• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/pipe.c
4  *
5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28 
29 #include <linux/uaccess.h>
30 #include <asm/ioctls.h>
31 
32 #include "internal.h"
33 
34 /*
35  * New pipe buffers will be restricted to this size while the user is exceeding
36  * their pipe buffer quota. The general pipe use case needs at least two
37  * buffers: one for data yet to be read, and one for new data. If this is less
38  * than two, then a write to a non-empty pipe may block even if the pipe is not
39  * full. This can occur with GNU make jobserver or similar uses of pipes as
40  * semaphores: multiple processes may be waiting to write tokens back to the
41  * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
42  *
43  * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
44  * own risk, namely: pipe writes to non-full pipes may block until the pipe is
45  * emptied.
46  */
47 #define PIPE_MIN_DEF_BUFFERS 2
48 
49 /*
50  * The max size that a non-root user is allowed to grow the pipe. Can
51  * be set by root in /proc/sys/fs/pipe-max-size
52  */
53 unsigned int pipe_max_size = 1048576;
54 
55 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
56  * matches default values.
57  */
58 unsigned long pipe_user_pages_hard;
59 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
60 
61 /*
62  * We use head and tail indices that aren't masked off, except at the point of
63  * dereference, but rather they're allowed to wrap naturally.  This means there
64  * isn't a dead spot in the buffer, but the ring has to be a power of two and
65  * <= 2^31.
66  * -- David Howells 2019-09-23.
67  *
68  * Reads with count = 0 should always return 0.
69  * -- Julian Bradfield 1999-06-07.
70  *
71  * FIFOs and Pipes now generate SIGIO for both readers and writers.
72  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
73  *
74  * pipe_read & write cleanup
75  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
76  */
77 
pipe_lock_nested(struct pipe_inode_info * pipe,int subclass)78 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
79 {
80 	if (pipe->files)
81 		mutex_lock_nested(&pipe->mutex, subclass);
82 }
83 
pipe_lock(struct pipe_inode_info * pipe)84 void pipe_lock(struct pipe_inode_info *pipe)
85 {
86 	/*
87 	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
88 	 */
89 	pipe_lock_nested(pipe, I_MUTEX_PARENT);
90 }
91 EXPORT_SYMBOL(pipe_lock);
92 
pipe_unlock(struct pipe_inode_info * pipe)93 void pipe_unlock(struct pipe_inode_info *pipe)
94 {
95 	if (pipe->files)
96 		mutex_unlock(&pipe->mutex);
97 }
98 EXPORT_SYMBOL(pipe_unlock);
99 
__pipe_lock(struct pipe_inode_info * pipe)100 static inline void __pipe_lock(struct pipe_inode_info *pipe)
101 {
102 	mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
103 }
104 
__pipe_unlock(struct pipe_inode_info * pipe)105 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
106 {
107 	mutex_unlock(&pipe->mutex);
108 }
109 
pipe_double_lock(struct pipe_inode_info * pipe1,struct pipe_inode_info * pipe2)110 void pipe_double_lock(struct pipe_inode_info *pipe1,
111 		      struct pipe_inode_info *pipe2)
112 {
113 	BUG_ON(pipe1 == pipe2);
114 
115 	if (pipe1 < pipe2) {
116 		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
117 		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
118 	} else {
119 		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
120 		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
121 	}
122 }
123 
anon_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)124 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
125 				  struct pipe_buffer *buf)
126 {
127 	struct page *page = buf->page;
128 
129 	/*
130 	 * If nobody else uses this page, and we don't already have a
131 	 * temporary page, let's keep track of it as a one-deep
132 	 * allocation cache. (Otherwise just release our reference to it)
133 	 */
134 	if (page_count(page) == 1 && !pipe->tmp_page)
135 		pipe->tmp_page = page;
136 	else
137 		put_page(page);
138 }
139 
anon_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)140 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
141 		struct pipe_buffer *buf)
142 {
143 	struct page *page = buf->page;
144 
145 	if (page_count(page) != 1)
146 		return false;
147 	memcg_kmem_uncharge_page(page, 0);
148 	__SetPageLocked(page);
149 	return true;
150 }
151 
152 /**
153  * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
154  * @pipe:	the pipe that the buffer belongs to
155  * @buf:	the buffer to attempt to steal
156  *
157  * Description:
158  *	This function attempts to steal the &struct page attached to
159  *	@buf. If successful, this function returns 0 and returns with
160  *	the page locked. The caller may then reuse the page for whatever
161  *	he wishes; the typical use is insertion into a different file
162  *	page cache.
163  */
generic_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)164 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
165 		struct pipe_buffer *buf)
166 {
167 	struct page *page = buf->page;
168 
169 	/*
170 	 * A reference of one is golden, that means that the owner of this
171 	 * page is the only one holding a reference to it. lock the page
172 	 * and return OK.
173 	 */
174 	if (page_count(page) == 1) {
175 		lock_page(page);
176 		return true;
177 	}
178 	return false;
179 }
180 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
181 
182 /**
183  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
184  * @pipe:	the pipe that the buffer belongs to
185  * @buf:	the buffer to get a reference to
186  *
187  * Description:
188  *	This function grabs an extra reference to @buf. It's used in
189  *	in the tee() system call, when we duplicate the buffers in one
190  *	pipe into another.
191  */
generic_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)192 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
193 {
194 	return try_get_page(buf->page);
195 }
196 EXPORT_SYMBOL(generic_pipe_buf_get);
197 
198 /**
199  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
200  * @pipe:	the pipe that the buffer belongs to
201  * @buf:	the buffer to put a reference to
202  *
203  * Description:
204  *	This function releases a reference to @buf.
205  */
generic_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)206 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
207 			      struct pipe_buffer *buf)
208 {
209 	put_page(buf->page);
210 }
211 EXPORT_SYMBOL(generic_pipe_buf_release);
212 
213 static const struct pipe_buf_operations anon_pipe_buf_ops = {
214 	.release	= anon_pipe_buf_release,
215 	.try_steal	= anon_pipe_buf_try_steal,
216 	.get		= generic_pipe_buf_get,
217 };
218 
219 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
pipe_readable(const struct pipe_inode_info * pipe)220 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
221 {
222 	unsigned int head = READ_ONCE(pipe->head);
223 	unsigned int tail = READ_ONCE(pipe->tail);
224 	unsigned int writers = READ_ONCE(pipe->writers);
225 
226 	return !pipe_empty(head, tail) || !writers;
227 }
228 
229 static ssize_t
pipe_read(struct kiocb * iocb,struct iov_iter * to)230 pipe_read(struct kiocb *iocb, struct iov_iter *to)
231 {
232 	size_t total_len = iov_iter_count(to);
233 	struct file *filp = iocb->ki_filp;
234 	struct pipe_inode_info *pipe = filp->private_data;
235 	bool was_full, wake_next_reader = false;
236 	ssize_t ret;
237 
238 	/* Null read succeeds. */
239 	if (unlikely(total_len == 0))
240 		return 0;
241 
242 	ret = 0;
243 	__pipe_lock(pipe);
244 
245 	/*
246 	 * We only wake up writers if the pipe was full when we started
247 	 * reading in order to avoid unnecessary wakeups.
248 	 *
249 	 * But when we do wake up writers, we do so using a sync wakeup
250 	 * (WF_SYNC), because we want them to get going and generate more
251 	 * data for us.
252 	 */
253 	was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
254 	for (;;) {
255 		/* Read ->head with a barrier vs post_one_notification() */
256 		unsigned int head = smp_load_acquire(&pipe->head);
257 		unsigned int tail = pipe->tail;
258 		unsigned int mask = pipe->ring_size - 1;
259 
260 #ifdef CONFIG_WATCH_QUEUE
261 		if (pipe->note_loss) {
262 			struct watch_notification n;
263 
264 			if (total_len < 8) {
265 				if (ret == 0)
266 					ret = -ENOBUFS;
267 				break;
268 			}
269 
270 			n.type = WATCH_TYPE_META;
271 			n.subtype = WATCH_META_LOSS_NOTIFICATION;
272 			n.info = watch_sizeof(n);
273 			if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
274 				if (ret == 0)
275 					ret = -EFAULT;
276 				break;
277 			}
278 			ret += sizeof(n);
279 			total_len -= sizeof(n);
280 			pipe->note_loss = false;
281 		}
282 #endif
283 
284 		if (!pipe_empty(head, tail)) {
285 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
286 			size_t chars = buf->len;
287 			size_t written;
288 			int error;
289 
290 			if (chars > total_len) {
291 				if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
292 					if (ret == 0)
293 						ret = -ENOBUFS;
294 					break;
295 				}
296 				chars = total_len;
297 			}
298 
299 			error = pipe_buf_confirm(pipe, buf);
300 			if (error) {
301 				if (!ret)
302 					ret = error;
303 				break;
304 			}
305 
306 			written = copy_page_to_iter(buf->page, buf->offset, chars, to);
307 			if (unlikely(written < chars)) {
308 				if (!ret)
309 					ret = -EFAULT;
310 				break;
311 			}
312 			ret += chars;
313 			buf->offset += chars;
314 			buf->len -= chars;
315 
316 			/* Was it a packet buffer? Clean up and exit */
317 			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
318 				total_len = chars;
319 				buf->len = 0;
320 			}
321 
322 			if (!buf->len) {
323 				pipe_buf_release(pipe, buf);
324 				spin_lock_irq(&pipe->rd_wait.lock);
325 #ifdef CONFIG_WATCH_QUEUE
326 				if (buf->flags & PIPE_BUF_FLAG_LOSS)
327 					pipe->note_loss = true;
328 #endif
329 				tail++;
330 				pipe->tail = tail;
331 				spin_unlock_irq(&pipe->rd_wait.lock);
332 			}
333 			total_len -= chars;
334 			if (!total_len)
335 				break;	/* common path: read succeeded */
336 			if (!pipe_empty(head, tail))	/* More to do? */
337 				continue;
338 		}
339 
340 		if (!pipe->writers)
341 			break;
342 		if (ret)
343 			break;
344 		if (filp->f_flags & O_NONBLOCK) {
345 			ret = -EAGAIN;
346 			break;
347 		}
348 		__pipe_unlock(pipe);
349 
350 		/*
351 		 * We only get here if we didn't actually read anything.
352 		 *
353 		 * However, we could have seen (and removed) a zero-sized
354 		 * pipe buffer, and might have made space in the buffers
355 		 * that way.
356 		 *
357 		 * You can't make zero-sized pipe buffers by doing an empty
358 		 * write (not even in packet mode), but they can happen if
359 		 * the writer gets an EFAULT when trying to fill a buffer
360 		 * that already got allocated and inserted in the buffer
361 		 * array.
362 		 *
363 		 * So we still need to wake up any pending writers in the
364 		 * _very_ unlikely case that the pipe was full, but we got
365 		 * no data.
366 		 */
367 		if (unlikely(was_full)) {
368 			wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
369 			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
370 		}
371 
372 		/*
373 		 * But because we didn't read anything, at this point we can
374 		 * just return directly with -ERESTARTSYS if we're interrupted,
375 		 * since we've done any required wakeups and there's no need
376 		 * to mark anything accessed. And we've dropped the lock.
377 		 */
378 		if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
379 			return -ERESTARTSYS;
380 
381 		__pipe_lock(pipe);
382 		was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
383 		wake_next_reader = true;
384 	}
385 	if (pipe_empty(pipe->head, pipe->tail))
386 		wake_next_reader = false;
387 	__pipe_unlock(pipe);
388 
389 	if (was_full) {
390 		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
391 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
392 	}
393 	if (wake_next_reader)
394 		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
395 	if (ret > 0)
396 		file_accessed(filp);
397 	return ret;
398 }
399 
is_packetized(struct file * file)400 static inline int is_packetized(struct file *file)
401 {
402 	return (file->f_flags & O_DIRECT) != 0;
403 }
404 
405 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
pipe_writable(const struct pipe_inode_info * pipe)406 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
407 {
408 	unsigned int head = READ_ONCE(pipe->head);
409 	unsigned int tail = READ_ONCE(pipe->tail);
410 	unsigned int max_usage = READ_ONCE(pipe->max_usage);
411 
412 	return !pipe_full(head, tail, max_usage) ||
413 		!READ_ONCE(pipe->readers);
414 }
415 
416 static ssize_t
pipe_write(struct kiocb * iocb,struct iov_iter * from)417 pipe_write(struct kiocb *iocb, struct iov_iter *from)
418 {
419 	struct file *filp = iocb->ki_filp;
420 	struct pipe_inode_info *pipe = filp->private_data;
421 	unsigned int head;
422 	ssize_t ret = 0;
423 	size_t total_len = iov_iter_count(from);
424 	ssize_t chars;
425 	bool was_empty = false;
426 	bool wake_next_writer = false;
427 
428 	/* Null write succeeds. */
429 	if (unlikely(total_len == 0))
430 		return 0;
431 
432 	__pipe_lock(pipe);
433 
434 	if (!pipe->readers) {
435 		send_sig(SIGPIPE, current, 0);
436 		ret = -EPIPE;
437 		goto out;
438 	}
439 
440 	if (pipe_has_watch_queue(pipe)) {
441 		ret = -EXDEV;
442 		goto out;
443 	}
444 
445 	/*
446 	 * Epoll nonsensically wants a wakeup whether the pipe
447 	 * was already empty or not.
448 	 *
449 	 * If it wasn't empty we try to merge new data into
450 	 * the last buffer.
451 	 *
452 	 * That naturally merges small writes, but it also
453 	 * page-aligns the rest of the writes for large writes
454 	 * spanning multiple pages.
455 	 */
456 	head = pipe->head;
457 	was_empty = true;
458 	chars = total_len & (PAGE_SIZE-1);
459 	if (chars && !pipe_empty(head, pipe->tail)) {
460 		unsigned int mask = pipe->ring_size - 1;
461 		struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
462 		int offset = buf->offset + buf->len;
463 
464 		if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
465 		    offset + chars <= PAGE_SIZE) {
466 			ret = pipe_buf_confirm(pipe, buf);
467 			if (ret)
468 				goto out;
469 
470 			ret = copy_page_from_iter(buf->page, offset, chars, from);
471 			if (unlikely(ret < chars)) {
472 				ret = -EFAULT;
473 				goto out;
474 			}
475 
476 			buf->len += ret;
477 			if (!iov_iter_count(from))
478 				goto out;
479 		}
480 	}
481 
482 	for (;;) {
483 		if (!pipe->readers) {
484 			send_sig(SIGPIPE, current, 0);
485 			if (!ret)
486 				ret = -EPIPE;
487 			break;
488 		}
489 
490 		head = pipe->head;
491 		if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
492 			unsigned int mask = pipe->ring_size - 1;
493 			struct pipe_buffer *buf = &pipe->bufs[head & mask];
494 			struct page *page = pipe->tmp_page;
495 			int copied;
496 
497 			if (!page) {
498 				page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
499 				if (unlikely(!page)) {
500 					ret = ret ? : -ENOMEM;
501 					break;
502 				}
503 				pipe->tmp_page = page;
504 			}
505 
506 			/* Allocate a slot in the ring in advance and attach an
507 			 * empty buffer.  If we fault or otherwise fail to use
508 			 * it, either the reader will consume it or it'll still
509 			 * be there for the next write.
510 			 */
511 			spin_lock_irq(&pipe->rd_wait.lock);
512 
513 			head = pipe->head;
514 			if (pipe_full(head, pipe->tail, pipe->max_usage)) {
515 				spin_unlock_irq(&pipe->rd_wait.lock);
516 				continue;
517 			}
518 
519 			pipe->head = head + 1;
520 			spin_unlock_irq(&pipe->rd_wait.lock);
521 
522 			/* Insert it into the buffer array */
523 			buf = &pipe->bufs[head & mask];
524 			buf->page = page;
525 			buf->ops = &anon_pipe_buf_ops;
526 			buf->offset = 0;
527 			buf->len = 0;
528 			if (is_packetized(filp))
529 				buf->flags = PIPE_BUF_FLAG_PACKET;
530 			else
531 				buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
532 			pipe->tmp_page = NULL;
533 
534 			copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
535 			if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
536 				if (!ret)
537 					ret = -EFAULT;
538 				break;
539 			}
540 			ret += copied;
541 			buf->offset = 0;
542 			buf->len = copied;
543 
544 			if (!iov_iter_count(from))
545 				break;
546 		}
547 
548 		if (!pipe_full(head, pipe->tail, pipe->max_usage))
549 			continue;
550 
551 		/* Wait for buffer space to become available. */
552 		if (filp->f_flags & O_NONBLOCK) {
553 			if (!ret)
554 				ret = -EAGAIN;
555 			break;
556 		}
557 		if (signal_pending(current)) {
558 			if (!ret)
559 				ret = -ERESTARTSYS;
560 			break;
561 		}
562 
563 		/*
564 		 * We're going to release the pipe lock and wait for more
565 		 * space. We wake up any readers if necessary, and then
566 		 * after waiting we need to re-check whether the pipe
567 		 * become empty while we dropped the lock.
568 		 */
569 		__pipe_unlock(pipe);
570 		if (was_empty) {
571 			wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
572 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
573 		}
574 		wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
575 		__pipe_lock(pipe);
576 		was_empty = pipe_empty(pipe->head, pipe->tail);
577 		wake_next_writer = true;
578 	}
579 out:
580 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
581 		wake_next_writer = false;
582 	__pipe_unlock(pipe);
583 
584 	/*
585 	 * If we do do a wakeup event, we do a 'sync' wakeup, because we
586 	 * want the reader to start processing things asap, rather than
587 	 * leave the data pending.
588 	 *
589 	 * This is particularly important for small writes, because of
590 	 * how (for example) the GNU make jobserver uses small writes to
591 	 * wake up pending jobs
592 	 */
593 	if (was_empty) {
594 		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
595 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
596 	}
597 	if (wake_next_writer)
598 		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
599 	if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
600 		int err = file_update_time(filp);
601 		if (err)
602 			ret = err;
603 		sb_end_write(file_inode(filp)->i_sb);
604 	}
605 	return ret;
606 }
607 
pipe_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)608 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
609 {
610 	struct pipe_inode_info *pipe = filp->private_data;
611 	int count, head, tail, mask;
612 
613 	switch (cmd) {
614 	case FIONREAD:
615 		__pipe_lock(pipe);
616 		count = 0;
617 		head = pipe->head;
618 		tail = pipe->tail;
619 		mask = pipe->ring_size - 1;
620 
621 		while (tail != head) {
622 			count += pipe->bufs[tail & mask].len;
623 			tail++;
624 		}
625 		__pipe_unlock(pipe);
626 
627 		return put_user(count, (int __user *)arg);
628 
629 #ifdef CONFIG_WATCH_QUEUE
630 	case IOC_WATCH_QUEUE_SET_SIZE: {
631 		int ret;
632 		__pipe_lock(pipe);
633 		ret = watch_queue_set_size(pipe, arg);
634 		__pipe_unlock(pipe);
635 		return ret;
636 	}
637 
638 	case IOC_WATCH_QUEUE_SET_FILTER:
639 		return watch_queue_set_filter(
640 			pipe, (struct watch_notification_filter __user *)arg);
641 #endif
642 
643 	default:
644 		return -ENOIOCTLCMD;
645 	}
646 }
647 
648 /* No kernel lock held - fine */
649 static __poll_t
pipe_poll(struct file * filp,poll_table * wait)650 pipe_poll(struct file *filp, poll_table *wait)
651 {
652 	__poll_t mask;
653 	struct pipe_inode_info *pipe = filp->private_data;
654 	unsigned int head, tail;
655 
656 	/*
657 	 * Reading pipe state only -- no need for acquiring the semaphore.
658 	 *
659 	 * But because this is racy, the code has to add the
660 	 * entry to the poll table _first_ ..
661 	 */
662 	if (filp->f_mode & FMODE_READ)
663 		poll_wait(filp, &pipe->rd_wait, wait);
664 	if (filp->f_mode & FMODE_WRITE)
665 		poll_wait(filp, &pipe->wr_wait, wait);
666 
667 	/*
668 	 * .. and only then can you do the racy tests. That way,
669 	 * if something changes and you got it wrong, the poll
670 	 * table entry will wake you up and fix it.
671 	 */
672 	head = READ_ONCE(pipe->head);
673 	tail = READ_ONCE(pipe->tail);
674 
675 	mask = 0;
676 	if (filp->f_mode & FMODE_READ) {
677 		if (!pipe_empty(head, tail))
678 			mask |= EPOLLIN | EPOLLRDNORM;
679 		if (!pipe->writers && filp->f_version != pipe->w_counter)
680 			mask |= EPOLLHUP;
681 	}
682 
683 	if (filp->f_mode & FMODE_WRITE) {
684 		if (!pipe_full(head, tail, pipe->max_usage))
685 			mask |= EPOLLOUT | EPOLLWRNORM;
686 		/*
687 		 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
688 		 * behave exactly like pipes for poll().
689 		 */
690 		if (!pipe->readers)
691 			mask |= EPOLLERR;
692 	}
693 
694 	return mask;
695 }
696 
put_pipe_info(struct inode * inode,struct pipe_inode_info * pipe)697 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
698 {
699 	int kill = 0;
700 
701 	spin_lock(&inode->i_lock);
702 	if (!--pipe->files) {
703 		inode->i_pipe = NULL;
704 		kill = 1;
705 	}
706 	spin_unlock(&inode->i_lock);
707 
708 	if (kill)
709 		free_pipe_info(pipe);
710 }
711 
712 static int
pipe_release(struct inode * inode,struct file * file)713 pipe_release(struct inode *inode, struct file *file)
714 {
715 	struct pipe_inode_info *pipe = file->private_data;
716 
717 	__pipe_lock(pipe);
718 	if (file->f_mode & FMODE_READ)
719 		pipe->readers--;
720 	if (file->f_mode & FMODE_WRITE)
721 		pipe->writers--;
722 
723 	/* Was that the last reader or writer, but not the other side? */
724 	if (!pipe->readers != !pipe->writers) {
725 		wake_up_interruptible_all(&pipe->rd_wait);
726 		wake_up_interruptible_all(&pipe->wr_wait);
727 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
728 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
729 	}
730 	__pipe_unlock(pipe);
731 
732 	put_pipe_info(inode, pipe);
733 	return 0;
734 }
735 
736 static int
pipe_fasync(int fd,struct file * filp,int on)737 pipe_fasync(int fd, struct file *filp, int on)
738 {
739 	struct pipe_inode_info *pipe = filp->private_data;
740 	int retval = 0;
741 
742 	__pipe_lock(pipe);
743 	if (filp->f_mode & FMODE_READ)
744 		retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
745 	if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
746 		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
747 		if (retval < 0 && (filp->f_mode & FMODE_READ))
748 			/* this can happen only if on == T */
749 			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
750 	}
751 	__pipe_unlock(pipe);
752 	return retval;
753 }
754 
account_pipe_buffers(struct user_struct * user,unsigned long old,unsigned long new)755 unsigned long account_pipe_buffers(struct user_struct *user,
756 				   unsigned long old, unsigned long new)
757 {
758 	return atomic_long_add_return(new - old, &user->pipe_bufs);
759 }
760 
too_many_pipe_buffers_soft(unsigned long user_bufs)761 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
762 {
763 	unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
764 
765 	return soft_limit && user_bufs > soft_limit;
766 }
767 
too_many_pipe_buffers_hard(unsigned long user_bufs)768 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
769 {
770 	unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
771 
772 	return hard_limit && user_bufs > hard_limit;
773 }
774 
pipe_is_unprivileged_user(void)775 bool pipe_is_unprivileged_user(void)
776 {
777 	return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
778 }
779 
alloc_pipe_info(void)780 struct pipe_inode_info *alloc_pipe_info(void)
781 {
782 	struct pipe_inode_info *pipe;
783 	unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
784 	struct user_struct *user = get_current_user();
785 	unsigned long user_bufs;
786 	unsigned int max_size = READ_ONCE(pipe_max_size);
787 
788 	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
789 	if (pipe == NULL)
790 		goto out_free_uid;
791 
792 	if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
793 		pipe_bufs = max_size >> PAGE_SHIFT;
794 
795 	user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
796 
797 	if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
798 		user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
799 		pipe_bufs = PIPE_MIN_DEF_BUFFERS;
800 	}
801 
802 	if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
803 		goto out_revert_acct;
804 
805 	pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
806 			     GFP_KERNEL_ACCOUNT);
807 
808 	if (pipe->bufs) {
809 		init_waitqueue_head(&pipe->rd_wait);
810 		init_waitqueue_head(&pipe->wr_wait);
811 		pipe->r_counter = pipe->w_counter = 1;
812 		pipe->max_usage = pipe_bufs;
813 		pipe->ring_size = pipe_bufs;
814 		pipe->nr_accounted = pipe_bufs;
815 		pipe->user = user;
816 		mutex_init(&pipe->mutex);
817 		return pipe;
818 	}
819 
820 out_revert_acct:
821 	(void) account_pipe_buffers(user, pipe_bufs, 0);
822 	kfree(pipe);
823 out_free_uid:
824 	free_uid(user);
825 	return NULL;
826 }
827 
free_pipe_info(struct pipe_inode_info * pipe)828 void free_pipe_info(struct pipe_inode_info *pipe)
829 {
830 	int i;
831 
832 #ifdef CONFIG_WATCH_QUEUE
833 	if (pipe->watch_queue)
834 		watch_queue_clear(pipe->watch_queue);
835 #endif
836 
837 	(void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
838 	free_uid(pipe->user);
839 	for (i = 0; i < pipe->ring_size; i++) {
840 		struct pipe_buffer *buf = pipe->bufs + i;
841 		if (buf->ops)
842 			pipe_buf_release(pipe, buf);
843 	}
844 #ifdef CONFIG_WATCH_QUEUE
845 	if (pipe->watch_queue)
846 		put_watch_queue(pipe->watch_queue);
847 #endif
848 	if (pipe->tmp_page)
849 		__free_page(pipe->tmp_page);
850 	kfree(pipe->bufs);
851 	kfree(pipe);
852 }
853 
854 static struct vfsmount *pipe_mnt __read_mostly;
855 
856 /*
857  * pipefs_dname() is called from d_path().
858  */
pipefs_dname(struct dentry * dentry,char * buffer,int buflen)859 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
860 {
861 	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
862 				d_inode(dentry)->i_ino);
863 }
864 
865 static const struct dentry_operations pipefs_dentry_operations = {
866 	.d_dname	= pipefs_dname,
867 };
868 
get_pipe_inode(void)869 static struct inode * get_pipe_inode(void)
870 {
871 	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
872 	struct pipe_inode_info *pipe;
873 
874 	if (!inode)
875 		goto fail_inode;
876 
877 	inode->i_ino = get_next_ino();
878 
879 	pipe = alloc_pipe_info();
880 	if (!pipe)
881 		goto fail_iput;
882 
883 	inode->i_pipe = pipe;
884 	pipe->files = 2;
885 	pipe->readers = pipe->writers = 1;
886 	inode->i_fop = &pipefifo_fops;
887 
888 	/*
889 	 * Mark the inode dirty from the very beginning,
890 	 * that way it will never be moved to the dirty
891 	 * list because "mark_inode_dirty()" will think
892 	 * that it already _is_ on the dirty list.
893 	 */
894 	inode->i_state = I_DIRTY;
895 	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
896 	inode->i_uid = current_fsuid();
897 	inode->i_gid = current_fsgid();
898 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
899 
900 	return inode;
901 
902 fail_iput:
903 	iput(inode);
904 
905 fail_inode:
906 	return NULL;
907 }
908 
create_pipe_files(struct file ** res,int flags)909 int create_pipe_files(struct file **res, int flags)
910 {
911 	struct inode *inode = get_pipe_inode();
912 	struct file *f;
913 	int error;
914 
915 	if (!inode)
916 		return -ENFILE;
917 
918 	if (flags & O_NOTIFICATION_PIPE) {
919 		error = watch_queue_init(inode->i_pipe);
920 		if (error) {
921 			free_pipe_info(inode->i_pipe);
922 			iput(inode);
923 			return error;
924 		}
925 	}
926 
927 	f = alloc_file_pseudo(inode, pipe_mnt, "",
928 				O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
929 				&pipefifo_fops);
930 	if (IS_ERR(f)) {
931 		free_pipe_info(inode->i_pipe);
932 		iput(inode);
933 		return PTR_ERR(f);
934 	}
935 
936 	f->private_data = inode->i_pipe;
937 
938 	res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
939 				  &pipefifo_fops);
940 	if (IS_ERR(res[0])) {
941 		put_pipe_info(inode, inode->i_pipe);
942 		fput(f);
943 		return PTR_ERR(res[0]);
944 	}
945 	res[0]->private_data = inode->i_pipe;
946 	res[1] = f;
947 	stream_open(inode, res[0]);
948 	stream_open(inode, res[1]);
949 	return 0;
950 }
951 
__do_pipe_flags(int * fd,struct file ** files,int flags)952 static int __do_pipe_flags(int *fd, struct file **files, int flags)
953 {
954 	int error;
955 	int fdw, fdr;
956 
957 	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
958 		return -EINVAL;
959 
960 	error = create_pipe_files(files, flags);
961 	if (error)
962 		return error;
963 
964 	error = get_unused_fd_flags(flags);
965 	if (error < 0)
966 		goto err_read_pipe;
967 	fdr = error;
968 
969 	error = get_unused_fd_flags(flags);
970 	if (error < 0)
971 		goto err_fdr;
972 	fdw = error;
973 
974 	audit_fd_pair(fdr, fdw);
975 	fd[0] = fdr;
976 	fd[1] = fdw;
977 	return 0;
978 
979  err_fdr:
980 	put_unused_fd(fdr);
981  err_read_pipe:
982 	fput(files[0]);
983 	fput(files[1]);
984 	return error;
985 }
986 
do_pipe_flags(int * fd,int flags)987 int do_pipe_flags(int *fd, int flags)
988 {
989 	struct file *files[2];
990 	int error = __do_pipe_flags(fd, files, flags);
991 	if (!error) {
992 		fd_install(fd[0], files[0]);
993 		fd_install(fd[1], files[1]);
994 	}
995 	return error;
996 }
997 
998 /*
999  * sys_pipe() is the normal C calling standard for creating
1000  * a pipe. It's not the way Unix traditionally does this, though.
1001  */
do_pipe2(int __user * fildes,int flags)1002 static int do_pipe2(int __user *fildes, int flags)
1003 {
1004 	struct file *files[2];
1005 	int fd[2];
1006 	int error;
1007 
1008 	error = __do_pipe_flags(fd, files, flags);
1009 	if (!error) {
1010 		if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1011 			fput(files[0]);
1012 			fput(files[1]);
1013 			put_unused_fd(fd[0]);
1014 			put_unused_fd(fd[1]);
1015 			error = -EFAULT;
1016 		} else {
1017 			fd_install(fd[0], files[0]);
1018 			fd_install(fd[1], files[1]);
1019 		}
1020 	}
1021 	return error;
1022 }
1023 
SYSCALL_DEFINE2(pipe2,int __user *,fildes,int,flags)1024 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1025 {
1026 	return do_pipe2(fildes, flags);
1027 }
1028 
SYSCALL_DEFINE1(pipe,int __user *,fildes)1029 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1030 {
1031 	return do_pipe2(fildes, 0);
1032 }
1033 
1034 /*
1035  * This is the stupid "wait for pipe to be readable or writable"
1036  * model.
1037  *
1038  * See pipe_read/write() for the proper kind of exclusive wait,
1039  * but that requires that we wake up any other readers/writers
1040  * if we then do not end up reading everything (ie the whole
1041  * "wake_next_reader/writer" logic in pipe_read/write()).
1042  */
pipe_wait_readable(struct pipe_inode_info * pipe)1043 void pipe_wait_readable(struct pipe_inode_info *pipe)
1044 {
1045 	pipe_unlock(pipe);
1046 	wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1047 	pipe_lock(pipe);
1048 }
1049 
pipe_wait_writable(struct pipe_inode_info * pipe)1050 void pipe_wait_writable(struct pipe_inode_info *pipe)
1051 {
1052 	pipe_unlock(pipe);
1053 	wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1054 	pipe_lock(pipe);
1055 }
1056 
1057 /*
1058  * This depends on both the wait (here) and the wakeup (wake_up_partner)
1059  * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1060  * race with the count check and waitqueue prep.
1061  *
1062  * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1063  * then check the condition you're waiting for, and only then sleep. But
1064  * because of the pipe lock, we can check the condition before being on
1065  * the wait queue.
1066  *
1067  * We use the 'rd_wait' waitqueue for pipe partner waiting.
1068  */
wait_for_partner(struct pipe_inode_info * pipe,unsigned int * cnt)1069 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1070 {
1071 	DEFINE_WAIT(rdwait);
1072 	int cur = *cnt;
1073 
1074 	while (cur == *cnt) {
1075 		prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1076 		pipe_unlock(pipe);
1077 		schedule();
1078 		finish_wait(&pipe->rd_wait, &rdwait);
1079 		pipe_lock(pipe);
1080 		if (signal_pending(current))
1081 			break;
1082 	}
1083 	return cur == *cnt ? -ERESTARTSYS : 0;
1084 }
1085 
wake_up_partner(struct pipe_inode_info * pipe)1086 static void wake_up_partner(struct pipe_inode_info *pipe)
1087 {
1088 	wake_up_interruptible_all(&pipe->rd_wait);
1089 }
1090 
fifo_open(struct inode * inode,struct file * filp)1091 static int fifo_open(struct inode *inode, struct file *filp)
1092 {
1093 	struct pipe_inode_info *pipe;
1094 	bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1095 	int ret;
1096 
1097 	filp->f_version = 0;
1098 
1099 	spin_lock(&inode->i_lock);
1100 	if (inode->i_pipe) {
1101 		pipe = inode->i_pipe;
1102 		pipe->files++;
1103 		spin_unlock(&inode->i_lock);
1104 	} else {
1105 		spin_unlock(&inode->i_lock);
1106 		pipe = alloc_pipe_info();
1107 		if (!pipe)
1108 			return -ENOMEM;
1109 		pipe->files = 1;
1110 		spin_lock(&inode->i_lock);
1111 		if (unlikely(inode->i_pipe)) {
1112 			inode->i_pipe->files++;
1113 			spin_unlock(&inode->i_lock);
1114 			free_pipe_info(pipe);
1115 			pipe = inode->i_pipe;
1116 		} else {
1117 			inode->i_pipe = pipe;
1118 			spin_unlock(&inode->i_lock);
1119 		}
1120 	}
1121 	filp->private_data = pipe;
1122 	/* OK, we have a pipe and it's pinned down */
1123 
1124 	__pipe_lock(pipe);
1125 
1126 	/* We can only do regular read/write on fifos */
1127 	stream_open(inode, filp);
1128 
1129 	switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1130 	case FMODE_READ:
1131 	/*
1132 	 *  O_RDONLY
1133 	 *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1134 	 *  opened, even when there is no process writing the FIFO.
1135 	 */
1136 		pipe->r_counter++;
1137 		if (pipe->readers++ == 0)
1138 			wake_up_partner(pipe);
1139 
1140 		if (!is_pipe && !pipe->writers) {
1141 			if ((filp->f_flags & O_NONBLOCK)) {
1142 				/* suppress EPOLLHUP until we have
1143 				 * seen a writer */
1144 				filp->f_version = pipe->w_counter;
1145 			} else {
1146 				if (wait_for_partner(pipe, &pipe->w_counter))
1147 					goto err_rd;
1148 			}
1149 		}
1150 		break;
1151 
1152 	case FMODE_WRITE:
1153 	/*
1154 	 *  O_WRONLY
1155 	 *  POSIX.1 says that O_NONBLOCK means return -1 with
1156 	 *  errno=ENXIO when there is no process reading the FIFO.
1157 	 */
1158 		ret = -ENXIO;
1159 		if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1160 			goto err;
1161 
1162 		pipe->w_counter++;
1163 		if (!pipe->writers++)
1164 			wake_up_partner(pipe);
1165 
1166 		if (!is_pipe && !pipe->readers) {
1167 			if (wait_for_partner(pipe, &pipe->r_counter))
1168 				goto err_wr;
1169 		}
1170 		break;
1171 
1172 	case FMODE_READ | FMODE_WRITE:
1173 	/*
1174 	 *  O_RDWR
1175 	 *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1176 	 *  This implementation will NEVER block on a O_RDWR open, since
1177 	 *  the process can at least talk to itself.
1178 	 */
1179 
1180 		pipe->readers++;
1181 		pipe->writers++;
1182 		pipe->r_counter++;
1183 		pipe->w_counter++;
1184 		if (pipe->readers == 1 || pipe->writers == 1)
1185 			wake_up_partner(pipe);
1186 		break;
1187 
1188 	default:
1189 		ret = -EINVAL;
1190 		goto err;
1191 	}
1192 
1193 	/* Ok! */
1194 	__pipe_unlock(pipe);
1195 	return 0;
1196 
1197 err_rd:
1198 	if (!--pipe->readers)
1199 		wake_up_interruptible(&pipe->wr_wait);
1200 	ret = -ERESTARTSYS;
1201 	goto err;
1202 
1203 err_wr:
1204 	if (!--pipe->writers)
1205 		wake_up_interruptible_all(&pipe->rd_wait);
1206 	ret = -ERESTARTSYS;
1207 	goto err;
1208 
1209 err:
1210 	__pipe_unlock(pipe);
1211 
1212 	put_pipe_info(inode, pipe);
1213 	return ret;
1214 }
1215 
1216 const struct file_operations pipefifo_fops = {
1217 	.open		= fifo_open,
1218 	.llseek		= no_llseek,
1219 	.read_iter	= pipe_read,
1220 	.write_iter	= pipe_write,
1221 	.poll		= pipe_poll,
1222 	.unlocked_ioctl	= pipe_ioctl,
1223 	.release	= pipe_release,
1224 	.fasync		= pipe_fasync,
1225 	.splice_write	= iter_file_splice_write,
1226 };
1227 
1228 /*
1229  * Currently we rely on the pipe array holding a power-of-2 number
1230  * of pages. Returns 0 on error.
1231  */
round_pipe_size(unsigned long size)1232 unsigned int round_pipe_size(unsigned long size)
1233 {
1234 	if (size > (1U << 31))
1235 		return 0;
1236 
1237 	/* Minimum pipe size, as required by POSIX */
1238 	if (size < PAGE_SIZE)
1239 		return PAGE_SIZE;
1240 
1241 	return roundup_pow_of_two(size);
1242 }
1243 
1244 /*
1245  * Resize the pipe ring to a number of slots.
1246  *
1247  * Note the pipe can be reduced in capacity, but only if the current
1248  * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1249  * returned instead.
1250  */
pipe_resize_ring(struct pipe_inode_info * pipe,unsigned int nr_slots)1251 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1252 {
1253 	struct pipe_buffer *bufs;
1254 	unsigned int head, tail, mask, n;
1255 
1256 	bufs = kcalloc(nr_slots, sizeof(*bufs),
1257 		       GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1258 	if (unlikely(!bufs))
1259 		return -ENOMEM;
1260 
1261 	spin_lock_irq(&pipe->rd_wait.lock);
1262 	mask = pipe->ring_size - 1;
1263 	head = pipe->head;
1264 	tail = pipe->tail;
1265 
1266 	n = pipe_occupancy(head, tail);
1267 	if (nr_slots < n) {
1268 		spin_unlock_irq(&pipe->rd_wait.lock);
1269 		kfree(bufs);
1270 		return -EBUSY;
1271 	}
1272 
1273 	/*
1274 	 * The pipe array wraps around, so just start the new one at zero
1275 	 * and adjust the indices.
1276 	 */
1277 	if (n > 0) {
1278 		unsigned int h = head & mask;
1279 		unsigned int t = tail & mask;
1280 		if (h > t) {
1281 			memcpy(bufs, pipe->bufs + t,
1282 			       n * sizeof(struct pipe_buffer));
1283 		} else {
1284 			unsigned int tsize = pipe->ring_size - t;
1285 			if (h > 0)
1286 				memcpy(bufs + tsize, pipe->bufs,
1287 				       h * sizeof(struct pipe_buffer));
1288 			memcpy(bufs, pipe->bufs + t,
1289 			       tsize * sizeof(struct pipe_buffer));
1290 		}
1291 	}
1292 
1293 	head = n;
1294 	tail = 0;
1295 
1296 	kfree(pipe->bufs);
1297 	pipe->bufs = bufs;
1298 	pipe->ring_size = nr_slots;
1299 	if (pipe->max_usage > nr_slots)
1300 		pipe->max_usage = nr_slots;
1301 	pipe->tail = tail;
1302 	pipe->head = head;
1303 
1304 	if (!pipe_has_watch_queue(pipe)) {
1305 		pipe->max_usage = nr_slots;
1306 		pipe->nr_accounted = nr_slots;
1307 	}
1308 
1309 	spin_unlock_irq(&pipe->rd_wait.lock);
1310 
1311 	/* This might have made more room for writers */
1312 	wake_up_interruptible(&pipe->wr_wait);
1313 	return 0;
1314 }
1315 
1316 /*
1317  * Allocate a new array of pipe buffers and copy the info over. Returns the
1318  * pipe size if successful, or return -ERROR on error.
1319  */
pipe_set_size(struct pipe_inode_info * pipe,unsigned long arg)1320 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1321 {
1322 	unsigned long user_bufs;
1323 	unsigned int nr_slots, size;
1324 	long ret = 0;
1325 
1326 	if (pipe_has_watch_queue(pipe))
1327 		return -EBUSY;
1328 
1329 	size = round_pipe_size(arg);
1330 	nr_slots = size >> PAGE_SHIFT;
1331 
1332 	if (!nr_slots)
1333 		return -EINVAL;
1334 
1335 	/*
1336 	 * If trying to increase the pipe capacity, check that an
1337 	 * unprivileged user is not trying to exceed various limits
1338 	 * (soft limit check here, hard limit check just below).
1339 	 * Decreasing the pipe capacity is always permitted, even
1340 	 * if the user is currently over a limit.
1341 	 */
1342 	if (nr_slots > pipe->max_usage &&
1343 			size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1344 		return -EPERM;
1345 
1346 	user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1347 
1348 	if (nr_slots > pipe->max_usage &&
1349 			(too_many_pipe_buffers_hard(user_bufs) ||
1350 			 too_many_pipe_buffers_soft(user_bufs)) &&
1351 			pipe_is_unprivileged_user()) {
1352 		ret = -EPERM;
1353 		goto out_revert_acct;
1354 	}
1355 
1356 	ret = pipe_resize_ring(pipe, nr_slots);
1357 	if (ret < 0)
1358 		goto out_revert_acct;
1359 
1360 	return pipe->max_usage * PAGE_SIZE;
1361 
1362 out_revert_acct:
1363 	(void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1364 	return ret;
1365 }
1366 
1367 /*
1368  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1369  * location, so checking ->i_pipe is not enough to verify that this is a
1370  * pipe.
1371  */
get_pipe_info(struct file * file,bool for_splice)1372 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1373 {
1374 	struct pipe_inode_info *pipe = file->private_data;
1375 
1376 	if (file->f_op != &pipefifo_fops || !pipe)
1377 		return NULL;
1378 	if (for_splice && pipe_has_watch_queue(pipe))
1379 		return NULL;
1380 	return pipe;
1381 }
1382 
pipe_fcntl(struct file * file,unsigned int cmd,unsigned long arg)1383 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1384 {
1385 	struct pipe_inode_info *pipe;
1386 	long ret;
1387 
1388 	pipe = get_pipe_info(file, false);
1389 	if (!pipe)
1390 		return -EBADF;
1391 
1392 	__pipe_lock(pipe);
1393 
1394 	switch (cmd) {
1395 	case F_SETPIPE_SZ:
1396 		ret = pipe_set_size(pipe, arg);
1397 		break;
1398 	case F_GETPIPE_SZ:
1399 		ret = pipe->max_usage * PAGE_SIZE;
1400 		break;
1401 	default:
1402 		ret = -EINVAL;
1403 		break;
1404 	}
1405 
1406 	__pipe_unlock(pipe);
1407 	return ret;
1408 }
1409 
1410 static const struct super_operations pipefs_ops = {
1411 	.destroy_inode = free_inode_nonrcu,
1412 	.statfs = simple_statfs,
1413 };
1414 
1415 /*
1416  * pipefs should _never_ be mounted by userland - too much of security hassle,
1417  * no real gain from having the whole whorehouse mounted. So we don't need
1418  * any operations on the root directory. However, we need a non-trivial
1419  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1420  */
1421 
pipefs_init_fs_context(struct fs_context * fc)1422 static int pipefs_init_fs_context(struct fs_context *fc)
1423 {
1424 	struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1425 	if (!ctx)
1426 		return -ENOMEM;
1427 	ctx->ops = &pipefs_ops;
1428 	ctx->dops = &pipefs_dentry_operations;
1429 	return 0;
1430 }
1431 
1432 static struct file_system_type pipe_fs_type = {
1433 	.name		= "pipefs",
1434 	.init_fs_context = pipefs_init_fs_context,
1435 	.kill_sb	= kill_anon_super,
1436 };
1437 
init_pipe_fs(void)1438 static int __init init_pipe_fs(void)
1439 {
1440 	int err = register_filesystem(&pipe_fs_type);
1441 
1442 	if (!err) {
1443 		pipe_mnt = kern_mount(&pipe_fs_type);
1444 		if (IS_ERR(pipe_mnt)) {
1445 			err = PTR_ERR(pipe_mnt);
1446 			unregister_filesystem(&pipe_fs_type);
1447 		}
1448 	}
1449 	return err;
1450 }
1451 
1452 fs_initcall(init_pipe_fs);
1453