• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #ifndef _LINUX_BPF_VERIFIER_H
5 #define _LINUX_BPF_VERIFIER_H 1
6 
7 #include <linux/bpf.h> /* for enum bpf_reg_type */
8 #include <linux/filter.h> /* for MAX_BPF_STACK */
9 #include <linux/tnum.h>
10 #include <linux/android_kabi.h>
11 
12 /* Maximum variable offset umax_value permitted when resolving memory accesses.
13  * In practice this is far bigger than any realistic pointer offset; this limit
14  * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
15  */
16 #define BPF_MAX_VAR_OFF	(1 << 29)
17 /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO].  This ensures
18  * that converting umax_value to int cannot overflow.
19  */
20 #define BPF_MAX_VAR_SIZ	(1 << 29)
21 
22 /* Liveness marks, used for registers and spilled-regs (in stack slots).
23  * Read marks propagate upwards until they find a write mark; they record that
24  * "one of this state's descendants read this reg" (and therefore the reg is
25  * relevant for states_equal() checks).
26  * Write marks collect downwards and do not propagate; they record that "the
27  * straight-line code that reached this state (from its parent) wrote this reg"
28  * (and therefore that reads propagated from this state or its descendants
29  * should not propagate to its parent).
30  * A state with a write mark can receive read marks; it just won't propagate
31  * them to its parent, since the write mark is a property, not of the state,
32  * but of the link between it and its parent.  See mark_reg_read() and
33  * mark_stack_slot_read() in kernel/bpf/verifier.c.
34  */
35 enum bpf_reg_liveness {
36 	REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
37 	REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */
38 	REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */
39 	REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64,
40 	REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */
41 	REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */
42 };
43 
44 struct bpf_reg_state {
45 	/* Ordering of fields matters.  See states_equal() */
46 	enum bpf_reg_type type;
47 	union {
48 		/* valid when type == PTR_TO_PACKET */
49 		int range;
50 
51 		/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
52 		 *   PTR_TO_MAP_VALUE_OR_NULL
53 		 */
54 		struct bpf_map *map_ptr;
55 
56 		u32 btf_id; /* for PTR_TO_BTF_ID */
57 
58 		u32 mem_size; /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */
59 
60 		/* Max size from any of the above. */
61 		unsigned long raw;
62 	};
63 	/* Fixed part of pointer offset, pointer types only */
64 	s32 off;
65 	/* For PTR_TO_PACKET, used to find other pointers with the same variable
66 	 * offset, so they can share range knowledge.
67 	 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
68 	 * came from, when one is tested for != NULL.
69 	 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation
70 	 * for the purpose of tracking that it's freed.
71 	 * For PTR_TO_SOCKET this is used to share which pointers retain the
72 	 * same reference to the socket, to determine proper reference freeing.
73 	 */
74 	u32 id;
75 	/* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned
76 	 * from a pointer-cast helper, bpf_sk_fullsock() and
77 	 * bpf_tcp_sock().
78 	 *
79 	 * Consider the following where "sk" is a reference counted
80 	 * pointer returned from "sk = bpf_sk_lookup_tcp();":
81 	 *
82 	 * 1: sk = bpf_sk_lookup_tcp();
83 	 * 2: if (!sk) { return 0; }
84 	 * 3: fullsock = bpf_sk_fullsock(sk);
85 	 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; }
86 	 * 5: tp = bpf_tcp_sock(fullsock);
87 	 * 6: if (!tp) { bpf_sk_release(sk); return 0; }
88 	 * 7: bpf_sk_release(sk);
89 	 * 8: snd_cwnd = tp->snd_cwnd;  // verifier will complain
90 	 *
91 	 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and
92 	 * "tp" ptr should be invalidated also.  In order to do that,
93 	 * the reg holding "fullsock" and "sk" need to remember
94 	 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id
95 	 * such that the verifier can reset all regs which have
96 	 * ref_obj_id matching the sk_reg->id.
97 	 *
98 	 * sk_reg->ref_obj_id is set to sk_reg->id at line 1.
99 	 * sk_reg->id will stay as NULL-marking purpose only.
100 	 * After NULL-marking is done, sk_reg->id can be reset to 0.
101 	 *
102 	 * After "fullsock = bpf_sk_fullsock(sk);" at line 3,
103 	 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id.
104 	 *
105 	 * After "tp = bpf_tcp_sock(fullsock);" at line 5,
106 	 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id
107 	 * which is the same as sk_reg->ref_obj_id.
108 	 *
109 	 * From the verifier perspective, if sk, fullsock and tp
110 	 * are not NULL, they are the same ptr with different
111 	 * reg->type.  In particular, bpf_sk_release(tp) is also
112 	 * allowed and has the same effect as bpf_sk_release(sk).
113 	 */
114 	u32 ref_obj_id;
115 	/* For scalar types (SCALAR_VALUE), this represents our knowledge of
116 	 * the actual value.
117 	 * For pointer types, this represents the variable part of the offset
118 	 * from the pointed-to object, and is shared with all bpf_reg_states
119 	 * with the same id as us.
120 	 */
121 	struct tnum var_off;
122 	/* Used to determine if any memory access using this register will
123 	 * result in a bad access.
124 	 * These refer to the same value as var_off, not necessarily the actual
125 	 * contents of the register.
126 	 */
127 	s64 smin_value; /* minimum possible (s64)value */
128 	s64 smax_value; /* maximum possible (s64)value */
129 	u64 umin_value; /* minimum possible (u64)value */
130 	u64 umax_value; /* maximum possible (u64)value */
131 	s32 s32_min_value; /* minimum possible (s32)value */
132 	s32 s32_max_value; /* maximum possible (s32)value */
133 	u32 u32_min_value; /* minimum possible (u32)value */
134 	u32 u32_max_value; /* maximum possible (u32)value */
135 	/* parentage chain for liveness checking */
136 	struct bpf_reg_state *parent;
137 	/* Inside the callee two registers can be both PTR_TO_STACK like
138 	 * R1=fp-8 and R2=fp-8, but one of them points to this function stack
139 	 * while another to the caller's stack. To differentiate them 'frameno'
140 	 * is used which is an index in bpf_verifier_state->frame[] array
141 	 * pointing to bpf_func_state.
142 	 */
143 	u32 frameno;
144 	/* Tracks subreg definition. The stored value is the insn_idx of the
145 	 * writing insn. This is safe because subreg_def is used before any insn
146 	 * patching which only happens after main verification finished.
147 	 */
148 	s32 subreg_def;
149 	enum bpf_reg_liveness live;
150 	/* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */
151 	bool precise;
152 };
153 
154 enum bpf_stack_slot_type {
155 	STACK_INVALID,    /* nothing was stored in this stack slot */
156 	STACK_SPILL,      /* register spilled into stack */
157 	STACK_MISC,	  /* BPF program wrote some data into this slot */
158 	STACK_ZERO,	  /* BPF program wrote constant zero */
159 };
160 
161 #define BPF_REG_SIZE 8	/* size of eBPF register in bytes */
162 
163 struct bpf_stack_state {
164 	struct bpf_reg_state spilled_ptr;
165 	u8 slot_type[BPF_REG_SIZE];
166 };
167 
168 struct bpf_reference_state {
169 	/* Track each reference created with a unique id, even if the same
170 	 * instruction creates the reference multiple times (eg, via CALL).
171 	 */
172 	int id;
173 	/* Instruction where the allocation of this reference occurred. This
174 	 * is used purely to inform the user of a reference leak.
175 	 */
176 	int insn_idx;
177 };
178 
179 /* state of the program:
180  * type of all registers and stack info
181  */
182 struct bpf_func_state {
183 	struct bpf_reg_state regs[MAX_BPF_REG];
184 	/* index of call instruction that called into this func */
185 	int callsite;
186 	/* stack frame number of this function state from pov of
187 	 * enclosing bpf_verifier_state.
188 	 * 0 = main function, 1 = first callee.
189 	 */
190 	u32 frameno;
191 	/* subprog number == index within subprog_info
192 	 * zero == main subprog
193 	 */
194 	u32 subprogno;
195 
196 	/* The following fields should be last. See copy_func_state() */
197 	int acquired_refs;
198 	struct bpf_reference_state *refs;
199 	int allocated_stack;
200 	struct bpf_stack_state *stack;
201 };
202 
203 struct bpf_idx_pair {
204 	u32 prev_idx;
205 	u32 idx;
206 };
207 
208 struct bpf_id_pair {
209 	u32 old;
210 	u32 cur;
211 };
212 
213 /* Maximum number of register states that can exist at once */
214 #define BPF_ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
215 #define MAX_CALL_FRAMES 8
216 struct bpf_verifier_state {
217 	/* call stack tracking */
218 	struct bpf_func_state *frame[MAX_CALL_FRAMES];
219 	struct bpf_verifier_state *parent;
220 	/*
221 	 * 'branches' field is the number of branches left to explore:
222 	 * 0 - all possible paths from this state reached bpf_exit or
223 	 * were safely pruned
224 	 * 1 - at least one path is being explored.
225 	 * This state hasn't reached bpf_exit
226 	 * 2 - at least two paths are being explored.
227 	 * This state is an immediate parent of two children.
228 	 * One is fallthrough branch with branches==1 and another
229 	 * state is pushed into stack (to be explored later) also with
230 	 * branches==1. The parent of this state has branches==1.
231 	 * The verifier state tree connected via 'parent' pointer looks like:
232 	 * 1
233 	 * 1
234 	 * 2 -> 1 (first 'if' pushed into stack)
235 	 * 1
236 	 * 2 -> 1 (second 'if' pushed into stack)
237 	 * 1
238 	 * 1
239 	 * 1 bpf_exit.
240 	 *
241 	 * Once do_check() reaches bpf_exit, it calls update_branch_counts()
242 	 * and the verifier state tree will look:
243 	 * 1
244 	 * 1
245 	 * 2 -> 1 (first 'if' pushed into stack)
246 	 * 1
247 	 * 1 -> 1 (second 'if' pushed into stack)
248 	 * 0
249 	 * 0
250 	 * 0 bpf_exit.
251 	 * After pop_stack() the do_check() will resume at second 'if'.
252 	 *
253 	 * If is_state_visited() sees a state with branches > 0 it means
254 	 * there is a loop. If such state is exactly equal to the current state
255 	 * it's an infinite loop. Note states_equal() checks for states
256 	 * equvalency, so two states being 'states_equal' does not mean
257 	 * infinite loop. The exact comparison is provided by
258 	 * states_maybe_looping() function. It's a stronger pre-check and
259 	 * much faster than states_equal().
260 	 *
261 	 * This algorithm may not find all possible infinite loops or
262 	 * loop iteration count may be too high.
263 	 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in.
264 	 */
265 	u32 branches;
266 	u32 insn_idx;
267 	u32 curframe;
268 	u32 active_spin_lock;
269 	bool speculative;
270 
271 	/* first and last insn idx of this verifier state */
272 	u32 first_insn_idx;
273 	u32 last_insn_idx;
274 	/* jmp history recorded from first to last.
275 	 * backtracking is using it to go from last to first.
276 	 * For most states jmp_history_cnt is [0-3].
277 	 * For loops can go up to ~40.
278 	 */
279 	struct bpf_idx_pair *jmp_history;
280 	u32 jmp_history_cnt;
281 };
282 
283 #define bpf_get_spilled_reg(slot, frame)				\
284 	(((slot < frame->allocated_stack / BPF_REG_SIZE) &&		\
285 	  (frame->stack[slot].slot_type[0] == STACK_SPILL))		\
286 	 ? &frame->stack[slot].spilled_ptr : NULL)
287 
288 /* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
289 #define bpf_for_each_spilled_reg(iter, frame, reg)			\
290 	for (iter = 0, reg = bpf_get_spilled_reg(iter, frame);		\
291 	     iter < frame->allocated_stack / BPF_REG_SIZE;		\
292 	     iter++, reg = bpf_get_spilled_reg(iter, frame))
293 
294 /* Invoke __expr over regsiters in __vst, setting __state and __reg */
295 #define bpf_for_each_reg_in_vstate(__vst, __state, __reg, __expr)   \
296 	({                                                               \
297 		struct bpf_verifier_state *___vstate = __vst;            \
298 		int ___i, ___j;                                          \
299 		for (___i = 0; ___i <= ___vstate->curframe; ___i++) {    \
300 			struct bpf_reg_state *___regs;                   \
301 			__state = ___vstate->frame[___i];                \
302 			___regs = __state->regs;                         \
303 			for (___j = 0; ___j < MAX_BPF_REG; ___j++) {     \
304 				__reg = &___regs[___j];                  \
305 				(void)(__expr);                          \
306 			}                                                \
307 			bpf_for_each_spilled_reg(___j, __state, __reg) { \
308 				if (!__reg)                              \
309 					continue;                        \
310 				(void)(__expr);                          \
311 			}                                                \
312 		}                                                        \
313 	})
314 
315 /* linked list of verifier states used to prune search */
316 struct bpf_verifier_state_list {
317 	struct bpf_verifier_state state;
318 	struct bpf_verifier_state_list *next;
319 	int miss_cnt, hit_cnt;
320 };
321 
322 /* Possible states for alu_state member. */
323 #define BPF_ALU_SANITIZE_SRC		(1U << 0)
324 #define BPF_ALU_SANITIZE_DST		(1U << 1)
325 #define BPF_ALU_NEG_VALUE		(1U << 2)
326 #define BPF_ALU_NON_POINTER		(1U << 3)
327 #define BPF_ALU_IMMEDIATE		(1U << 4)
328 #define BPF_ALU_SANITIZE		(BPF_ALU_SANITIZE_SRC | \
329 					 BPF_ALU_SANITIZE_DST)
330 
331 struct bpf_insn_aux_data {
332 	union {
333 		enum bpf_reg_type ptr_type;	/* pointer type for load/store insns */
334 		unsigned long map_ptr_state;	/* pointer/poison value for maps */
335 		s32 call_imm;			/* saved imm field of call insn */
336 		u32 alu_limit;			/* limit for add/sub register with pointer */
337 		struct {
338 			u32 map_index;		/* index into used_maps[] */
339 			u32 map_off;		/* offset from value base address */
340 		};
341 		struct {
342 			enum bpf_reg_type reg_type;	/* type of pseudo_btf_id */
343 			union {
344 				u32 btf_id;	/* btf_id for struct typed var */
345 				u32 mem_size;	/* mem_size for non-struct typed var */
346 			};
347 		} btf_var;
348 	};
349 	u64 map_key_state; /* constant (32 bit) key tracking for maps */
350 	int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
351 	u32 seen; /* this insn was processed by the verifier at env->pass_cnt */
352 	bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */
353 	bool zext_dst; /* this insn zero extends dst reg */
354 	u8 alu_state; /* used in combination with alu_limit */
355 
356 	/* below fields are initialized once */
357 	unsigned int orig_idx; /* original instruction index */
358 	bool prune_point;
359 };
360 
361 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
362 
363 #define BPF_VERIFIER_TMP_LOG_SIZE	1024
364 
365 struct bpf_verifier_log {
366 	u32 level;
367 	char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
368 	char __user *ubuf;
369 	u32 len_used;
370 	u32 len_total;
371 };
372 
bpf_verifier_log_full(const struct bpf_verifier_log * log)373 static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log)
374 {
375 	return log->len_used >= log->len_total - 1;
376 }
377 
378 #define BPF_LOG_LEVEL1	1
379 #define BPF_LOG_LEVEL2	2
380 #define BPF_LOG_STATS	4
381 #define BPF_LOG_LEVEL	(BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2)
382 #define BPF_LOG_MASK	(BPF_LOG_LEVEL | BPF_LOG_STATS)
383 #define BPF_LOG_KERNEL	(BPF_LOG_MASK + 1) /* kernel internal flag */
384 
bpf_verifier_log_needed(const struct bpf_verifier_log * log)385 static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
386 {
387 	return log &&
388 		((log->level && log->ubuf && !bpf_verifier_log_full(log)) ||
389 		 log->level == BPF_LOG_KERNEL);
390 }
391 
392 static inline bool
bpf_verifier_log_attr_valid(const struct bpf_verifier_log * log)393 bpf_verifier_log_attr_valid(const struct bpf_verifier_log *log)
394 {
395 	return log->len_total >= 128 && log->len_total <= UINT_MAX >> 2 &&
396 	       log->level && log->ubuf && !(log->level & ~BPF_LOG_MASK);
397 }
398 
399 #define BPF_MAX_SUBPROGS 256
400 
401 struct bpf_subprog_info {
402 	/* 'start' has to be the first field otherwise find_subprog() won't work */
403 	u32 start; /* insn idx of function entry point */
404 	u32 linfo_idx; /* The idx to the main_prog->aux->linfo */
405 	u16 stack_depth; /* max. stack depth used by this function */
406 	bool has_tail_call;
407 	bool tail_call_reachable;
408 	bool has_ld_abs;
409 
410 	ANDROID_KABI_RESERVE(1);
411 };
412 
413 /* single container for all structs
414  * one verifier_env per bpf_check() call
415  */
416 struct bpf_verifier_env {
417 	u32 insn_idx;
418 	u32 prev_insn_idx;
419 	struct bpf_prog *prog;		/* eBPF program being verified */
420 	const struct bpf_verifier_ops *ops;
421 	struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
422 	int stack_size;			/* number of states to be processed */
423 	bool strict_alignment;		/* perform strict pointer alignment checks */
424 	bool test_state_freq;		/* test verifier with different pruning frequency */
425 	struct bpf_verifier_state *cur_state; /* current verifier state */
426 	struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
427 	struct bpf_verifier_state_list *free_list;
428 	struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
429 	u32 used_map_cnt;		/* number of used maps */
430 	u32 id_gen;			/* used to generate unique reg IDs */
431 	bool explore_alu_limits;
432 	bool allow_ptr_leaks;
433 	bool allow_uninit_stack;
434 	bool allow_ptr_to_map_access;
435 	bool bpf_capable;
436 	bool bypass_spec_v1;
437 	bool bypass_spec_v4;
438 	bool seen_direct_write;
439 	struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
440 	const struct bpf_line_info *prev_linfo;
441 	struct bpf_verifier_log log;
442 	struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1];
443 	struct bpf_id_pair idmap_scratch[BPF_ID_MAP_SIZE];
444 	struct {
445 		int *insn_state;
446 		int *insn_stack;
447 		int cur_stack;
448 	} cfg;
449 	u32 pass_cnt; /* number of times do_check() was called */
450 	u32 subprog_cnt;
451 	/* number of instructions analyzed by the verifier */
452 	u32 prev_insn_processed, insn_processed;
453 	/* number of jmps, calls, exits analyzed so far */
454 	u32 prev_jmps_processed, jmps_processed;
455 	/* total verification time */
456 	u64 verification_time;
457 	/* maximum number of verifier states kept in 'branching' instructions */
458 	u32 max_states_per_insn;
459 	/* total number of allocated verifier states */
460 	u32 total_states;
461 	/* some states are freed during program analysis.
462 	 * this is peak number of states. this number dominates kernel
463 	 * memory consumption during verification
464 	 */
465 	u32 peak_states;
466 	/* longest register parentage chain walked for liveness marking */
467 	u32 longest_mark_read_walk;
468 
469 	ANDROID_KABI_RESERVE(1);
470 	ANDROID_KABI_RESERVE(2);
471 };
472 
473 __printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
474 				      const char *fmt, va_list args);
475 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
476 					   const char *fmt, ...);
477 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
478 			    const char *fmt, ...);
479 
cur_func(struct bpf_verifier_env * env)480 static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
481 {
482 	struct bpf_verifier_state *cur = env->cur_state;
483 
484 	return cur->frame[cur->curframe];
485 }
486 
cur_regs(struct bpf_verifier_env * env)487 static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
488 {
489 	return cur_func(env)->regs;
490 }
491 
492 int bpf_prog_offload_verifier_prep(struct bpf_prog *prog);
493 int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
494 				 int insn_idx, int prev_insn_idx);
495 int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
496 void
497 bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off,
498 			      struct bpf_insn *insn);
499 void
500 bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt);
501 
502 int check_ctx_reg(struct bpf_verifier_env *env,
503 		  const struct bpf_reg_state *reg, int regno);
504 
505 /* this lives here instead of in bpf.h because it needs to dereference tgt_prog */
bpf_trampoline_compute_key(const struct bpf_prog * tgt_prog,u32 btf_id)506 static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog,
507 					     u32 btf_id)
508 {
509         return tgt_prog ? (((u64)tgt_prog->aux->id) << 32 | btf_id) : btf_id;
510 }
511 
512 int bpf_check_attach_target(struct bpf_verifier_log *log,
513 			    const struct bpf_prog *prog,
514 			    const struct bpf_prog *tgt_prog,
515 			    u32 btf_id,
516 			    struct bpf_attach_target_info *tgt_info);
517 
518 #endif /* _LINUX_BPF_VERIFIER_H */
519