1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* include/asm-generic/tlb.h
3 *
4 * Generic TLB shootdown code
5 *
6 * Copyright 2001 Red Hat, Inc.
7 * Based on code from mm/memory.c Copyright Linus Torvalds and others.
8 *
9 * Copyright 2011 Red Hat, Inc., Peter Zijlstra
10 */
11 #ifndef _ASM_GENERIC__TLB_H
12 #define _ASM_GENERIC__TLB_H
13
14 #include <linux/mmu_notifier.h>
15 #include <linux/swap.h>
16 #include <linux/hugetlb_inline.h>
17 #include <asm/tlbflush.h>
18 #include <asm/cacheflush.h>
19
20 /*
21 * Blindly accessing user memory from NMI context can be dangerous
22 * if we're in the middle of switching the current user task or switching
23 * the loaded mm.
24 */
25 #ifndef nmi_uaccess_okay
26 # define nmi_uaccess_okay() true
27 #endif
28
29 #ifdef CONFIG_MMU
30
31 /*
32 * Generic MMU-gather implementation.
33 *
34 * The mmu_gather data structure is used by the mm code to implement the
35 * correct and efficient ordering of freeing pages and TLB invalidations.
36 *
37 * This correct ordering is:
38 *
39 * 1) unhook page
40 * 2) TLB invalidate page
41 * 3) free page
42 *
43 * That is, we must never free a page before we have ensured there are no live
44 * translations left to it. Otherwise it might be possible to observe (or
45 * worse, change) the page content after it has been reused.
46 *
47 * The mmu_gather API consists of:
48 *
49 * - tlb_gather_mmu() / tlb_finish_mmu(); start and finish a mmu_gather
50 *
51 * Finish in particular will issue a (final) TLB invalidate and free
52 * all (remaining) queued pages.
53 *
54 * - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA
55 *
56 * Defaults to flushing at tlb_end_vma() to reset the range; helps when
57 * there's large holes between the VMAs.
58 *
59 * - tlb_remove_table()
60 *
61 * tlb_remove_table() is the basic primitive to free page-table directories
62 * (__p*_free_tlb()). In it's most primitive form it is an alias for
63 * tlb_remove_page() below, for when page directories are pages and have no
64 * additional constraints.
65 *
66 * See also MMU_GATHER_TABLE_FREE and MMU_GATHER_RCU_TABLE_FREE.
67 *
68 * - tlb_remove_page() / __tlb_remove_page()
69 * - tlb_remove_page_size() / __tlb_remove_page_size()
70 *
71 * __tlb_remove_page_size() is the basic primitive that queues a page for
72 * freeing. __tlb_remove_page() assumes PAGE_SIZE. Both will return a
73 * boolean indicating if the queue is (now) full and a call to
74 * tlb_flush_mmu() is required.
75 *
76 * tlb_remove_page() and tlb_remove_page_size() imply the call to
77 * tlb_flush_mmu() when required and has no return value.
78 *
79 * - tlb_change_page_size()
80 *
81 * call before __tlb_remove_page*() to set the current page-size; implies a
82 * possible tlb_flush_mmu() call.
83 *
84 * - tlb_flush_mmu() / tlb_flush_mmu_tlbonly()
85 *
86 * tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets
87 * related state, like the range)
88 *
89 * tlb_flush_mmu() - in addition to the above TLB invalidate, also frees
90 * whatever pages are still batched.
91 *
92 * - mmu_gather::fullmm
93 *
94 * A flag set by tlb_gather_mmu() to indicate we're going to free
95 * the entire mm; this allows a number of optimizations.
96 *
97 * - We can ignore tlb_{start,end}_vma(); because we don't
98 * care about ranges. Everything will be shot down.
99 *
100 * - (RISC) architectures that use ASIDs can cycle to a new ASID
101 * and delay the invalidation until ASID space runs out.
102 *
103 * - mmu_gather::need_flush_all
104 *
105 * A flag that can be set by the arch code if it wants to force
106 * flush the entire TLB irrespective of the range. For instance
107 * x86-PAE needs this when changing top-level entries.
108 *
109 * And allows the architecture to provide and implement tlb_flush():
110 *
111 * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make
112 * use of:
113 *
114 * - mmu_gather::start / mmu_gather::end
115 *
116 * which provides the range that needs to be flushed to cover the pages to
117 * be freed.
118 *
119 * - mmu_gather::freed_tables
120 *
121 * set when we freed page table pages
122 *
123 * - tlb_get_unmap_shift() / tlb_get_unmap_size()
124 *
125 * returns the smallest TLB entry size unmapped in this range.
126 *
127 * If an architecture does not provide tlb_flush() a default implementation
128 * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is
129 * specified, in which case we'll default to flush_tlb_mm().
130 *
131 * Additionally there are a few opt-in features:
132 *
133 * MMU_GATHER_PAGE_SIZE
134 *
135 * This ensures we call tlb_flush() every time tlb_change_page_size() actually
136 * changes the size and provides mmu_gather::page_size to tlb_flush().
137 *
138 * This might be useful if your architecture has size specific TLB
139 * invalidation instructions.
140 *
141 * MMU_GATHER_TABLE_FREE
142 *
143 * This provides tlb_remove_table(), to be used instead of tlb_remove_page()
144 * for page directores (__p*_free_tlb()).
145 *
146 * Useful if your architecture has non-page page directories.
147 *
148 * When used, an architecture is expected to provide __tlb_remove_table()
149 * which does the actual freeing of these pages.
150 *
151 * MMU_GATHER_RCU_TABLE_FREE
152 *
153 * Like MMU_GATHER_TABLE_FREE, and adds semi-RCU semantics to the free (see
154 * comment below).
155 *
156 * Useful if your architecture doesn't use IPIs for remote TLB invalidates
157 * and therefore doesn't naturally serialize with software page-table walkers.
158 *
159 * MMU_GATHER_NO_RANGE
160 *
161 * Use this if your architecture lacks an efficient flush_tlb_range().
162 *
163 * MMU_GATHER_NO_GATHER
164 *
165 * If the option is set the mmu_gather will not track individual pages for
166 * delayed page free anymore. A platform that enables the option needs to
167 * provide its own implementation of the __tlb_remove_page_size() function to
168 * free pages.
169 *
170 * This is useful if your architecture already flushes TLB entries in the
171 * various ptep_get_and_clear() functions.
172 */
173
174 #ifdef CONFIG_MMU_GATHER_TABLE_FREE
175
176 struct mmu_table_batch {
177 #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
178 struct rcu_head rcu;
179 #endif
180 unsigned int nr;
181 void *tables[0];
182 };
183
184 #define MAX_TABLE_BATCH \
185 ((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *))
186
187 extern void tlb_remove_table(struct mmu_gather *tlb, void *table);
188
189 #else /* !CONFIG_MMU_GATHER_HAVE_TABLE_FREE */
190
191 /*
192 * Without MMU_GATHER_TABLE_FREE the architecture is assumed to have page based
193 * page directories and we can use the normal page batching to free them.
194 */
195 #define tlb_remove_table(tlb, page) tlb_remove_page((tlb), (page))
196
197 #endif /* CONFIG_MMU_GATHER_TABLE_FREE */
198
199 #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
200 /*
201 * This allows an architecture that does not use the linux page-tables for
202 * hardware to skip the TLBI when freeing page tables.
203 */
204 #ifndef tlb_needs_table_invalidate
205 #define tlb_needs_table_invalidate() (true)
206 #endif
207
208 void tlb_remove_table_sync_one(void);
209
210 #else
211
212 #ifdef tlb_needs_table_invalidate
213 #error tlb_needs_table_invalidate() requires MMU_GATHER_RCU_TABLE_FREE
214 #endif
215
tlb_remove_table_sync_one(void)216 static inline void tlb_remove_table_sync_one(void) { }
217
218 #endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */
219
220
221 #ifndef CONFIG_MMU_GATHER_NO_GATHER
222 /*
223 * If we can't allocate a page to make a big batch of page pointers
224 * to work on, then just handle a few from the on-stack structure.
225 */
226 #define MMU_GATHER_BUNDLE 8
227
228 struct mmu_gather_batch {
229 struct mmu_gather_batch *next;
230 unsigned int nr;
231 unsigned int max;
232 struct page *pages[0];
233 };
234
235 #define MAX_GATHER_BATCH \
236 ((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *))
237
238 /*
239 * Limit the maximum number of mmu_gather batches to reduce a risk of soft
240 * lockups for non-preemptible kernels on huge machines when a lot of memory
241 * is zapped during unmapping.
242 * 10K pages freed at once should be safe even without a preemption point.
243 */
244 #define MAX_GATHER_BATCH_COUNT (10000UL/MAX_GATHER_BATCH)
245
246 extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page,
247 int page_size);
248 #endif
249
250 /*
251 * struct mmu_gather is an opaque type used by the mm code for passing around
252 * any data needed by arch specific code for tlb_remove_page.
253 */
254 struct mmu_gather {
255 struct mm_struct *mm;
256
257 #ifdef CONFIG_MMU_GATHER_TABLE_FREE
258 struct mmu_table_batch *batch;
259 #endif
260
261 unsigned long start;
262 unsigned long end;
263 /*
264 * we are in the middle of an operation to clear
265 * a full mm and can make some optimizations
266 */
267 unsigned int fullmm : 1;
268
269 /*
270 * we have performed an operation which
271 * requires a complete flush of the tlb
272 */
273 unsigned int need_flush_all : 1;
274
275 /*
276 * we have removed page directories
277 */
278 unsigned int freed_tables : 1;
279
280 /*
281 * at which levels have we cleared entries?
282 */
283 unsigned int cleared_ptes : 1;
284 unsigned int cleared_pmds : 1;
285 unsigned int cleared_puds : 1;
286 unsigned int cleared_p4ds : 1;
287
288 /*
289 * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma
290 */
291 unsigned int vma_exec : 1;
292 unsigned int vma_huge : 1;
293
294 unsigned int batch_count;
295
296 #ifndef CONFIG_MMU_GATHER_NO_GATHER
297 struct mmu_gather_batch *active;
298 struct mmu_gather_batch local;
299 struct page *__pages[MMU_GATHER_BUNDLE];
300
301 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE
302 unsigned int page_size;
303 #endif
304 #endif
305 };
306
307 void tlb_flush_mmu(struct mmu_gather *tlb);
308
__tlb_adjust_range(struct mmu_gather * tlb,unsigned long address,unsigned int range_size)309 static inline void __tlb_adjust_range(struct mmu_gather *tlb,
310 unsigned long address,
311 unsigned int range_size)
312 {
313 tlb->start = min(tlb->start, address);
314 tlb->end = max(tlb->end, address + range_size);
315 }
316
__tlb_reset_range(struct mmu_gather * tlb)317 static inline void __tlb_reset_range(struct mmu_gather *tlb)
318 {
319 if (tlb->fullmm) {
320 tlb->start = tlb->end = ~0;
321 } else {
322 tlb->start = TASK_SIZE;
323 tlb->end = 0;
324 }
325 tlb->freed_tables = 0;
326 tlb->cleared_ptes = 0;
327 tlb->cleared_pmds = 0;
328 tlb->cleared_puds = 0;
329 tlb->cleared_p4ds = 0;
330 /*
331 * Do not reset mmu_gather::vma_* fields here, we do not
332 * call into tlb_start_vma() again to set them if there is an
333 * intermediate flush.
334 */
335 }
336
337 #ifdef CONFIG_MMU_GATHER_NO_RANGE
338
339 #if defined(tlb_flush) || defined(tlb_start_vma) || defined(tlb_end_vma)
340 #error MMU_GATHER_NO_RANGE relies on default tlb_flush(), tlb_start_vma() and tlb_end_vma()
341 #endif
342
343 /*
344 * When an architecture does not have efficient means of range flushing TLBs
345 * there is no point in doing intermediate flushes on tlb_end_vma() to keep the
346 * range small. We equally don't have to worry about page granularity or other
347 * things.
348 *
349 * All we need to do is issue a full flush for any !0 range.
350 */
tlb_flush(struct mmu_gather * tlb)351 static inline void tlb_flush(struct mmu_gather *tlb)
352 {
353 if (tlb->end)
354 flush_tlb_mm(tlb->mm);
355 }
356
357 static inline void
tlb_update_vma_flags(struct mmu_gather * tlb,struct vm_area_struct * vma)358 tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
359
360 #define tlb_end_vma tlb_end_vma
tlb_end_vma(struct mmu_gather * tlb,struct vm_area_struct * vma)361 static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
362
363 #else /* CONFIG_MMU_GATHER_NO_RANGE */
364
365 #ifndef tlb_flush
366
367 #if defined(tlb_start_vma) || defined(tlb_end_vma)
368 #error Default tlb_flush() relies on default tlb_start_vma() and tlb_end_vma()
369 #endif
370
371 /*
372 * When an architecture does not provide its own tlb_flush() implementation
373 * but does have a reasonably efficient flush_vma_range() implementation
374 * use that.
375 */
tlb_flush(struct mmu_gather * tlb)376 static inline void tlb_flush(struct mmu_gather *tlb)
377 {
378 if (tlb->fullmm || tlb->need_flush_all) {
379 flush_tlb_mm(tlb->mm);
380 } else if (tlb->end) {
381 struct vm_area_struct vma = {
382 .vm_mm = tlb->mm,
383 .vm_flags = (tlb->vma_exec ? VM_EXEC : 0) |
384 (tlb->vma_huge ? VM_HUGETLB : 0),
385 };
386
387 flush_tlb_range(&vma, tlb->start, tlb->end);
388 }
389 }
390
391 static inline void
tlb_update_vma_flags(struct mmu_gather * tlb,struct vm_area_struct * vma)392 tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma)
393 {
394 /*
395 * flush_tlb_range() implementations that look at VM_HUGETLB (tile,
396 * mips-4k) flush only large pages.
397 *
398 * flush_tlb_range() implementations that flush I-TLB also flush D-TLB
399 * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing
400 * range.
401 *
402 * We rely on tlb_end_vma() to issue a flush, such that when we reset
403 * these values the batch is empty.
404 */
405 tlb->vma_huge = is_vm_hugetlb_page(vma);
406 tlb->vma_exec = !!(vma->vm_flags & VM_EXEC);
407 }
408
409 #else
410
411 static inline void
tlb_update_vma_flags(struct mmu_gather * tlb,struct vm_area_struct * vma)412 tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
413
414 #endif
415
416 #endif /* CONFIG_MMU_GATHER_NO_RANGE */
417
tlb_flush_mmu_tlbonly(struct mmu_gather * tlb)418 static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
419 {
420 /*
421 * Anything calling __tlb_adjust_range() also sets at least one of
422 * these bits.
423 */
424 if (!(tlb->freed_tables || tlb->cleared_ptes || tlb->cleared_pmds ||
425 tlb->cleared_puds || tlb->cleared_p4ds))
426 return;
427
428 tlb_flush(tlb);
429 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
430 __tlb_reset_range(tlb);
431 }
432
tlb_remove_page_size(struct mmu_gather * tlb,struct page * page,int page_size)433 static inline void tlb_remove_page_size(struct mmu_gather *tlb,
434 struct page *page, int page_size)
435 {
436 if (__tlb_remove_page_size(tlb, page, page_size))
437 tlb_flush_mmu(tlb);
438 }
439
__tlb_remove_page(struct mmu_gather * tlb,struct page * page)440 static inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
441 {
442 return __tlb_remove_page_size(tlb, page, PAGE_SIZE);
443 }
444
445 /* tlb_remove_page
446 * Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when
447 * required.
448 */
tlb_remove_page(struct mmu_gather * tlb,struct page * page)449 static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page)
450 {
451 return tlb_remove_page_size(tlb, page, PAGE_SIZE);
452 }
453
tlb_change_page_size(struct mmu_gather * tlb,unsigned int page_size)454 static inline void tlb_change_page_size(struct mmu_gather *tlb,
455 unsigned int page_size)
456 {
457 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE
458 if (tlb->page_size && tlb->page_size != page_size) {
459 if (!tlb->fullmm && !tlb->need_flush_all)
460 tlb_flush_mmu(tlb);
461 }
462
463 tlb->page_size = page_size;
464 #endif
465 }
466
tlb_get_unmap_shift(struct mmu_gather * tlb)467 static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb)
468 {
469 if (tlb->cleared_ptes)
470 return PAGE_SHIFT;
471 if (tlb->cleared_pmds)
472 return PMD_SHIFT;
473 if (tlb->cleared_puds)
474 return PUD_SHIFT;
475 if (tlb->cleared_p4ds)
476 return P4D_SHIFT;
477
478 return PAGE_SHIFT;
479 }
480
tlb_get_unmap_size(struct mmu_gather * tlb)481 static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb)
482 {
483 return 1UL << tlb_get_unmap_shift(tlb);
484 }
485
486 /*
487 * In the case of tlb vma handling, we can optimise these away in the
488 * case where we're doing a full MM flush. When we're doing a munmap,
489 * the vmas are adjusted to only cover the region to be torn down.
490 */
491 #ifndef tlb_start_vma
tlb_start_vma(struct mmu_gather * tlb,struct vm_area_struct * vma)492 static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
493 {
494 if (tlb->fullmm)
495 return;
496
497 tlb_update_vma_flags(tlb, vma);
498 flush_cache_range(vma, vma->vm_start, vma->vm_end);
499 }
500 #endif
501
502 #ifndef tlb_end_vma
tlb_end_vma(struct mmu_gather * tlb,struct vm_area_struct * vma)503 static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
504 {
505 if (tlb->fullmm)
506 return;
507
508 /*
509 * Do a TLB flush and reset the range at VMA boundaries; this avoids
510 * the ranges growing with the unused space between consecutive VMAs,
511 * but also the mmu_gather::vma_* flags from tlb_start_vma() rely on
512 * this.
513 */
514 tlb_flush_mmu_tlbonly(tlb);
515 }
516 #endif
517
518 /*
519 * tlb_flush_{pte|pmd|pud|p4d}_range() adjust the tlb->start and tlb->end,
520 * and set corresponding cleared_*.
521 */
tlb_flush_pte_range(struct mmu_gather * tlb,unsigned long address,unsigned long size)522 static inline void tlb_flush_pte_range(struct mmu_gather *tlb,
523 unsigned long address, unsigned long size)
524 {
525 __tlb_adjust_range(tlb, address, size);
526 tlb->cleared_ptes = 1;
527 }
528
tlb_flush_pmd_range(struct mmu_gather * tlb,unsigned long address,unsigned long size)529 static inline void tlb_flush_pmd_range(struct mmu_gather *tlb,
530 unsigned long address, unsigned long size)
531 {
532 __tlb_adjust_range(tlb, address, size);
533 tlb->cleared_pmds = 1;
534 }
535
tlb_flush_pud_range(struct mmu_gather * tlb,unsigned long address,unsigned long size)536 static inline void tlb_flush_pud_range(struct mmu_gather *tlb,
537 unsigned long address, unsigned long size)
538 {
539 __tlb_adjust_range(tlb, address, size);
540 tlb->cleared_puds = 1;
541 }
542
tlb_flush_p4d_range(struct mmu_gather * tlb,unsigned long address,unsigned long size)543 static inline void tlb_flush_p4d_range(struct mmu_gather *tlb,
544 unsigned long address, unsigned long size)
545 {
546 __tlb_adjust_range(tlb, address, size);
547 tlb->cleared_p4ds = 1;
548 }
549
550 #ifndef __tlb_remove_tlb_entry
551 #define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0)
552 #endif
553
554 /**
555 * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation.
556 *
557 * Record the fact that pte's were really unmapped by updating the range,
558 * so we can later optimise away the tlb invalidate. This helps when
559 * userspace is unmapping already-unmapped pages, which happens quite a lot.
560 */
561 #define tlb_remove_tlb_entry(tlb, ptep, address) \
562 do { \
563 tlb_flush_pte_range(tlb, address, PAGE_SIZE); \
564 __tlb_remove_tlb_entry(tlb, ptep, address); \
565 } while (0)
566
567 #define tlb_remove_huge_tlb_entry(h, tlb, ptep, address) \
568 do { \
569 unsigned long _sz = huge_page_size(h); \
570 if (_sz >= P4D_SIZE) \
571 tlb_flush_p4d_range(tlb, address, _sz); \
572 else if (_sz >= PUD_SIZE) \
573 tlb_flush_pud_range(tlb, address, _sz); \
574 else if (_sz >= PMD_SIZE) \
575 tlb_flush_pmd_range(tlb, address, _sz); \
576 else \
577 tlb_flush_pte_range(tlb, address, _sz); \
578 __tlb_remove_tlb_entry(tlb, ptep, address); \
579 } while (0)
580
581 /**
582 * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation
583 * This is a nop so far, because only x86 needs it.
584 */
585 #ifndef __tlb_remove_pmd_tlb_entry
586 #define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0)
587 #endif
588
589 #define tlb_remove_pmd_tlb_entry(tlb, pmdp, address) \
590 do { \
591 tlb_flush_pmd_range(tlb, address, HPAGE_PMD_SIZE); \
592 __tlb_remove_pmd_tlb_entry(tlb, pmdp, address); \
593 } while (0)
594
595 /**
596 * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb
597 * invalidation. This is a nop so far, because only x86 needs it.
598 */
599 #ifndef __tlb_remove_pud_tlb_entry
600 #define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0)
601 #endif
602
603 #define tlb_remove_pud_tlb_entry(tlb, pudp, address) \
604 do { \
605 tlb_flush_pud_range(tlb, address, HPAGE_PUD_SIZE); \
606 __tlb_remove_pud_tlb_entry(tlb, pudp, address); \
607 } while (0)
608
609 /*
610 * For things like page tables caches (ie caching addresses "inside" the
611 * page tables, like x86 does), for legacy reasons, flushing an
612 * individual page had better flush the page table caches behind it. This
613 * is definitely how x86 works, for example. And if you have an
614 * architected non-legacy page table cache (which I'm not aware of
615 * anybody actually doing), you're going to have some architecturally
616 * explicit flushing for that, likely *separate* from a regular TLB entry
617 * flush, and thus you'd need more than just some range expansion..
618 *
619 * So if we ever find an architecture
620 * that would want something that odd, I think it is up to that
621 * architecture to do its own odd thing, not cause pain for others
622 * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com
623 *
624 * For now w.r.t page table cache, mark the range_size as PAGE_SIZE
625 */
626
627 #ifndef pte_free_tlb
628 #define pte_free_tlb(tlb, ptep, address) \
629 do { \
630 tlb_flush_pmd_range(tlb, address, PAGE_SIZE); \
631 tlb->freed_tables = 1; \
632 __pte_free_tlb(tlb, ptep, address); \
633 } while (0)
634 #endif
635
636 #ifndef pmd_free_tlb
637 #define pmd_free_tlb(tlb, pmdp, address) \
638 do { \
639 tlb_flush_pud_range(tlb, address, PAGE_SIZE); \
640 tlb->freed_tables = 1; \
641 __pmd_free_tlb(tlb, pmdp, address); \
642 } while (0)
643 #endif
644
645 #ifndef pud_free_tlb
646 #define pud_free_tlb(tlb, pudp, address) \
647 do { \
648 tlb_flush_p4d_range(tlb, address, PAGE_SIZE); \
649 tlb->freed_tables = 1; \
650 __pud_free_tlb(tlb, pudp, address); \
651 } while (0)
652 #endif
653
654 #ifndef p4d_free_tlb
655 #define p4d_free_tlb(tlb, pudp, address) \
656 do { \
657 __tlb_adjust_range(tlb, address, PAGE_SIZE); \
658 tlb->freed_tables = 1; \
659 __p4d_free_tlb(tlb, pudp, address); \
660 } while (0)
661 #endif
662
663 #endif /* CONFIG_MMU */
664
665 #endif /* _ASM_GENERIC__TLB_H */
666