1 /*
2 * hugetlbpage-backed filesystem. Based on ramfs.
3 *
4 * Nadia Yvette Chambers, 2002
5 *
6 * Copyright (C) 2002 Linus Torvalds.
7 * License: GPL
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h> /* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39
40 #include <linux/uaccess.h>
41 #include <linux/sched/mm.h>
42
43 static const struct super_operations hugetlbfs_ops;
44 static const struct address_space_operations hugetlbfs_aops;
45 const struct file_operations hugetlbfs_file_operations;
46 static const struct inode_operations hugetlbfs_dir_inode_operations;
47 static const struct inode_operations hugetlbfs_inode_operations;
48
49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
50
51 struct hugetlbfs_fs_context {
52 struct hstate *hstate;
53 unsigned long long max_size_opt;
54 unsigned long long min_size_opt;
55 long max_hpages;
56 long nr_inodes;
57 long min_hpages;
58 enum hugetlbfs_size_type max_val_type;
59 enum hugetlbfs_size_type min_val_type;
60 kuid_t uid;
61 kgid_t gid;
62 umode_t mode;
63 };
64
65 int sysctl_hugetlb_shm_group;
66
67 enum hugetlb_param {
68 Opt_gid,
69 Opt_min_size,
70 Opt_mode,
71 Opt_nr_inodes,
72 Opt_pagesize,
73 Opt_size,
74 Opt_uid,
75 };
76
77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
78 fsparam_u32 ("gid", Opt_gid),
79 fsparam_string("min_size", Opt_min_size),
80 fsparam_u32oct("mode", Opt_mode),
81 fsparam_string("nr_inodes", Opt_nr_inodes),
82 fsparam_string("pagesize", Opt_pagesize),
83 fsparam_string("size", Opt_size),
84 fsparam_u32 ("uid", Opt_uid),
85 {}
86 };
87
88 #ifdef CONFIG_NUMA
hugetlb_set_vma_policy(struct vm_area_struct * vma,struct inode * inode,pgoff_t index)89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90 struct inode *inode, pgoff_t index)
91 {
92 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93 index);
94 }
95
hugetlb_drop_vma_policy(struct vm_area_struct * vma)96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 mpol_cond_put(vma->vm_policy);
99 }
100 #else
hugetlb_set_vma_policy(struct vm_area_struct * vma,struct inode * inode,pgoff_t index)101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102 struct inode *inode, pgoff_t index)
103 {
104 }
105
hugetlb_drop_vma_policy(struct vm_area_struct * vma)106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110
huge_pagevec_release(struct pagevec * pvec)111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113 int i;
114
115 for (i = 0; i < pagevec_count(pvec); ++i)
116 put_page(pvec->pages[i]);
117
118 pagevec_reinit(pvec);
119 }
120
121 /*
122 * Mask used when checking the page offset value passed in via system
123 * calls. This value will be converted to a loff_t which is signed.
124 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125 * value. The extra bit (- 1 in the shift value) is to take the sign
126 * bit into account.
127 */
128 #define PGOFF_LOFFT_MAX \
129 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
130
hugetlbfs_file_mmap(struct file * file,struct vm_area_struct * vma)131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
132 {
133 struct inode *inode = file_inode(file);
134 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
135 loff_t len, vma_len;
136 int ret;
137 struct hstate *h = hstate_file(file);
138 vm_flags_t vm_flags;
139
140 /*
141 * vma address alignment (but not the pgoff alignment) has
142 * already been checked by prepare_hugepage_range. If you add
143 * any error returns here, do so after setting VM_HUGETLB, so
144 * is_vm_hugetlb_page tests below unmap_region go the right
145 * way when do_mmap unwinds (may be important on powerpc
146 * and ia64).
147 */
148 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
149 vma->vm_ops = &hugetlb_vm_ops;
150
151 ret = seal_check_future_write(info->seals, vma);
152 if (ret)
153 return ret;
154
155 /*
156 * page based offset in vm_pgoff could be sufficiently large to
157 * overflow a loff_t when converted to byte offset. This can
158 * only happen on architectures where sizeof(loff_t) ==
159 * sizeof(unsigned long). So, only check in those instances.
160 */
161 if (sizeof(unsigned long) == sizeof(loff_t)) {
162 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
163 return -EINVAL;
164 }
165
166 /* must be huge page aligned */
167 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
168 return -EINVAL;
169
170 vma_len = (loff_t)(vma->vm_end - vma->vm_start);
171 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
172 /* check for overflow */
173 if (len < vma_len)
174 return -EINVAL;
175
176 inode_lock(inode);
177 file_accessed(file);
178
179 ret = -ENOMEM;
180
181 vm_flags = vma->vm_flags;
182 /*
183 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip
184 * reserving here. Note: only for SHM hugetlbfs file, the inode
185 * flag S_PRIVATE is set.
186 */
187 if (inode->i_flags & S_PRIVATE)
188 vm_flags |= VM_NORESERVE;
189
190 if (!hugetlb_reserve_pages(inode,
191 vma->vm_pgoff >> huge_page_order(h),
192 len >> huge_page_shift(h), vma,
193 vm_flags))
194 goto out;
195
196 ret = 0;
197 if (vma->vm_flags & VM_WRITE && inode->i_size < len)
198 i_size_write(inode, len);
199 out:
200 inode_unlock(inode);
201
202 return ret;
203 }
204
205 /*
206 * Called under mmap_write_lock(mm).
207 */
208
209 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
210 static unsigned long
hugetlb_get_unmapped_area_bottomup(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)211 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
212 unsigned long len, unsigned long pgoff, unsigned long flags)
213 {
214 struct hstate *h = hstate_file(file);
215 struct vm_unmapped_area_info info;
216
217 info.flags = 0;
218 info.length = len;
219 info.low_limit = current->mm->mmap_base;
220 info.high_limit = arch_get_mmap_end(addr);
221 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
222 info.align_offset = 0;
223 return vm_unmapped_area(&info);
224 }
225
226 static unsigned long
hugetlb_get_unmapped_area_topdown(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)227 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
228 unsigned long len, unsigned long pgoff, unsigned long flags)
229 {
230 struct hstate *h = hstate_file(file);
231 struct vm_unmapped_area_info info;
232
233 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
234 info.length = len;
235 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
236 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
237 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
238 info.align_offset = 0;
239 addr = vm_unmapped_area(&info);
240
241 /*
242 * A failed mmap() very likely causes application failure,
243 * so fall back to the bottom-up function here. This scenario
244 * can happen with large stack limits and large mmap()
245 * allocations.
246 */
247 if (unlikely(offset_in_page(addr))) {
248 VM_BUG_ON(addr != -ENOMEM);
249 info.flags = 0;
250 info.low_limit = current->mm->mmap_base;
251 info.high_limit = arch_get_mmap_end(addr);
252 addr = vm_unmapped_area(&info);
253 }
254
255 return addr;
256 }
257
258 static unsigned long
hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)259 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
260 unsigned long len, unsigned long pgoff, unsigned long flags)
261 {
262 struct mm_struct *mm = current->mm;
263 struct vm_area_struct *vma;
264 struct hstate *h = hstate_file(file);
265 const unsigned long mmap_end = arch_get_mmap_end(addr);
266
267 if (len & ~huge_page_mask(h))
268 return -EINVAL;
269 if (len > TASK_SIZE)
270 return -ENOMEM;
271
272 if (flags & MAP_FIXED) {
273 if (prepare_hugepage_range(file, addr, len))
274 return -EINVAL;
275 return addr;
276 }
277
278 if (addr) {
279 addr = ALIGN(addr, huge_page_size(h));
280 vma = find_vma(mm, addr);
281 if (mmap_end - len >= addr &&
282 (!vma || addr + len <= vm_start_gap(vma)))
283 return addr;
284 }
285
286 /*
287 * Use mm->get_unmapped_area value as a hint to use topdown routine.
288 * If architectures have special needs, they should define their own
289 * version of hugetlb_get_unmapped_area.
290 */
291 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
292 return hugetlb_get_unmapped_area_topdown(file, addr, len,
293 pgoff, flags);
294 return hugetlb_get_unmapped_area_bottomup(file, addr, len,
295 pgoff, flags);
296 }
297 #endif
298
299 static size_t
hugetlbfs_read_actor(struct page * page,unsigned long offset,struct iov_iter * to,unsigned long size)300 hugetlbfs_read_actor(struct page *page, unsigned long offset,
301 struct iov_iter *to, unsigned long size)
302 {
303 size_t copied = 0;
304 int i, chunksize;
305
306 /* Find which 4k chunk and offset with in that chunk */
307 i = offset >> PAGE_SHIFT;
308 offset = offset & ~PAGE_MASK;
309
310 while (size) {
311 size_t n;
312 chunksize = PAGE_SIZE;
313 if (offset)
314 chunksize -= offset;
315 if (chunksize > size)
316 chunksize = size;
317 n = copy_page_to_iter(&page[i], offset, chunksize, to);
318 copied += n;
319 if (n != chunksize)
320 return copied;
321 offset = 0;
322 size -= chunksize;
323 i++;
324 }
325 return copied;
326 }
327
328 /*
329 * Support for read() - Find the page attached to f_mapping and copy out the
330 * data. Its *very* similar to do_generic_mapping_read(), we can't use that
331 * since it has PAGE_SIZE assumptions.
332 */
hugetlbfs_read_iter(struct kiocb * iocb,struct iov_iter * to)333 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
334 {
335 struct file *file = iocb->ki_filp;
336 struct hstate *h = hstate_file(file);
337 struct address_space *mapping = file->f_mapping;
338 struct inode *inode = mapping->host;
339 unsigned long index = iocb->ki_pos >> huge_page_shift(h);
340 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
341 unsigned long end_index;
342 loff_t isize;
343 ssize_t retval = 0;
344
345 while (iov_iter_count(to)) {
346 struct page *page;
347 size_t nr, copied;
348
349 /* nr is the maximum number of bytes to copy from this page */
350 nr = huge_page_size(h);
351 isize = i_size_read(inode);
352 if (!isize)
353 break;
354 end_index = (isize - 1) >> huge_page_shift(h);
355 if (index > end_index)
356 break;
357 if (index == end_index) {
358 nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
359 if (nr <= offset)
360 break;
361 }
362 nr = nr - offset;
363
364 /* Find the page */
365 page = find_lock_page(mapping, index);
366 if (unlikely(page == NULL)) {
367 /*
368 * We have a HOLE, zero out the user-buffer for the
369 * length of the hole or request.
370 */
371 copied = iov_iter_zero(nr, to);
372 } else {
373 unlock_page(page);
374
375 /*
376 * We have the page, copy it to user space buffer.
377 */
378 copied = hugetlbfs_read_actor(page, offset, to, nr);
379 put_page(page);
380 }
381 offset += copied;
382 retval += copied;
383 if (copied != nr && iov_iter_count(to)) {
384 if (!retval)
385 retval = -EFAULT;
386 break;
387 }
388 index += offset >> huge_page_shift(h);
389 offset &= ~huge_page_mask(h);
390 }
391 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
392 return retval;
393 }
394
hugetlbfs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)395 static int hugetlbfs_write_begin(struct file *file,
396 struct address_space *mapping,
397 loff_t pos, unsigned len, unsigned flags,
398 struct page **pagep, void **fsdata)
399 {
400 return -EINVAL;
401 }
402
hugetlbfs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)403 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
404 loff_t pos, unsigned len, unsigned copied,
405 struct page *page, void *fsdata)
406 {
407 BUG();
408 return -EINVAL;
409 }
410
remove_huge_page(struct page * page)411 static void remove_huge_page(struct page *page)
412 {
413 ClearPageDirty(page);
414 ClearPageUptodate(page);
415 delete_from_page_cache(page);
416 }
417
418 static void
hugetlb_vmdelete_list(struct rb_root_cached * root,pgoff_t start,pgoff_t end)419 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
420 {
421 struct vm_area_struct *vma;
422
423 /*
424 * end == 0 indicates that the entire range after
425 * start should be unmapped.
426 */
427 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
428 unsigned long v_offset;
429 unsigned long v_end;
430
431 /*
432 * Can the expression below overflow on 32-bit arches?
433 * No, because the interval tree returns us only those vmas
434 * which overlap the truncated area starting at pgoff,
435 * and no vma on a 32-bit arch can span beyond the 4GB.
436 */
437 if (vma->vm_pgoff < start)
438 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
439 else
440 v_offset = 0;
441
442 if (!end)
443 v_end = vma->vm_end;
444 else {
445 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
446 + vma->vm_start;
447 if (v_end > vma->vm_end)
448 v_end = vma->vm_end;
449 }
450
451 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
452 NULL);
453 }
454 }
455
456 /*
457 * remove_inode_hugepages handles two distinct cases: truncation and hole
458 * punch. There are subtle differences in operation for each case.
459 *
460 * truncation is indicated by end of range being LLONG_MAX
461 * In this case, we first scan the range and release found pages.
462 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
463 * maps and global counts. Page faults can not race with truncation
464 * in this routine. hugetlb_no_page() holds i_mmap_rwsem and prevents
465 * page faults in the truncated range by checking i_size. i_size is
466 * modified while holding i_mmap_rwsem.
467 * hole punch is indicated if end is not LLONG_MAX
468 * In the hole punch case we scan the range and release found pages.
469 * Only when releasing a page is the associated region/reserv map
470 * deleted. The region/reserv map for ranges without associated
471 * pages are not modified. Page faults can race with hole punch.
472 * This is indicated if we find a mapped page.
473 * Note: If the passed end of range value is beyond the end of file, but
474 * not LLONG_MAX this routine still performs a hole punch operation.
475 */
remove_inode_hugepages(struct inode * inode,loff_t lstart,loff_t lend)476 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
477 loff_t lend)
478 {
479 struct hstate *h = hstate_inode(inode);
480 struct address_space *mapping = &inode->i_data;
481 const pgoff_t start = lstart >> huge_page_shift(h);
482 const pgoff_t end = lend >> huge_page_shift(h);
483 struct vm_area_struct pseudo_vma;
484 struct pagevec pvec;
485 pgoff_t next, index;
486 int i, freed = 0;
487 bool truncate_op = (lend == LLONG_MAX);
488
489 vma_init(&pseudo_vma, current->mm);
490 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
491 pagevec_init(&pvec);
492 next = start;
493 while (next < end) {
494 /*
495 * When no more pages are found, we are done.
496 */
497 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
498 break;
499
500 for (i = 0; i < pagevec_count(&pvec); ++i) {
501 struct page *page = pvec.pages[i];
502 u32 hash;
503
504 index = page->index;
505 hash = hugetlb_fault_mutex_hash(mapping, index);
506 if (!truncate_op) {
507 /*
508 * Only need to hold the fault mutex in the
509 * hole punch case. This prevents races with
510 * page faults. Races are not possible in the
511 * case of truncation.
512 */
513 mutex_lock(&hugetlb_fault_mutex_table[hash]);
514 }
515
516 /*
517 * If page is mapped, it was faulted in after being
518 * unmapped in caller. Unmap (again) now after taking
519 * the fault mutex. The mutex will prevent faults
520 * until we finish removing the page.
521 *
522 * This race can only happen in the hole punch case.
523 * Getting here in a truncate operation is a bug.
524 */
525 if (unlikely(page_mapped(page))) {
526 BUG_ON(truncate_op);
527
528 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
529 i_mmap_lock_write(mapping);
530 mutex_lock(&hugetlb_fault_mutex_table[hash]);
531 hugetlb_vmdelete_list(&mapping->i_mmap,
532 index * pages_per_huge_page(h),
533 (index + 1) * pages_per_huge_page(h));
534 i_mmap_unlock_write(mapping);
535 }
536
537 lock_page(page);
538 /*
539 * We must free the huge page and remove from page
540 * cache (remove_huge_page) BEFORE removing the
541 * region/reserve map (hugetlb_unreserve_pages). In
542 * rare out of memory conditions, removal of the
543 * region/reserve map could fail. Correspondingly,
544 * the subpool and global reserve usage count can need
545 * to be adjusted.
546 */
547 VM_BUG_ON(PagePrivate(page));
548 remove_huge_page(page);
549 freed++;
550 if (!truncate_op) {
551 if (unlikely(hugetlb_unreserve_pages(inode,
552 index, index + 1, 1)))
553 hugetlb_fix_reserve_counts(inode);
554 }
555
556 unlock_page(page);
557 if (!truncate_op)
558 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
559 }
560 huge_pagevec_release(&pvec);
561 cond_resched();
562 }
563
564 if (truncate_op)
565 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
566 }
567
hugetlbfs_evict_inode(struct inode * inode)568 static void hugetlbfs_evict_inode(struct inode *inode)
569 {
570 struct resv_map *resv_map;
571
572 remove_inode_hugepages(inode, 0, LLONG_MAX);
573
574 /*
575 * Get the resv_map from the address space embedded in the inode.
576 * This is the address space which points to any resv_map allocated
577 * at inode creation time. If this is a device special inode,
578 * i_mapping may not point to the original address space.
579 */
580 resv_map = (struct resv_map *)(&inode->i_data)->private_data;
581 /* Only regular and link inodes have associated reserve maps */
582 if (resv_map)
583 resv_map_release(&resv_map->refs);
584 clear_inode(inode);
585 }
586
hugetlb_vmtruncate(struct inode * inode,loff_t offset)587 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
588 {
589 pgoff_t pgoff;
590 struct address_space *mapping = inode->i_mapping;
591 struct hstate *h = hstate_inode(inode);
592
593 BUG_ON(offset & ~huge_page_mask(h));
594 pgoff = offset >> PAGE_SHIFT;
595
596 i_mmap_lock_write(mapping);
597 i_size_write(inode, offset);
598 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
599 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
600 i_mmap_unlock_write(mapping);
601 remove_inode_hugepages(inode, offset, LLONG_MAX);
602 return 0;
603 }
604
hugetlbfs_punch_hole(struct inode * inode,loff_t offset,loff_t len)605 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
606 {
607 struct hstate *h = hstate_inode(inode);
608 loff_t hpage_size = huge_page_size(h);
609 loff_t hole_start, hole_end;
610
611 /*
612 * For hole punch round up the beginning offset of the hole and
613 * round down the end.
614 */
615 hole_start = round_up(offset, hpage_size);
616 hole_end = round_down(offset + len, hpage_size);
617
618 if (hole_end > hole_start) {
619 struct address_space *mapping = inode->i_mapping;
620 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
621
622 inode_lock(inode);
623
624 /* protected by i_mutex */
625 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
626 inode_unlock(inode);
627 return -EPERM;
628 }
629
630 i_mmap_lock_write(mapping);
631 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
632 hugetlb_vmdelete_list(&mapping->i_mmap,
633 hole_start >> PAGE_SHIFT,
634 hole_end >> PAGE_SHIFT);
635 i_mmap_unlock_write(mapping);
636 remove_inode_hugepages(inode, hole_start, hole_end);
637 inode_unlock(inode);
638 }
639
640 return 0;
641 }
642
hugetlbfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)643 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
644 loff_t len)
645 {
646 struct inode *inode = file_inode(file);
647 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
648 struct address_space *mapping = inode->i_mapping;
649 struct hstate *h = hstate_inode(inode);
650 struct vm_area_struct pseudo_vma;
651 struct mm_struct *mm = current->mm;
652 loff_t hpage_size = huge_page_size(h);
653 unsigned long hpage_shift = huge_page_shift(h);
654 pgoff_t start, index, end;
655 int error;
656 u32 hash;
657
658 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
659 return -EOPNOTSUPP;
660
661 if (mode & FALLOC_FL_PUNCH_HOLE)
662 return hugetlbfs_punch_hole(inode, offset, len);
663
664 /*
665 * Default preallocate case.
666 * For this range, start is rounded down and end is rounded up
667 * as well as being converted to page offsets.
668 */
669 start = offset >> hpage_shift;
670 end = (offset + len + hpage_size - 1) >> hpage_shift;
671
672 inode_lock(inode);
673
674 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
675 error = inode_newsize_ok(inode, offset + len);
676 if (error)
677 goto out;
678
679 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
680 error = -EPERM;
681 goto out;
682 }
683
684 /*
685 * Initialize a pseudo vma as this is required by the huge page
686 * allocation routines. If NUMA is configured, use page index
687 * as input to create an allocation policy.
688 */
689 vma_init(&pseudo_vma, mm);
690 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
691 pseudo_vma.vm_file = file;
692
693 for (index = start; index < end; index++) {
694 /*
695 * This is supposed to be the vaddr where the page is being
696 * faulted in, but we have no vaddr here.
697 */
698 struct page *page;
699 unsigned long addr;
700 int avoid_reserve = 0;
701
702 cond_resched();
703
704 /*
705 * fallocate(2) manpage permits EINTR; we may have been
706 * interrupted because we are using up too much memory.
707 */
708 if (signal_pending(current)) {
709 error = -EINTR;
710 break;
711 }
712
713 /* Set numa allocation policy based on index */
714 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
715
716 /* addr is the offset within the file (zero based) */
717 addr = index * hpage_size;
718
719 /*
720 * fault mutex taken here, protects against fault path
721 * and hole punch. inode_lock previously taken protects
722 * against truncation.
723 */
724 hash = hugetlb_fault_mutex_hash(mapping, index);
725 mutex_lock(&hugetlb_fault_mutex_table[hash]);
726
727 /* See if already present in mapping to avoid alloc/free */
728 page = find_get_page(mapping, index);
729 if (page) {
730 put_page(page);
731 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
732 hugetlb_drop_vma_policy(&pseudo_vma);
733 continue;
734 }
735
736 /* Allocate page and add to page cache */
737 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
738 hugetlb_drop_vma_policy(&pseudo_vma);
739 if (IS_ERR(page)) {
740 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
741 error = PTR_ERR(page);
742 goto out;
743 }
744 clear_huge_page(page, addr, pages_per_huge_page(h));
745 __SetPageUptodate(page);
746 error = huge_add_to_page_cache(page, mapping, index);
747 if (unlikely(error)) {
748 put_page(page);
749 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
750 goto out;
751 }
752
753 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
754
755 set_page_huge_active(page);
756 /*
757 * unlock_page because locked by add_to_page_cache()
758 * put_page() due to reference from alloc_huge_page()
759 */
760 unlock_page(page);
761 put_page(page);
762 }
763
764 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
765 i_size_write(inode, offset + len);
766 inode->i_ctime = current_time(inode);
767 out:
768 inode_unlock(inode);
769 return error;
770 }
771
hugetlbfs_setattr(struct dentry * dentry,struct iattr * attr)772 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
773 {
774 struct inode *inode = d_inode(dentry);
775 struct hstate *h = hstate_inode(inode);
776 int error;
777 unsigned int ia_valid = attr->ia_valid;
778 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
779
780 BUG_ON(!inode);
781
782 error = setattr_prepare(dentry, attr);
783 if (error)
784 return error;
785
786 if (ia_valid & ATTR_SIZE) {
787 loff_t oldsize = inode->i_size;
788 loff_t newsize = attr->ia_size;
789
790 if (newsize & ~huge_page_mask(h))
791 return -EINVAL;
792 /* protected by i_mutex */
793 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
794 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
795 return -EPERM;
796 error = hugetlb_vmtruncate(inode, newsize);
797 if (error)
798 return error;
799 }
800
801 setattr_copy(inode, attr);
802 mark_inode_dirty(inode);
803 return 0;
804 }
805
hugetlbfs_get_root(struct super_block * sb,struct hugetlbfs_fs_context * ctx)806 static struct inode *hugetlbfs_get_root(struct super_block *sb,
807 struct hugetlbfs_fs_context *ctx)
808 {
809 struct inode *inode;
810
811 inode = new_inode(sb);
812 if (inode) {
813 inode->i_ino = get_next_ino();
814 inode->i_mode = S_IFDIR | ctx->mode;
815 inode->i_uid = ctx->uid;
816 inode->i_gid = ctx->gid;
817 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
818 inode->i_op = &hugetlbfs_dir_inode_operations;
819 inode->i_fop = &simple_dir_operations;
820 /* directory inodes start off with i_nlink == 2 (for "." entry) */
821 inc_nlink(inode);
822 lockdep_annotate_inode_mutex_key(inode);
823 }
824 return inode;
825 }
826
827 /*
828 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
829 * be taken from reclaim -- unlike regular filesystems. This needs an
830 * annotation because huge_pmd_share() does an allocation under hugetlb's
831 * i_mmap_rwsem.
832 */
833 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
834
hugetlbfs_get_inode(struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev)835 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
836 struct inode *dir,
837 umode_t mode, dev_t dev)
838 {
839 struct inode *inode;
840 struct resv_map *resv_map = NULL;
841
842 /*
843 * Reserve maps are only needed for inodes that can have associated
844 * page allocations.
845 */
846 if (S_ISREG(mode) || S_ISLNK(mode)) {
847 resv_map = resv_map_alloc();
848 if (!resv_map)
849 return NULL;
850 }
851
852 inode = new_inode(sb);
853 if (inode) {
854 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
855
856 inode->i_ino = get_next_ino();
857 inode_init_owner(inode, dir, mode);
858 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
859 &hugetlbfs_i_mmap_rwsem_key);
860 inode->i_mapping->a_ops = &hugetlbfs_aops;
861 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
862 inode->i_mapping->private_data = resv_map;
863 info->seals = F_SEAL_SEAL;
864 switch (mode & S_IFMT) {
865 default:
866 init_special_inode(inode, mode, dev);
867 break;
868 case S_IFREG:
869 inode->i_op = &hugetlbfs_inode_operations;
870 inode->i_fop = &hugetlbfs_file_operations;
871 break;
872 case S_IFDIR:
873 inode->i_op = &hugetlbfs_dir_inode_operations;
874 inode->i_fop = &simple_dir_operations;
875
876 /* directory inodes start off with i_nlink == 2 (for "." entry) */
877 inc_nlink(inode);
878 break;
879 case S_IFLNK:
880 inode->i_op = &page_symlink_inode_operations;
881 inode_nohighmem(inode);
882 break;
883 }
884 lockdep_annotate_inode_mutex_key(inode);
885 } else {
886 if (resv_map)
887 kref_put(&resv_map->refs, resv_map_release);
888 }
889
890 return inode;
891 }
892
893 /*
894 * File creation. Allocate an inode, and we're done..
895 */
do_hugetlbfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev,bool tmpfile)896 static int do_hugetlbfs_mknod(struct inode *dir,
897 struct dentry *dentry,
898 umode_t mode,
899 dev_t dev,
900 bool tmpfile)
901 {
902 struct inode *inode;
903 int error = -ENOSPC;
904
905 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
906 if (inode) {
907 dir->i_ctime = dir->i_mtime = current_time(dir);
908 if (tmpfile) {
909 d_tmpfile(dentry, inode);
910 } else {
911 d_instantiate(dentry, inode);
912 dget(dentry);/* Extra count - pin the dentry in core */
913 }
914 error = 0;
915 }
916 return error;
917 }
918
hugetlbfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)919 static int hugetlbfs_mknod(struct inode *dir,
920 struct dentry *dentry, umode_t mode, dev_t dev)
921 {
922 return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
923 }
924
hugetlbfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)925 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
926 {
927 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
928 if (!retval)
929 inc_nlink(dir);
930 return retval;
931 }
932
hugetlbfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)933 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
934 {
935 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
936 }
937
hugetlbfs_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)938 static int hugetlbfs_tmpfile(struct inode *dir,
939 struct dentry *dentry, umode_t mode)
940 {
941 return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
942 }
943
hugetlbfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)944 static int hugetlbfs_symlink(struct inode *dir,
945 struct dentry *dentry, const char *symname)
946 {
947 struct inode *inode;
948 int error = -ENOSPC;
949
950 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
951 if (inode) {
952 int l = strlen(symname)+1;
953 error = page_symlink(inode, symname, l);
954 if (!error) {
955 d_instantiate(dentry, inode);
956 dget(dentry);
957 } else
958 iput(inode);
959 }
960 dir->i_ctime = dir->i_mtime = current_time(dir);
961
962 return error;
963 }
964
965 /*
966 * mark the head page dirty
967 */
hugetlbfs_set_page_dirty(struct page * page)968 static int hugetlbfs_set_page_dirty(struct page *page)
969 {
970 struct page *head = compound_head(page);
971
972 SetPageDirty(head);
973 return 0;
974 }
975
hugetlbfs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)976 static int hugetlbfs_migrate_page(struct address_space *mapping,
977 struct page *newpage, struct page *page,
978 enum migrate_mode mode)
979 {
980 int rc;
981
982 rc = migrate_huge_page_move_mapping(mapping, newpage, page);
983 if (rc != MIGRATEPAGE_SUCCESS)
984 return rc;
985
986 /*
987 * page_private is subpool pointer in hugetlb pages. Transfer to
988 * new page. PagePrivate is not associated with page_private for
989 * hugetlb pages and can not be set here as only page_huge_active
990 * pages can be migrated.
991 */
992 if (page_private(page)) {
993 set_page_private(newpage, page_private(page));
994 set_page_private(page, 0);
995 }
996
997 if (mode != MIGRATE_SYNC_NO_COPY)
998 migrate_page_copy(newpage, page);
999 else
1000 migrate_page_states(newpage, page);
1001
1002 return MIGRATEPAGE_SUCCESS;
1003 }
1004
hugetlbfs_error_remove_page(struct address_space * mapping,struct page * page)1005 static int hugetlbfs_error_remove_page(struct address_space *mapping,
1006 struct page *page)
1007 {
1008 struct inode *inode = mapping->host;
1009 pgoff_t index = page->index;
1010
1011 remove_huge_page(page);
1012 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
1013 hugetlb_fix_reserve_counts(inode);
1014
1015 return 0;
1016 }
1017
1018 /*
1019 * Display the mount options in /proc/mounts.
1020 */
hugetlbfs_show_options(struct seq_file * m,struct dentry * root)1021 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1022 {
1023 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1024 struct hugepage_subpool *spool = sbinfo->spool;
1025 unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1026 unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1027 char mod;
1028
1029 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1030 seq_printf(m, ",uid=%u",
1031 from_kuid_munged(&init_user_ns, sbinfo->uid));
1032 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1033 seq_printf(m, ",gid=%u",
1034 from_kgid_munged(&init_user_ns, sbinfo->gid));
1035 if (sbinfo->mode != 0755)
1036 seq_printf(m, ",mode=%o", sbinfo->mode);
1037 if (sbinfo->max_inodes != -1)
1038 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1039
1040 hpage_size /= 1024;
1041 mod = 'K';
1042 if (hpage_size >= 1024) {
1043 hpage_size /= 1024;
1044 mod = 'M';
1045 }
1046 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1047 if (spool) {
1048 if (spool->max_hpages != -1)
1049 seq_printf(m, ",size=%llu",
1050 (unsigned long long)spool->max_hpages << hpage_shift);
1051 if (spool->min_hpages != -1)
1052 seq_printf(m, ",min_size=%llu",
1053 (unsigned long long)spool->min_hpages << hpage_shift);
1054 }
1055 return 0;
1056 }
1057
hugetlbfs_statfs(struct dentry * dentry,struct kstatfs * buf)1058 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1059 {
1060 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1061 struct hstate *h = hstate_inode(d_inode(dentry));
1062
1063 buf->f_type = HUGETLBFS_MAGIC;
1064 buf->f_bsize = huge_page_size(h);
1065 if (sbinfo) {
1066 spin_lock(&sbinfo->stat_lock);
1067 /* If no limits set, just report 0 for max/free/used
1068 * blocks, like simple_statfs() */
1069 if (sbinfo->spool) {
1070 long free_pages;
1071
1072 spin_lock(&sbinfo->spool->lock);
1073 buf->f_blocks = sbinfo->spool->max_hpages;
1074 free_pages = sbinfo->spool->max_hpages
1075 - sbinfo->spool->used_hpages;
1076 buf->f_bavail = buf->f_bfree = free_pages;
1077 spin_unlock(&sbinfo->spool->lock);
1078 buf->f_files = sbinfo->max_inodes;
1079 buf->f_ffree = sbinfo->free_inodes;
1080 }
1081 spin_unlock(&sbinfo->stat_lock);
1082 }
1083 buf->f_namelen = NAME_MAX;
1084 return 0;
1085 }
1086
hugetlbfs_put_super(struct super_block * sb)1087 static void hugetlbfs_put_super(struct super_block *sb)
1088 {
1089 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1090
1091 if (sbi) {
1092 sb->s_fs_info = NULL;
1093
1094 if (sbi->spool)
1095 hugepage_put_subpool(sbi->spool);
1096
1097 kfree(sbi);
1098 }
1099 }
1100
hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info * sbinfo)1101 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1102 {
1103 if (sbinfo->free_inodes >= 0) {
1104 spin_lock(&sbinfo->stat_lock);
1105 if (unlikely(!sbinfo->free_inodes)) {
1106 spin_unlock(&sbinfo->stat_lock);
1107 return 0;
1108 }
1109 sbinfo->free_inodes--;
1110 spin_unlock(&sbinfo->stat_lock);
1111 }
1112
1113 return 1;
1114 }
1115
hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info * sbinfo)1116 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1117 {
1118 if (sbinfo->free_inodes >= 0) {
1119 spin_lock(&sbinfo->stat_lock);
1120 sbinfo->free_inodes++;
1121 spin_unlock(&sbinfo->stat_lock);
1122 }
1123 }
1124
1125
1126 static struct kmem_cache *hugetlbfs_inode_cachep;
1127
hugetlbfs_alloc_inode(struct super_block * sb)1128 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1129 {
1130 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1131 struct hugetlbfs_inode_info *p;
1132
1133 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1134 return NULL;
1135 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1136 if (unlikely(!p)) {
1137 hugetlbfs_inc_free_inodes(sbinfo);
1138 return NULL;
1139 }
1140
1141 /*
1142 * Any time after allocation, hugetlbfs_destroy_inode can be called
1143 * for the inode. mpol_free_shared_policy is unconditionally called
1144 * as part of hugetlbfs_destroy_inode. So, initialize policy here
1145 * in case of a quick call to destroy.
1146 *
1147 * Note that the policy is initialized even if we are creating a
1148 * private inode. This simplifies hugetlbfs_destroy_inode.
1149 */
1150 mpol_shared_policy_init(&p->policy, NULL);
1151
1152 return &p->vfs_inode;
1153 }
1154
hugetlbfs_free_inode(struct inode * inode)1155 static void hugetlbfs_free_inode(struct inode *inode)
1156 {
1157 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1158 }
1159
hugetlbfs_destroy_inode(struct inode * inode)1160 static void hugetlbfs_destroy_inode(struct inode *inode)
1161 {
1162 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1163 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1164 }
1165
1166 static const struct address_space_operations hugetlbfs_aops = {
1167 .write_begin = hugetlbfs_write_begin,
1168 .write_end = hugetlbfs_write_end,
1169 .set_page_dirty = hugetlbfs_set_page_dirty,
1170 .migratepage = hugetlbfs_migrate_page,
1171 .error_remove_page = hugetlbfs_error_remove_page,
1172 };
1173
1174
init_once(void * foo)1175 static void init_once(void *foo)
1176 {
1177 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1178
1179 inode_init_once(&ei->vfs_inode);
1180 }
1181
1182 const struct file_operations hugetlbfs_file_operations = {
1183 .read_iter = hugetlbfs_read_iter,
1184 .mmap = hugetlbfs_file_mmap,
1185 .fsync = noop_fsync,
1186 .get_unmapped_area = hugetlb_get_unmapped_area,
1187 .llseek = default_llseek,
1188 .fallocate = hugetlbfs_fallocate,
1189 };
1190
1191 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1192 .create = hugetlbfs_create,
1193 .lookup = simple_lookup,
1194 .link = simple_link,
1195 .unlink = simple_unlink,
1196 .symlink = hugetlbfs_symlink,
1197 .mkdir = hugetlbfs_mkdir,
1198 .rmdir = simple_rmdir,
1199 .mknod = hugetlbfs_mknod,
1200 .rename = simple_rename,
1201 .setattr = hugetlbfs_setattr,
1202 .tmpfile = hugetlbfs_tmpfile,
1203 };
1204
1205 static const struct inode_operations hugetlbfs_inode_operations = {
1206 .setattr = hugetlbfs_setattr,
1207 };
1208
1209 static const struct super_operations hugetlbfs_ops = {
1210 .alloc_inode = hugetlbfs_alloc_inode,
1211 .free_inode = hugetlbfs_free_inode,
1212 .destroy_inode = hugetlbfs_destroy_inode,
1213 .evict_inode = hugetlbfs_evict_inode,
1214 .statfs = hugetlbfs_statfs,
1215 .put_super = hugetlbfs_put_super,
1216 .show_options = hugetlbfs_show_options,
1217 };
1218
1219 /*
1220 * Convert size option passed from command line to number of huge pages
1221 * in the pool specified by hstate. Size option could be in bytes
1222 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1223 */
1224 static long
hugetlbfs_size_to_hpages(struct hstate * h,unsigned long long size_opt,enum hugetlbfs_size_type val_type)1225 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1226 enum hugetlbfs_size_type val_type)
1227 {
1228 if (val_type == NO_SIZE)
1229 return -1;
1230
1231 if (val_type == SIZE_PERCENT) {
1232 size_opt <<= huge_page_shift(h);
1233 size_opt *= h->max_huge_pages;
1234 do_div(size_opt, 100);
1235 }
1236
1237 size_opt >>= huge_page_shift(h);
1238 return size_opt;
1239 }
1240
1241 /*
1242 * Parse one mount parameter.
1243 */
hugetlbfs_parse_param(struct fs_context * fc,struct fs_parameter * param)1244 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1245 {
1246 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1247 struct fs_parse_result result;
1248 struct hstate *h;
1249 char *rest;
1250 unsigned long ps;
1251 int opt;
1252
1253 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1254 if (opt < 0)
1255 return opt;
1256
1257 switch (opt) {
1258 case Opt_uid:
1259 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1260 if (!uid_valid(ctx->uid))
1261 goto bad_val;
1262 return 0;
1263
1264 case Opt_gid:
1265 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1266 if (!gid_valid(ctx->gid))
1267 goto bad_val;
1268 return 0;
1269
1270 case Opt_mode:
1271 ctx->mode = result.uint_32 & 01777U;
1272 return 0;
1273
1274 case Opt_size:
1275 /* memparse() will accept a K/M/G without a digit */
1276 if (!param->string || !isdigit(param->string[0]))
1277 goto bad_val;
1278 ctx->max_size_opt = memparse(param->string, &rest);
1279 ctx->max_val_type = SIZE_STD;
1280 if (*rest == '%')
1281 ctx->max_val_type = SIZE_PERCENT;
1282 return 0;
1283
1284 case Opt_nr_inodes:
1285 /* memparse() will accept a K/M/G without a digit */
1286 if (!param->string || !isdigit(param->string[0]))
1287 goto bad_val;
1288 ctx->nr_inodes = memparse(param->string, &rest);
1289 return 0;
1290
1291 case Opt_pagesize:
1292 ps = memparse(param->string, &rest);
1293 h = size_to_hstate(ps);
1294 if (!h) {
1295 pr_err("Unsupported page size %lu MB\n", ps >> 20);
1296 return -EINVAL;
1297 }
1298 ctx->hstate = h;
1299 return 0;
1300
1301 case Opt_min_size:
1302 /* memparse() will accept a K/M/G without a digit */
1303 if (!param->string || !isdigit(param->string[0]))
1304 goto bad_val;
1305 ctx->min_size_opt = memparse(param->string, &rest);
1306 ctx->min_val_type = SIZE_STD;
1307 if (*rest == '%')
1308 ctx->min_val_type = SIZE_PERCENT;
1309 return 0;
1310
1311 default:
1312 return -EINVAL;
1313 }
1314
1315 bad_val:
1316 return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1317 param->string, param->key);
1318 }
1319
1320 /*
1321 * Validate the parsed options.
1322 */
hugetlbfs_validate(struct fs_context * fc)1323 static int hugetlbfs_validate(struct fs_context *fc)
1324 {
1325 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1326
1327 /*
1328 * Use huge page pool size (in hstate) to convert the size
1329 * options to number of huge pages. If NO_SIZE, -1 is returned.
1330 */
1331 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1332 ctx->max_size_opt,
1333 ctx->max_val_type);
1334 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1335 ctx->min_size_opt,
1336 ctx->min_val_type);
1337
1338 /*
1339 * If max_size was specified, then min_size must be smaller
1340 */
1341 if (ctx->max_val_type > NO_SIZE &&
1342 ctx->min_hpages > ctx->max_hpages) {
1343 pr_err("Minimum size can not be greater than maximum size\n");
1344 return -EINVAL;
1345 }
1346
1347 return 0;
1348 }
1349
1350 static int
hugetlbfs_fill_super(struct super_block * sb,struct fs_context * fc)1351 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1352 {
1353 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1354 struct hugetlbfs_sb_info *sbinfo;
1355
1356 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1357 if (!sbinfo)
1358 return -ENOMEM;
1359 sb->s_fs_info = sbinfo;
1360 spin_lock_init(&sbinfo->stat_lock);
1361 sbinfo->hstate = ctx->hstate;
1362 sbinfo->max_inodes = ctx->nr_inodes;
1363 sbinfo->free_inodes = ctx->nr_inodes;
1364 sbinfo->spool = NULL;
1365 sbinfo->uid = ctx->uid;
1366 sbinfo->gid = ctx->gid;
1367 sbinfo->mode = ctx->mode;
1368
1369 /*
1370 * Allocate and initialize subpool if maximum or minimum size is
1371 * specified. Any needed reservations (for minimim size) are taken
1372 * taken when the subpool is created.
1373 */
1374 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1375 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1376 ctx->max_hpages,
1377 ctx->min_hpages);
1378 if (!sbinfo->spool)
1379 goto out_free;
1380 }
1381 sb->s_maxbytes = MAX_LFS_FILESIZE;
1382 sb->s_blocksize = huge_page_size(ctx->hstate);
1383 sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1384 sb->s_magic = HUGETLBFS_MAGIC;
1385 sb->s_op = &hugetlbfs_ops;
1386 sb->s_time_gran = 1;
1387
1388 /*
1389 * Due to the special and limited functionality of hugetlbfs, it does
1390 * not work well as a stacking filesystem.
1391 */
1392 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1393 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1394 if (!sb->s_root)
1395 goto out_free;
1396 return 0;
1397 out_free:
1398 kfree(sbinfo->spool);
1399 kfree(sbinfo);
1400 return -ENOMEM;
1401 }
1402
hugetlbfs_get_tree(struct fs_context * fc)1403 static int hugetlbfs_get_tree(struct fs_context *fc)
1404 {
1405 int err = hugetlbfs_validate(fc);
1406 if (err)
1407 return err;
1408 return get_tree_nodev(fc, hugetlbfs_fill_super);
1409 }
1410
hugetlbfs_fs_context_free(struct fs_context * fc)1411 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1412 {
1413 kfree(fc->fs_private);
1414 }
1415
1416 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1417 .free = hugetlbfs_fs_context_free,
1418 .parse_param = hugetlbfs_parse_param,
1419 .get_tree = hugetlbfs_get_tree,
1420 };
1421
hugetlbfs_init_fs_context(struct fs_context * fc)1422 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1423 {
1424 struct hugetlbfs_fs_context *ctx;
1425
1426 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1427 if (!ctx)
1428 return -ENOMEM;
1429
1430 ctx->max_hpages = -1; /* No limit on size by default */
1431 ctx->nr_inodes = -1; /* No limit on number of inodes by default */
1432 ctx->uid = current_fsuid();
1433 ctx->gid = current_fsgid();
1434 ctx->mode = 0755;
1435 ctx->hstate = &default_hstate;
1436 ctx->min_hpages = -1; /* No default minimum size */
1437 ctx->max_val_type = NO_SIZE;
1438 ctx->min_val_type = NO_SIZE;
1439 fc->fs_private = ctx;
1440 fc->ops = &hugetlbfs_fs_context_ops;
1441 return 0;
1442 }
1443
1444 static struct file_system_type hugetlbfs_fs_type = {
1445 .name = "hugetlbfs",
1446 .init_fs_context = hugetlbfs_init_fs_context,
1447 .parameters = hugetlb_fs_parameters,
1448 .kill_sb = kill_litter_super,
1449 };
1450
1451 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1452
can_do_hugetlb_shm(void)1453 static int can_do_hugetlb_shm(void)
1454 {
1455 kgid_t shm_group;
1456 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1457 return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1458 }
1459
get_hstate_idx(int page_size_log)1460 static int get_hstate_idx(int page_size_log)
1461 {
1462 struct hstate *h = hstate_sizelog(page_size_log);
1463
1464 if (!h)
1465 return -1;
1466 return h - hstates;
1467 }
1468
1469 /*
1470 * Note that size should be aligned to proper hugepage size in caller side,
1471 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1472 */
hugetlb_file_setup(const char * name,size_t size,vm_flags_t acctflag,struct user_struct ** user,int creat_flags,int page_size_log)1473 struct file *hugetlb_file_setup(const char *name, size_t size,
1474 vm_flags_t acctflag, struct user_struct **user,
1475 int creat_flags, int page_size_log)
1476 {
1477 struct inode *inode;
1478 struct vfsmount *mnt;
1479 int hstate_idx;
1480 struct file *file;
1481
1482 hstate_idx = get_hstate_idx(page_size_log);
1483 if (hstate_idx < 0)
1484 return ERR_PTR(-ENODEV);
1485
1486 *user = NULL;
1487 mnt = hugetlbfs_vfsmount[hstate_idx];
1488 if (!mnt)
1489 return ERR_PTR(-ENOENT);
1490
1491 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1492 *user = current_user();
1493 if (user_shm_lock(size, *user)) {
1494 task_lock(current);
1495 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1496 current->comm, current->pid);
1497 task_unlock(current);
1498 } else {
1499 *user = NULL;
1500 return ERR_PTR(-EPERM);
1501 }
1502 }
1503
1504 file = ERR_PTR(-ENOSPC);
1505 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1506 if (!inode)
1507 goto out;
1508 if (creat_flags == HUGETLB_SHMFS_INODE)
1509 inode->i_flags |= S_PRIVATE;
1510
1511 inode->i_size = size;
1512 clear_nlink(inode);
1513
1514 if (!hugetlb_reserve_pages(inode, 0,
1515 size >> huge_page_shift(hstate_inode(inode)), NULL,
1516 acctflag))
1517 file = ERR_PTR(-ENOMEM);
1518 else
1519 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1520 &hugetlbfs_file_operations);
1521 if (!IS_ERR(file))
1522 return file;
1523
1524 iput(inode);
1525 out:
1526 if (*user) {
1527 user_shm_unlock(size, *user);
1528 *user = NULL;
1529 }
1530 return file;
1531 }
1532
mount_one_hugetlbfs(struct hstate * h)1533 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1534 {
1535 struct fs_context *fc;
1536 struct vfsmount *mnt;
1537
1538 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1539 if (IS_ERR(fc)) {
1540 mnt = ERR_CAST(fc);
1541 } else {
1542 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1543 ctx->hstate = h;
1544 mnt = fc_mount(fc);
1545 put_fs_context(fc);
1546 }
1547 if (IS_ERR(mnt))
1548 pr_err("Cannot mount internal hugetlbfs for page size %uK",
1549 1U << (h->order + PAGE_SHIFT - 10));
1550 return mnt;
1551 }
1552
init_hugetlbfs_fs(void)1553 static int __init init_hugetlbfs_fs(void)
1554 {
1555 struct vfsmount *mnt;
1556 struct hstate *h;
1557 int error;
1558 int i;
1559
1560 if (!hugepages_supported()) {
1561 pr_info("disabling because there are no supported hugepage sizes\n");
1562 return -ENOTSUPP;
1563 }
1564
1565 error = -ENOMEM;
1566 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1567 sizeof(struct hugetlbfs_inode_info),
1568 0, SLAB_ACCOUNT, init_once);
1569 if (hugetlbfs_inode_cachep == NULL)
1570 goto out;
1571
1572 error = register_filesystem(&hugetlbfs_fs_type);
1573 if (error)
1574 goto out_free;
1575
1576 /* default hstate mount is required */
1577 mnt = mount_one_hugetlbfs(&hstates[default_hstate_idx]);
1578 if (IS_ERR(mnt)) {
1579 error = PTR_ERR(mnt);
1580 goto out_unreg;
1581 }
1582 hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1583
1584 /* other hstates are optional */
1585 i = 0;
1586 for_each_hstate(h) {
1587 if (i == default_hstate_idx) {
1588 i++;
1589 continue;
1590 }
1591
1592 mnt = mount_one_hugetlbfs(h);
1593 if (IS_ERR(mnt))
1594 hugetlbfs_vfsmount[i] = NULL;
1595 else
1596 hugetlbfs_vfsmount[i] = mnt;
1597 i++;
1598 }
1599
1600 return 0;
1601
1602 out_unreg:
1603 (void)unregister_filesystem(&hugetlbfs_fs_type);
1604 out_free:
1605 kmem_cache_destroy(hugetlbfs_inode_cachep);
1606 out:
1607 return error;
1608 }
1609 fs_initcall(init_hugetlbfs_fs)
1610