1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/poll.h>
20 #include <linux/slab.h>
21 #include <linux/seq_file.h>
22 #include <linux/file.h>
23 #include <linux/bug.h>
24 #include <linux/anon_inodes.h>
25 #include <linux/syscalls.h>
26 #include <linux/userfaultfd_k.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ioctl.h>
29 #include <linux/security.h>
30 #include <linux/hugetlb.h>
31
32 int sysctl_unprivileged_userfaultfd __read_mostly;
33
34 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
35
36 /*
37 * Start with fault_pending_wqh and fault_wqh so they're more likely
38 * to be in the same cacheline.
39 *
40 * Locking order:
41 * fd_wqh.lock
42 * fault_pending_wqh.lock
43 * fault_wqh.lock
44 * event_wqh.lock
45 *
46 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
47 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
48 * also taken in IRQ context.
49 */
50 struct userfaultfd_ctx {
51 /* waitqueue head for the pending (i.e. not read) userfaults */
52 wait_queue_head_t fault_pending_wqh;
53 /* waitqueue head for the userfaults */
54 wait_queue_head_t fault_wqh;
55 /* waitqueue head for the pseudo fd to wakeup poll/read */
56 wait_queue_head_t fd_wqh;
57 /* waitqueue head for events */
58 wait_queue_head_t event_wqh;
59 /* a refile sequence protected by fault_pending_wqh lock */
60 seqcount_spinlock_t refile_seq;
61 /* pseudo fd refcounting */
62 refcount_t refcount;
63 /* userfaultfd syscall flags */
64 unsigned int flags;
65 /* features requested from the userspace */
66 unsigned int features;
67 /* released */
68 bool released;
69 /* memory mappings are changing because of non-cooperative event */
70 bool mmap_changing;
71 /* mm with one ore more vmas attached to this userfaultfd_ctx */
72 struct mm_struct *mm;
73 struct rcu_head rcu_head;
74 };
75
76 struct userfaultfd_fork_ctx {
77 struct userfaultfd_ctx *orig;
78 struct userfaultfd_ctx *new;
79 struct list_head list;
80 };
81
82 struct userfaultfd_unmap_ctx {
83 struct userfaultfd_ctx *ctx;
84 unsigned long start;
85 unsigned long end;
86 struct list_head list;
87 };
88
89 struct userfaultfd_wait_queue {
90 struct uffd_msg msg;
91 wait_queue_entry_t wq;
92 struct userfaultfd_ctx *ctx;
93 bool waken;
94 };
95
96 struct userfaultfd_wake_range {
97 unsigned long start;
98 unsigned long len;
99 };
100
101 /* internal indication that UFFD_API ioctl was successfully executed */
102 #define UFFD_FEATURE_INITIALIZED (1u << 31)
103
userfaultfd_is_initialized(struct userfaultfd_ctx * ctx)104 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
105 {
106 return ctx->features & UFFD_FEATURE_INITIALIZED;
107 }
108
userfaultfd_wake_function(wait_queue_entry_t * wq,unsigned mode,int wake_flags,void * key)109 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
110 int wake_flags, void *key)
111 {
112 struct userfaultfd_wake_range *range = key;
113 int ret;
114 struct userfaultfd_wait_queue *uwq;
115 unsigned long start, len;
116
117 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
118 ret = 0;
119 /* len == 0 means wake all */
120 start = range->start;
121 len = range->len;
122 if (len && (start > uwq->msg.arg.pagefault.address ||
123 start + len <= uwq->msg.arg.pagefault.address))
124 goto out;
125 WRITE_ONCE(uwq->waken, true);
126 /*
127 * The Program-Order guarantees provided by the scheduler
128 * ensure uwq->waken is visible before the task is woken.
129 */
130 ret = wake_up_state(wq->private, mode);
131 if (ret) {
132 /*
133 * Wake only once, autoremove behavior.
134 *
135 * After the effect of list_del_init is visible to the other
136 * CPUs, the waitqueue may disappear from under us, see the
137 * !list_empty_careful() in handle_userfault().
138 *
139 * try_to_wake_up() has an implicit smp_mb(), and the
140 * wq->private is read before calling the extern function
141 * "wake_up_state" (which in turns calls try_to_wake_up).
142 */
143 list_del_init(&wq->entry);
144 }
145 out:
146 return ret;
147 }
148
149 /**
150 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
151 * context.
152 * @ctx: [in] Pointer to the userfaultfd context.
153 */
userfaultfd_ctx_get(struct userfaultfd_ctx * ctx)154 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
155 {
156 refcount_inc(&ctx->refcount);
157 }
158
__free_userfaultfd_ctx(struct rcu_head * head)159 static void __free_userfaultfd_ctx(struct rcu_head *head)
160 {
161 struct userfaultfd_ctx *ctx = container_of(head, struct userfaultfd_ctx,
162 rcu_head);
163 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
164 }
165
166 /**
167 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
168 * context.
169 * @ctx: [in] Pointer to userfaultfd context.
170 *
171 * The userfaultfd context reference must have been previously acquired either
172 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
173 */
userfaultfd_ctx_put(struct userfaultfd_ctx * ctx)174 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
175 {
176 if (refcount_dec_and_test(&ctx->refcount)) {
177 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
178 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
179 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
180 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
181 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
182 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
183 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
184 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
185 mmdrop(ctx->mm);
186 call_rcu(&ctx->rcu_head, __free_userfaultfd_ctx);
187 }
188 }
189
msg_init(struct uffd_msg * msg)190 static inline void msg_init(struct uffd_msg *msg)
191 {
192 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
193 /*
194 * Must use memset to zero out the paddings or kernel data is
195 * leaked to userland.
196 */
197 memset(msg, 0, sizeof(struct uffd_msg));
198 }
199
userfault_msg(unsigned long address,unsigned int flags,unsigned long reason,unsigned int features)200 static inline struct uffd_msg userfault_msg(unsigned long address,
201 unsigned int flags,
202 unsigned long reason,
203 unsigned int features)
204 {
205 struct uffd_msg msg;
206 msg_init(&msg);
207 msg.event = UFFD_EVENT_PAGEFAULT;
208 msg.arg.pagefault.address = address;
209 /*
210 * These flags indicate why the userfault occurred:
211 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
212 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
213 * - Neither of these flags being set indicates a MISSING fault.
214 *
215 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
216 * fault. Otherwise, it was a read fault.
217 */
218 if (flags & FAULT_FLAG_WRITE)
219 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
220 if (reason & VM_UFFD_WP)
221 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
222 if (reason & VM_UFFD_MINOR)
223 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
224 if (features & UFFD_FEATURE_THREAD_ID)
225 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
226 return msg;
227 }
228
229 #ifdef CONFIG_HUGETLB_PAGE
230 /*
231 * Same functionality as userfaultfd_must_wait below with modifications for
232 * hugepmd ranges.
233 */
userfaultfd_huge_must_wait(struct userfaultfd_ctx * ctx,struct vm_area_struct * vma,unsigned long address,unsigned long flags,unsigned long reason)234 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
235 struct vm_area_struct *vma,
236 unsigned long address,
237 unsigned long flags,
238 unsigned long reason)
239 {
240 struct mm_struct *mm = ctx->mm;
241 pte_t *ptep, pte;
242 bool ret = true;
243
244 mmap_assert_locked(mm);
245
246 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
247
248 if (!ptep)
249 goto out;
250
251 ret = false;
252 pte = huge_ptep_get(ptep);
253
254 /*
255 * Lockless access: we're in a wait_event so it's ok if it
256 * changes under us.
257 */
258 if (huge_pte_none(pte))
259 ret = true;
260 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
261 ret = true;
262 out:
263 return ret;
264 }
265 #else
userfaultfd_huge_must_wait(struct userfaultfd_ctx * ctx,struct vm_area_struct * vma,unsigned long address,unsigned long flags,unsigned long reason)266 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
267 struct vm_area_struct *vma,
268 unsigned long address,
269 unsigned long flags,
270 unsigned long reason)
271 {
272 return false; /* should never get here */
273 }
274 #endif /* CONFIG_HUGETLB_PAGE */
275
276 /*
277 * Verify the pagetables are still not ok after having reigstered into
278 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
279 * userfault that has already been resolved, if userfaultfd_read and
280 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
281 * threads.
282 */
userfaultfd_must_wait(struct userfaultfd_ctx * ctx,unsigned long address,unsigned long flags,unsigned long reason)283 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
284 unsigned long address,
285 unsigned long flags,
286 unsigned long reason)
287 {
288 struct mm_struct *mm = ctx->mm;
289 pgd_t *pgd;
290 p4d_t *p4d;
291 pud_t *pud;
292 pmd_t *pmd, _pmd;
293 pte_t *pte;
294 bool ret = true;
295
296 mmap_assert_locked(mm);
297
298 pgd = pgd_offset(mm, address);
299 if (!pgd_present(*pgd))
300 goto out;
301 p4d = p4d_offset(pgd, address);
302 if (!p4d_present(*p4d))
303 goto out;
304 pud = pud_offset(p4d, address);
305 if (!pud_present(*pud))
306 goto out;
307 pmd = pmd_offset(pud, address);
308 /*
309 * READ_ONCE must function as a barrier with narrower scope
310 * and it must be equivalent to:
311 * _pmd = *pmd; barrier();
312 *
313 * This is to deal with the instability (as in
314 * pmd_trans_unstable) of the pmd.
315 */
316 _pmd = READ_ONCE(*pmd);
317 if (pmd_none(_pmd))
318 goto out;
319
320 ret = false;
321 if (!pmd_present(_pmd))
322 goto out;
323
324 if (pmd_trans_huge(_pmd)) {
325 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
326 ret = true;
327 goto out;
328 }
329
330 /*
331 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
332 * and use the standard pte_offset_map() instead of parsing _pmd.
333 */
334 pte = pte_offset_map(pmd, address);
335 /*
336 * Lockless access: we're in a wait_event so it's ok if it
337 * changes under us.
338 */
339 if (pte_none(*pte))
340 ret = true;
341 if (!pte_write(*pte) && (reason & VM_UFFD_WP))
342 ret = true;
343 pte_unmap(pte);
344
345 out:
346 return ret;
347 }
348
userfaultfd_get_blocking_state(unsigned int flags)349 static inline long userfaultfd_get_blocking_state(unsigned int flags)
350 {
351 if (flags & FAULT_FLAG_INTERRUPTIBLE)
352 return TASK_INTERRUPTIBLE;
353
354 if (flags & FAULT_FLAG_KILLABLE)
355 return TASK_KILLABLE;
356
357 return TASK_UNINTERRUPTIBLE;
358 }
359
360 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
userfaultfd_using_sigbus(struct vm_area_struct * vma)361 bool userfaultfd_using_sigbus(struct vm_area_struct *vma)
362 {
363 struct userfaultfd_ctx *ctx;
364 bool ret;
365
366 /*
367 * Do it inside RCU section to ensure that the ctx doesn't
368 * disappear under us.
369 */
370 rcu_read_lock();
371 ctx = rcu_dereference(vma->vm_userfaultfd_ctx.ctx);
372 ret = ctx && (ctx->features & UFFD_FEATURE_SIGBUS);
373 rcu_read_unlock();
374 return ret;
375 }
376 #endif
377
378 /*
379 * The locking rules involved in returning VM_FAULT_RETRY depending on
380 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
381 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
382 * recommendation in __lock_page_or_retry is not an understatement.
383 *
384 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
385 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
386 * not set.
387 *
388 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
389 * set, VM_FAULT_RETRY can still be returned if and only if there are
390 * fatal_signal_pending()s, and the mmap_lock must be released before
391 * returning it.
392 */
handle_userfault(struct vm_fault * vmf,unsigned long reason)393 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
394 {
395 struct mm_struct *mm = vmf->vma->vm_mm;
396 struct userfaultfd_ctx *ctx;
397 struct userfaultfd_wait_queue uwq;
398 vm_fault_t ret = VM_FAULT_SIGBUS;
399 bool must_wait;
400 long blocking_state;
401
402 /*
403 * We don't do userfault handling for the final child pid update.
404 *
405 * We also don't do userfault handling during
406 * coredumping. hugetlbfs has the special
407 * follow_hugetlb_page() to skip missing pages in the
408 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
409 * the no_page_table() helper in follow_page_mask(), but the
410 * shmem_vm_ops->fault method is invoked even during
411 * coredumping without mmap_lock and it ends up here.
412 */
413 if (current->flags & (PF_EXITING|PF_DUMPCORE))
414 goto out;
415
416 /*
417 * Coredumping runs without mmap_lock so we can only check that
418 * the mmap_lock is held, if PF_DUMPCORE was not set.
419 */
420 mmap_assert_locked(mm);
421
422 ctx = rcu_dereference_protected(vmf->vma->vm_userfaultfd_ctx.ctx,
423 lockdep_is_held(&mm->mmap_lock));
424 if (!ctx)
425 goto out;
426
427 BUG_ON(ctx->mm != mm);
428
429 /* Any unrecognized flag is a bug. */
430 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
431 /* 0 or > 1 flags set is a bug; we expect exactly 1. */
432 VM_BUG_ON(!reason || (reason & (reason - 1)));
433
434 if (ctx->features & UFFD_FEATURE_SIGBUS)
435 goto out;
436 if ((vmf->flags & FAULT_FLAG_USER) == 0 &&
437 ctx->flags & UFFD_USER_MODE_ONLY) {
438 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
439 "sysctl knob to 1 if kernel faults must be handled "
440 "without obtaining CAP_SYS_PTRACE capability\n");
441 goto out;
442 }
443
444 /*
445 * If it's already released don't get it. This avoids to loop
446 * in __get_user_pages if userfaultfd_release waits on the
447 * caller of handle_userfault to release the mmap_lock.
448 */
449 if (unlikely(READ_ONCE(ctx->released))) {
450 /*
451 * Don't return VM_FAULT_SIGBUS in this case, so a non
452 * cooperative manager can close the uffd after the
453 * last UFFDIO_COPY, without risking to trigger an
454 * involuntary SIGBUS if the process was starting the
455 * userfaultfd while the userfaultfd was still armed
456 * (but after the last UFFDIO_COPY). If the uffd
457 * wasn't already closed when the userfault reached
458 * this point, that would normally be solved by
459 * userfaultfd_must_wait returning 'false'.
460 *
461 * If we were to return VM_FAULT_SIGBUS here, the non
462 * cooperative manager would be instead forced to
463 * always call UFFDIO_UNREGISTER before it can safely
464 * close the uffd.
465 */
466 ret = VM_FAULT_NOPAGE;
467 goto out;
468 }
469
470 /*
471 * Check that we can return VM_FAULT_RETRY.
472 *
473 * NOTE: it should become possible to return VM_FAULT_RETRY
474 * even if FAULT_FLAG_TRIED is set without leading to gup()
475 * -EBUSY failures, if the userfaultfd is to be extended for
476 * VM_UFFD_WP tracking and we intend to arm the userfault
477 * without first stopping userland access to the memory. For
478 * VM_UFFD_MISSING userfaults this is enough for now.
479 */
480 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
481 /*
482 * Validate the invariant that nowait must allow retry
483 * to be sure not to return SIGBUS erroneously on
484 * nowait invocations.
485 */
486 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
487 #ifdef CONFIG_DEBUG_VM
488 if (printk_ratelimit()) {
489 printk(KERN_WARNING
490 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
491 vmf->flags);
492 dump_stack();
493 }
494 #endif
495 goto out;
496 }
497
498 /*
499 * Handle nowait, not much to do other than tell it to retry
500 * and wait.
501 */
502 ret = VM_FAULT_RETRY;
503 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
504 goto out;
505
506 /* take the reference before dropping the mmap_lock */
507 userfaultfd_ctx_get(ctx);
508
509 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
510 uwq.wq.private = current;
511 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
512 ctx->features);
513 uwq.ctx = ctx;
514 uwq.waken = false;
515
516 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
517
518 spin_lock_irq(&ctx->fault_pending_wqh.lock);
519 /*
520 * After the __add_wait_queue the uwq is visible to userland
521 * through poll/read().
522 */
523 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
524 /*
525 * The smp_mb() after __set_current_state prevents the reads
526 * following the spin_unlock to happen before the list_add in
527 * __add_wait_queue.
528 */
529 set_current_state(blocking_state);
530 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
531
532 if (!is_vm_hugetlb_page(vmf->vma))
533 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
534 reason);
535 else
536 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
537 vmf->address,
538 vmf->flags, reason);
539 mmap_read_unlock(mm);
540
541 if (likely(must_wait && !READ_ONCE(ctx->released))) {
542 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
543 schedule();
544 }
545
546 __set_current_state(TASK_RUNNING);
547
548 /*
549 * Here we race with the list_del; list_add in
550 * userfaultfd_ctx_read(), however because we don't ever run
551 * list_del_init() to refile across the two lists, the prev
552 * and next pointers will never point to self. list_add also
553 * would never let any of the two pointers to point to
554 * self. So list_empty_careful won't risk to see both pointers
555 * pointing to self at any time during the list refile. The
556 * only case where list_del_init() is called is the full
557 * removal in the wake function and there we don't re-list_add
558 * and it's fine not to block on the spinlock. The uwq on this
559 * kernel stack can be released after the list_del_init.
560 */
561 if (!list_empty_careful(&uwq.wq.entry)) {
562 spin_lock_irq(&ctx->fault_pending_wqh.lock);
563 /*
564 * No need of list_del_init(), the uwq on the stack
565 * will be freed shortly anyway.
566 */
567 list_del(&uwq.wq.entry);
568 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
569 }
570
571 /*
572 * ctx may go away after this if the userfault pseudo fd is
573 * already released.
574 */
575 userfaultfd_ctx_put(ctx);
576
577 out:
578 return ret;
579 }
580
userfaultfd_event_wait_completion(struct userfaultfd_ctx * ctx,struct userfaultfd_wait_queue * ewq)581 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
582 struct userfaultfd_wait_queue *ewq)
583 {
584 struct userfaultfd_ctx *release_new_ctx;
585
586 if (WARN_ON_ONCE(current->flags & PF_EXITING))
587 goto out;
588
589 ewq->ctx = ctx;
590 init_waitqueue_entry(&ewq->wq, current);
591 release_new_ctx = NULL;
592
593 spin_lock_irq(&ctx->event_wqh.lock);
594 /*
595 * After the __add_wait_queue the uwq is visible to userland
596 * through poll/read().
597 */
598 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
599 for (;;) {
600 set_current_state(TASK_KILLABLE);
601 if (ewq->msg.event == 0)
602 break;
603 if (READ_ONCE(ctx->released) ||
604 fatal_signal_pending(current)) {
605 /*
606 * &ewq->wq may be queued in fork_event, but
607 * __remove_wait_queue ignores the head
608 * parameter. It would be a problem if it
609 * didn't.
610 */
611 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
612 if (ewq->msg.event == UFFD_EVENT_FORK) {
613 struct userfaultfd_ctx *new;
614
615 new = (struct userfaultfd_ctx *)
616 (unsigned long)
617 ewq->msg.arg.reserved.reserved1;
618 release_new_ctx = new;
619 }
620 break;
621 }
622
623 spin_unlock_irq(&ctx->event_wqh.lock);
624
625 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
626 schedule();
627
628 spin_lock_irq(&ctx->event_wqh.lock);
629 }
630 __set_current_state(TASK_RUNNING);
631 spin_unlock_irq(&ctx->event_wqh.lock);
632
633 if (release_new_ctx) {
634 struct vm_area_struct *vma;
635 struct mm_struct *mm = release_new_ctx->mm;
636
637 /* the various vma->vm_userfaultfd_ctx still points to it */
638 mmap_write_lock(mm);
639 for (vma = mm->mmap; vma; vma = vma->vm_next)
640 if (rcu_access_pointer(vma->vm_userfaultfd_ctx.ctx) ==
641 release_new_ctx) {
642 rcu_assign_pointer(vma->vm_userfaultfd_ctx.ctx,
643 NULL);
644 vma->vm_flags &= ~__VM_UFFD_FLAGS;
645 }
646 mmap_write_unlock(mm);
647
648 userfaultfd_ctx_put(release_new_ctx);
649 }
650
651 /*
652 * ctx may go away after this if the userfault pseudo fd is
653 * already released.
654 */
655 out:
656 WRITE_ONCE(ctx->mmap_changing, false);
657 userfaultfd_ctx_put(ctx);
658 }
659
userfaultfd_event_complete(struct userfaultfd_ctx * ctx,struct userfaultfd_wait_queue * ewq)660 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
661 struct userfaultfd_wait_queue *ewq)
662 {
663 ewq->msg.event = 0;
664 wake_up_locked(&ctx->event_wqh);
665 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
666 }
667
dup_userfaultfd(struct vm_area_struct * vma,struct list_head * fcs)668 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
669 {
670 struct userfaultfd_ctx *ctx = NULL, *octx;
671 struct userfaultfd_fork_ctx *fctx;
672
673 octx = rcu_dereference_protected(
674 vma->vm_userfaultfd_ctx.ctx,
675 lockdep_is_held(&vma->vm_mm->mmap_lock));
676
677 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
678 vm_write_begin(vma);
679 rcu_assign_pointer(vma->vm_userfaultfd_ctx.ctx, NULL);
680 WRITE_ONCE(vma->vm_flags,
681 vma->vm_flags & ~__VM_UFFD_FLAGS);
682 vm_write_end(vma);
683 return 0;
684 }
685
686 list_for_each_entry(fctx, fcs, list)
687 if (fctx->orig == octx) {
688 ctx = fctx->new;
689 break;
690 }
691
692 if (!ctx) {
693 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
694 if (!fctx)
695 return -ENOMEM;
696
697 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
698 if (!ctx) {
699 kfree(fctx);
700 return -ENOMEM;
701 }
702
703 refcount_set(&ctx->refcount, 1);
704 ctx->flags = octx->flags;
705 ctx->features = octx->features;
706 ctx->released = false;
707 ctx->mmap_changing = false;
708 ctx->mm = vma->vm_mm;
709 mmgrab(ctx->mm);
710
711 userfaultfd_ctx_get(octx);
712 WRITE_ONCE(octx->mmap_changing, true);
713 fctx->orig = octx;
714 fctx->new = ctx;
715 list_add_tail(&fctx->list, fcs);
716 }
717
718 rcu_assign_pointer(vma->vm_userfaultfd_ctx.ctx, ctx);
719 return 0;
720 }
721
dup_fctx(struct userfaultfd_fork_ctx * fctx)722 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
723 {
724 struct userfaultfd_ctx *ctx = fctx->orig;
725 struct userfaultfd_wait_queue ewq;
726
727 msg_init(&ewq.msg);
728
729 ewq.msg.event = UFFD_EVENT_FORK;
730 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
731
732 userfaultfd_event_wait_completion(ctx, &ewq);
733 }
734
dup_userfaultfd_complete(struct list_head * fcs)735 void dup_userfaultfd_complete(struct list_head *fcs)
736 {
737 struct userfaultfd_fork_ctx *fctx, *n;
738
739 list_for_each_entry_safe(fctx, n, fcs, list) {
740 dup_fctx(fctx);
741 list_del(&fctx->list);
742 kfree(fctx);
743 }
744 }
745
mremap_userfaultfd_prep(struct vm_area_struct * vma,struct vm_userfaultfd_ctx * vm_ctx)746 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
747 struct vm_userfaultfd_ctx *vm_ctx)
748 {
749 struct userfaultfd_ctx *ctx;
750
751 ctx = rcu_dereference_protected(vma->vm_userfaultfd_ctx.ctx,
752 lockdep_is_held(&vma->vm_mm->mmap_lock));
753
754 if (!ctx)
755 return;
756
757 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
758 vm_ctx->ctx = ctx;
759 userfaultfd_ctx_get(ctx);
760 WRITE_ONCE(ctx->mmap_changing, true);
761 } else {
762 /* Drop uffd context if remap feature not enabled */
763 rcu_assign_pointer(vma->vm_userfaultfd_ctx.ctx, NULL);
764 vma->vm_flags &= ~__VM_UFFD_FLAGS;
765 }
766 }
767
mremap_userfaultfd_complete(struct vm_userfaultfd_ctx * vm_ctx,unsigned long from,unsigned long to,unsigned long len)768 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
769 unsigned long from, unsigned long to,
770 unsigned long len)
771 {
772 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
773 struct userfaultfd_wait_queue ewq;
774
775 if (!ctx)
776 return;
777
778 if (to & ~PAGE_MASK) {
779 userfaultfd_ctx_put(ctx);
780 return;
781 }
782
783 msg_init(&ewq.msg);
784
785 ewq.msg.event = UFFD_EVENT_REMAP;
786 ewq.msg.arg.remap.from = from;
787 ewq.msg.arg.remap.to = to;
788 ewq.msg.arg.remap.len = len;
789
790 userfaultfd_event_wait_completion(ctx, &ewq);
791 }
792
userfaultfd_remove(struct vm_area_struct * vma,unsigned long start,unsigned long end)793 bool userfaultfd_remove(struct vm_area_struct *vma,
794 unsigned long start, unsigned long end)
795 {
796 struct mm_struct *mm = vma->vm_mm;
797 struct userfaultfd_ctx *ctx;
798 struct userfaultfd_wait_queue ewq;
799
800 ctx = rcu_dereference_protected(vma->vm_userfaultfd_ctx.ctx,
801 lockdep_is_held(&mm->mmap_lock));
802 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
803 return true;
804
805 userfaultfd_ctx_get(ctx);
806 WRITE_ONCE(ctx->mmap_changing, true);
807 mmap_read_unlock(mm);
808
809 msg_init(&ewq.msg);
810
811 ewq.msg.event = UFFD_EVENT_REMOVE;
812 ewq.msg.arg.remove.start = start;
813 ewq.msg.arg.remove.end = end;
814
815 userfaultfd_event_wait_completion(ctx, &ewq);
816
817 return false;
818 }
819
has_unmap_ctx(struct userfaultfd_ctx * ctx,struct list_head * unmaps,unsigned long start,unsigned long end)820 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
821 unsigned long start, unsigned long end)
822 {
823 struct userfaultfd_unmap_ctx *unmap_ctx;
824
825 list_for_each_entry(unmap_ctx, unmaps, list)
826 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
827 unmap_ctx->end == end)
828 return true;
829
830 return false;
831 }
832
userfaultfd_unmap_prep(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * unmaps)833 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
834 unsigned long start, unsigned long end,
835 struct list_head *unmaps)
836 {
837 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
838 struct userfaultfd_unmap_ctx *unmap_ctx;
839 struct userfaultfd_ctx *ctx =
840 rcu_dereference_protected(vma->vm_userfaultfd_ctx.ctx,
841 lockdep_is_held(&vma->vm_mm->mmap_lock));
842
843 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
844 has_unmap_ctx(ctx, unmaps, start, end))
845 continue;
846
847 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
848 if (!unmap_ctx)
849 return -ENOMEM;
850
851 userfaultfd_ctx_get(ctx);
852 WRITE_ONCE(ctx->mmap_changing, true);
853 unmap_ctx->ctx = ctx;
854 unmap_ctx->start = start;
855 unmap_ctx->end = end;
856 list_add_tail(&unmap_ctx->list, unmaps);
857 }
858
859 return 0;
860 }
861
userfaultfd_unmap_complete(struct mm_struct * mm,struct list_head * uf)862 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
863 {
864 struct userfaultfd_unmap_ctx *ctx, *n;
865 struct userfaultfd_wait_queue ewq;
866
867 list_for_each_entry_safe(ctx, n, uf, list) {
868 msg_init(&ewq.msg);
869
870 ewq.msg.event = UFFD_EVENT_UNMAP;
871 ewq.msg.arg.remove.start = ctx->start;
872 ewq.msg.arg.remove.end = ctx->end;
873
874 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
875
876 list_del(&ctx->list);
877 kfree(ctx);
878 }
879 }
880
userfaultfd_release(struct inode * inode,struct file * file)881 static int userfaultfd_release(struct inode *inode, struct file *file)
882 {
883 struct userfaultfd_ctx *ctx = file->private_data;
884 struct mm_struct *mm = ctx->mm;
885 struct vm_area_struct *vma, *prev;
886 /* len == 0 means wake all */
887 struct userfaultfd_wake_range range = { .len = 0, };
888 unsigned long new_flags;
889
890 WRITE_ONCE(ctx->released, true);
891
892 if (!mmget_not_zero(mm))
893 goto wakeup;
894
895 /*
896 * Flush page faults out of all CPUs. NOTE: all page faults
897 * must be retried without returning VM_FAULT_SIGBUS if
898 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
899 * changes while handle_userfault released the mmap_lock. So
900 * it's critical that released is set to true (above), before
901 * taking the mmap_lock for writing.
902 */
903 mmap_write_lock(mm);
904 prev = NULL;
905 for (vma = mm->mmap; vma; vma = vma->vm_next) {
906 struct userfaultfd_ctx *cur_uffd_ctx =
907 rcu_dereference_protected(vma->vm_userfaultfd_ctx.ctx,
908 lockdep_is_held(&mm->mmap_lock));
909 cond_resched();
910 BUG_ON(!!cur_uffd_ctx ^
911 !!(vma->vm_flags & __VM_UFFD_FLAGS));
912 if (cur_uffd_ctx != ctx) {
913 prev = vma;
914 continue;
915 }
916 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
917 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
918 new_flags, vma->anon_vma,
919 vma->vm_file, vma->vm_pgoff,
920 vma_policy(vma),
921 NULL_VM_UFFD_CTX,
922 vma_get_anon_name(vma));
923 if (prev)
924 vma = prev;
925 else
926 prev = vma;
927 vm_write_begin(vma);
928 WRITE_ONCE(vma->vm_flags, new_flags);
929 rcu_assign_pointer(vma->vm_userfaultfd_ctx.ctx, NULL);
930 vm_write_end(vma);
931 }
932 mmap_write_unlock(mm);
933 mmput(mm);
934 wakeup:
935 /*
936 * After no new page faults can wait on this fault_*wqh, flush
937 * the last page faults that may have been already waiting on
938 * the fault_*wqh.
939 */
940 spin_lock_irq(&ctx->fault_pending_wqh.lock);
941 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
942 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
943 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
944
945 /* Flush pending events that may still wait on event_wqh */
946 wake_up_all(&ctx->event_wqh);
947
948 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
949 userfaultfd_ctx_put(ctx);
950 return 0;
951 }
952
953 /* fault_pending_wqh.lock must be hold by the caller */
find_userfault_in(wait_queue_head_t * wqh)954 static inline struct userfaultfd_wait_queue *find_userfault_in(
955 wait_queue_head_t *wqh)
956 {
957 wait_queue_entry_t *wq;
958 struct userfaultfd_wait_queue *uwq;
959
960 lockdep_assert_held(&wqh->lock);
961
962 uwq = NULL;
963 if (!waitqueue_active(wqh))
964 goto out;
965 /* walk in reverse to provide FIFO behavior to read userfaults */
966 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
967 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
968 out:
969 return uwq;
970 }
971
find_userfault(struct userfaultfd_ctx * ctx)972 static inline struct userfaultfd_wait_queue *find_userfault(
973 struct userfaultfd_ctx *ctx)
974 {
975 return find_userfault_in(&ctx->fault_pending_wqh);
976 }
977
find_userfault_evt(struct userfaultfd_ctx * ctx)978 static inline struct userfaultfd_wait_queue *find_userfault_evt(
979 struct userfaultfd_ctx *ctx)
980 {
981 return find_userfault_in(&ctx->event_wqh);
982 }
983
userfaultfd_poll(struct file * file,poll_table * wait)984 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
985 {
986 struct userfaultfd_ctx *ctx = file->private_data;
987 __poll_t ret;
988
989 poll_wait(file, &ctx->fd_wqh, wait);
990
991 if (!userfaultfd_is_initialized(ctx))
992 return EPOLLERR;
993
994 /*
995 * poll() never guarantees that read won't block.
996 * userfaults can be waken before they're read().
997 */
998 if (unlikely(!(file->f_flags & O_NONBLOCK)))
999 return EPOLLERR;
1000 /*
1001 * lockless access to see if there are pending faults
1002 * __pollwait last action is the add_wait_queue but
1003 * the spin_unlock would allow the waitqueue_active to
1004 * pass above the actual list_add inside
1005 * add_wait_queue critical section. So use a full
1006 * memory barrier to serialize the list_add write of
1007 * add_wait_queue() with the waitqueue_active read
1008 * below.
1009 */
1010 ret = 0;
1011 smp_mb();
1012 if (waitqueue_active(&ctx->fault_pending_wqh))
1013 ret = EPOLLIN;
1014 else if (waitqueue_active(&ctx->event_wqh))
1015 ret = EPOLLIN;
1016
1017 return ret;
1018 }
1019
1020 static const struct file_operations userfaultfd_fops;
1021
resolve_userfault_fork(struct userfaultfd_ctx * new,struct inode * inode,struct uffd_msg * msg)1022 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
1023 struct inode *inode,
1024 struct uffd_msg *msg)
1025 {
1026 int fd;
1027
1028 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
1029 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
1030 if (fd < 0)
1031 return fd;
1032
1033 msg->arg.reserved.reserved1 = 0;
1034 msg->arg.fork.ufd = fd;
1035 return 0;
1036 }
1037
userfaultfd_ctx_read(struct userfaultfd_ctx * ctx,int no_wait,struct uffd_msg * msg,struct inode * inode)1038 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1039 struct uffd_msg *msg, struct inode *inode)
1040 {
1041 ssize_t ret;
1042 DECLARE_WAITQUEUE(wait, current);
1043 struct userfaultfd_wait_queue *uwq;
1044 /*
1045 * Handling fork event requires sleeping operations, so
1046 * we drop the event_wqh lock, then do these ops, then
1047 * lock it back and wake up the waiter. While the lock is
1048 * dropped the ewq may go away so we keep track of it
1049 * carefully.
1050 */
1051 LIST_HEAD(fork_event);
1052 struct userfaultfd_ctx *fork_nctx = NULL;
1053
1054 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1055 spin_lock_irq(&ctx->fd_wqh.lock);
1056 __add_wait_queue(&ctx->fd_wqh, &wait);
1057 for (;;) {
1058 set_current_state(TASK_INTERRUPTIBLE);
1059 spin_lock(&ctx->fault_pending_wqh.lock);
1060 uwq = find_userfault(ctx);
1061 if (uwq) {
1062 /*
1063 * Use a seqcount to repeat the lockless check
1064 * in wake_userfault() to avoid missing
1065 * wakeups because during the refile both
1066 * waitqueue could become empty if this is the
1067 * only userfault.
1068 */
1069 write_seqcount_begin(&ctx->refile_seq);
1070
1071 /*
1072 * The fault_pending_wqh.lock prevents the uwq
1073 * to disappear from under us.
1074 *
1075 * Refile this userfault from
1076 * fault_pending_wqh to fault_wqh, it's not
1077 * pending anymore after we read it.
1078 *
1079 * Use list_del() by hand (as
1080 * userfaultfd_wake_function also uses
1081 * list_del_init() by hand) to be sure nobody
1082 * changes __remove_wait_queue() to use
1083 * list_del_init() in turn breaking the
1084 * !list_empty_careful() check in
1085 * handle_userfault(). The uwq->wq.head list
1086 * must never be empty at any time during the
1087 * refile, or the waitqueue could disappear
1088 * from under us. The "wait_queue_head_t"
1089 * parameter of __remove_wait_queue() is unused
1090 * anyway.
1091 */
1092 list_del(&uwq->wq.entry);
1093 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1094
1095 write_seqcount_end(&ctx->refile_seq);
1096
1097 /* careful to always initialize msg if ret == 0 */
1098 *msg = uwq->msg;
1099 spin_unlock(&ctx->fault_pending_wqh.lock);
1100 ret = 0;
1101 break;
1102 }
1103 spin_unlock(&ctx->fault_pending_wqh.lock);
1104
1105 spin_lock(&ctx->event_wqh.lock);
1106 uwq = find_userfault_evt(ctx);
1107 if (uwq) {
1108 *msg = uwq->msg;
1109
1110 if (uwq->msg.event == UFFD_EVENT_FORK) {
1111 fork_nctx = (struct userfaultfd_ctx *)
1112 (unsigned long)
1113 uwq->msg.arg.reserved.reserved1;
1114 list_move(&uwq->wq.entry, &fork_event);
1115 /*
1116 * fork_nctx can be freed as soon as
1117 * we drop the lock, unless we take a
1118 * reference on it.
1119 */
1120 userfaultfd_ctx_get(fork_nctx);
1121 spin_unlock(&ctx->event_wqh.lock);
1122 ret = 0;
1123 break;
1124 }
1125
1126 userfaultfd_event_complete(ctx, uwq);
1127 spin_unlock(&ctx->event_wqh.lock);
1128 ret = 0;
1129 break;
1130 }
1131 spin_unlock(&ctx->event_wqh.lock);
1132
1133 if (signal_pending(current)) {
1134 ret = -ERESTARTSYS;
1135 break;
1136 }
1137 if (no_wait) {
1138 ret = -EAGAIN;
1139 break;
1140 }
1141 spin_unlock_irq(&ctx->fd_wqh.lock);
1142 schedule();
1143 spin_lock_irq(&ctx->fd_wqh.lock);
1144 }
1145 __remove_wait_queue(&ctx->fd_wqh, &wait);
1146 __set_current_state(TASK_RUNNING);
1147 spin_unlock_irq(&ctx->fd_wqh.lock);
1148
1149 if (!ret && msg->event == UFFD_EVENT_FORK) {
1150 ret = resolve_userfault_fork(fork_nctx, inode, msg);
1151 spin_lock_irq(&ctx->event_wqh.lock);
1152 if (!list_empty(&fork_event)) {
1153 /*
1154 * The fork thread didn't abort, so we can
1155 * drop the temporary refcount.
1156 */
1157 userfaultfd_ctx_put(fork_nctx);
1158
1159 uwq = list_first_entry(&fork_event,
1160 typeof(*uwq),
1161 wq.entry);
1162 /*
1163 * If fork_event list wasn't empty and in turn
1164 * the event wasn't already released by fork
1165 * (the event is allocated on fork kernel
1166 * stack), put the event back to its place in
1167 * the event_wq. fork_event head will be freed
1168 * as soon as we return so the event cannot
1169 * stay queued there no matter the current
1170 * "ret" value.
1171 */
1172 list_del(&uwq->wq.entry);
1173 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1174
1175 /*
1176 * Leave the event in the waitqueue and report
1177 * error to userland if we failed to resolve
1178 * the userfault fork.
1179 */
1180 if (likely(!ret))
1181 userfaultfd_event_complete(ctx, uwq);
1182 } else {
1183 /*
1184 * Here the fork thread aborted and the
1185 * refcount from the fork thread on fork_nctx
1186 * has already been released. We still hold
1187 * the reference we took before releasing the
1188 * lock above. If resolve_userfault_fork
1189 * failed we've to drop it because the
1190 * fork_nctx has to be freed in such case. If
1191 * it succeeded we'll hold it because the new
1192 * uffd references it.
1193 */
1194 if (ret)
1195 userfaultfd_ctx_put(fork_nctx);
1196 }
1197 spin_unlock_irq(&ctx->event_wqh.lock);
1198 }
1199
1200 return ret;
1201 }
1202
userfaultfd_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1203 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1204 size_t count, loff_t *ppos)
1205 {
1206 struct userfaultfd_ctx *ctx = file->private_data;
1207 ssize_t _ret, ret = 0;
1208 struct uffd_msg msg;
1209 int no_wait = file->f_flags & O_NONBLOCK;
1210 struct inode *inode = file_inode(file);
1211
1212 if (!userfaultfd_is_initialized(ctx))
1213 return -EINVAL;
1214
1215 for (;;) {
1216 if (count < sizeof(msg))
1217 return ret ? ret : -EINVAL;
1218 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1219 if (_ret < 0)
1220 return ret ? ret : _ret;
1221 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1222 return ret ? ret : -EFAULT;
1223 ret += sizeof(msg);
1224 buf += sizeof(msg);
1225 count -= sizeof(msg);
1226 /*
1227 * Allow to read more than one fault at time but only
1228 * block if waiting for the very first one.
1229 */
1230 no_wait = O_NONBLOCK;
1231 }
1232 }
1233
__wake_userfault(struct userfaultfd_ctx * ctx,struct userfaultfd_wake_range * range)1234 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1235 struct userfaultfd_wake_range *range)
1236 {
1237 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1238 /* wake all in the range and autoremove */
1239 if (waitqueue_active(&ctx->fault_pending_wqh))
1240 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1241 range);
1242 if (waitqueue_active(&ctx->fault_wqh))
1243 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1244 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1245 }
1246
wake_userfault(struct userfaultfd_ctx * ctx,struct userfaultfd_wake_range * range)1247 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1248 struct userfaultfd_wake_range *range)
1249 {
1250 unsigned seq;
1251 bool need_wakeup;
1252
1253 /*
1254 * To be sure waitqueue_active() is not reordered by the CPU
1255 * before the pagetable update, use an explicit SMP memory
1256 * barrier here. PT lock release or mmap_read_unlock(mm) still
1257 * have release semantics that can allow the
1258 * waitqueue_active() to be reordered before the pte update.
1259 */
1260 smp_mb();
1261
1262 /*
1263 * Use waitqueue_active because it's very frequent to
1264 * change the address space atomically even if there are no
1265 * userfaults yet. So we take the spinlock only when we're
1266 * sure we've userfaults to wake.
1267 */
1268 do {
1269 seq = read_seqcount_begin(&ctx->refile_seq);
1270 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1271 waitqueue_active(&ctx->fault_wqh);
1272 cond_resched();
1273 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1274 if (need_wakeup)
1275 __wake_userfault(ctx, range);
1276 }
1277
validate_range(struct mm_struct * mm,__u64 start,__u64 len)1278 static __always_inline int validate_range(struct mm_struct *mm,
1279 __u64 start, __u64 len)
1280 {
1281 __u64 task_size = mm->task_size;
1282
1283 if (start & ~PAGE_MASK)
1284 return -EINVAL;
1285 if (len & ~PAGE_MASK)
1286 return -EINVAL;
1287 if (!len)
1288 return -EINVAL;
1289 if (start < mmap_min_addr)
1290 return -EINVAL;
1291 if (start >= task_size)
1292 return -EINVAL;
1293 if (len > task_size - start)
1294 return -EINVAL;
1295 return 0;
1296 }
1297
vma_can_userfault(struct vm_area_struct * vma,unsigned long vm_flags)1298 static inline bool vma_can_userfault(struct vm_area_struct *vma,
1299 unsigned long vm_flags)
1300 {
1301 /* FIXME: add WP support to hugetlbfs and shmem */
1302 if (vm_flags & VM_UFFD_WP) {
1303 if (is_vm_hugetlb_page(vma) || vma_is_shmem(vma))
1304 return false;
1305 }
1306
1307 if (vm_flags & VM_UFFD_MINOR) {
1308 if (!(is_vm_hugetlb_page(vma) || vma_is_shmem(vma)))
1309 return false;
1310 }
1311
1312 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1313 vma_is_shmem(vma);
1314 }
1315
userfaultfd_register(struct userfaultfd_ctx * ctx,unsigned long arg)1316 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1317 unsigned long arg)
1318 {
1319 struct mm_struct *mm = ctx->mm;
1320 struct vm_area_struct *vma, *prev, *cur;
1321 int ret;
1322 struct uffdio_register uffdio_register;
1323 struct uffdio_register __user *user_uffdio_register;
1324 unsigned long vm_flags, new_flags;
1325 bool found;
1326 bool basic_ioctls;
1327 unsigned long start, end, vma_end;
1328
1329 user_uffdio_register = (struct uffdio_register __user *) arg;
1330
1331 ret = -EFAULT;
1332 if (copy_from_user(&uffdio_register, user_uffdio_register,
1333 sizeof(uffdio_register)-sizeof(__u64)))
1334 goto out;
1335
1336 ret = -EINVAL;
1337 if (!uffdio_register.mode)
1338 goto out;
1339 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1340 goto out;
1341 vm_flags = 0;
1342 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1343 vm_flags |= VM_UFFD_MISSING;
1344 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)
1345 vm_flags |= VM_UFFD_WP;
1346 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1347 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1348 goto out;
1349 #endif
1350 vm_flags |= VM_UFFD_MINOR;
1351 }
1352
1353 ret = validate_range(mm, uffdio_register.range.start,
1354 uffdio_register.range.len);
1355 if (ret)
1356 goto out;
1357
1358 start = uffdio_register.range.start;
1359 end = start + uffdio_register.range.len;
1360
1361 ret = -ENOMEM;
1362 if (!mmget_not_zero(mm))
1363 goto out;
1364
1365 mmap_write_lock(mm);
1366 vma = find_vma_prev(mm, start, &prev);
1367 if (!vma)
1368 goto out_unlock;
1369
1370 /* check that there's at least one vma in the range */
1371 ret = -EINVAL;
1372 if (vma->vm_start >= end)
1373 goto out_unlock;
1374
1375 /*
1376 * If the first vma contains huge pages, make sure start address
1377 * is aligned to huge page size.
1378 */
1379 if (is_vm_hugetlb_page(vma)) {
1380 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1381
1382 if (start & (vma_hpagesize - 1))
1383 goto out_unlock;
1384 }
1385
1386 /*
1387 * Search for not compatible vmas.
1388 */
1389 found = false;
1390 basic_ioctls = false;
1391 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1392 struct userfaultfd_ctx *cur_uffd_ctx =
1393 rcu_dereference_protected(cur->vm_userfaultfd_ctx.ctx,
1394 lockdep_is_held(&mm->mmap_lock));
1395 cond_resched();
1396
1397 BUG_ON(!!cur_uffd_ctx ^
1398 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1399
1400 /* check not compatible vmas */
1401 ret = -EINVAL;
1402 if (!vma_can_userfault(cur, vm_flags))
1403 goto out_unlock;
1404
1405 /*
1406 * UFFDIO_COPY will fill file holes even without
1407 * PROT_WRITE. This check enforces that if this is a
1408 * MAP_SHARED, the process has write permission to the backing
1409 * file. If VM_MAYWRITE is set it also enforces that on a
1410 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1411 * F_WRITE_SEAL can be taken until the vma is destroyed.
1412 */
1413 ret = -EPERM;
1414 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1415 goto out_unlock;
1416
1417 /*
1418 * If this vma contains ending address, and huge pages
1419 * check alignment.
1420 */
1421 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1422 end > cur->vm_start) {
1423 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1424
1425 ret = -EINVAL;
1426
1427 if (end & (vma_hpagesize - 1))
1428 goto out_unlock;
1429 }
1430 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1431 goto out_unlock;
1432
1433 /*
1434 * Check that this vma isn't already owned by a
1435 * different userfaultfd. We can't allow more than one
1436 * userfaultfd to own a single vma simultaneously or we
1437 * wouldn't know which one to deliver the userfaults to.
1438 */
1439 ret = -EBUSY;
1440 if (cur_uffd_ctx && cur_uffd_ctx != ctx)
1441 goto out_unlock;
1442
1443 /*
1444 * Note vmas containing huge pages
1445 */
1446 if (is_vm_hugetlb_page(cur))
1447 basic_ioctls = true;
1448
1449 found = true;
1450 }
1451 BUG_ON(!found);
1452
1453 if (vma->vm_start < start)
1454 prev = vma;
1455
1456 ret = 0;
1457 do {
1458 struct userfaultfd_ctx *cur_uffd_ctx =
1459 rcu_dereference_protected(vma->vm_userfaultfd_ctx.ctx,
1460 lockdep_is_held(&mm->mmap_lock));
1461 cond_resched();
1462
1463 BUG_ON(!vma_can_userfault(vma, vm_flags));
1464 BUG_ON(cur_uffd_ctx && cur_uffd_ctx != ctx);
1465 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1466
1467 /*
1468 * Nothing to do: this vma is already registered into this
1469 * userfaultfd and with the right tracking mode too.
1470 */
1471 if (cur_uffd_ctx == ctx &&
1472 (vma->vm_flags & vm_flags) == vm_flags)
1473 goto skip;
1474
1475 if (vma->vm_start > start)
1476 start = vma->vm_start;
1477 vma_end = min(end, vma->vm_end);
1478
1479 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1480 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1481 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1482 vma_policy(vma),
1483 ((struct vm_userfaultfd_ctx){ ctx }),
1484 vma_get_anon_name(vma));
1485 if (prev) {
1486 vma = prev;
1487 goto next;
1488 }
1489 if (vma->vm_start < start) {
1490 ret = split_vma(mm, vma, start, 1);
1491 if (ret)
1492 break;
1493 }
1494 if (vma->vm_end > end) {
1495 ret = split_vma(mm, vma, end, 0);
1496 if (ret)
1497 break;
1498 }
1499 next:
1500 /*
1501 * In the vma_merge() successful mprotect-like case 8:
1502 * the next vma was merged into the current one and
1503 * the current one has not been updated yet.
1504 */
1505 vm_write_begin(vma);
1506 WRITE_ONCE(vma->vm_flags, new_flags);
1507 rcu_assign_pointer(vma->vm_userfaultfd_ctx.ctx, ctx);
1508 vm_write_end(vma);
1509
1510 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1511 hugetlb_unshare_all_pmds(vma);
1512
1513 skip:
1514 prev = vma;
1515 start = vma->vm_end;
1516 vma = vma->vm_next;
1517 } while (vma && vma->vm_start < end);
1518 out_unlock:
1519 mmap_write_unlock(mm);
1520 mmput(mm);
1521 if (!ret) {
1522 __u64 ioctls_out;
1523
1524 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1525 UFFD_API_RANGE_IOCTLS;
1526
1527 /*
1528 * Declare the WP ioctl only if the WP mode is
1529 * specified and all checks passed with the range
1530 */
1531 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1532 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1533
1534 /* CONTINUE ioctl is only supported for MINOR ranges. */
1535 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1536 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1537
1538 /*
1539 * Now that we scanned all vmas we can already tell
1540 * userland which ioctls methods are guaranteed to
1541 * succeed on this range.
1542 */
1543 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1544 ret = -EFAULT;
1545 }
1546 out:
1547 return ret;
1548 }
1549
userfaultfd_unregister(struct userfaultfd_ctx * ctx,unsigned long arg)1550 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1551 unsigned long arg)
1552 {
1553 struct mm_struct *mm = ctx->mm;
1554 struct vm_area_struct *vma, *prev, *cur;
1555 int ret;
1556 struct uffdio_range uffdio_unregister;
1557 unsigned long new_flags;
1558 bool found;
1559 unsigned long start, end, vma_end;
1560 const void __user *buf = (void __user *)arg;
1561
1562 ret = -EFAULT;
1563 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1564 goto out;
1565
1566 ret = validate_range(mm, uffdio_unregister.start,
1567 uffdio_unregister.len);
1568 if (ret)
1569 goto out;
1570
1571 start = uffdio_unregister.start;
1572 end = start + uffdio_unregister.len;
1573
1574 ret = -ENOMEM;
1575 if (!mmget_not_zero(mm))
1576 goto out;
1577
1578 mmap_write_lock(mm);
1579 vma = find_vma_prev(mm, start, &prev);
1580 if (!vma)
1581 goto out_unlock;
1582
1583 /* check that there's at least one vma in the range */
1584 ret = -EINVAL;
1585 if (vma->vm_start >= end)
1586 goto out_unlock;
1587
1588 /*
1589 * If the first vma contains huge pages, make sure start address
1590 * is aligned to huge page size.
1591 */
1592 if (is_vm_hugetlb_page(vma)) {
1593 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1594
1595 if (start & (vma_hpagesize - 1))
1596 goto out_unlock;
1597 }
1598
1599 /*
1600 * Search for not compatible vmas.
1601 */
1602 found = false;
1603 ret = -EINVAL;
1604 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1605 cond_resched();
1606
1607 BUG_ON(!!rcu_access_pointer(cur->vm_userfaultfd_ctx.ctx) ^
1608 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1609
1610 /*
1611 * Check not compatible vmas, not strictly required
1612 * here as not compatible vmas cannot have an
1613 * userfaultfd_ctx registered on them, but this
1614 * provides for more strict behavior to notice
1615 * unregistration errors.
1616 */
1617 if (!vma_can_userfault(cur, cur->vm_flags))
1618 goto out_unlock;
1619
1620 found = true;
1621 }
1622 BUG_ON(!found);
1623
1624 if (vma->vm_start < start)
1625 prev = vma;
1626
1627 ret = 0;
1628 do {
1629 struct userfaultfd_ctx *cur_uffd_ctx =
1630 rcu_dereference_protected(vma->vm_userfaultfd_ctx.ctx,
1631 lockdep_is_held(&mm->mmap_lock));
1632 cond_resched();
1633
1634 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1635
1636 /*
1637 * Nothing to do: this vma is already registered into this
1638 * userfaultfd and with the right tracking mode too.
1639 */
1640 if (!cur_uffd_ctx)
1641 goto skip;
1642
1643 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1644
1645 if (vma->vm_start > start)
1646 start = vma->vm_start;
1647 vma_end = min(end, vma->vm_end);
1648
1649 if (userfaultfd_missing(vma)) {
1650 /*
1651 * Wake any concurrent pending userfault while
1652 * we unregister, so they will not hang
1653 * permanently and it avoids userland to call
1654 * UFFDIO_WAKE explicitly.
1655 */
1656 struct userfaultfd_wake_range range;
1657 range.start = start;
1658 range.len = vma_end - start;
1659 wake_userfault(cur_uffd_ctx, &range);
1660 }
1661
1662 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1663 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1664 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1665 vma_policy(vma),
1666 NULL_VM_UFFD_CTX,
1667 vma_get_anon_name(vma));
1668 if (prev) {
1669 vma = prev;
1670 goto next;
1671 }
1672 if (vma->vm_start < start) {
1673 ret = split_vma(mm, vma, start, 1);
1674 if (ret)
1675 break;
1676 }
1677 if (vma->vm_end > end) {
1678 ret = split_vma(mm, vma, end, 0);
1679 if (ret)
1680 break;
1681 }
1682 next:
1683 /*
1684 * In the vma_merge() successful mprotect-like case 8:
1685 * the next vma was merged into the current one and
1686 * the current one has not been updated yet.
1687 */
1688 vm_write_begin(vma);
1689 WRITE_ONCE(vma->vm_flags, new_flags);
1690 rcu_assign_pointer(vma->vm_userfaultfd_ctx.ctx, NULL);
1691 vm_write_end(vma);
1692
1693 skip:
1694 prev = vma;
1695 start = vma->vm_end;
1696 vma = vma->vm_next;
1697 } while (vma && vma->vm_start < end);
1698 out_unlock:
1699 mmap_write_unlock(mm);
1700 mmput(mm);
1701 out:
1702 return ret;
1703 }
1704
1705 /*
1706 * userfaultfd_wake may be used in combination with the
1707 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1708 */
userfaultfd_wake(struct userfaultfd_ctx * ctx,unsigned long arg)1709 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1710 unsigned long arg)
1711 {
1712 int ret;
1713 struct uffdio_range uffdio_wake;
1714 struct userfaultfd_wake_range range;
1715 const void __user *buf = (void __user *)arg;
1716
1717 ret = -EFAULT;
1718 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1719 goto out;
1720
1721 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1722 if (ret)
1723 goto out;
1724
1725 range.start = uffdio_wake.start;
1726 range.len = uffdio_wake.len;
1727
1728 /*
1729 * len == 0 means wake all and we don't want to wake all here,
1730 * so check it again to be sure.
1731 */
1732 VM_BUG_ON(!range.len);
1733
1734 wake_userfault(ctx, &range);
1735 ret = 0;
1736
1737 out:
1738 return ret;
1739 }
1740
userfaultfd_copy(struct userfaultfd_ctx * ctx,unsigned long arg)1741 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1742 unsigned long arg)
1743 {
1744 __s64 ret;
1745 struct uffdio_copy uffdio_copy;
1746 struct uffdio_copy __user *user_uffdio_copy;
1747 struct userfaultfd_wake_range range;
1748
1749 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1750
1751 ret = -EAGAIN;
1752 if (READ_ONCE(ctx->mmap_changing))
1753 goto out;
1754
1755 ret = -EFAULT;
1756 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1757 /* don't copy "copy" last field */
1758 sizeof(uffdio_copy)-sizeof(__s64)))
1759 goto out;
1760
1761 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1762 if (ret)
1763 goto out;
1764 /*
1765 * double check for wraparound just in case. copy_from_user()
1766 * will later check uffdio_copy.src + uffdio_copy.len to fit
1767 * in the userland range.
1768 */
1769 ret = -EINVAL;
1770 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1771 goto out;
1772 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|
1773 UFFDIO_COPY_MODE_WP|
1774 UFFDIO_COPY_MODE_MMAP_TRYLOCK))
1775 goto out;
1776 if (mmget_not_zero(ctx->mm)) {
1777 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1778 uffdio_copy.len, &ctx->mmap_changing,
1779 uffdio_copy.mode);
1780 mmput(ctx->mm);
1781 } else {
1782 return -ESRCH;
1783 }
1784 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1785 return -EFAULT;
1786 if (ret < 0)
1787 goto out;
1788 BUG_ON(!ret);
1789 /* len == 0 would wake all */
1790 range.len = ret;
1791 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1792 range.start = uffdio_copy.dst;
1793 wake_userfault(ctx, &range);
1794 }
1795 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1796 out:
1797 return ret;
1798 }
1799
userfaultfd_zeropage(struct userfaultfd_ctx * ctx,unsigned long arg)1800 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1801 unsigned long arg)
1802 {
1803 __s64 ret;
1804 struct uffdio_zeropage uffdio_zeropage;
1805 struct uffdio_zeropage __user *user_uffdio_zeropage;
1806 struct userfaultfd_wake_range range;
1807
1808 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1809
1810 ret = -EAGAIN;
1811 if (READ_ONCE(ctx->mmap_changing))
1812 goto out;
1813
1814 ret = -EFAULT;
1815 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1816 /* don't copy "zeropage" last field */
1817 sizeof(uffdio_zeropage)-sizeof(__s64)))
1818 goto out;
1819
1820 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1821 uffdio_zeropage.range.len);
1822 if (ret)
1823 goto out;
1824 ret = -EINVAL;
1825 if (uffdio_zeropage.mode & ~(UFFDIO_ZEROPAGE_MODE_DONTWAKE|
1826 UFFDIO_ZEROPAGE_MODE_MMAP_TRYLOCK))
1827 goto out;
1828
1829 if (mmget_not_zero(ctx->mm)) {
1830 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1831 uffdio_zeropage.range.len,
1832 &ctx->mmap_changing, uffdio_zeropage.mode);
1833 mmput(ctx->mm);
1834 } else {
1835 return -ESRCH;
1836 }
1837 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1838 return -EFAULT;
1839 if (ret < 0)
1840 goto out;
1841 /* len == 0 would wake all */
1842 BUG_ON(!ret);
1843 range.len = ret;
1844 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1845 range.start = uffdio_zeropage.range.start;
1846 wake_userfault(ctx, &range);
1847 }
1848 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1849 out:
1850 return ret;
1851 }
1852
userfaultfd_writeprotect(struct userfaultfd_ctx * ctx,unsigned long arg)1853 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1854 unsigned long arg)
1855 {
1856 int ret;
1857 struct uffdio_writeprotect uffdio_wp;
1858 struct uffdio_writeprotect __user *user_uffdio_wp;
1859 struct userfaultfd_wake_range range;
1860 bool mode_wp, mode_dontwake;
1861
1862 if (READ_ONCE(ctx->mmap_changing))
1863 return -EAGAIN;
1864
1865 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1866
1867 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1868 sizeof(struct uffdio_writeprotect)))
1869 return -EFAULT;
1870
1871 ret = validate_range(ctx->mm, uffdio_wp.range.start,
1872 uffdio_wp.range.len);
1873 if (ret)
1874 return ret;
1875
1876 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1877 UFFDIO_WRITEPROTECT_MODE_WP))
1878 return -EINVAL;
1879
1880 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1881 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1882
1883 if (mode_wp && mode_dontwake)
1884 return -EINVAL;
1885
1886 if (mmget_not_zero(ctx->mm)) {
1887 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1888 uffdio_wp.range.len, mode_wp,
1889 &ctx->mmap_changing);
1890 mmput(ctx->mm);
1891 } else {
1892 return -ESRCH;
1893 }
1894
1895 if (ret)
1896 return ret;
1897
1898 if (!mode_wp && !mode_dontwake) {
1899 range.start = uffdio_wp.range.start;
1900 range.len = uffdio_wp.range.len;
1901 wake_userfault(ctx, &range);
1902 }
1903 return ret;
1904 }
1905
userfaultfd_continue(struct userfaultfd_ctx * ctx,unsigned long arg)1906 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1907 {
1908 __s64 ret;
1909 struct uffdio_continue uffdio_continue;
1910 struct uffdio_continue __user *user_uffdio_continue;
1911 struct userfaultfd_wake_range range;
1912
1913 user_uffdio_continue = (struct uffdio_continue __user *)arg;
1914
1915 ret = -EAGAIN;
1916 if (READ_ONCE(ctx->mmap_changing))
1917 goto out;
1918
1919 ret = -EFAULT;
1920 if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1921 /* don't copy the output fields */
1922 sizeof(uffdio_continue) - (sizeof(__s64))))
1923 goto out;
1924
1925 ret = validate_range(ctx->mm, uffdio_continue.range.start,
1926 uffdio_continue.range.len);
1927 if (ret)
1928 goto out;
1929
1930 ret = -EINVAL;
1931 /* double check for wraparound just in case. */
1932 if (uffdio_continue.range.start + uffdio_continue.range.len <=
1933 uffdio_continue.range.start) {
1934 goto out;
1935 }
1936 if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE)
1937 goto out;
1938
1939 if (mmget_not_zero(ctx->mm)) {
1940 ret = mcopy_continue(ctx->mm, uffdio_continue.range.start,
1941 uffdio_continue.range.len,
1942 &ctx->mmap_changing);
1943 mmput(ctx->mm);
1944 } else {
1945 return -ESRCH;
1946 }
1947
1948 if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1949 return -EFAULT;
1950 if (ret < 0)
1951 goto out;
1952
1953 /* len == 0 would wake all */
1954 BUG_ON(!ret);
1955 range.len = ret;
1956 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1957 range.start = uffdio_continue.range.start;
1958 wake_userfault(ctx, &range);
1959 }
1960 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1961
1962 out:
1963 return ret;
1964 }
1965
uffd_ctx_features(__u64 user_features)1966 static inline unsigned int uffd_ctx_features(__u64 user_features)
1967 {
1968 /*
1969 * For the current set of features the bits just coincide. Set
1970 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1971 */
1972 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1973 }
1974
1975 /*
1976 * userland asks for a certain API version and we return which bits
1977 * and ioctl commands are implemented in this kernel for such API
1978 * version or -EINVAL if unknown.
1979 */
userfaultfd_api(struct userfaultfd_ctx * ctx,unsigned long arg)1980 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1981 unsigned long arg)
1982 {
1983 struct uffdio_api uffdio_api;
1984 void __user *buf = (void __user *)arg;
1985 unsigned int ctx_features;
1986 int ret;
1987 __u64 features;
1988
1989 ret = -EFAULT;
1990 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1991 goto out;
1992 features = uffdio_api.features;
1993 ret = -EINVAL;
1994 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1995 goto err_out;
1996 ret = -EPERM;
1997 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1998 goto err_out;
1999 /* report all available features and ioctls to userland */
2000 uffdio_api.features = UFFD_API_FEATURES;
2001 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
2002 uffdio_api.features &=
2003 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
2004 #endif
2005 uffdio_api.ioctls = UFFD_API_IOCTLS;
2006 ret = -EFAULT;
2007 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2008 goto out;
2009
2010 /* only enable the requested features for this uffd context */
2011 ctx_features = uffd_ctx_features(features);
2012 ret = -EINVAL;
2013 if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2014 goto err_out;
2015
2016 ret = 0;
2017 out:
2018 return ret;
2019 err_out:
2020 memset(&uffdio_api, 0, sizeof(uffdio_api));
2021 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2022 ret = -EFAULT;
2023 goto out;
2024 }
2025
userfaultfd_ioctl(struct file * file,unsigned cmd,unsigned long arg)2026 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2027 unsigned long arg)
2028 {
2029 int ret = -EINVAL;
2030 struct userfaultfd_ctx *ctx = file->private_data;
2031
2032 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2033 return -EINVAL;
2034
2035 switch(cmd) {
2036 case UFFDIO_API:
2037 ret = userfaultfd_api(ctx, arg);
2038 break;
2039 case UFFDIO_REGISTER:
2040 ret = userfaultfd_register(ctx, arg);
2041 break;
2042 case UFFDIO_UNREGISTER:
2043 ret = userfaultfd_unregister(ctx, arg);
2044 break;
2045 case UFFDIO_WAKE:
2046 ret = userfaultfd_wake(ctx, arg);
2047 break;
2048 case UFFDIO_COPY:
2049 ret = userfaultfd_copy(ctx, arg);
2050 break;
2051 case UFFDIO_ZEROPAGE:
2052 ret = userfaultfd_zeropage(ctx, arg);
2053 break;
2054 case UFFDIO_WRITEPROTECT:
2055 ret = userfaultfd_writeprotect(ctx, arg);
2056 break;
2057 case UFFDIO_CONTINUE:
2058 ret = userfaultfd_continue(ctx, arg);
2059 break;
2060 }
2061 return ret;
2062 }
2063
2064 #ifdef CONFIG_PROC_FS
userfaultfd_show_fdinfo(struct seq_file * m,struct file * f)2065 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2066 {
2067 struct userfaultfd_ctx *ctx = f->private_data;
2068 wait_queue_entry_t *wq;
2069 unsigned long pending = 0, total = 0;
2070
2071 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2072 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2073 pending++;
2074 total++;
2075 }
2076 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2077 total++;
2078 }
2079 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2080
2081 /*
2082 * If more protocols will be added, there will be all shown
2083 * separated by a space. Like this:
2084 * protocols: aa:... bb:...
2085 */
2086 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2087 pending, total, UFFD_API, ctx->features,
2088 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2089 }
2090 #endif
2091
2092 static const struct file_operations userfaultfd_fops = {
2093 #ifdef CONFIG_PROC_FS
2094 .show_fdinfo = userfaultfd_show_fdinfo,
2095 #endif
2096 .release = userfaultfd_release,
2097 .poll = userfaultfd_poll,
2098 .read = userfaultfd_read,
2099 .unlocked_ioctl = userfaultfd_ioctl,
2100 .compat_ioctl = compat_ptr_ioctl,
2101 .llseek = noop_llseek,
2102 };
2103
init_once_userfaultfd_ctx(void * mem)2104 static void init_once_userfaultfd_ctx(void *mem)
2105 {
2106 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2107
2108 init_waitqueue_head(&ctx->fault_pending_wqh);
2109 init_waitqueue_head(&ctx->fault_wqh);
2110 init_waitqueue_head(&ctx->event_wqh);
2111 init_waitqueue_head(&ctx->fd_wqh);
2112 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2113 }
2114
SYSCALL_DEFINE1(userfaultfd,int,flags)2115 SYSCALL_DEFINE1(userfaultfd, int, flags)
2116 {
2117 struct userfaultfd_ctx *ctx;
2118 int fd;
2119
2120 if (!sysctl_unprivileged_userfaultfd &&
2121 (flags & UFFD_USER_MODE_ONLY) == 0 &&
2122 !capable(CAP_SYS_PTRACE)) {
2123 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
2124 "sysctl knob to 1 if kernel faults must be handled "
2125 "without obtaining CAP_SYS_PTRACE capability\n");
2126 return -EPERM;
2127 }
2128
2129 BUG_ON(!current->mm);
2130
2131 /* Check the UFFD_* constants for consistency. */
2132 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2133 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2134 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2135
2136 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2137 return -EINVAL;
2138
2139 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2140 if (!ctx)
2141 return -ENOMEM;
2142
2143 refcount_set(&ctx->refcount, 1);
2144 ctx->flags = flags;
2145 ctx->features = 0;
2146 ctx->released = false;
2147 ctx->mmap_changing = false;
2148 ctx->mm = current->mm;
2149 /* prevent the mm struct to be freed */
2150 mmgrab(ctx->mm);
2151
2152 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2153 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2154 if (fd < 0) {
2155 mmdrop(ctx->mm);
2156 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2157 }
2158 return fd;
2159 }
2160
userfaultfd_init(void)2161 static int __init userfaultfd_init(void)
2162 {
2163 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2164 sizeof(struct userfaultfd_ctx),
2165 0,
2166 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2167 init_once_userfaultfd_ctx);
2168 return 0;
2169 }
2170 __initcall(userfaultfd_init);
2171