 		if (unlikely(page == NULL)) {
367 			/*
368 			 * We have a HOLE, zero out the user-buffer for the
369 			 * length of the hole or request.
370 			 */
371 			copied = iov_iter_zero(nr, to);
372 		} else {
373 			unlock_page(page);
374 
375 			/*
376 			 * We have the page, copy it to user space buffer.
377 			 */
378 			copied = hugetlbfs_read_actor(page, offset, to, nr);
379 			put_page(page);
380 		}
381 		offset += copied;
382 		retval += copied;
383 		if (copied != nr && iov_iter_count(to)) {
384 			if (!retval)
385 				retval = -EFAULT;
386 			break;
387 		}
388 		index += offset >> huge_page_shift(h);
389 		offset &= ~huge_page_mask(h);
390 	}
391 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
392 	return retval;
393 }
394 
hugetlbfs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)395 static int hugetlbfs_write_begin(struct file *file,
396 			struct address_space *mapping,
397 			loff_t pos, unsigned len, unsigned flags,
398 			struct page **pagep, void **fsdata)
399 {
400 	return -EINVAL;
401 }
402 
hugetlbfs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)403 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
404 			loff_t pos, unsigned len, unsigned copied,
405 			struct page *page, void *fsdata)
406 {
407 	BUG();
408 	return -EINVAL;
409 }
410 
remove_huge_page(struct page * page)411 static void remove_huge_page(struct page *page)
412 {
413 	ClearPageDirty(page);
414 	ClearPageUptodate(page);
415 	delete_from_page_cache(page);
416 }
417 
418 static void
hugetlb_vmdelete_list(struct rb_root_cached * root,pgoff_t start,pgoff_t end)419 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
420 {
421 	struct vm_area_struct *vma;
422 
423 	/*
424 	 * end == 0 indicates that the entire range after
425 	 * start should be unmapped.
426 	 */
427 	vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
428 		unsigned long v_offset;
429 		unsigned long v_end;
430 
431 		/*
432 		 * Can the expression below overflow on 32-bit arches?
433 		 * No, because the interval tree returns us only those vmas
434 		 * which overlap the truncated area starting at pgoff,
435 		 * and no vma on a 32-bit arch can span beyond the 4GB.
436 		 */
437 		if (vma->vm_pgoff < start)
438 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
439 		else
440 			v_offset = 0;
441 
442 		if (!end)
443 			v_end = vma->vm_end;
444 		else {
445 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
446 							+ vma->vm_start;
447 			if (v_end > vma->vm_end)
448 				v_end = vma->vm_end;
449 		}
450 
451 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
452 									NULL);
453 	}
454 }
455 
456 /*
457  * remove_inode_hugepages handles two distinct cases: truncation and hole
458  * punch.  There are subtle differences in operation for each case.
459  *
460  * truncation is indicated by end of range being LLONG_MAX
461  *	In this case, we first scan the range and release found pages.
462  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
463  *	maps and global counts.  Page faults can not race with truncation
464  *	in this routine.  hugetlb_no_page() holds i_mmap_rwsem and prevents
465  *	page faults in the truncated range by checking i_size.  i_size is
466  *	modified while holding i_mmap_rwsem.
467  * hole punch is indicated if end is not LLONG_MAX
468  *	In the hole punch case we scan the range and release found pages.
469  *	Only when releasing a page is the associated region/reserv map
470  *	deleted.  The region/reserv map for ranges without associated
471  *	pages are not modified.  Page faults can race with hole punch.
472  *	This is indicated if we find a mapped page.
473  * Note: If the passed end of range value is beyond the end of file, but
474  * not LLONG_MAX this routine still performs a hole punch operation.
475  */
remove_inode_hugepages(struct inode * inode,loff_t lstart,loff_t lend)476 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
477 				   loff_t lend)
478 {
479 	struct hstate *h = hstate_inode(inode);
480 	struct address_space *mapping = &inode->i_data;
481 	const pgoff_t start = lstart >> huge_page_shift(h);
482 	const pgoff_t end = lend >> huge_page_shift(h);
483 	struct vm_area_struct pseudo_vma;
484 	struct pagevec pvec;
485 	pgoff_t next, index;
486 	int i, freed = 0;
487 	bool truncate_op = (lend == LLONG_MAX);
488 
489 	vma_init(&pseudo_vma, current->mm);
490 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
491 	pagevec_init(&pvec);
492 	next = start;
493 	while (next < end) {
494 		/*
495 		 * When no more pages are found, we are done.
496 		 */
497 		if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
498 			break;
499 
500 		for (i = 0; i < pagevec_count(&pvec); ++i) {
501 			struct page *page = pvec.pages[i];
502 			u32 hash;
503 
504 			index = page->index;
505 			hash = hugetlb_fault_mutex_hash(mapping, index);
506 			if (!truncate_op) {
507 				/*
508 				 * Only need to hold the fault mutex in the
509 				 * hole punch case.  This prevents races with
510 				 * page faults.  Races are not possible in the
511 				 * case of truncation.
512 				 */
513 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
514 			}
515 
516 			/*
517 			 * If page is mapped, it was faulted in after being
518 			 * unmapped in caller.  Unmap (again) now after taking
519 			 * the fault mutex.  The mutex will prevent faults
520 			 * until we finish removing the page.
521 			 *
522 			 * This race can only happen in the hole punch case.
523 			 * Getting here in a truncate operation is a bug.
524 			 */
525 			if (unlikely(page_mapped(page))) {
526 				BUG_ON(truncate_op);
527 
528 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
529 				i_mmap_lock_write(mapping);
530 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
531 				hugetlb_vmdelete_list(&mapping->i_mmap,
532 					index * pages_per_huge_page(h),
533 					(index + 1) * pages_per_huge_page(h));
534 				i_mmap_unlock_write(mapping);
535 			}
536 
537 			lock_page(page);
538 			/*
539 			 * We must free the huge page and remove from page
540 			 * cache (remove_huge_page) BEFORE removing the
541 			 * region/reserve map (hugetlb_unreserve_pages).  In
542 			 * rare out of memory conditions, removal of the
543 			 * region/reserve map could fail. Correspondingly,
544 			 * the subpool and global reserve usage count can need
545 			 * to be adjusted.
546 			 */
547 			VM_BUG_ON(PagePrivate(page));
548 			remove_huge_page(page);
549 			freed++;
550 			if (!truncate_op) {
551 				if (unlikely(hugetlb_unreserve_pages(inode,
552 							index, index + 1, 1)))
553 					hugetlb_fix_reserve_counts(inode);
554 			}
555 
556 			unlock_page(page);
557 			if (!truncate_op)
558 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
559 		}
560 		huge_pagevec_release(&pvec);
561 		cond_resched();
562 	}
563 
564 	if (truncate_op)
565 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
566 }
567 
hugetlbfs_evict_inode(struct inode * inode)568 static void hugetlbfs_evict_inode(struct inode *inode)
569 {
570 	struct resv_map *resv_map;
571 
572 	remove_inode_hugepages(inode, 0, LLONG_MAX);
573 
574 	/*
575 	 * Get the resv_map from the address space embedded in the inode.
576 	 * This is the address space which points to any resv_map allocated
577 	 * at inode creation time.  If this is a device special inode,
578 	 * i_mapping may not point to the original address space.
579 	 */
580 	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
581 	/* Only regular and link inodes have associated reserve maps */
582 	if (resv_map)
583 		resv_map_release(&resv_map->refs);
584 	clear_inode(inode);
585 }
586 
hugetlb_vmtruncate(struct inode * inode,loff_t offset)587 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
588 {
589 	pgoff_t pgoff;
590 	struct address_space *mapping = inode->i_mapping;
591 	struct hstate *h = hstate_inode(inode);
592 
593 	BUG_ON(offset & ~huge_page_mask(h));
594 	pgoff = offset >> PAGE_SHIFT;
595 
596 	i_mmap_lock_write(mapping);
597 	i_size_write(inode, offset);
598 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
599 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
600 	i_mmap_unlock_write(mapping);
601 	remove_inode_hugepages(inode, offset, LLONG_MAX);
602 	return 0;
603 }
604 
hugetlbfs_punch_hole(struct inode * inode,loff_t offset,loff_t len)605 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
606 {
607 	struct hstate *h = hstate_inode(inode);
608 	loff_t hpage_size = huge_page_size(h);
609 	loff_t hole_start, hole_end;
610 
611 	/*
612 	 * For hole punch round up the beginning offset of the hole and
613 	 * round down the end.
614 	 */
615 	hole_start = round_up(offset, hpage_size);
616 	hole_end = round_down(offset + len, hpage_size);
617 
618 	if (hole_end > hole_start) {
619 		struct address_space *mapping = inode->i_mapping;
620 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
621 
622 		inode_lock(inode);
623 
624 		/* protected by i_mutex */
625 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
626 			inode_unlock(inode);
627 			return -EPERM;
628 		}
629 
630 		i_mmap_lock_write(mapping);
631 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
632 			hugetlb_vmdelete_list(&mapping->i_mmap,
633 						hole_start >> PAGE_SHIFT,
634 						hole_end  >> PAGE_SHIFT);
635 		i_mmap_unlock_write(mapping);
636 		remove_inode_hugepages(inode, hole_start, hole_end);
637 		inode_unlock(inode);
638 	}
639 
640 	return 0;
641 }
642 
hugetlbfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)643 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
644 				loff_t len)
645 {
646 	struct inode *inode = file_inode(file);
647 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
648 	struct address_space *mapping = inode->i_mapping;
649 	struct hstate *h = hstate_inode(inode);
650 	struct vm_area_struct pseudo_vma;
651 	struct mm_struct *mm = current->mm;
652 	loff_t hpage_size = huge_page_size(h);
653 	unsigned long hpage_shift = huge_page_shift(h);
654 	pgoff_t start, index, end;
655 	int error;
656 	u32 hash;
657 
658 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
659 		return -EOPNOTSUPP;
660 
661 	if (mode & FALLOC_FL_PUNCH_HOLE)
662 		return hugetlbfs_punch_hole(inode, offset, len);
663 
664 	/*
665 	 * Default preallocate case.
666 	 * For this range, start is rounded down and end is rounded up
667 	 * as well as being converted to page offsets.
668 	 */
669 	start = offset >> hpage_shift;
670 	end = (offset + len + hpage_size - 1) >> hpage_shift;
671 
672 	inode_lock(inode);
673 
674 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
675 	error = inode_newsize_ok(inode, offset + len);
676 	if (error)
677 		goto out;
678 
679 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
680 		error = -EPERM;
681 		goto out;
682 	}
683 
684 	/*
685 	 * Initialize a pseudo vma as this is required by the huge page
686 	 * allocation routines.  If NUMA is configured, use page index
687 	 * as input to create an allocation policy.
688 	 */
689 	vma_init(&pseudo_vma, mm);
690 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
691 	pseudo_vma.vm_file = file;
692 
693 	for (index = start; index < end; index++) {
694 		/*
695 		 * This is supposed to be the vaddr where the page is being
696 		 * faulted in, but we have no vaddr here.
697 		 */
698 		struct page *page;
699 		unsigned long addr;
700 		int avoid_reserve = 0;
701 
702 		cond_resched();
703 
704 		/*
705 		 * fallocate(2) manpage permits EINTR; we may have been
706 		 * interrupted because we are using up too much memory.
707 		 */
708 		if (signal_pending(current)) {
709 			error = -EINTR;
710 			break;
711 		}
712 
713 		/* Set numa allocation policy based on index */
714 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
715 
716 		/* addr is the offset within the file (zero based) */
717 		addr = index * hpage_size;
718 
719 		/*
720 		 * fault mutex taken here, protects against fault path
721 		 * and hole punch.  inode_lock previously taken protects
722 		 * against truncation.
723 		 */
724 		hash = hugetlb_fault_mutex_hash(mapping, index);
725 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
726 
727 		/* See if already present in mapping to avoid alloc/free */
728 		page = find_get_page(mapping, index);
729 		if (page) {
730 			put_page(page);
731 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
732 			hugetlb_drop_vma_policy(&pseudo_vma);
733 			continue;
734 		}
735 
736 		/* Allocate page and add to page cache */
737 		page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
738 		hugetlb_drop_vma_policy(&pseudo_vma);
739 		if (IS_ERR(page)) {
740 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
741 			error = PTR_ERR(page);
742 			goto out;
743 		}
744 		clear_huge_page(page, addr, pages_per_huge_page(h));
745 		__SetPageUptodate(page);
746 		error = huge_add_to_page_cache(page, mapping, index);
747 		if (unlikely(error)) {
748 			put_page(page);
749 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
750 			goto out;
751 		}
752 
753 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
754 
755 		set_page_huge_active(page);
756 		/*
757 		 * unlock_page because locked by add_to_page_cache()
758 		 * put_page() due to reference from alloc_huge_page()
759 		 */
760 		unlock_page(page);
761 		put_page(page);
762 	}
763 
764 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
765 		i_size_write(inode, offset + len);
766 	inode->i_ctime = current_time(inode);
767 out:
768 	inode_unlock(inode);
769 	return error;
770 }
771 
hugetlbfs_setattr(struct dentry * dentry,struct iattr * attr)772 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
773 {
774 	struct inode *inode = d_inode(dentry);
775 	struct hstate *h = hstate_inode(inode);
776 	int error;
777 	unsigned int ia_valid = attr->ia_valid;
778 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
779 
780 	BUG_ON(!inode);
781 
782 	error = setattr_prepare(dentry, attr);
783 	if (error)
784 		return error;
785 
786 	if (ia_valid & ATTR_SIZE) {
787 		loff_t oldsize = inode->i_size;
788 		loff_t newsize = attr->ia_size;
789 
790 		if (newsize & ~huge_page_mask(h))
791 			return -EINVAL;
792 		/* protected by i_mutex */
793 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
794 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
795 			return -EPERM;
796 		error = hugetlb_vmtruncate(inode, newsize);
797 		if (error)
798 			return error;
799 	}
800 
801 	setattr_copy(inode, attr);
802 	mark_inode_dirty(inode);
803 	return 0;
804 }
805 
hugetlbfs_get_root(struct super_block * sb,struct hugetlbfs_fs_context * ctx)806 static struct inode *hugetlbfs_get_root(struct super_block *sb,
807 					struct hugetlbfs_fs_context *ctx)
808 {
809 	struct inode *inode;
810 
811 	inode = new_inode(sb);
812 	if (inode) {
813 		inode->i_ino = get_next_ino();
814 		inode->i_mode = S_IFDIR | ctx->mode;
815 		inode->i_uid = ctx->uid;
816 		inode->i_gid = ctx->gid;
817 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
818 		inode->i_op = &hugetlbfs_dir_inode_operations;
819 		inode->i_fop = &simple_dir_operations;
820 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
821 		inc_nlink(inode);
822 		lockdep_annotate_inode_mutex_key(inode);
823 	}
824 	return inode;
825 }
826 
827 /*
828  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
829  * be taken from reclaim -- unlike regular filesystems. This needs an
830  * annotation because huge_pmd_share() does an allocation under hugetlb's
831  * i_mmap_rwsem.
832  */
833 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
834 
hugetlbfs_get_inode(struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev)835 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
836 					struct inode *dir,
837 					umode_t mode, dev_t dev)
838 {
839 	struct inode *inode;
840 	struct resv_map *resv_map = NULL;
841 
842 	/*
843 	 * Reserve maps are only needed for inodes that can have associated
844 	 * page allocations.
845 	 */
846 	if (S_ISREG(mode) || S_ISLNK(mode)) {
847 		resv_map = resv_map_alloc();
848 		if (!resv_map)
849 			return NULL;
850 	}
851 
852 	inode = new_inode(sb);
853 	if (inode) {
854 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
855 
856 		inode->i_ino = get_next_ino();
857 		inode_init_owner(inode, dir, mode);
858 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
859 				&hugetlbfs_i_mmap_rwsem_key);
860 		inode->i_mapping->a_ops = &hugetlbfs_aops;
861 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
862 		inode->i_mapping->private_data = resv_map;
863 		info->seals = F_SEAL_SEAL;
864 		switch (mode & S_IFMT) {
865 		default:
866 			init_special_inode(inode, mode, dev);
867 			break;
868 		case S_IFREG:
869 			inode->i_op = &hugetlbfs_inode_operations;
870 			inode->i_fop = &hugetlbfs_file_operations;
871 			break;
872 		case S_IFDIR:
873 			inode->i_op = &hugetlbfs_dir_inode_operations;
874 			inode->i_fop = &simple_dir_operations;
875 
876 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
877 			inc_nlink(inode);
878 			break;
879 		case S_IFLNK:
880 			inode->i_op = &page_symlink_inode_operations;
881 			inode_nohighmem(inode);
882 			break;
883 		}
884 		lockdep_annotate_inode_mutex_key(inode);
885 	} else {
886 		if (resv_map)
887 			kref_put(&resv_map->refs, resv_map_release);
888 	}
889 
890 	return inode;
891 }
892 
893 /*
894  * File creation. Allocate an inode, and we're done..
895  */
do_hugetlbfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev,bool tmpfile)896 static int do_hugetlbfs_mknod(struct inode *dir,
897 			struct dentry *dentry,
898 			umode_t mode,
899 			dev_t dev,
900 			bool tmpfile)
901 {
902 	struct inode *inode;
903 	int error = -ENOSPC;
904 
905 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
906 	if (inode) {
907 		dir->i_ctime = dir->i_mtime = current_time(dir);
908 		if (tmpfile) {
909 			d_tmpfile(dentry, inode);
910 		} else {
911 			d_instantiate(dentry, inode);
912 			dget(dentry);/* Extra count - pin the dentry in core */
913 		}
914 		error = 0;
915 	}
916 	return error;
917 }
918 
hugetlbfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)919 static int hugetlbfs_mknod(struct inode *dir,
920 			struct dentry *dentry, umode_t mode, dev_t dev)
921 {
922 	return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
923 }
924 
hugetlbfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)925 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
926 {
927 	int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
928 	if (!retval)
929 		inc_nlink(dir);
930 	return retval;
931 }
932 
hugetlbfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)933 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
934 {
935 	return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
936 }
937 
hugetlbfs_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)938 static int hugetlbfs_tmpfile(struct inode *dir,
939 			struct dentry *dentry, umode_t mode)
940 {
941 	return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
942 }
943 
hugetlbfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)944 static int hugetlbfs_symlink(struct inode *dir,
945 			struct dentry *dentry, const char *symname)
946 {
947 	struct inode *inode;
948 	int error = -ENOSPC;
949 
950 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
951 	if (inode) {
952 		int l = strlen(symname)+1;
953 		error = page_symlink(inode, symname, l);
954 		if (!error) {
955 			d_instantiate(dentry, inode);
956 			dget(dentry);
957 		} else
958 			iput(inode);
959 	}
960 	dir->i_ctime = dir->i_mtime = current_time(dir);
961 
962 	return error;
963 }
964 
965 /*
966  * mark the head page dirty
967  */
hugetlbfs_set_page_dirty(struct page * page)968 static int hugetlbfs_set_page_dirty(struct page *page)
969 {
970 	struct page *head = compound_head(page);
971 
972 	SetPageDirty(head);
973 	return 0;
974 }
975 
hugetlbfs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)976 static int hugetlbfs_migrate_page(struct address_space *mapping,
977 				struct page *newpage, struct page *page,
978 				enum migrate_mode mode)
979 {
980 	int rc;
981 
982 	rc = migrate_huge_page_move_mapping(mapping, newpage, page);
983 	if (rc != MIGRATEPAGE_SUCCESS)
984 		return rc;
985 
986 	/*
987 	 * page_private is subpool pointer in hugetlb pages.  Transfer to
988 	 * new page.  PagePrivate is not associated with page_private for
989 	 * hugetlb pages and can not be set here as only page_huge_active
990 	 * pages can be migrated.
991 	 */
992 	if (page_private(page)) {
993 		set_page_private(newpage, page_private(page));
994 		set_page_private(page, 0);
995 	}
996 
997 	if (mode != MIGRATE_SYNC_NO_COPY)
998 		migrate_page_copy(newpage, page);
999 	else
1000 		migrate_page_states(newpage, page);
1001 
1002 	return MIGRATEPAGE_SUCCESS;
1003 }
1004 
hugetlbfs_error_remove_page(struct address_space * mapping,struct page * page)1005 static int hugetlbfs_error_remove_page(struct address_space *mapping,
1006 				struct page *page)
1007 {
1008 	struct inode *inode = mapping->host;
1009 	pgoff_t index = page->index;
1010 
1011 	remove_huge_page(page);
1012 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
1013 		hugetlb_fix_reserve_counts(inode);
1014 
1015 	return 0;
1016 }
1017 
1018 /*
1019  * Display the mount options in /proc/mounts.
1020  */
hugetlbfs_show_options(struct seq_file * m,struct dentry * root)1021 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1022 {
1023 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1024 	struct hugepage_subpool *spool = sbinfo->spool;
1025 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1026 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1027 	char mod;
1028 
1029 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1030 		seq_printf(m, ",uid=%u",
1031 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1032 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1033 		seq_printf(m, ",gid=%u",
1034 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1035 	if (sbinfo->mode != 0755)
1036 		seq_printf(m, ",mode=%o", sbinfo->mode);
1037 	if (sbinfo->max_inodes != -1)
1038 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1039 
1040 	hpage_size /= 1024;
1041 	mod = 'K';
1042 	if (hpage_size >= 1024) {
1043 		hpage_size /= 1024;
1044 		mod = 'M';
1045 	}
1046 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1047 	if (spool) {
1048 		if (spool->max_hpages != -1)
1049 			seq_printf(m, ",size=%llu",
1050 				   (unsigned long long)spool->max_hpages << hpage_shift);
1051 		if (spool->min_hpages != -1)
1052 			seq_printf(m, ",min_size=%llu",
1053 				   (unsigned long long)spool->min_hpages << hpage_shift);
1054 	}
1055 	return 0;
1056 }
1057 
hugetlbfs_statfs(struct dentry * dentry,struct kstatfs * buf)1058 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1059 {
1060 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1061 	struct hstate *h = hstate_inode(d_inode(dentry));
1062 
1063 	buf->f_type = HUGETLBFS_MAGIC;
1064 	buf->f_bsize = huge_page_size(h);
1065 	if (sbinfo) {
1066 		spin_lock(&sbinfo->stat_lock);
1067 		/* If no limits set, just report 0 for max/free/used
1068 		 * blocks, like simple_statfs() */
1069 		if (sbinfo->spool) {
1070 			long free_pages;
1071 
1072 			spin_lock(&sbinfo->spool->lock);
1073 			buf->f_blocks = sbinfo->spool->max_hpages;
1074 			free_pages = sbinfo->spool->max_hpages
1075 				- sbinfo->spool->used_hpages;
1076 			buf->f_bavail = buf->f_bfree = free_pages;
1077 			spin_unlock(&sbinfo->spool->lock);
1078 			buf->f_files = sbinfo->max_inodes;
1079 			buf->f_ffree = sbinfo->free_inodes;
1080 		}
1081 		spin_unlock(&sbinfo->stat_lock);
1082 	}
1083 	buf->f_namelen = NAME_MAX;
1084 	return 0;
1085 }
1086 
hugetlbfs_put_super(struct super_block * sb)1087 static void hugetlbfs_put_super(struct super_block *sb)
1088 {
1089 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1090 
1091 	if (sbi) {
1092 		sb->s_fs_info = NULL;
1093 
1094 		if (sbi->spool)
1095 			hugepage_put_subpool(sbi->spool);
1096 
1097 		kfree(sbi);
1098 	}
1099 }
1100 
hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info * sbinfo)1101 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1102 {
1103 	if (sbinfo->free_inodes >= 0) {
1104 		spin_lock(&sbinfo->stat_lock);
1105 		if (unlikely(!sbinfo->free_inodes)) {
1106 			spin_unlock(&sbinfo->stat_lock);
1107 			return 0;
1108 		}
1109 		sbinfo->free_inodes--;
1110 		spin_unlock(&sbinfo->stat_lock);
1111 	}
1112 
1113 	return 1;
1114 }
1115 
hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info * sbinfo)1116 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1117 {
1118 	if (sbinfo->free_inodes >= 0) {
1119 		spin_lock(&sbinfo->stat_lock);
1120 		sbinfo->free_inodes++;
1121 		spin_unlock(&sbinfo->stat_lock);
1122 	}
1123 }
1124 
1125 
1126 static struct kmem_cache *hugetlbfs_inode_cachep;
1127 
hugetlbfs_alloc_inode(struct super_block * sb)1128 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1129 {
1130 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1131 	struct hugetlbfs_inode_info *p;
1132 
1133 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1134 		return NULL;
1135 	p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1136 	if (unlikely(!p)) {
1137 		hugetlbfs_inc_free_inodes(sbinfo);
1138 		return NULL;
1139 	}
1140 
1141 	/*
1142 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1143 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1144 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1145 	 * in case of a quick call to destroy.
1146 	 *
1147 	 * Note that the policy is initialized even if we are creating a
1148 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1149 	 */
1150 	mpol_shared_policy_init(&p->policy, NULL);
1151 
1152 	return &p->vfs_inode;
1153 }
1154 
hugetlbfs_free_inode(struct inode * inode)1155 static void hugetlbfs_free_inode(struct inode *inode)
1156 {
1157 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1158 }
1159 
hugetlbfs_destroy_inode(struct inode * inode)1160 static void hugetlbfs_destroy_inode(struct inode *inode)
1161 {
1162 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1163 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1164 }
1165 
1166 static const struct address_space_operations hugetlbfs_aops = {
1167 	.write_begin	= hugetlbfs_write_begin,
1168 	.write_end	= hugetlbfs_write_end,
1169 	.set_page_dirty	= hugetlbfs_set_page_dirty,
1170 	.migratepage    = hugetlbfs_migrate_page,
1171 	.error_remove_page	= hugetlbfs_error_remove_page,
1172 };
1173 
1174 
init_once(void * foo)1175 static void init_once(void *foo)
1176 {
1177 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1178 
1179 	inode_init_once(&ei->vfs_inode);
1180 }
1181 
1182 const struct file_operations hugetlbfs_file_operations = {
1183 	.read_iter		= hugetlbfs_read_iter,
1184 	.mmap			= hugetlbfs_file_mmap,
1185 	.fsync			= noop_fsync,
1186 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1187 	.llseek			= default_llseek,
1188 	.fallocate		= hugetlbfs_fallocate,
1189 };
1190 
1191 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1192 	.create		= hugetlbfs_create,
1193 	.lookup		= simple_lookup,
1194 	.link		= simple_link,
1195 	.unlink		= simple_unlink,
1196 	.symlink	= hugetlbfs_symlink,
1197 	.mkdir		= hugetlbfs_mkdir,
1198 	.rmdir		= simple_rmdir,
1199 	.mknod		= hugetlbfs_mknod,
1200 	.rename		= simple_rename,
1201 	.setattr	= hugetlbfs_setattr,
1202 	.tmpfile	= hugetlbfs_tmpfile,
1203 };
1204 
1205 static const struct inode_operations hugetlbfs_inode_operations = {
1206 	.setattr	= hugetlbfs_setattr,
1207 };
1208 
1209 static const struct super_operations hugetlbfs_ops = {
1210 	.alloc_inode    = hugetlbfs_alloc_inode,
1211 	.free_inode     = hugetlbfs_free_inode,
1212 	.destroy_inode  = hugetlbfs_destroy_inode,
1213 	.evict_inode	= hugetlbfs_evict_inode,
1214 	.statfs		= hugetlbfs_statfs,
1215 	.put_super	= hugetlbfs_put_super,
1216 	.show_options	= hugetlbfs_show_options,
1217 };
1218 
1219 /*
1220  * Convert size option passed from command line to number of huge pages
1221  * in the pool specified by hstate.  Size option could be in bytes
1222  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1223  */
1224 static long
hugetlbfs_size_to_hpages(struct hstate * h,unsigned long long size_opt,enum hugetlbfs_size_type val_type)1225 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1226 			 enum hugetlbfs_size_type val_type)
1227 {
1228 	if (val_type == NO_SIZE)
1229 		return -1;
1230 
1231 	if (val_type == SIZE_PERCENT) {
1232 		size_opt <<= huge_page_shift(h);
1233 		size_opt *= h->max_huge_pages;
1234 		do_div(size_opt, 100);
1235 	}
1236 
1237 	size_opt >>= huge_page_shift(h);
1238 	return size_opt;
1239 }
1240 
1241 /*
1242  * Parse one mount parameter.
1243  */
hugetlbfs_parse_param(struct fs_context * fc,struct fs_parameter * param)1244 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1245 {
1246 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1247 	struct fs_parse_result result;
1248 	struct hstate *h;
1249 	char *rest;
1250 	unsigned long ps;
1251 	int opt;
1252 
1253 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1254 	if (opt < 0)
1255 		return opt;
1256 
1257 	switch (opt) {
1258 	case Opt_uid:
1259 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1260 		if (!uid_valid(ctx->uid))
1261 			goto bad_val;
1262 		return 0;
1263 
1264 	case Opt_gid:
1265 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1266 		if (!gid_valid(ctx->gid))
1267 			goto bad_val;
1268 		return 0;
1269 
1270 	case Opt_mode:
1271 		ctx->mode = result.uint_32 & 01777U;
1272 		return 0;
1273 
1274 	case Opt_size:
1275 		/* memparse() will accept a K/M/G without a digit */
1276 		if (!param->string || !isdigit(param->string[0]))
1277 			goto bad_val;
1278 		ctx->max_size_opt = memparse(param->string, &rest);
1279 		ctx->max_val_type = SIZE_STD;
1280 		if (*rest == '%')
1281 			ctx->max_val_type = SIZE_PERCENT;
1282 		return 0;
1283 
1284 	case Opt_nr_inodes:
1285 		/* memparse() will accept a K/M/G without a digit */
1286 		if (!param->string || !isdigit(param->string[0]))
1287 			goto bad_val;
1288 		ctx->nr_inodes = memparse(param->string, &rest);
1289 		return 0;
1290 
1291 	case Opt_pagesize:
1292 		ps = memparse(param->string, &rest);
1293 		h = size_to_hstate(ps);
1294 		if (!h) {
1295 			pr_err("Unsupported page size %lu MB\n", ps >> 20);
1296 			return -EINVAL;
1297 		}
1298 		ctx->hstate = h;
1299 		return 0;
1300 
1301 	case Opt_min_size:
1302 		/* memparse() will accept a K/M/G without a digit */
1303 		if (!param->string || !isdigit(param->string[0]))
1304 			goto bad_val;
1305 		ctx->min_size_opt = memparse(param->string, &rest);
1306 		ctx->min_val_type = SIZE_STD;
1307 		if (*rest == '%')
1308 			ctx->min_val_type = SIZE_PERCENT;
1309 		return 0;
1310 
1311 	default:
1312 		return -EINVAL;
1313 	}
1314 
1315 bad_val:
1316 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1317 		      param->string, param->key);
1318 }
1319 
1320 /*
1321  * Validate the parsed options.
1322  */
hugetlbfs_validate(struct fs_context * fc)1323 static int hugetlbfs_validate(struct fs_context *fc)
1324 {
1325 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1326 
1327 	/*
1328 	 * Use huge page pool size (in hstate) to convert the size
1329 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1330 	 */
1331 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1332 						   ctx->max_size_opt,
1333 						   ctx->max_val_type);
1334 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1335 						   ctx->min_size_opt,
1336 						   ctx->min_val_type);
1337 
1338 	/*
1339 	 * If max_size was specified, then min_size must be smaller
1340 	 */
1341 	if (ctx->max_val_type > NO_SIZE &&
1342 	    ctx->min_hpages > ctx->max_hpages) {
1343 		pr_err("Minimum size can not be greater than maximum size\n");
1344 		return -EINVAL;
1345 	}
1346 
1347 	return 0;
1348 }
1349 
1350 static int
hugetlbfs_fill_super(struct super_block * sb,struct fs_context * fc)1351 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1352 {
1353 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1354 	struct hugetlbfs_sb_info *sbinfo;
1355 
1356 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1357 	if (!sbinfo)
1358 		return -ENOMEM;
1359 	sb->s_fs_info = sbinfo;
1360 	spin_lock_init(&sbinfo->stat_lock);
1361 	sbinfo->hstate		= ctx->hstate;
1362 	sbinfo->max_inodes	= ctx->nr_inodes;
1363 	sbinfo->free_inodes	= ctx->nr_inodes;
1364 	sbinfo->spool		= NULL;
1365 	sbinfo->uid		= ctx->uid;
1366 	sbinfo->gid		= ctx->gid;
1367 	sbinfo->mode		= ctx->mode;
1368 
1369 	/*
1370 	 * Allocate and initialize subpool if maximum or minimum size is
1371 	 * specified.  Any needed reservations (for minimim size) are taken
1372 	 * taken when the subpool is created.
1373 	 */
1374 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1375 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1376 						     ctx->max_hpages,
1377 						     ctx->min_hpages);
1378 		if (!sbinfo->spool)
1379 			goto out_free;
1380 	}
1381 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1382 	sb->s_blocksize = huge_page_size(ctx->hstate);
1383 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1384 	sb->s_magic = HUGETLBFS_MAGIC;
1385 	sb->s_op = &hugetlbfs_ops;
1386 	sb->s_time_gran = 1;
1387 
1388 	/*
1389 	 * Due to the special and limited functionality of hugetlbfs, it does
1390 	 * not work well as a stacking filesystem.
1391 	 */
1392 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1393 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1394 	if (!sb->s_root)
1395 		goto out_free;
1396 	return 0;
1397 out_free:
1398 	kfree(sbinfo->spool);
1399 	kfree(sbinfo);
1400 	return -ENOMEM;
1401 }
1402 
hugetlbfs_get_tree(struct fs_context * fc)1403 static int hugetlbfs_get_tree(struct fs_context *fc)
1404 {
1405 	int err = hugetlbfs_validate(fc);
1406 	if (err)
1407 		return err;
1408 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1409 }
1410 
hugetlbfs_fs_context_free(struct fs_context * fc)1411 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1412 {
1413 	kfree(fc->fs_private);
1414 }
1415 
1416 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1417 	.free		= hugetlbfs_fs_context_free,
1418 	.parse_param	= hugetlbfs_parse_param,
1419 	.get_tree	= hugetlbfs_get_tree,
1420 };
1421 
hugetlbfs_init_fs_context(struct fs_context * fc)1422 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1423 {
1424 	struct hugetlbfs_fs_context *ctx;
1425 
1426 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1427 	if (!ctx)
1428 		return -ENOMEM;
1429 
1430 	ctx->max_hpages	= -1; /* No limit on size by default */
1431 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1432 	ctx->uid	= current_fsuid();
1433 	ctx->gid	= current_fsgid();
1434 	ctx->mode	= 0755;
1435 	ctx->hstate	= &default_hstate;
1436 	ctx->min_hpages	= -1; /* No default minimum size */
1437 	ctx->max_val_type = NO_SIZE;
1438 	ctx->min_val_type = NO_SIZE;
1439 	fc->fs_private = ctx;
1440 	fc->ops	= &hugetlbfs_fs_context_ops;
1441 	return 0;
1442 }
1443 
1444 static struct file_system_type hugetlbfs_fs_type = {
1445 	.name			= "hugetlbfs",
1446 	.init_fs_context	= hugetlbfs_init_fs_context,
1447 	.parameters		= hugetlb_fs_parameters,
1448 	.kill_sb		= kill_litter_super,
1449 };
1450 
1451 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1452 
can_do_hugetlb_shm(void)1453 static int can_do_hugetlb_shm(void)
1454 {
1455 	kgid_t shm_group;
1456 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1457 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1458 }
1459 
get_hstate_idx(int page_size_log)1460 static int get_hstate_idx(int page_size_log)
1461 {
1462 	struct hstate *h = hstate_sizelog(page_size_log);
1463 
1464 	if (!h)
1465 		return -1;
1466 	return h - hstates;
1467 }
1468 
1469 /*
1470  * Note that size should be aligned to proper hugepage size in caller side,
1471  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1472  */
hugetlb_file_setup(const char * name,size_t size,vm_flags_t acctflag,struct user_struct ** user,int creat_flags,int page_size_log)1473 struct file *hugetlb_file_setup(const char *name, size_t size,
1474 				vm_flags_t acctflag, struct user_struct **user,
1475 				int creat_flags, int page_size_log)
1476 {
1477 	struct inode *inode;
1478 	struct vfsmount *mnt;
1479 	int hstate_idx;
1480 	struct file *file;
1481 
1482 	hstate_idx = get_hstate_idx(page_size_log);
1483 	if (hstate_idx < 0)
1484 		return ERR_PTR(-ENODEV);
1485 
1486 	*user = NULL;
1487 	mnt = hugetlbfs_vfsmount[hstate_idx];
1488 	if (!mnt)
1489 		return ERR_PTR(-ENOENT);
1490 
1491 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1492 		*user = current_user();
1493 		if (user_shm_lock(size, *user)) {
1494 			task_lock(current);
1495 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1496 				current->comm, current->pid);
1497 			task_unlock(current);
1498 		} else {
1499 			*user = NULL;
1500 			return ERR_PTR(-EPERM);
1501 		}
1502 	}
1503 
1504 	file = ERR_PTR(-ENOSPC);
1505 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1506 	if (!inode)
1507 		goto out;
1508 	if (creat_flags == HUGETLB_SHMFS_INODE)
1509 		inode->i_flags |= S_PRIVATE;
1510 
1511 	inode->i_size = size;
1512 	clear_nlink(inode);
1513 
1514 	if (!hugetlb_reserve_pages(inode, 0,
1515 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1516 			acctflag))
1517 		file = ERR_PTR(-ENOMEM);
1518 	else
1519 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1520 					&hugetlbfs_file_operations);
1521 	if (!IS_ERR(file))
1522 		return file;
1523 
1524 	iput(inode);
1525 out:
1526 	if (*user) {
1527 		user_shm_unlock(size, *user);
1528 		*user = NULL;
1529 	}
1530 	return file;
1531 }
1532 
mount_one_hugetlbfs(struct hstate * h)1533 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1534 {
1535 	struct fs_context *fc;
1536 	struct vfsmount *mnt;
1537 
1538 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1539 	if (IS_ERR(fc)) {
1540 		mnt = ERR_CAST(fc);
1541 	} else {
1542 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1543 		ctx->hstate = h;
1544 		mnt = fc_mount(fc);
1545 		put_fs_context(fc);
1546 	}
1547 	if (IS_ERR(mnt))
1548 		pr_err("Cannot mount internal hugetlbfs for page size %uK",
1549 		       1U << (h->order + PAGE_SHIFT - 10));
1550 	return mnt;
1551 }
1552 
init_hugetlbfs_fs(void)1553 static int __init init_hugetlbfs_fs(void)
1554 {
1555 	struct vfsmount *mnt;
1556 	struct hstate *h;
1557 	int error;
1558 	int i;
1559 
1560 	if (!hugepages_supported()) {
1561 		pr_info("disabling because there are no supported hugepage sizes\n");
1562 		return -ENOTSUPP;
1563 	}
1564 
1565 	error = -ENOMEM;
1566 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1567 					sizeof(struct hugetlbfs_inode_info),
1568 					0, SLAB_ACCOUNT, init_once);
1569 	if (hugetlbfs_inode_cachep == NULL)
1570 		goto out;
1571 
1572 	error = register_filesystem(&hugetlbfs_fs_type);
1573 	if (error)
1574 		goto out_free;
1575 
1576 	/* default hstate mount is required */
1577 	mnt = mount_one_hugetlbfs(&hstates[default_hstate_idx]);
1578 	if (IS_ERR(mnt)) {
1579 		error = PTR_ERR(mnt);
1580 		goto out_unreg;
1581 	}
1582 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1583 
1584 	/* other hstates are optional */
1585 	i = 0;
1586 	for_each_hstate(h) {
1587 		if (i == default_hstate_idx) {
1588 			i++;
1589 			continue;
1590 		}
1591 
1592 		mnt = mount_one_hugetlbfs(h);
1593 		if (IS_ERR(mnt))
1594 			hugetlbfs_vfsmount[i] = NULL;
1595 		else
1596 			hugetlbfs_vfsmount[i] = mnt;
1597 		i++;
1598 	}
1599 
1600 	return 0;
1601 
1602  out_unreg:
1603 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1604  out_free:
1605 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1606  out:
1607 	return error;
1608 }
1609 fs_initcall(init_hugetlbfs_fs)
1610