1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Simple file system for zoned block devices exposing zones as files.
4 *
5 * Copyright (C) 2019 Western Digital Corporation or its affiliates.
6 */
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/magic.h>
10 #include <linux/iomap.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/blkdev.h>
14 #include <linux/statfs.h>
15 #include <linux/writeback.h>
16 #include <linux/quotaops.h>
17 #include <linux/seq_file.h>
18 #include <linux/parser.h>
19 #include <linux/uio.h>
20 #include <linux/mman.h>
21 #include <linux/sched/mm.h>
22 #include <linux/crc32.h>
23 #include <linux/task_io_accounting_ops.h>
24
25 #include "zonefs.h"
26
zonefs_zone_mgmt(struct inode * inode,enum req_opf op)27 static inline int zonefs_zone_mgmt(struct inode *inode,
28 enum req_opf op)
29 {
30 struct zonefs_inode_info *zi = ZONEFS_I(inode);
31 int ret;
32
33 lockdep_assert_held(&zi->i_truncate_mutex);
34
35 /*
36 * With ZNS drives, closing an explicitly open zone that has not been
37 * written will change the zone state to "closed", that is, the zone
38 * will remain active. Since this can then cause failure of explicit
39 * open operation on other zones if the drive active zone resources
40 * are exceeded, make sure that the zone does not remain active by
41 * resetting it.
42 */
43 if (op == REQ_OP_ZONE_CLOSE && !zi->i_wpoffset)
44 op = REQ_OP_ZONE_RESET;
45
46 ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector,
47 zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS);
48 if (ret) {
49 zonefs_err(inode->i_sb,
50 "Zone management operation %s at %llu failed %d\n",
51 blk_op_str(op), zi->i_zsector, ret);
52 return ret;
53 }
54
55 return 0;
56 }
57
zonefs_i_size_write(struct inode * inode,loff_t isize)58 static inline void zonefs_i_size_write(struct inode *inode, loff_t isize)
59 {
60 struct zonefs_inode_info *zi = ZONEFS_I(inode);
61
62 i_size_write(inode, isize);
63 /*
64 * A full zone is no longer open/active and does not need
65 * explicit closing.
66 */
67 if (isize >= zi->i_max_size)
68 zi->i_flags &= ~ZONEFS_ZONE_OPEN;
69 }
70
zonefs_read_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)71 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset,
72 loff_t length, unsigned int flags,
73 struct iomap *iomap, struct iomap *srcmap)
74 {
75 struct zonefs_inode_info *zi = ZONEFS_I(inode);
76 struct super_block *sb = inode->i_sb;
77 loff_t isize;
78
79 /*
80 * All blocks are always mapped below EOF. If reading past EOF,
81 * act as if there is a hole up to the file maximum size.
82 */
83 mutex_lock(&zi->i_truncate_mutex);
84 iomap->bdev = inode->i_sb->s_bdev;
85 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
86 isize = i_size_read(inode);
87 if (iomap->offset >= isize) {
88 iomap->type = IOMAP_HOLE;
89 iomap->addr = IOMAP_NULL_ADDR;
90 iomap->length = length;
91 } else {
92 iomap->type = IOMAP_MAPPED;
93 iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
94 iomap->length = isize - iomap->offset;
95 }
96 mutex_unlock(&zi->i_truncate_mutex);
97
98 return 0;
99 }
100
101 static const struct iomap_ops zonefs_read_iomap_ops = {
102 .iomap_begin = zonefs_read_iomap_begin,
103 };
104
zonefs_write_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)105 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset,
106 loff_t length, unsigned int flags,
107 struct iomap *iomap, struct iomap *srcmap)
108 {
109 struct zonefs_inode_info *zi = ZONEFS_I(inode);
110 struct super_block *sb = inode->i_sb;
111 loff_t isize;
112
113 /* All write I/Os should always be within the file maximum size */
114 if (WARN_ON_ONCE(offset + length > zi->i_max_size))
115 return -EIO;
116
117 /*
118 * Sequential zones can only accept direct writes. This is already
119 * checked when writes are issued, so warn if we see a page writeback
120 * operation.
121 */
122 if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
123 !(flags & IOMAP_DIRECT)))
124 return -EIO;
125
126 /*
127 * For conventional zones, all blocks are always mapped. For sequential
128 * zones, all blocks after always mapped below the inode size (zone
129 * write pointer) and unwriten beyond.
130 */
131 mutex_lock(&zi->i_truncate_mutex);
132 iomap->bdev = inode->i_sb->s_bdev;
133 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
134 iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
135 isize = i_size_read(inode);
136 if (iomap->offset >= isize) {
137 iomap->type = IOMAP_UNWRITTEN;
138 iomap->length = zi->i_max_size - iomap->offset;
139 } else {
140 iomap->type = IOMAP_MAPPED;
141 iomap->length = isize - iomap->offset;
142 }
143 mutex_unlock(&zi->i_truncate_mutex);
144
145 return 0;
146 }
147
148 static const struct iomap_ops zonefs_write_iomap_ops = {
149 .iomap_begin = zonefs_write_iomap_begin,
150 };
151
zonefs_readpage(struct file * unused,struct page * page)152 static int zonefs_readpage(struct file *unused, struct page *page)
153 {
154 return iomap_readpage(page, &zonefs_read_iomap_ops);
155 }
156
zonefs_readahead(struct readahead_control * rac)157 static void zonefs_readahead(struct readahead_control *rac)
158 {
159 iomap_readahead(rac, &zonefs_read_iomap_ops);
160 }
161
162 /*
163 * Map blocks for page writeback. This is used only on conventional zone files,
164 * which implies that the page range can only be within the fixed inode size.
165 */
zonefs_write_map_blocks(struct iomap_writepage_ctx * wpc,struct inode * inode,loff_t offset)166 static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc,
167 struct inode *inode, loff_t offset)
168 {
169 struct zonefs_inode_info *zi = ZONEFS_I(inode);
170
171 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
172 return -EIO;
173 if (WARN_ON_ONCE(offset >= i_size_read(inode)))
174 return -EIO;
175
176 /* If the mapping is already OK, nothing needs to be done */
177 if (offset >= wpc->iomap.offset &&
178 offset < wpc->iomap.offset + wpc->iomap.length)
179 return 0;
180
181 return zonefs_write_iomap_begin(inode, offset, zi->i_max_size - offset,
182 IOMAP_WRITE, &wpc->iomap, NULL);
183 }
184
185 static const struct iomap_writeback_ops zonefs_writeback_ops = {
186 .map_blocks = zonefs_write_map_blocks,
187 };
188
zonefs_writepage(struct page * page,struct writeback_control * wbc)189 static int zonefs_writepage(struct page *page, struct writeback_control *wbc)
190 {
191 struct iomap_writepage_ctx wpc = { };
192
193 return iomap_writepage(page, wbc, &wpc, &zonefs_writeback_ops);
194 }
195
zonefs_writepages(struct address_space * mapping,struct writeback_control * wbc)196 static int zonefs_writepages(struct address_space *mapping,
197 struct writeback_control *wbc)
198 {
199 struct iomap_writepage_ctx wpc = { };
200
201 return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
202 }
203
zonefs_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)204 static int zonefs_swap_activate(struct swap_info_struct *sis,
205 struct file *swap_file, sector_t *span)
206 {
207 struct inode *inode = file_inode(swap_file);
208 struct zonefs_inode_info *zi = ZONEFS_I(inode);
209
210 if (zi->i_ztype != ZONEFS_ZTYPE_CNV) {
211 zonefs_err(inode->i_sb,
212 "swap file: not a conventional zone file\n");
213 return -EINVAL;
214 }
215
216 return iomap_swapfile_activate(sis, swap_file, span,
217 &zonefs_read_iomap_ops);
218 }
219
220 static const struct address_space_operations zonefs_file_aops = {
221 .readpage = zonefs_readpage,
222 .readahead = zonefs_readahead,
223 .writepage = zonefs_writepage,
224 .writepages = zonefs_writepages,
225 .set_page_dirty = iomap_set_page_dirty,
226 .releasepage = iomap_releasepage,
227 .invalidatepage = iomap_invalidatepage,
228 .migratepage = iomap_migrate_page,
229 .is_partially_uptodate = iomap_is_partially_uptodate,
230 .error_remove_page = generic_error_remove_page,
231 .direct_IO = noop_direct_IO,
232 .swap_activate = zonefs_swap_activate,
233 };
234
zonefs_update_stats(struct inode * inode,loff_t new_isize)235 static void zonefs_update_stats(struct inode *inode, loff_t new_isize)
236 {
237 struct super_block *sb = inode->i_sb;
238 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
239 loff_t old_isize = i_size_read(inode);
240 loff_t nr_blocks;
241
242 if (new_isize == old_isize)
243 return;
244
245 spin_lock(&sbi->s_lock);
246
247 /*
248 * This may be called for an update after an IO error.
249 * So beware of the values seen.
250 */
251 if (new_isize < old_isize) {
252 nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits;
253 if (sbi->s_used_blocks > nr_blocks)
254 sbi->s_used_blocks -= nr_blocks;
255 else
256 sbi->s_used_blocks = 0;
257 } else {
258 sbi->s_used_blocks +=
259 (new_isize - old_isize) >> sb->s_blocksize_bits;
260 if (sbi->s_used_blocks > sbi->s_blocks)
261 sbi->s_used_blocks = sbi->s_blocks;
262 }
263
264 spin_unlock(&sbi->s_lock);
265 }
266
267 /*
268 * Check a zone condition and adjust its file inode access permissions for
269 * offline and readonly zones. Return the inode size corresponding to the
270 * amount of readable data in the zone.
271 */
zonefs_check_zone_condition(struct inode * inode,struct blk_zone * zone,bool warn,bool mount)272 static loff_t zonefs_check_zone_condition(struct inode *inode,
273 struct blk_zone *zone, bool warn,
274 bool mount)
275 {
276 struct zonefs_inode_info *zi = ZONEFS_I(inode);
277
278 switch (zone->cond) {
279 case BLK_ZONE_COND_OFFLINE:
280 /*
281 * Dead zone: make the inode immutable, disable all accesses
282 * and set the file size to 0 (zone wp set to zone start).
283 */
284 if (warn)
285 zonefs_warn(inode->i_sb, "inode %lu: offline zone\n",
286 inode->i_ino);
287 inode->i_flags |= S_IMMUTABLE;
288 inode->i_mode &= ~0777;
289 zone->wp = zone->start;
290 return 0;
291 case BLK_ZONE_COND_READONLY:
292 /*
293 * The write pointer of read-only zones is invalid. If such a
294 * zone is found during mount, the file size cannot be retrieved
295 * so we treat the zone as offline (mount == true case).
296 * Otherwise, keep the file size as it was when last updated
297 * so that the user can recover data. In both cases, writes are
298 * always disabled for the zone.
299 */
300 if (warn)
301 zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n",
302 inode->i_ino);
303 inode->i_flags |= S_IMMUTABLE;
304 if (mount) {
305 zone->cond = BLK_ZONE_COND_OFFLINE;
306 inode->i_mode &= ~0777;
307 zone->wp = zone->start;
308 return 0;
309 }
310 inode->i_mode &= ~0222;
311 return i_size_read(inode);
312 case BLK_ZONE_COND_FULL:
313 /* The write pointer of full zones is invalid. */
314 return zi->i_max_size;
315 default:
316 if (zi->i_ztype == ZONEFS_ZTYPE_CNV)
317 return zi->i_max_size;
318 return (zone->wp - zone->start) << SECTOR_SHIFT;
319 }
320 }
321
zonefs_io_error_cb(struct blk_zone * zone,unsigned int idx,void * data)322 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx,
323 void *data)
324 {
325 struct blk_zone *z = data;
326
327 *z = *zone;
328 return 0;
329 }
330
zonefs_handle_io_error(struct inode * inode,struct blk_zone * zone,bool write)331 static void zonefs_handle_io_error(struct inode *inode, struct blk_zone *zone,
332 bool write)
333 {
334 struct zonefs_inode_info *zi = ZONEFS_I(inode);
335 struct super_block *sb = inode->i_sb;
336 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
337 loff_t isize, data_size;
338
339 /*
340 * Check the zone condition: if the zone is not "bad" (offline or
341 * read-only), read errors are simply signaled to the IO issuer as long
342 * as there is no inconsistency between the inode size and the amount of
343 * data writen in the zone (data_size).
344 */
345 data_size = zonefs_check_zone_condition(inode, zone, true, false);
346 isize = i_size_read(inode);
347 if (zone->cond != BLK_ZONE_COND_OFFLINE &&
348 zone->cond != BLK_ZONE_COND_READONLY &&
349 !write && isize == data_size)
350 return;
351
352 /*
353 * At this point, we detected either a bad zone or an inconsistency
354 * between the inode size and the amount of data written in the zone.
355 * For the latter case, the cause may be a write IO error or an external
356 * action on the device. Two error patterns exist:
357 * 1) The inode size is lower than the amount of data in the zone:
358 * a write operation partially failed and data was writen at the end
359 * of the file. This can happen in the case of a large direct IO
360 * needing several BIOs and/or write requests to be processed.
361 * 2) The inode size is larger than the amount of data in the zone:
362 * this can happen with a deferred write error with the use of the
363 * device side write cache after getting successful write IO
364 * completions. Other possibilities are (a) an external corruption,
365 * e.g. an application reset the zone directly, or (b) the device
366 * has a serious problem (e.g. firmware bug).
367 *
368 * In all cases, warn about inode size inconsistency and handle the
369 * IO error according to the zone condition and to the mount options.
370 */
371 if (isize != data_size)
372 zonefs_warn(sb,
373 "inode %lu: invalid size %lld (should be %lld)\n",
374 inode->i_ino, isize, data_size);
375
376 /*
377 * First handle bad zones signaled by hardware. The mount options
378 * errors=zone-ro and errors=zone-offline result in changing the
379 * zone condition to read-only and offline respectively, as if the
380 * condition was signaled by the hardware.
381 */
382 if (zone->cond == BLK_ZONE_COND_OFFLINE ||
383 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) {
384 zonefs_warn(sb, "inode %lu: read/write access disabled\n",
385 inode->i_ino);
386 if (zone->cond != BLK_ZONE_COND_OFFLINE) {
387 zone->cond = BLK_ZONE_COND_OFFLINE;
388 data_size = zonefs_check_zone_condition(inode, zone,
389 false, false);
390 }
391 } else if (zone->cond == BLK_ZONE_COND_READONLY ||
392 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) {
393 zonefs_warn(sb, "inode %lu: write access disabled\n",
394 inode->i_ino);
395 if (zone->cond != BLK_ZONE_COND_READONLY) {
396 zone->cond = BLK_ZONE_COND_READONLY;
397 data_size = zonefs_check_zone_condition(inode, zone,
398 false, false);
399 }
400 } else if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO &&
401 data_size > isize) {
402 /* Do not expose garbage data */
403 data_size = isize;
404 }
405
406 /*
407 * If the filesystem is mounted with the explicit-open mount option, we
408 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to
409 * the read-only or offline condition, to avoid attempting an explicit
410 * close of the zone when the inode file is closed.
411 */
412 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) &&
413 (zone->cond == BLK_ZONE_COND_OFFLINE ||
414 zone->cond == BLK_ZONE_COND_READONLY))
415 zi->i_flags &= ~ZONEFS_ZONE_OPEN;
416
417 /*
418 * If error=remount-ro was specified, any error result in remounting
419 * the volume as read-only.
420 */
421 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) {
422 zonefs_warn(sb, "remounting filesystem read-only\n");
423 sb->s_flags |= SB_RDONLY;
424 }
425
426 /*
427 * Update block usage stats and the inode size to prevent access to
428 * invalid data.
429 */
430 zonefs_update_stats(inode, data_size);
431 zonefs_i_size_write(inode, data_size);
432 zi->i_wpoffset = data_size;
433 }
434
435 /*
436 * When an file IO error occurs, check the file zone to see if there is a change
437 * in the zone condition (e.g. offline or read-only). For a failed write to a
438 * sequential zone, the zone write pointer position must also be checked to
439 * eventually correct the file size and zonefs inode write pointer offset
440 * (which can be out of sync with the drive due to partial write failures).
441 */
__zonefs_io_error(struct inode * inode,bool write)442 static void __zonefs_io_error(struct inode *inode, bool write)
443 {
444 struct zonefs_inode_info *zi = ZONEFS_I(inode);
445 struct super_block *sb = inode->i_sb;
446 unsigned int noio_flag;
447 struct blk_zone zone;
448 int ret;
449
450 /*
451 * Conventional zone have no write pointer and cannot become read-only
452 * or offline. So simply fake a report for a single or aggregated zone
453 * and let zonefs_handle_io_error() correct the zone inode information
454 * according to the mount options.
455 */
456 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) {
457 zone.start = zi->i_zsector;
458 zone.len = zi->i_max_size >> SECTOR_SHIFT;
459 zone.wp = zone.start + zone.len;
460 zone.type = BLK_ZONE_TYPE_CONVENTIONAL;
461 zone.cond = BLK_ZONE_COND_NOT_WP;
462 zone.capacity = zone.len;
463 goto handle_io_error;
464 }
465
466 /*
467 * Memory allocations in blkdev_report_zones() can trigger a memory
468 * reclaim which may in turn cause a recursion into zonefs as well as
469 * struct request allocations for the same device. The former case may
470 * end up in a deadlock on the inode truncate mutex, while the latter
471 * may prevent IO forward progress. Executing the report zones under
472 * the GFP_NOIO context avoids both problems.
473 */
474 noio_flag = memalloc_noio_save();
475 ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, 1,
476 zonefs_io_error_cb, &zone);
477 memalloc_noio_restore(noio_flag);
478 if (ret != 1) {
479 zonefs_err(sb, "Get inode %lu zone information failed %d\n",
480 inode->i_ino, ret);
481 zonefs_warn(sb, "remounting filesystem read-only\n");
482 sb->s_flags |= SB_RDONLY;
483 return;
484 }
485
486 handle_io_error:
487 zonefs_handle_io_error(inode, &zone, write);
488 }
489
zonefs_io_error(struct inode * inode,bool write)490 static void zonefs_io_error(struct inode *inode, bool write)
491 {
492 struct zonefs_inode_info *zi = ZONEFS_I(inode);
493
494 mutex_lock(&zi->i_truncate_mutex);
495 __zonefs_io_error(inode, write);
496 mutex_unlock(&zi->i_truncate_mutex);
497 }
498
zonefs_file_truncate(struct inode * inode,loff_t isize)499 static int zonefs_file_truncate(struct inode *inode, loff_t isize)
500 {
501 struct zonefs_inode_info *zi = ZONEFS_I(inode);
502 loff_t old_isize;
503 enum req_opf op;
504 int ret = 0;
505
506 /*
507 * Only sequential zone files can be truncated and truncation is allowed
508 * only down to a 0 size, which is equivalent to a zone reset, and to
509 * the maximum file size, which is equivalent to a zone finish.
510 */
511 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
512 return -EPERM;
513
514 if (!isize)
515 op = REQ_OP_ZONE_RESET;
516 else if (isize == zi->i_max_size)
517 op = REQ_OP_ZONE_FINISH;
518 else
519 return -EPERM;
520
521 inode_dio_wait(inode);
522
523 /* Serialize against page faults */
524 down_write(&zi->i_mmap_sem);
525
526 /* Serialize against zonefs_iomap_begin() */
527 mutex_lock(&zi->i_truncate_mutex);
528
529 old_isize = i_size_read(inode);
530 if (isize == old_isize)
531 goto unlock;
532
533 ret = zonefs_zone_mgmt(inode, op);
534 if (ret)
535 goto unlock;
536
537 /*
538 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
539 * take care of open zones.
540 */
541 if (zi->i_flags & ZONEFS_ZONE_OPEN) {
542 /*
543 * Truncating a zone to EMPTY or FULL is the equivalent of
544 * closing the zone. For a truncation to 0, we need to
545 * re-open the zone to ensure new writes can be processed.
546 * For a truncation to the maximum file size, the zone is
547 * closed and writes cannot be accepted anymore, so clear
548 * the open flag.
549 */
550 if (!isize)
551 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
552 else
553 zi->i_flags &= ~ZONEFS_ZONE_OPEN;
554 }
555
556 zonefs_update_stats(inode, isize);
557 truncate_setsize(inode, isize);
558 zi->i_wpoffset = isize;
559
560 unlock:
561 mutex_unlock(&zi->i_truncate_mutex);
562 up_write(&zi->i_mmap_sem);
563
564 return ret;
565 }
566
zonefs_inode_setattr(struct dentry * dentry,struct iattr * iattr)567 static int zonefs_inode_setattr(struct dentry *dentry, struct iattr *iattr)
568 {
569 struct inode *inode = d_inode(dentry);
570 int ret;
571
572 if (unlikely(IS_IMMUTABLE(inode)))
573 return -EPERM;
574
575 ret = setattr_prepare(dentry, iattr);
576 if (ret)
577 return ret;
578
579 /*
580 * Since files and directories cannot be created nor deleted, do not
581 * allow setting any write attributes on the sub-directories grouping
582 * files by zone type.
583 */
584 if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) &&
585 (iattr->ia_mode & 0222))
586 return -EPERM;
587
588 if (((iattr->ia_valid & ATTR_UID) &&
589 !uid_eq(iattr->ia_uid, inode->i_uid)) ||
590 ((iattr->ia_valid & ATTR_GID) &&
591 !gid_eq(iattr->ia_gid, inode->i_gid))) {
592 ret = dquot_transfer(inode, iattr);
593 if (ret)
594 return ret;
595 }
596
597 if (iattr->ia_valid & ATTR_SIZE) {
598 ret = zonefs_file_truncate(inode, iattr->ia_size);
599 if (ret)
600 return ret;
601 }
602
603 setattr_copy(inode, iattr);
604
605 return 0;
606 }
607
608 static const struct inode_operations zonefs_file_inode_operations = {
609 .setattr = zonefs_inode_setattr,
610 };
611
zonefs_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)612 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
613 int datasync)
614 {
615 struct inode *inode = file_inode(file);
616 int ret = 0;
617
618 if (unlikely(IS_IMMUTABLE(inode)))
619 return -EPERM;
620
621 /*
622 * Since only direct writes are allowed in sequential files, page cache
623 * flush is needed only for conventional zone files.
624 */
625 if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV)
626 ret = file_write_and_wait_range(file, start, end);
627 if (!ret)
628 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL);
629
630 if (ret)
631 zonefs_io_error(inode, true);
632
633 return ret;
634 }
635
zonefs_filemap_fault(struct vm_fault * vmf)636 static vm_fault_t zonefs_filemap_fault(struct vm_fault *vmf)
637 {
638 struct zonefs_inode_info *zi = ZONEFS_I(file_inode(vmf->vma->vm_file));
639 vm_fault_t ret;
640
641 down_read(&zi->i_mmap_sem);
642 ret = filemap_fault(vmf);
643 up_read(&zi->i_mmap_sem);
644
645 return ret;
646 }
647
zonefs_filemap_page_mkwrite(struct vm_fault * vmf)648 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
649 {
650 struct inode *inode = file_inode(vmf->vma->vm_file);
651 struct zonefs_inode_info *zi = ZONEFS_I(inode);
652 vm_fault_t ret;
653
654 if (unlikely(IS_IMMUTABLE(inode)))
655 return VM_FAULT_SIGBUS;
656
657 /*
658 * Sanity check: only conventional zone files can have shared
659 * writeable mappings.
660 */
661 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
662 return VM_FAULT_NOPAGE;
663
664 sb_start_pagefault(inode->i_sb);
665 file_update_time(vmf->vma->vm_file);
666
667 /* Serialize against truncates */
668 down_read(&zi->i_mmap_sem);
669 ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops);
670 up_read(&zi->i_mmap_sem);
671
672 sb_end_pagefault(inode->i_sb);
673 return ret;
674 }
675
676 static const struct vm_operations_struct zonefs_file_vm_ops = {
677 .fault = zonefs_filemap_fault,
678 .map_pages = filemap_map_pages,
679 .page_mkwrite = zonefs_filemap_page_mkwrite,
680 };
681
zonefs_file_mmap(struct file * file,struct vm_area_struct * vma)682 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
683 {
684 /*
685 * Conventional zones accept random writes, so their files can support
686 * shared writable mappings. For sequential zone files, only read
687 * mappings are possible since there are no guarantees for write
688 * ordering between msync() and page cache writeback.
689 */
690 if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ &&
691 (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
692 return -EINVAL;
693
694 file_accessed(file);
695 vma->vm_ops = &zonefs_file_vm_ops;
696
697 return 0;
698 }
699
zonefs_file_llseek(struct file * file,loff_t offset,int whence)700 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
701 {
702 loff_t isize = i_size_read(file_inode(file));
703
704 /*
705 * Seeks are limited to below the zone size for conventional zones
706 * and below the zone write pointer for sequential zones. In both
707 * cases, this limit is the inode size.
708 */
709 return generic_file_llseek_size(file, offset, whence, isize, isize);
710 }
711
zonefs_file_write_dio_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)712 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
713 int error, unsigned int flags)
714 {
715 struct inode *inode = file_inode(iocb->ki_filp);
716 struct zonefs_inode_info *zi = ZONEFS_I(inode);
717
718 if (error) {
719 zonefs_io_error(inode, true);
720 return error;
721 }
722
723 if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) {
724 /*
725 * Note that we may be seeing completions out of order,
726 * but that is not a problem since a write completed
727 * successfully necessarily means that all preceding writes
728 * were also successful. So we can safely increase the inode
729 * size to the write end location.
730 */
731 mutex_lock(&zi->i_truncate_mutex);
732 if (i_size_read(inode) < iocb->ki_pos + size) {
733 zonefs_update_stats(inode, iocb->ki_pos + size);
734 zonefs_i_size_write(inode, iocb->ki_pos + size);
735 }
736 mutex_unlock(&zi->i_truncate_mutex);
737 }
738
739 return 0;
740 }
741
742 static const struct iomap_dio_ops zonefs_write_dio_ops = {
743 .end_io = zonefs_file_write_dio_end_io,
744 };
745
zonefs_file_dio_append(struct kiocb * iocb,struct iov_iter * from)746 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from)
747 {
748 struct inode *inode = file_inode(iocb->ki_filp);
749 struct zonefs_inode_info *zi = ZONEFS_I(inode);
750 struct block_device *bdev = inode->i_sb->s_bdev;
751 unsigned int max;
752 struct bio *bio;
753 ssize_t size;
754 int nr_pages;
755 ssize_t ret;
756
757 max = queue_max_zone_append_sectors(bdev_get_queue(bdev));
758 max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize);
759 iov_iter_truncate(from, max);
760
761 nr_pages = iov_iter_npages(from, BIO_MAX_PAGES);
762 if (!nr_pages)
763 return 0;
764
765 bio = bio_alloc_bioset(GFP_NOFS, nr_pages, &fs_bio_set);
766 if (!bio)
767 return -ENOMEM;
768
769 bio_set_dev(bio, bdev);
770 bio->bi_iter.bi_sector = zi->i_zsector;
771 bio->bi_write_hint = iocb->ki_hint;
772 bio->bi_ioprio = iocb->ki_ioprio;
773 bio->bi_opf = REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE;
774 if (iocb->ki_flags & IOCB_DSYNC)
775 bio->bi_opf |= REQ_FUA;
776
777 ret = bio_iov_iter_get_pages(bio, from);
778 if (unlikely(ret))
779 goto out_release;
780
781 size = bio->bi_iter.bi_size;
782 task_io_account_write(size);
783
784 if (iocb->ki_flags & IOCB_HIPRI)
785 bio_set_polled(bio, iocb);
786
787 ret = submit_bio_wait(bio);
788
789 /*
790 * If the file zone was written underneath the file system, the zone
791 * write pointer may not be where we expect it to be, but the zone
792 * append write can still succeed. So check manually that we wrote where
793 * we intended to, that is, at zi->i_wpoffset.
794 */
795 if (!ret) {
796 sector_t wpsector =
797 zi->i_zsector + (zi->i_wpoffset >> SECTOR_SHIFT);
798
799 if (bio->bi_iter.bi_sector != wpsector) {
800 zonefs_warn(inode->i_sb,
801 "Corrupted write pointer %llu for zone at %llu\n",
802 bio->bi_iter.bi_sector, zi->i_zsector);
803 ret = -EIO;
804 }
805 }
806
807 zonefs_file_write_dio_end_io(iocb, size, ret, 0);
808
809 out_release:
810 bio_release_pages(bio, false);
811 bio_put(bio);
812
813 if (ret >= 0) {
814 iocb->ki_pos += size;
815 return size;
816 }
817
818 return ret;
819 }
820
821 /*
822 * Do not exceed the LFS limits nor the file zone size. If pos is under the
823 * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
824 */
zonefs_write_check_limits(struct file * file,loff_t pos,loff_t count)825 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
826 loff_t count)
827 {
828 struct inode *inode = file_inode(file);
829 struct zonefs_inode_info *zi = ZONEFS_I(inode);
830 loff_t limit = rlimit(RLIMIT_FSIZE);
831 loff_t max_size = zi->i_max_size;
832
833 if (limit != RLIM_INFINITY) {
834 if (pos >= limit) {
835 send_sig(SIGXFSZ, current, 0);
836 return -EFBIG;
837 }
838 count = min(count, limit - pos);
839 }
840
841 if (!(file->f_flags & O_LARGEFILE))
842 max_size = min_t(loff_t, MAX_NON_LFS, max_size);
843
844 if (unlikely(pos >= max_size))
845 return -EFBIG;
846
847 return min(count, max_size - pos);
848 }
849
zonefs_write_checks(struct kiocb * iocb,struct iov_iter * from)850 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
851 {
852 struct file *file = iocb->ki_filp;
853 struct inode *inode = file_inode(file);
854 struct zonefs_inode_info *zi = ZONEFS_I(inode);
855 loff_t count;
856
857 if (IS_SWAPFILE(inode))
858 return -ETXTBSY;
859
860 if (!iov_iter_count(from))
861 return 0;
862
863 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
864 return -EINVAL;
865
866 if (iocb->ki_flags & IOCB_APPEND) {
867 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
868 return -EINVAL;
869 mutex_lock(&zi->i_truncate_mutex);
870 iocb->ki_pos = zi->i_wpoffset;
871 mutex_unlock(&zi->i_truncate_mutex);
872 }
873
874 count = zonefs_write_check_limits(file, iocb->ki_pos,
875 iov_iter_count(from));
876 if (count < 0)
877 return count;
878
879 iov_iter_truncate(from, count);
880 return iov_iter_count(from);
881 }
882
883 /*
884 * Handle direct writes. For sequential zone files, this is the only possible
885 * write path. For these files, check that the user is issuing writes
886 * sequentially from the end of the file. This code assumes that the block layer
887 * delivers write requests to the device in sequential order. This is always the
888 * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
889 * elevator feature is being used (e.g. mq-deadline). The block layer always
890 * automatically select such an elevator for zoned block devices during the
891 * device initialization.
892 */
zonefs_file_dio_write(struct kiocb * iocb,struct iov_iter * from)893 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
894 {
895 struct inode *inode = file_inode(iocb->ki_filp);
896 struct zonefs_inode_info *zi = ZONEFS_I(inode);
897 struct super_block *sb = inode->i_sb;
898 bool sync = is_sync_kiocb(iocb);
899 bool append = false;
900 ssize_t ret, count;
901
902 /*
903 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
904 * as this can cause write reordering (e.g. the first aio gets EAGAIN
905 * on the inode lock but the second goes through but is now unaligned).
906 */
907 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync &&
908 (iocb->ki_flags & IOCB_NOWAIT))
909 return -EOPNOTSUPP;
910
911 if (iocb->ki_flags & IOCB_NOWAIT) {
912 if (!inode_trylock(inode))
913 return -EAGAIN;
914 } else {
915 inode_lock(inode);
916 }
917
918 count = zonefs_write_checks(iocb, from);
919 if (count <= 0) {
920 ret = count;
921 goto inode_unlock;
922 }
923
924 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
925 ret = -EINVAL;
926 goto inode_unlock;
927 }
928
929 /* Enforce sequential writes (append only) in sequential zones */
930 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) {
931 mutex_lock(&zi->i_truncate_mutex);
932 if (iocb->ki_pos != zi->i_wpoffset) {
933 mutex_unlock(&zi->i_truncate_mutex);
934 ret = -EINVAL;
935 goto inode_unlock;
936 }
937 mutex_unlock(&zi->i_truncate_mutex);
938 append = sync;
939 }
940
941 if (append)
942 ret = zonefs_file_dio_append(iocb, from);
943 else
944 ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops,
945 &zonefs_write_dio_ops, sync);
946 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
947 (ret > 0 || ret == -EIOCBQUEUED)) {
948 if (ret > 0)
949 count = ret;
950 mutex_lock(&zi->i_truncate_mutex);
951 zi->i_wpoffset += count;
952 mutex_unlock(&zi->i_truncate_mutex);
953 }
954
955 inode_unlock:
956 inode_unlock(inode);
957
958 return ret;
959 }
960
zonefs_file_buffered_write(struct kiocb * iocb,struct iov_iter * from)961 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
962 struct iov_iter *from)
963 {
964 struct inode *inode = file_inode(iocb->ki_filp);
965 struct zonefs_inode_info *zi = ZONEFS_I(inode);
966 ssize_t ret;
967
968 /*
969 * Direct IO writes are mandatory for sequential zone files so that the
970 * write IO issuing order is preserved.
971 */
972 if (zi->i_ztype != ZONEFS_ZTYPE_CNV)
973 return -EIO;
974
975 if (iocb->ki_flags & IOCB_NOWAIT) {
976 if (!inode_trylock(inode))
977 return -EAGAIN;
978 } else {
979 inode_lock(inode);
980 }
981
982 ret = zonefs_write_checks(iocb, from);
983 if (ret <= 0)
984 goto inode_unlock;
985
986 ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops);
987 if (ret > 0)
988 iocb->ki_pos += ret;
989 else if (ret == -EIO)
990 zonefs_io_error(inode, true);
991
992 inode_unlock:
993 inode_unlock(inode);
994 if (ret > 0)
995 ret = generic_write_sync(iocb, ret);
996
997 return ret;
998 }
999
zonefs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1000 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1001 {
1002 struct inode *inode = file_inode(iocb->ki_filp);
1003
1004 if (unlikely(IS_IMMUTABLE(inode)))
1005 return -EPERM;
1006
1007 if (sb_rdonly(inode->i_sb))
1008 return -EROFS;
1009
1010 /* Write operations beyond the zone size are not allowed */
1011 if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size)
1012 return -EFBIG;
1013
1014 if (iocb->ki_flags & IOCB_DIRECT) {
1015 ssize_t ret = zonefs_file_dio_write(iocb, from);
1016 if (ret != -ENOTBLK)
1017 return ret;
1018 }
1019
1020 return zonefs_file_buffered_write(iocb, from);
1021 }
1022
zonefs_file_read_dio_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)1023 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
1024 int error, unsigned int flags)
1025 {
1026 if (error) {
1027 zonefs_io_error(file_inode(iocb->ki_filp), false);
1028 return error;
1029 }
1030
1031 return 0;
1032 }
1033
1034 static const struct iomap_dio_ops zonefs_read_dio_ops = {
1035 .end_io = zonefs_file_read_dio_end_io,
1036 };
1037
zonefs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)1038 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1039 {
1040 struct inode *inode = file_inode(iocb->ki_filp);
1041 struct zonefs_inode_info *zi = ZONEFS_I(inode);
1042 struct super_block *sb = inode->i_sb;
1043 loff_t isize;
1044 ssize_t ret;
1045
1046 /* Offline zones cannot be read */
1047 if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
1048 return -EPERM;
1049
1050 if (iocb->ki_pos >= zi->i_max_size)
1051 return 0;
1052
1053 if (iocb->ki_flags & IOCB_NOWAIT) {
1054 if (!inode_trylock_shared(inode))
1055 return -EAGAIN;
1056 } else {
1057 inode_lock_shared(inode);
1058 }
1059
1060 /* Limit read operations to written data */
1061 mutex_lock(&zi->i_truncate_mutex);
1062 isize = i_size_read(inode);
1063 if (iocb->ki_pos >= isize) {
1064 mutex_unlock(&zi->i_truncate_mutex);
1065 ret = 0;
1066 goto inode_unlock;
1067 }
1068 iov_iter_truncate(to, isize - iocb->ki_pos);
1069 mutex_unlock(&zi->i_truncate_mutex);
1070
1071 if (iocb->ki_flags & IOCB_DIRECT) {
1072 size_t count = iov_iter_count(to);
1073
1074 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
1075 ret = -EINVAL;
1076 goto inode_unlock;
1077 }
1078 file_accessed(iocb->ki_filp);
1079 ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops,
1080 &zonefs_read_dio_ops, is_sync_kiocb(iocb));
1081 } else {
1082 ret = generic_file_read_iter(iocb, to);
1083 if (ret == -EIO)
1084 zonefs_io_error(inode, false);
1085 }
1086
1087 inode_unlock:
1088 inode_unlock_shared(inode);
1089
1090 return ret;
1091 }
1092
zonefs_file_use_exp_open(struct inode * inode,struct file * file)1093 static inline bool zonefs_file_use_exp_open(struct inode *inode, struct file *file)
1094 {
1095 struct zonefs_inode_info *zi = ZONEFS_I(inode);
1096 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1097
1098 if (!(sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN))
1099 return false;
1100
1101 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
1102 return false;
1103
1104 if (!(file->f_mode & FMODE_WRITE))
1105 return false;
1106
1107 return true;
1108 }
1109
zonefs_open_zone(struct inode * inode)1110 static int zonefs_open_zone(struct inode *inode)
1111 {
1112 struct zonefs_inode_info *zi = ZONEFS_I(inode);
1113 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1114 int ret = 0;
1115
1116 mutex_lock(&zi->i_truncate_mutex);
1117
1118 if (!zi->i_wr_refcnt) {
1119 if (atomic_inc_return(&sbi->s_open_zones) > sbi->s_max_open_zones) {
1120 atomic_dec(&sbi->s_open_zones);
1121 ret = -EBUSY;
1122 goto unlock;
1123 }
1124
1125 if (i_size_read(inode) < zi->i_max_size) {
1126 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
1127 if (ret) {
1128 atomic_dec(&sbi->s_open_zones);
1129 goto unlock;
1130 }
1131 zi->i_flags |= ZONEFS_ZONE_OPEN;
1132 }
1133 }
1134
1135 zi->i_wr_refcnt++;
1136
1137 unlock:
1138 mutex_unlock(&zi->i_truncate_mutex);
1139
1140 return ret;
1141 }
1142
zonefs_file_open(struct inode * inode,struct file * file)1143 static int zonefs_file_open(struct inode *inode, struct file *file)
1144 {
1145 int ret;
1146
1147 ret = generic_file_open(inode, file);
1148 if (ret)
1149 return ret;
1150
1151 if (zonefs_file_use_exp_open(inode, file))
1152 return zonefs_open_zone(inode);
1153
1154 return 0;
1155 }
1156
zonefs_close_zone(struct inode * inode)1157 static void zonefs_close_zone(struct inode *inode)
1158 {
1159 struct zonefs_inode_info *zi = ZONEFS_I(inode);
1160 int ret = 0;
1161
1162 mutex_lock(&zi->i_truncate_mutex);
1163 zi->i_wr_refcnt--;
1164 if (!zi->i_wr_refcnt) {
1165 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1166 struct super_block *sb = inode->i_sb;
1167
1168 /*
1169 * If the file zone is full, it is not open anymore and we only
1170 * need to decrement the open count.
1171 */
1172 if (!(zi->i_flags & ZONEFS_ZONE_OPEN))
1173 goto dec;
1174
1175 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1176 if (ret) {
1177 __zonefs_io_error(inode, false);
1178 /*
1179 * Leaving zones explicitly open may lead to a state
1180 * where most zones cannot be written (zone resources
1181 * exhausted). So take preventive action by remounting
1182 * read-only.
1183 */
1184 if (zi->i_flags & ZONEFS_ZONE_OPEN &&
1185 !(sb->s_flags & SB_RDONLY)) {
1186 zonefs_warn(sb, "closing zone failed, remounting filesystem read-only\n");
1187 sb->s_flags |= SB_RDONLY;
1188 }
1189 }
1190 zi->i_flags &= ~ZONEFS_ZONE_OPEN;
1191 dec:
1192 atomic_dec(&sbi->s_open_zones);
1193 }
1194 mutex_unlock(&zi->i_truncate_mutex);
1195 }
1196
zonefs_file_release(struct inode * inode,struct file * file)1197 static int zonefs_file_release(struct inode *inode, struct file *file)
1198 {
1199 /*
1200 * If we explicitly open a zone we must close it again as well, but the
1201 * zone management operation can fail (either due to an IO error or as
1202 * the zone has gone offline or read-only). Make sure we don't fail the
1203 * close(2) for user-space.
1204 */
1205 if (zonefs_file_use_exp_open(inode, file))
1206 zonefs_close_zone(inode);
1207
1208 return 0;
1209 }
1210
1211 static const struct file_operations zonefs_file_operations = {
1212 .open = zonefs_file_open,
1213 .release = zonefs_file_release,
1214 .fsync = zonefs_file_fsync,
1215 .mmap = zonefs_file_mmap,
1216 .llseek = zonefs_file_llseek,
1217 .read_iter = zonefs_file_read_iter,
1218 .write_iter = zonefs_file_write_iter,
1219 .splice_read = generic_file_splice_read,
1220 .splice_write = iter_file_splice_write,
1221 .iopoll = iomap_dio_iopoll,
1222 };
1223
1224 static struct kmem_cache *zonefs_inode_cachep;
1225
zonefs_alloc_inode(struct super_block * sb)1226 static struct inode *zonefs_alloc_inode(struct super_block *sb)
1227 {
1228 struct zonefs_inode_info *zi;
1229
1230 zi = kmem_cache_alloc(zonefs_inode_cachep, GFP_KERNEL);
1231 if (!zi)
1232 return NULL;
1233
1234 inode_init_once(&zi->i_vnode);
1235 mutex_init(&zi->i_truncate_mutex);
1236 init_rwsem(&zi->i_mmap_sem);
1237 zi->i_wr_refcnt = 0;
1238 zi->i_flags = 0;
1239
1240 return &zi->i_vnode;
1241 }
1242
zonefs_free_inode(struct inode * inode)1243 static void zonefs_free_inode(struct inode *inode)
1244 {
1245 kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode));
1246 }
1247
1248 /*
1249 * File system stat.
1250 */
zonefs_statfs(struct dentry * dentry,struct kstatfs * buf)1251 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf)
1252 {
1253 struct super_block *sb = dentry->d_sb;
1254 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1255 enum zonefs_ztype t;
1256 u64 fsid;
1257
1258 buf->f_type = ZONEFS_MAGIC;
1259 buf->f_bsize = sb->s_blocksize;
1260 buf->f_namelen = ZONEFS_NAME_MAX;
1261
1262 spin_lock(&sbi->s_lock);
1263
1264 buf->f_blocks = sbi->s_blocks;
1265 if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks))
1266 buf->f_bfree = 0;
1267 else
1268 buf->f_bfree = buf->f_blocks - sbi->s_used_blocks;
1269 buf->f_bavail = buf->f_bfree;
1270
1271 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1272 if (sbi->s_nr_files[t])
1273 buf->f_files += sbi->s_nr_files[t] + 1;
1274 }
1275 buf->f_ffree = 0;
1276
1277 spin_unlock(&sbi->s_lock);
1278
1279 fsid = le64_to_cpup((void *)sbi->s_uuid.b) ^
1280 le64_to_cpup((void *)sbi->s_uuid.b + sizeof(u64));
1281 buf->f_fsid = u64_to_fsid(fsid);
1282
1283 return 0;
1284 }
1285
1286 enum {
1287 Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair,
1288 Opt_explicit_open, Opt_err,
1289 };
1290
1291 static const match_table_t tokens = {
1292 { Opt_errors_ro, "errors=remount-ro"},
1293 { Opt_errors_zro, "errors=zone-ro"},
1294 { Opt_errors_zol, "errors=zone-offline"},
1295 { Opt_errors_repair, "errors=repair"},
1296 { Opt_explicit_open, "explicit-open" },
1297 { Opt_err, NULL}
1298 };
1299
zonefs_parse_options(struct super_block * sb,char * options)1300 static int zonefs_parse_options(struct super_block *sb, char *options)
1301 {
1302 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1303 substring_t args[MAX_OPT_ARGS];
1304 char *p;
1305
1306 if (!options)
1307 return 0;
1308
1309 while ((p = strsep(&options, ",")) != NULL) {
1310 int token;
1311
1312 if (!*p)
1313 continue;
1314
1315 token = match_token(p, tokens, args);
1316 switch (token) {
1317 case Opt_errors_ro:
1318 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1319 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO;
1320 break;
1321 case Opt_errors_zro:
1322 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1323 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO;
1324 break;
1325 case Opt_errors_zol:
1326 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1327 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL;
1328 break;
1329 case Opt_errors_repair:
1330 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1331 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR;
1332 break;
1333 case Opt_explicit_open:
1334 sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN;
1335 break;
1336 default:
1337 return -EINVAL;
1338 }
1339 }
1340
1341 return 0;
1342 }
1343
zonefs_show_options(struct seq_file * seq,struct dentry * root)1344 static int zonefs_show_options(struct seq_file *seq, struct dentry *root)
1345 {
1346 struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb);
1347
1348 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO)
1349 seq_puts(seq, ",errors=remount-ro");
1350 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)
1351 seq_puts(seq, ",errors=zone-ro");
1352 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)
1353 seq_puts(seq, ",errors=zone-offline");
1354 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR)
1355 seq_puts(seq, ",errors=repair");
1356
1357 return 0;
1358 }
1359
zonefs_remount(struct super_block * sb,int * flags,char * data)1360 static int zonefs_remount(struct super_block *sb, int *flags, char *data)
1361 {
1362 sync_filesystem(sb);
1363
1364 return zonefs_parse_options(sb, data);
1365 }
1366
1367 static const struct super_operations zonefs_sops = {
1368 .alloc_inode = zonefs_alloc_inode,
1369 .free_inode = zonefs_free_inode,
1370 .statfs = zonefs_statfs,
1371 .remount_fs = zonefs_remount,
1372 .show_options = zonefs_show_options,
1373 };
1374
1375 static const struct inode_operations zonefs_dir_inode_operations = {
1376 .lookup = simple_lookup,
1377 .setattr = zonefs_inode_setattr,
1378 };
1379
zonefs_init_dir_inode(struct inode * parent,struct inode * inode,enum zonefs_ztype type)1380 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode,
1381 enum zonefs_ztype type)
1382 {
1383 struct super_block *sb = parent->i_sb;
1384
1385 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk) + type + 1;
1386 inode_init_owner(inode, parent, S_IFDIR | 0555);
1387 inode->i_op = &zonefs_dir_inode_operations;
1388 inode->i_fop = &simple_dir_operations;
1389 set_nlink(inode, 2);
1390 inc_nlink(parent);
1391 }
1392
zonefs_init_file_inode(struct inode * inode,struct blk_zone * zone,enum zonefs_ztype type)1393 static int zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone,
1394 enum zonefs_ztype type)
1395 {
1396 struct super_block *sb = inode->i_sb;
1397 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1398 struct zonefs_inode_info *zi = ZONEFS_I(inode);
1399 int ret = 0;
1400
1401 inode->i_ino = zone->start >> sbi->s_zone_sectors_shift;
1402 inode->i_mode = S_IFREG | sbi->s_perm;
1403
1404 zi->i_ztype = type;
1405 zi->i_zsector = zone->start;
1406 zi->i_zone_size = zone->len << SECTOR_SHIFT;
1407 if (zi->i_zone_size > bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT &&
1408 !(sbi->s_features & ZONEFS_F_AGGRCNV)) {
1409 zonefs_err(sb,
1410 "zone size %llu doesn't match device's zone sectors %llu\n",
1411 zi->i_zone_size,
1412 bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT);
1413 return -EINVAL;
1414 }
1415
1416 zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE,
1417 zone->capacity << SECTOR_SHIFT);
1418 zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true);
1419
1420 inode->i_uid = sbi->s_uid;
1421 inode->i_gid = sbi->s_gid;
1422 inode->i_size = zi->i_wpoffset;
1423 inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT;
1424
1425 inode->i_op = &zonefs_file_inode_operations;
1426 inode->i_fop = &zonefs_file_operations;
1427 inode->i_mapping->a_ops = &zonefs_file_aops;
1428
1429 sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes);
1430 sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits;
1431 sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits;
1432
1433 /*
1434 * For sequential zones, make sure that any open zone is closed first
1435 * to ensure that the initial number of open zones is 0, in sync with
1436 * the open zone accounting done when the mount option
1437 * ZONEFS_MNTOPT_EXPLICIT_OPEN is used.
1438 */
1439 if (type == ZONEFS_ZTYPE_SEQ &&
1440 (zone->cond == BLK_ZONE_COND_IMP_OPEN ||
1441 zone->cond == BLK_ZONE_COND_EXP_OPEN)) {
1442 mutex_lock(&zi->i_truncate_mutex);
1443 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1444 mutex_unlock(&zi->i_truncate_mutex);
1445 }
1446
1447 return ret;
1448 }
1449
zonefs_create_inode(struct dentry * parent,const char * name,struct blk_zone * zone,enum zonefs_ztype type)1450 static struct dentry *zonefs_create_inode(struct dentry *parent,
1451 const char *name, struct blk_zone *zone,
1452 enum zonefs_ztype type)
1453 {
1454 struct inode *dir = d_inode(parent);
1455 struct dentry *dentry;
1456 struct inode *inode;
1457 int ret = -ENOMEM;
1458
1459 dentry = d_alloc_name(parent, name);
1460 if (!dentry)
1461 return ERR_PTR(ret);
1462
1463 inode = new_inode(parent->d_sb);
1464 if (!inode)
1465 goto dput;
1466
1467 inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime;
1468 if (zone) {
1469 ret = zonefs_init_file_inode(inode, zone, type);
1470 if (ret) {
1471 iput(inode);
1472 goto dput;
1473 }
1474 } else {
1475 zonefs_init_dir_inode(dir, inode, type);
1476 }
1477
1478 d_add(dentry, inode);
1479 dir->i_size++;
1480
1481 return dentry;
1482
1483 dput:
1484 dput(dentry);
1485
1486 return ERR_PTR(ret);
1487 }
1488
1489 struct zonefs_zone_data {
1490 struct super_block *sb;
1491 unsigned int nr_zones[ZONEFS_ZTYPE_MAX];
1492 struct blk_zone *zones;
1493 };
1494
1495 /*
1496 * Create a zone group and populate it with zone files.
1497 */
zonefs_create_zgroup(struct zonefs_zone_data * zd,enum zonefs_ztype type)1498 static int zonefs_create_zgroup(struct zonefs_zone_data *zd,
1499 enum zonefs_ztype type)
1500 {
1501 struct super_block *sb = zd->sb;
1502 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1503 struct blk_zone *zone, *next, *end;
1504 const char *zgroup_name;
1505 char *file_name;
1506 struct dentry *dir, *dent;
1507 unsigned int n = 0;
1508 int ret;
1509
1510 /* If the group is empty, there is nothing to do */
1511 if (!zd->nr_zones[type])
1512 return 0;
1513
1514 file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL);
1515 if (!file_name)
1516 return -ENOMEM;
1517
1518 if (type == ZONEFS_ZTYPE_CNV)
1519 zgroup_name = "cnv";
1520 else
1521 zgroup_name = "seq";
1522
1523 dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type);
1524 if (IS_ERR(dir)) {
1525 ret = PTR_ERR(dir);
1526 goto free;
1527 }
1528
1529 /*
1530 * The first zone contains the super block: skip it.
1531 */
1532 end = zd->zones + blkdev_nr_zones(sb->s_bdev->bd_disk);
1533 for (zone = &zd->zones[1]; zone < end; zone = next) {
1534
1535 next = zone + 1;
1536 if (zonefs_zone_type(zone) != type)
1537 continue;
1538
1539 /*
1540 * For conventional zones, contiguous zones can be aggregated
1541 * together to form larger files. Note that this overwrites the
1542 * length of the first zone of the set of contiguous zones
1543 * aggregated together. If one offline or read-only zone is
1544 * found, assume that all zones aggregated have the same
1545 * condition.
1546 */
1547 if (type == ZONEFS_ZTYPE_CNV &&
1548 (sbi->s_features & ZONEFS_F_AGGRCNV)) {
1549 for (; next < end; next++) {
1550 if (zonefs_zone_type(next) != type)
1551 break;
1552 zone->len += next->len;
1553 zone->capacity += next->capacity;
1554 if (next->cond == BLK_ZONE_COND_READONLY &&
1555 zone->cond != BLK_ZONE_COND_OFFLINE)
1556 zone->cond = BLK_ZONE_COND_READONLY;
1557 else if (next->cond == BLK_ZONE_COND_OFFLINE)
1558 zone->cond = BLK_ZONE_COND_OFFLINE;
1559 }
1560 if (zone->capacity != zone->len) {
1561 zonefs_err(sb, "Invalid conventional zone capacity\n");
1562 ret = -EINVAL;
1563 goto free;
1564 }
1565 }
1566
1567 /*
1568 * Use the file number within its group as file name.
1569 */
1570 snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n);
1571 dent = zonefs_create_inode(dir, file_name, zone, type);
1572 if (IS_ERR(dent)) {
1573 ret = PTR_ERR(dent);
1574 goto free;
1575 }
1576
1577 n++;
1578 }
1579
1580 zonefs_info(sb, "Zone group \"%s\" has %u file%s\n",
1581 zgroup_name, n, n > 1 ? "s" : "");
1582
1583 sbi->s_nr_files[type] = n;
1584 ret = 0;
1585
1586 free:
1587 kfree(file_name);
1588
1589 return ret;
1590 }
1591
zonefs_get_zone_info_cb(struct blk_zone * zone,unsigned int idx,void * data)1592 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx,
1593 void *data)
1594 {
1595 struct zonefs_zone_data *zd = data;
1596
1597 /*
1598 * Count the number of usable zones: the first zone at index 0 contains
1599 * the super block and is ignored.
1600 */
1601 switch (zone->type) {
1602 case BLK_ZONE_TYPE_CONVENTIONAL:
1603 zone->wp = zone->start + zone->len;
1604 if (idx)
1605 zd->nr_zones[ZONEFS_ZTYPE_CNV]++;
1606 break;
1607 case BLK_ZONE_TYPE_SEQWRITE_REQ:
1608 case BLK_ZONE_TYPE_SEQWRITE_PREF:
1609 if (idx)
1610 zd->nr_zones[ZONEFS_ZTYPE_SEQ]++;
1611 break;
1612 default:
1613 zonefs_err(zd->sb, "Unsupported zone type 0x%x\n",
1614 zone->type);
1615 return -EIO;
1616 }
1617
1618 memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone));
1619
1620 return 0;
1621 }
1622
zonefs_get_zone_info(struct zonefs_zone_data * zd)1623 static int zonefs_get_zone_info(struct zonefs_zone_data *zd)
1624 {
1625 struct block_device *bdev = zd->sb->s_bdev;
1626 int ret;
1627
1628 zd->zones = kvcalloc(blkdev_nr_zones(bdev->bd_disk),
1629 sizeof(struct blk_zone), GFP_KERNEL);
1630 if (!zd->zones)
1631 return -ENOMEM;
1632
1633 /* Get zones information from the device */
1634 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES,
1635 zonefs_get_zone_info_cb, zd);
1636 if (ret < 0) {
1637 zonefs_err(zd->sb, "Zone report failed %d\n", ret);
1638 return ret;
1639 }
1640
1641 if (ret != blkdev_nr_zones(bdev->bd_disk)) {
1642 zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n",
1643 ret, blkdev_nr_zones(bdev->bd_disk));
1644 return -EIO;
1645 }
1646
1647 return 0;
1648 }
1649
zonefs_cleanup_zone_info(struct zonefs_zone_data * zd)1650 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd)
1651 {
1652 kvfree(zd->zones);
1653 }
1654
1655 /*
1656 * Read super block information from the device.
1657 */
zonefs_read_super(struct super_block * sb)1658 static int zonefs_read_super(struct super_block *sb)
1659 {
1660 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1661 struct zonefs_super *super;
1662 u32 crc, stored_crc;
1663 struct page *page;
1664 struct bio_vec bio_vec;
1665 struct bio bio;
1666 int ret;
1667
1668 page = alloc_page(GFP_KERNEL);
1669 if (!page)
1670 return -ENOMEM;
1671
1672 bio_init(&bio, &bio_vec, 1);
1673 bio.bi_iter.bi_sector = 0;
1674 bio.bi_opf = REQ_OP_READ;
1675 bio_set_dev(&bio, sb->s_bdev);
1676 bio_add_page(&bio, page, PAGE_SIZE, 0);
1677
1678 ret = submit_bio_wait(&bio);
1679 if (ret)
1680 goto free_page;
1681
1682 super = kmap(page);
1683
1684 ret = -EINVAL;
1685 if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC)
1686 goto unmap;
1687
1688 stored_crc = le32_to_cpu(super->s_crc);
1689 super->s_crc = 0;
1690 crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super));
1691 if (crc != stored_crc) {
1692 zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)",
1693 crc, stored_crc);
1694 goto unmap;
1695 }
1696
1697 sbi->s_features = le64_to_cpu(super->s_features);
1698 if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) {
1699 zonefs_err(sb, "Unknown features set 0x%llx\n",
1700 sbi->s_features);
1701 goto unmap;
1702 }
1703
1704 if (sbi->s_features & ZONEFS_F_UID) {
1705 sbi->s_uid = make_kuid(current_user_ns(),
1706 le32_to_cpu(super->s_uid));
1707 if (!uid_valid(sbi->s_uid)) {
1708 zonefs_err(sb, "Invalid UID feature\n");
1709 goto unmap;
1710 }
1711 }
1712
1713 if (sbi->s_features & ZONEFS_F_GID) {
1714 sbi->s_gid = make_kgid(current_user_ns(),
1715 le32_to_cpu(super->s_gid));
1716 if (!gid_valid(sbi->s_gid)) {
1717 zonefs_err(sb, "Invalid GID feature\n");
1718 goto unmap;
1719 }
1720 }
1721
1722 if (sbi->s_features & ZONEFS_F_PERM)
1723 sbi->s_perm = le32_to_cpu(super->s_perm);
1724
1725 if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) {
1726 zonefs_err(sb, "Reserved area is being used\n");
1727 goto unmap;
1728 }
1729
1730 import_uuid(&sbi->s_uuid, super->s_uuid);
1731 ret = 0;
1732
1733 unmap:
1734 kunmap(page);
1735 free_page:
1736 __free_page(page);
1737
1738 return ret;
1739 }
1740
1741 /*
1742 * Check that the device is zoned. If it is, get the list of zones and create
1743 * sub-directories and files according to the device zone configuration and
1744 * format options.
1745 */
zonefs_fill_super(struct super_block * sb,void * data,int silent)1746 static int zonefs_fill_super(struct super_block *sb, void *data, int silent)
1747 {
1748 struct zonefs_zone_data zd;
1749 struct zonefs_sb_info *sbi;
1750 struct inode *inode;
1751 enum zonefs_ztype t;
1752 int ret;
1753
1754 if (!bdev_is_zoned(sb->s_bdev)) {
1755 zonefs_err(sb, "Not a zoned block device\n");
1756 return -EINVAL;
1757 }
1758
1759 /*
1760 * Initialize super block information: the maximum file size is updated
1761 * when the zone files are created so that the format option
1762 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file
1763 * beyond the zone size is taken into account.
1764 */
1765 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
1766 if (!sbi)
1767 return -ENOMEM;
1768
1769 spin_lock_init(&sbi->s_lock);
1770 sb->s_fs_info = sbi;
1771 sb->s_magic = ZONEFS_MAGIC;
1772 sb->s_maxbytes = 0;
1773 sb->s_op = &zonefs_sops;
1774 sb->s_time_gran = 1;
1775
1776 /*
1777 * The block size is set to the device physical sector size to ensure
1778 * that write operations on 512e devices (512B logical block and 4KB
1779 * physical block) are always aligned to the device physical blocks,
1780 * as mandated by the ZBC/ZAC specifications.
1781 */
1782 sb_set_blocksize(sb, bdev_physical_block_size(sb->s_bdev));
1783 sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev));
1784 sbi->s_uid = GLOBAL_ROOT_UID;
1785 sbi->s_gid = GLOBAL_ROOT_GID;
1786 sbi->s_perm = 0640;
1787 sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO;
1788 sbi->s_max_open_zones = bdev_max_open_zones(sb->s_bdev);
1789 atomic_set(&sbi->s_open_zones, 0);
1790
1791 ret = zonefs_read_super(sb);
1792 if (ret)
1793 return ret;
1794
1795 ret = zonefs_parse_options(sb, data);
1796 if (ret)
1797 return ret;
1798
1799 memset(&zd, 0, sizeof(struct zonefs_zone_data));
1800 zd.sb = sb;
1801 ret = zonefs_get_zone_info(&zd);
1802 if (ret)
1803 goto cleanup;
1804
1805 zonefs_info(sb, "Mounting %u zones",
1806 blkdev_nr_zones(sb->s_bdev->bd_disk));
1807
1808 if (!sbi->s_max_open_zones &&
1809 sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
1810 zonefs_info(sb, "No open zones limit. Ignoring explicit_open mount option\n");
1811 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN;
1812 }
1813
1814 /* Create root directory inode */
1815 ret = -ENOMEM;
1816 inode = new_inode(sb);
1817 if (!inode)
1818 goto cleanup;
1819
1820 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk);
1821 inode->i_mode = S_IFDIR | 0555;
1822 inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode);
1823 inode->i_op = &zonefs_dir_inode_operations;
1824 inode->i_fop = &simple_dir_operations;
1825 set_nlink(inode, 2);
1826
1827 sb->s_root = d_make_root(inode);
1828 if (!sb->s_root)
1829 goto cleanup;
1830
1831 /* Create and populate files in zone groups directories */
1832 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1833 ret = zonefs_create_zgroup(&zd, t);
1834 if (ret)
1835 break;
1836 }
1837
1838 cleanup:
1839 zonefs_cleanup_zone_info(&zd);
1840
1841 return ret;
1842 }
1843
zonefs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)1844 static struct dentry *zonefs_mount(struct file_system_type *fs_type,
1845 int flags, const char *dev_name, void *data)
1846 {
1847 return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super);
1848 }
1849
zonefs_kill_super(struct super_block * sb)1850 static void zonefs_kill_super(struct super_block *sb)
1851 {
1852 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1853
1854 if (sb->s_root)
1855 d_genocide(sb->s_root);
1856 kill_block_super(sb);
1857 kfree(sbi);
1858 }
1859
1860 /*
1861 * File system definition and registration.
1862 */
1863 static struct file_system_type zonefs_type = {
1864 .owner = THIS_MODULE,
1865 .name = "zonefs",
1866 .mount = zonefs_mount,
1867 .kill_sb = zonefs_kill_super,
1868 .fs_flags = FS_REQUIRES_DEV,
1869 };
1870
zonefs_init_inodecache(void)1871 static int __init zonefs_init_inodecache(void)
1872 {
1873 zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache",
1874 sizeof(struct zonefs_inode_info), 0,
1875 (SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT),
1876 NULL);
1877 if (zonefs_inode_cachep == NULL)
1878 return -ENOMEM;
1879 return 0;
1880 }
1881
zonefs_destroy_inodecache(void)1882 static void zonefs_destroy_inodecache(void)
1883 {
1884 /*
1885 * Make sure all delayed rcu free inodes are flushed before we
1886 * destroy the inode cache.
1887 */
1888 rcu_barrier();
1889 kmem_cache_destroy(zonefs_inode_cachep);
1890 }
1891
zonefs_init(void)1892 static int __init zonefs_init(void)
1893 {
1894 int ret;
1895
1896 BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE);
1897
1898 ret = zonefs_init_inodecache();
1899 if (ret)
1900 return ret;
1901
1902 ret = register_filesystem(&zonefs_type);
1903 if (ret) {
1904 zonefs_destroy_inodecache();
1905 return ret;
1906 }
1907
1908 return 0;
1909 }
1910
zonefs_exit(void)1911 static void __exit zonefs_exit(void)
1912 {
1913 zonefs_destroy_inodecache();
1914 unregister_filesystem(&zonefs_type);
1915 }
1916
1917 MODULE_AUTHOR("Damien Le Moal");
1918 MODULE_DESCRIPTION("Zone file system for zoned block devices");
1919 MODULE_LICENSE("GPL");
1920 MODULE_ALIAS_FS("zonefs");
1921 MODULE_IMPORT_NS(ANDROID_GKI_VFS_EXPORT_ONLY);
1922 module_init(zonefs_init);
1923 module_exit(zonefs_exit);
1924