• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Adrian Hunter
8  *          Artem Bityutskiy (Битюцкий Артём)
9  */
10 
11 /*
12  * This file implements the budgeting sub-system which is responsible for UBIFS
13  * space management.
14  *
15  * Factors such as compression, wasted space at the ends of LEBs, space in other
16  * journal heads, the effect of updates on the index, and so on, make it
17  * impossible to accurately predict the amount of space needed. Consequently
18  * approximations are used.
19  */
20 
21 #include "ubifs.h"
22 #include <linux/writeback.h>
23 #include <linux/math64.h>
24 
25 /*
26  * When pessimistic budget calculations say that there is no enough space,
27  * UBIFS starts writing back dirty inodes and pages, doing garbage collection,
28  * or committing. The below constant defines maximum number of times UBIFS
29  * repeats the operations.
30  */
31 #define MAX_MKSPC_RETRIES 3
32 
33 /*
34  * The below constant defines amount of dirty pages which should be written
35  * back at when trying to shrink the liability.
36  */
37 #define NR_TO_WRITE 16
38 
39 /**
40  * shrink_liability - write-back some dirty pages/inodes.
41  * @c: UBIFS file-system description object
42  * @nr_to_write: how many dirty pages to write-back
43  *
44  * This function shrinks UBIFS liability by means of writing back some amount
45  * of dirty inodes and their pages.
46  *
47  * Note, this function synchronizes even VFS inodes which are locked
48  * (@i_mutex) by the caller of the budgeting function, because write-back does
49  * not touch @i_mutex.
50  */
shrink_liability(struct ubifs_info * c,int nr_to_write)51 static void shrink_liability(struct ubifs_info *c, int nr_to_write)
52 {
53 	down_read(&c->vfs_sb->s_umount);
54 	writeback_inodes_sb_nr(c->vfs_sb, nr_to_write, WB_REASON_FS_FREE_SPACE);
55 	up_read(&c->vfs_sb->s_umount);
56 }
57 
58 /**
59  * run_gc - run garbage collector.
60  * @c: UBIFS file-system description object
61  *
62  * This function runs garbage collector to make some more free space. Returns
63  * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a
64  * negative error code in case of failure.
65  */
run_gc(struct ubifs_info * c)66 static int run_gc(struct ubifs_info *c)
67 {
68 	int err, lnum;
69 
70 	/* Make some free space by garbage-collecting dirty space */
71 	down_read(&c->commit_sem);
72 	lnum = ubifs_garbage_collect(c, 1);
73 	up_read(&c->commit_sem);
74 	if (lnum < 0)
75 		return lnum;
76 
77 	/* GC freed one LEB, return it to lprops */
78 	dbg_budg("GC freed LEB %d", lnum);
79 	err = ubifs_return_leb(c, lnum);
80 	if (err)
81 		return err;
82 	return 0;
83 }
84 
85 /**
86  * get_liability - calculate current liability.
87  * @c: UBIFS file-system description object
88  *
89  * This function calculates and returns current UBIFS liability, i.e. the
90  * amount of bytes UBIFS has "promised" to write to the media.
91  */
get_liability(struct ubifs_info * c)92 static long long get_liability(struct ubifs_info *c)
93 {
94 	long long liab;
95 
96 	spin_lock(&c->space_lock);
97 	liab = c->bi.idx_growth + c->bi.data_growth + c->bi.dd_growth;
98 	spin_unlock(&c->space_lock);
99 	return liab;
100 }
101 
102 /**
103  * make_free_space - make more free space on the file-system.
104  * @c: UBIFS file-system description object
105  *
106  * This function is called when an operation cannot be budgeted because there
107  * is supposedly no free space. But in most cases there is some free space:
108  *   o budgeting is pessimistic, so it always budgets more than it is actually
109  *     needed, so shrinking the liability is one way to make free space - the
110  *     cached data will take less space then it was budgeted for;
111  *   o GC may turn some dark space into free space (budgeting treats dark space
112  *     as not available);
113  *   o commit may free some LEB, i.e., turn freeable LEBs into free LEBs.
114  *
115  * So this function tries to do the above. Returns %-EAGAIN if some free space
116  * was presumably made and the caller has to re-try budgeting the operation.
117  * Returns %-ENOSPC if it couldn't do more free space, and other negative error
118  * codes on failures.
119  */
make_free_space(struct ubifs_info * c)120 static int make_free_space(struct ubifs_info *c)
121 {
122 	int err, retries = 0;
123 	long long liab1, liab2;
124 
125 	do {
126 		liab1 = get_liability(c);
127 		/*
128 		 * We probably have some dirty pages or inodes (liability), try
129 		 * to write them back.
130 		 */
131 		dbg_budg("liability %lld, run write-back", liab1);
132 		shrink_liability(c, NR_TO_WRITE);
133 
134 		liab2 = get_liability(c);
135 		if (liab2 < liab1)
136 			return -EAGAIN;
137 
138 		dbg_budg("new liability %lld (not shrunk)", liab2);
139 
140 		/* Liability did not shrink again, try GC */
141 		dbg_budg("Run GC");
142 		err = run_gc(c);
143 		if (!err)
144 			return -EAGAIN;
145 
146 		if (err != -EAGAIN && err != -ENOSPC)
147 			/* Some real error happened */
148 			return err;
149 
150 		dbg_budg("Run commit (retries %d)", retries);
151 		err = ubifs_run_commit(c);
152 		if (err)
153 			return err;
154 	} while (retries++ < MAX_MKSPC_RETRIES);
155 
156 	return -ENOSPC;
157 }
158 
159 /**
160  * ubifs_calc_min_idx_lebs - calculate amount of LEBs for the index.
161  * @c: UBIFS file-system description object
162  *
163  * This function calculates and returns the number of LEBs which should be kept
164  * for index usage.
165  */
ubifs_calc_min_idx_lebs(struct ubifs_info * c)166 int ubifs_calc_min_idx_lebs(struct ubifs_info *c)
167 {
168 	int idx_lebs;
169 	long long idx_size;
170 
171 	idx_size = c->bi.old_idx_sz + c->bi.idx_growth + c->bi.uncommitted_idx;
172 	/* And make sure we have thrice the index size of space reserved */
173 	idx_size += idx_size << 1;
174 	/*
175 	 * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes'
176 	 * pair, nor similarly the two variables for the new index size, so we
177 	 * have to do this costly 64-bit division on fast-path.
178 	 */
179 	idx_lebs = div_u64(idx_size + c->idx_leb_size - 1, c->idx_leb_size);
180 	/*
181 	 * The index head is not available for the in-the-gaps method, so add an
182 	 * extra LEB to compensate.
183 	 */
184 	idx_lebs += 1;
185 	if (idx_lebs < MIN_INDEX_LEBS)
186 		idx_lebs = MIN_INDEX_LEBS;
187 	return idx_lebs;
188 }
189 
190 /**
191  * ubifs_calc_available - calculate available FS space.
192  * @c: UBIFS file-system description object
193  * @min_idx_lebs: minimum number of LEBs reserved for the index
194  *
195  * This function calculates and returns amount of FS space available for use.
196  */
ubifs_calc_available(const struct ubifs_info * c,int min_idx_lebs)197 long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs)
198 {
199 	int subtract_lebs;
200 	long long available;
201 
202 	available = c->main_bytes - c->lst.total_used;
203 
204 	/*
205 	 * Now 'available' contains theoretically available flash space
206 	 * assuming there is no index, so we have to subtract the space which
207 	 * is reserved for the index.
208 	 */
209 	subtract_lebs = min_idx_lebs;
210 
211 	/* Take into account that GC reserves one LEB for its own needs */
212 	subtract_lebs += 1;
213 
214 	/*
215 	 * Since different write types go to different heads, we should
216 	 * reserve one leb for each head.
217 	 */
218 	subtract_lebs += c->jhead_cnt;
219 
220 	/* We also reserve one LEB for deletions, which bypass budgeting */
221 	subtract_lebs += 1;
222 
223 	available -= (long long)subtract_lebs * c->leb_size;
224 
225 	/* Subtract the dead space which is not available for use */
226 	available -= c->lst.total_dead;
227 
228 	/*
229 	 * Subtract dark space, which might or might not be usable - it depends
230 	 * on the data which we have on the media and which will be written. If
231 	 * this is a lot of uncompressed or not-compressible data, the dark
232 	 * space cannot be used.
233 	 */
234 	available -= c->lst.total_dark;
235 
236 	/*
237 	 * However, there is more dark space. The index may be bigger than
238 	 * @min_idx_lebs. Those extra LEBs are assumed to be available, but
239 	 * their dark space is not included in total_dark, so it is subtracted
240 	 * here.
241 	 */
242 	if (c->lst.idx_lebs > min_idx_lebs) {
243 		subtract_lebs = c->lst.idx_lebs - min_idx_lebs;
244 		available -= subtract_lebs * c->dark_wm;
245 	}
246 
247 	/* The calculations are rough and may end up with a negative number */
248 	return available > 0 ? available : 0;
249 }
250 
251 /**
252  * can_use_rp - check whether the user is allowed to use reserved pool.
253  * @c: UBIFS file-system description object
254  *
255  * UBIFS has so-called "reserved pool" which is flash space reserved
256  * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock.
257  * This function checks whether current user is allowed to use reserved pool.
258  * Returns %1  current user is allowed to use reserved pool and %0 otherwise.
259  */
can_use_rp(struct ubifs_info * c)260 static int can_use_rp(struct ubifs_info *c)
261 {
262 	if (uid_eq(current_fsuid(), c->rp_uid) || capable(CAP_SYS_RESOURCE) ||
263 	    (!gid_eq(c->rp_gid, GLOBAL_ROOT_GID) && in_group_p(c->rp_gid)))
264 		return 1;
265 	return 0;
266 }
267 
268 /**
269  * do_budget_space - reserve flash space for index and data growth.
270  * @c: UBIFS file-system description object
271  *
272  * This function makes sure UBIFS has enough free LEBs for index growth and
273  * data.
274  *
275  * When budgeting index space, UBIFS reserves thrice as many LEBs as the index
276  * would take if it was consolidated and written to the flash. This guarantees
277  * that the "in-the-gaps" commit method always succeeds and UBIFS will always
278  * be able to commit dirty index. So this function basically adds amount of
279  * budgeted index space to the size of the current index, multiplies this by 3,
280  * and makes sure this does not exceed the amount of free LEBs.
281  *
282  * Notes about @c->bi.min_idx_lebs and @c->lst.idx_lebs variables:
283  * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might
284  *    be large, because UBIFS does not do any index consolidation as long as
285  *    there is free space. IOW, the index may take a lot of LEBs, but the LEBs
286  *    will contain a lot of dirt.
287  * o @c->bi.min_idx_lebs is the number of LEBS the index presumably takes. IOW,
288  *    the index may be consolidated to take up to @c->bi.min_idx_lebs LEBs.
289  *
290  * This function returns zero in case of success, and %-ENOSPC in case of
291  * failure.
292  */
do_budget_space(struct ubifs_info * c)293 static int do_budget_space(struct ubifs_info *c)
294 {
295 	long long outstanding, available;
296 	int lebs, rsvd_idx_lebs, min_idx_lebs;
297 
298 	/* First budget index space */
299 	min_idx_lebs = ubifs_calc_min_idx_lebs(c);
300 
301 	/* Now 'min_idx_lebs' contains number of LEBs to reserve */
302 	if (min_idx_lebs > c->lst.idx_lebs)
303 		rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs;
304 	else
305 		rsvd_idx_lebs = 0;
306 
307 	/*
308 	 * The number of LEBs that are available to be used by the index is:
309 	 *
310 	 *    @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt -
311 	 *    @c->lst.taken_empty_lebs
312 	 *
313 	 * @c->lst.empty_lebs are available because they are empty.
314 	 * @c->freeable_cnt are available because they contain only free and
315 	 * dirty space, @c->idx_gc_cnt are available because they are index
316 	 * LEBs that have been garbage collected and are awaiting the commit
317 	 * before they can be used. And the in-the-gaps method will grab these
318 	 * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have
319 	 * already been allocated for some purpose.
320 	 *
321 	 * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because
322 	 * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they
323 	 * are taken until after the commit).
324 	 *
325 	 * Note, @c->lst.taken_empty_lebs may temporarily be higher by one
326 	 * because of the way we serialize LEB allocations and budgeting. See a
327 	 * comment in 'ubifs_find_free_space()'.
328 	 */
329 	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
330 	       c->lst.taken_empty_lebs;
331 	if (unlikely(rsvd_idx_lebs > lebs)) {
332 		dbg_budg("out of indexing space: min_idx_lebs %d (old %d), rsvd_idx_lebs %d",
333 			 min_idx_lebs, c->bi.min_idx_lebs, rsvd_idx_lebs);
334 		return -ENOSPC;
335 	}
336 
337 	available = ubifs_calc_available(c, min_idx_lebs);
338 	outstanding = c->bi.data_growth + c->bi.dd_growth;
339 
340 	if (unlikely(available < outstanding)) {
341 		dbg_budg("out of data space: available %lld, outstanding %lld",
342 			 available, outstanding);
343 		return -ENOSPC;
344 	}
345 
346 	if (available - outstanding <= c->rp_size && !can_use_rp(c))
347 		return -ENOSPC;
348 
349 	c->bi.min_idx_lebs = min_idx_lebs;
350 	return 0;
351 }
352 
353 /**
354  * calc_idx_growth - calculate approximate index growth from budgeting request.
355  * @c: UBIFS file-system description object
356  * @req: budgeting request
357  *
358  * For now we assume each new node adds one znode. But this is rather poor
359  * approximation, though.
360  */
calc_idx_growth(const struct ubifs_info * c,const struct ubifs_budget_req * req)361 static int calc_idx_growth(const struct ubifs_info *c,
362 			   const struct ubifs_budget_req *req)
363 {
364 	int znodes;
365 
366 	znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) +
367 		 req->new_dent;
368 	return znodes * c->max_idx_node_sz;
369 }
370 
371 /**
372  * calc_data_growth - calculate approximate amount of new data from budgeting
373  * request.
374  * @c: UBIFS file-system description object
375  * @req: budgeting request
376  */
calc_data_growth(const struct ubifs_info * c,const struct ubifs_budget_req * req)377 static int calc_data_growth(const struct ubifs_info *c,
378 			    const struct ubifs_budget_req *req)
379 {
380 	int data_growth;
381 
382 	data_growth = req->new_ino  ? c->bi.inode_budget : 0;
383 	if (req->new_page)
384 		data_growth += c->bi.page_budget;
385 	if (req->new_dent)
386 		data_growth += c->bi.dent_budget;
387 	data_growth += req->new_ino_d;
388 	return data_growth;
389 }
390 
391 /**
392  * calc_dd_growth - calculate approximate amount of data which makes other data
393  * dirty from budgeting request.
394  * @c: UBIFS file-system description object
395  * @req: budgeting request
396  */
calc_dd_growth(const struct ubifs_info * c,const struct ubifs_budget_req * req)397 static int calc_dd_growth(const struct ubifs_info *c,
398 			  const struct ubifs_budget_req *req)
399 {
400 	int dd_growth;
401 
402 	dd_growth = req->dirtied_page ? c->bi.page_budget : 0;
403 
404 	if (req->dirtied_ino)
405 		dd_growth += c->bi.inode_budget * req->dirtied_ino;
406 	if (req->mod_dent)
407 		dd_growth += c->bi.dent_budget;
408 	dd_growth += req->dirtied_ino_d;
409 	return dd_growth;
410 }
411 
412 /**
413  * ubifs_budget_space - ensure there is enough space to complete an operation.
414  * @c: UBIFS file-system description object
415  * @req: budget request
416  *
417  * This function allocates budget for an operation. It uses pessimistic
418  * approximation of how much flash space the operation needs. The goal of this
419  * function is to make sure UBIFS always has flash space to flush all dirty
420  * pages, dirty inodes, and dirty znodes (liability). This function may force
421  * commit, garbage-collection or write-back. Returns zero in case of success,
422  * %-ENOSPC if there is no free space and other negative error codes in case of
423  * failures.
424  */
ubifs_budget_space(struct ubifs_info * c,struct ubifs_budget_req * req)425 int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req)
426 {
427 	int err, idx_growth, data_growth, dd_growth, retried = 0;
428 
429 	ubifs_assert(c, req->new_page <= 1);
430 	ubifs_assert(c, req->dirtied_page <= 1);
431 	ubifs_assert(c, req->new_dent <= 1);
432 	ubifs_assert(c, req->mod_dent <= 1);
433 	ubifs_assert(c, req->new_ino <= 1);
434 	ubifs_assert(c, req->new_ino_d <= UBIFS_MAX_INO_DATA);
435 	ubifs_assert(c, req->dirtied_ino <= 4);
436 	ubifs_assert(c, req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
437 	ubifs_assert(c, !(req->new_ino_d & 7));
438 	ubifs_assert(c, !(req->dirtied_ino_d & 7));
439 
440 	data_growth = calc_data_growth(c, req);
441 	dd_growth = calc_dd_growth(c, req);
442 	if (!data_growth && !dd_growth)
443 		return 0;
444 	idx_growth = calc_idx_growth(c, req);
445 
446 again:
447 	spin_lock(&c->space_lock);
448 	ubifs_assert(c, c->bi.idx_growth >= 0);
449 	ubifs_assert(c, c->bi.data_growth >= 0);
450 	ubifs_assert(c, c->bi.dd_growth >= 0);
451 
452 	if (unlikely(c->bi.nospace) && (c->bi.nospace_rp || !can_use_rp(c))) {
453 		dbg_budg("no space");
454 		spin_unlock(&c->space_lock);
455 		return -ENOSPC;
456 	}
457 
458 	c->bi.idx_growth += idx_growth;
459 	c->bi.data_growth += data_growth;
460 	c->bi.dd_growth += dd_growth;
461 
462 	err = do_budget_space(c);
463 	if (likely(!err)) {
464 		req->idx_growth = idx_growth;
465 		req->data_growth = data_growth;
466 		req->dd_growth = dd_growth;
467 		spin_unlock(&c->space_lock);
468 		return 0;
469 	}
470 
471 	/* Restore the old values */
472 	c->bi.idx_growth -= idx_growth;
473 	c->bi.data_growth -= data_growth;
474 	c->bi.dd_growth -= dd_growth;
475 	spin_unlock(&c->space_lock);
476 
477 	if (req->fast) {
478 		dbg_budg("no space for fast budgeting");
479 		return err;
480 	}
481 
482 	err = make_free_space(c);
483 	cond_resched();
484 	if (err == -EAGAIN) {
485 		dbg_budg("try again");
486 		goto again;
487 	} else if (err == -ENOSPC) {
488 		if (!retried) {
489 			retried = 1;
490 			dbg_budg("-ENOSPC, but anyway try once again");
491 			goto again;
492 		}
493 		dbg_budg("FS is full, -ENOSPC");
494 		c->bi.nospace = 1;
495 		if (can_use_rp(c) || c->rp_size == 0)
496 			c->bi.nospace_rp = 1;
497 		smp_wmb();
498 	} else
499 		ubifs_err(c, "cannot budget space, error %d", err);
500 	return err;
501 }
502 
503 /**
504  * ubifs_release_budget - release budgeted free space.
505  * @c: UBIFS file-system description object
506  * @req: budget request
507  *
508  * This function releases the space budgeted by 'ubifs_budget_space()'. Note,
509  * since the index changes (which were budgeted for in @req->idx_growth) will
510  * only be written to the media on commit, this function moves the index budget
511  * from @c->bi.idx_growth to @c->bi.uncommitted_idx. The latter will be zeroed
512  * by the commit operation.
513  */
ubifs_release_budget(struct ubifs_info * c,struct ubifs_budget_req * req)514 void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req)
515 {
516 	ubifs_assert(c, req->new_page <= 1);
517 	ubifs_assert(c, req->dirtied_page <= 1);
518 	ubifs_assert(c, req->new_dent <= 1);
519 	ubifs_assert(c, req->mod_dent <= 1);
520 	ubifs_assert(c, req->new_ino <= 1);
521 	ubifs_assert(c, req->new_ino_d <= UBIFS_MAX_INO_DATA);
522 	ubifs_assert(c, req->dirtied_ino <= 4);
523 	ubifs_assert(c, req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
524 	ubifs_assert(c, !(req->new_ino_d & 7));
525 	ubifs_assert(c, !(req->dirtied_ino_d & 7));
526 	if (!req->recalculate) {
527 		ubifs_assert(c, req->idx_growth >= 0);
528 		ubifs_assert(c, req->data_growth >= 0);
529 		ubifs_assert(c, req->dd_growth >= 0);
530 	}
531 
532 	if (req->recalculate) {
533 		req->data_growth = calc_data_growth(c, req);
534 		req->dd_growth = calc_dd_growth(c, req);
535 		req->idx_growth = calc_idx_growth(c, req);
536 	}
537 
538 	if (!req->data_growth && !req->dd_growth)
539 		return;
540 
541 	c->bi.nospace = c->bi.nospace_rp = 0;
542 	smp_wmb();
543 
544 	spin_lock(&c->space_lock);
545 	c->bi.idx_growth -= req->idx_growth;
546 	c->bi.uncommitted_idx += req->idx_growth;
547 	c->bi.data_growth -= req->data_growth;
548 	c->bi.dd_growth -= req->dd_growth;
549 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
550 
551 	ubifs_assert(c, c->bi.idx_growth >= 0);
552 	ubifs_assert(c, c->bi.data_growth >= 0);
553 	ubifs_assert(c, c->bi.dd_growth >= 0);
554 	ubifs_assert(c, c->bi.min_idx_lebs < c->main_lebs);
555 	ubifs_assert(c, !(c->bi.idx_growth & 7));
556 	ubifs_assert(c, !(c->bi.data_growth & 7));
557 	ubifs_assert(c, !(c->bi.dd_growth & 7));
558 	spin_unlock(&c->space_lock);
559 }
560 
561 /**
562  * ubifs_convert_page_budget - convert budget of a new page.
563  * @c: UBIFS file-system description object
564  *
565  * This function converts budget which was allocated for a new page of data to
566  * the budget of changing an existing page of data. The latter is smaller than
567  * the former, so this function only does simple re-calculation and does not
568  * involve any write-back.
569  */
ubifs_convert_page_budget(struct ubifs_info * c)570 void ubifs_convert_page_budget(struct ubifs_info *c)
571 {
572 	spin_lock(&c->space_lock);
573 	/* Release the index growth reservation */
574 	c->bi.idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT;
575 	/* Release the data growth reservation */
576 	c->bi.data_growth -= c->bi.page_budget;
577 	/* Increase the dirty data growth reservation instead */
578 	c->bi.dd_growth += c->bi.page_budget;
579 	/* And re-calculate the indexing space reservation */
580 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
581 	spin_unlock(&c->space_lock);
582 }
583 
584 /**
585  * ubifs_release_dirty_inode_budget - release dirty inode budget.
586  * @c: UBIFS file-system description object
587  * @ui: UBIFS inode to release the budget for
588  *
589  * This function releases budget corresponding to a dirty inode. It is usually
590  * called when after the inode has been written to the media and marked as
591  * clean. It also causes the "no space" flags to be cleared.
592  */
ubifs_release_dirty_inode_budget(struct ubifs_info * c,struct ubifs_inode * ui)593 void ubifs_release_dirty_inode_budget(struct ubifs_info *c,
594 				      struct ubifs_inode *ui)
595 {
596 	struct ubifs_budget_req req;
597 
598 	memset(&req, 0, sizeof(struct ubifs_budget_req));
599 	/* The "no space" flags will be cleared because dd_growth is > 0 */
600 	req.dd_growth = c->bi.inode_budget + ALIGN(ui->data_len, 8);
601 	ubifs_release_budget(c, &req);
602 }
603 
604 /**
605  * ubifs_reported_space - calculate reported free space.
606  * @c: the UBIFS file-system description object
607  * @free: amount of free space
608  *
609  * This function calculates amount of free space which will be reported to
610  * user-space. User-space application tend to expect that if the file-system
611  * (e.g., via the 'statfs()' call) reports that it has N bytes available, they
612  * are able to write a file of size N. UBIFS attaches node headers to each data
613  * node and it has to write indexing nodes as well. This introduces additional
614  * overhead, and UBIFS has to report slightly less free space to meet the above
615  * expectations.
616  *
617  * This function assumes free space is made up of uncompressed data nodes and
618  * full index nodes (one per data node, tripled because we always allow enough
619  * space to write the index thrice).
620  *
621  * Note, the calculation is pessimistic, which means that most of the time
622  * UBIFS reports less space than it actually has.
623  */
ubifs_reported_space(const struct ubifs_info * c,long long free)624 long long ubifs_reported_space(const struct ubifs_info *c, long long free)
625 {
626 	int divisor, factor, f;
627 
628 	/*
629 	 * Reported space size is @free * X, where X is UBIFS block size
630 	 * divided by UBIFS block size + all overhead one data block
631 	 * introduces. The overhead is the node header + indexing overhead.
632 	 *
633 	 * Indexing overhead calculations are based on the following formula:
634 	 * I = N/(f - 1) + 1, where I - number of indexing nodes, N - number
635 	 * of data nodes, f - fanout. Because effective UBIFS fanout is twice
636 	 * as less than maximum fanout, we assume that each data node
637 	 * introduces 3 * @c->max_idx_node_sz / (@c->fanout/2 - 1) bytes.
638 	 * Note, the multiplier 3 is because UBIFS reserves thrice as more space
639 	 * for the index.
640 	 */
641 	f = c->fanout > 3 ? c->fanout >> 1 : 2;
642 	factor = UBIFS_BLOCK_SIZE;
643 	divisor = UBIFS_MAX_DATA_NODE_SZ;
644 	divisor += (c->max_idx_node_sz * 3) / (f - 1);
645 	free *= factor;
646 	return div_u64(free, divisor);
647 }
648 
649 /**
650  * ubifs_get_free_space_nolock - return amount of free space.
651  * @c: UBIFS file-system description object
652  *
653  * This function calculates amount of free space to report to user-space.
654  *
655  * Because UBIFS may introduce substantial overhead (the index, node headers,
656  * alignment, wastage at the end of LEBs, etc), it cannot report real amount of
657  * free flash space it has (well, because not all dirty space is reclaimable,
658  * UBIFS does not actually know the real amount). If UBIFS did so, it would
659  * bread user expectations about what free space is. Users seem to accustomed
660  * to assume that if the file-system reports N bytes of free space, they would
661  * be able to fit a file of N bytes to the FS. This almost works for
662  * traditional file-systems, because they have way less overhead than UBIFS.
663  * So, to keep users happy, UBIFS tries to take the overhead into account.
664  */
ubifs_get_free_space_nolock(struct ubifs_info * c)665 long long ubifs_get_free_space_nolock(struct ubifs_info *c)
666 {
667 	int rsvd_idx_lebs, lebs;
668 	long long available, outstanding, free;
669 
670 	ubifs_assert(c, c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
671 	outstanding = c->bi.data_growth + c->bi.dd_growth;
672 	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
673 
674 	/*
675 	 * When reporting free space to user-space, UBIFS guarantees that it is
676 	 * possible to write a file of free space size. This means that for
677 	 * empty LEBs we may use more precise calculations than
678 	 * 'ubifs_calc_available()' is using. Namely, we know that in empty
679 	 * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm.
680 	 * Thus, amend the available space.
681 	 *
682 	 * Note, the calculations below are similar to what we have in
683 	 * 'do_budget_space()', so refer there for comments.
684 	 */
685 	if (c->bi.min_idx_lebs > c->lst.idx_lebs)
686 		rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs;
687 	else
688 		rsvd_idx_lebs = 0;
689 	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
690 	       c->lst.taken_empty_lebs;
691 	lebs -= rsvd_idx_lebs;
692 	available += lebs * (c->dark_wm - c->leb_overhead);
693 
694 	if (available > outstanding)
695 		free = ubifs_reported_space(c, available - outstanding);
696 	else
697 		free = 0;
698 	return free;
699 }
700 
701 /**
702  * ubifs_get_free_space - return amount of free space.
703  * @c: UBIFS file-system description object
704  *
705  * This function calculates and returns amount of free space to report to
706  * user-space.
707  */
ubifs_get_free_space(struct ubifs_info * c)708 long long ubifs_get_free_space(struct ubifs_info *c)
709 {
710 	long long free;
711 
712 	spin_lock(&c->space_lock);
713 	free = ubifs_get_free_space_nolock(c);
714 	spin_unlock(&c->space_lock);
715 
716 	return free;
717 }
718