1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6
7 #ifdef __KERNEL__
8
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page-flags.h>
28 #include <linux/page_ref.h>
29 #include <linux/memremap.h>
30 #include <linux/overflow.h>
31 #include <linux/sizes.h>
32 #include <linux/sched.h>
33 #include <linux/pgtable.h>
34 #include <linux/kasan.h>
35 #include <linux/page_pinner.h>
36 #include <linux/android_kabi.h>
37
38 struct mempolicy;
39 struct anon_vma;
40 struct anon_vma_chain;
41 struct file_ra_state;
42 struct user_struct;
43 struct writeback_control;
44 struct bdi_writeback;
45 struct pt_regs;
46
47 extern int sysctl_page_lock_unfairness;
48
49 void init_mm_internals(void);
50
51 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
52 extern unsigned long max_mapnr;
53
set_max_mapnr(unsigned long limit)54 static inline void set_max_mapnr(unsigned long limit)
55 {
56 max_mapnr = limit;
57 }
58 #else
set_max_mapnr(unsigned long limit)59 static inline void set_max_mapnr(unsigned long limit) { }
60 #endif
61
62 extern atomic_long_t _totalram_pages;
totalram_pages(void)63 static inline unsigned long totalram_pages(void)
64 {
65 return (unsigned long)atomic_long_read(&_totalram_pages);
66 }
67
totalram_pages_inc(void)68 static inline void totalram_pages_inc(void)
69 {
70 atomic_long_inc(&_totalram_pages);
71 }
72
totalram_pages_dec(void)73 static inline void totalram_pages_dec(void)
74 {
75 atomic_long_dec(&_totalram_pages);
76 }
77
totalram_pages_add(long count)78 static inline void totalram_pages_add(long count)
79 {
80 atomic_long_add(count, &_totalram_pages);
81 }
82
83 extern void * high_memory;
84 extern int page_cluster;
85
86 #ifdef CONFIG_SYSCTL
87 extern int sysctl_legacy_va_layout;
88 #else
89 #define sysctl_legacy_va_layout 0
90 #endif
91
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
93 extern const int mmap_rnd_bits_min;
94 extern const int mmap_rnd_bits_max;
95 extern int mmap_rnd_bits __read_mostly;
96 #endif
97 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
98 extern const int mmap_rnd_compat_bits_min;
99 extern const int mmap_rnd_compat_bits_max;
100 extern int mmap_rnd_compat_bits __read_mostly;
101 #endif
102
103 #include <asm/page.h>
104 #include <asm/processor.h>
105
106 /*
107 * Architectures that support memory tagging (assigning tags to memory regions,
108 * embedding these tags into addresses that point to these memory regions, and
109 * checking that the memory and the pointer tags match on memory accesses)
110 * redefine this macro to strip tags from pointers.
111 * It's defined as noop for arcitectures that don't support memory tagging.
112 */
113 #ifndef untagged_addr
114 #define untagged_addr(addr) (addr)
115 #endif
116
117 #ifndef __pa_symbol
118 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
119 #endif
120
121 #ifndef __va_function
122 #define __va_function(x) (x)
123 #endif
124
125 #ifndef __pa_function
126 #define __pa_function(x) __pa_symbol(x)
127 #endif
128
129 #ifndef page_to_virt
130 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
131 #endif
132
133 #ifndef lm_alias
134 #define lm_alias(x) __va(__pa_symbol(x))
135 #endif
136
137 /*
138 * To prevent common memory management code establishing
139 * a zero page mapping on a read fault.
140 * This macro should be defined within <asm/pgtable.h>.
141 * s390 does this to prevent multiplexing of hardware bits
142 * related to the physical page in case of virtualization.
143 */
144 #ifndef mm_forbids_zeropage
145 #define mm_forbids_zeropage(X) (0)
146 #endif
147
148 /*
149 * On some architectures it is expensive to call memset() for small sizes.
150 * If an architecture decides to implement their own version of
151 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
152 * define their own version of this macro in <asm/pgtable.h>
153 */
154 #if BITS_PER_LONG == 64
155 /* This function must be updated when the size of struct page grows above 80
156 * or reduces below 56. The idea that compiler optimizes out switch()
157 * statement, and only leaves move/store instructions. Also the compiler can
158 * combine write statments if they are both assignments and can be reordered,
159 * this can result in several of the writes here being dropped.
160 */
161 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)162 static inline void __mm_zero_struct_page(struct page *page)
163 {
164 unsigned long *_pp = (void *)page;
165
166 /* Check that struct page is either 56, 64, 72, or 80 bytes */
167 BUILD_BUG_ON(sizeof(struct page) & 7);
168 BUILD_BUG_ON(sizeof(struct page) < 56);
169 BUILD_BUG_ON(sizeof(struct page) > 80);
170
171 switch (sizeof(struct page)) {
172 case 80:
173 _pp[9] = 0;
174 fallthrough;
175 case 72:
176 _pp[8] = 0;
177 fallthrough;
178 case 64:
179 _pp[7] = 0;
180 fallthrough;
181 case 56:
182 _pp[6] = 0;
183 _pp[5] = 0;
184 _pp[4] = 0;
185 _pp[3] = 0;
186 _pp[2] = 0;
187 _pp[1] = 0;
188 _pp[0] = 0;
189 }
190 }
191 #else
192 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
193 #endif
194
195 /*
196 * Default maximum number of active map areas, this limits the number of vmas
197 * per mm struct. Users can overwrite this number by sysctl but there is a
198 * problem.
199 *
200 * When a program's coredump is generated as ELF format, a section is created
201 * per a vma. In ELF, the number of sections is represented in unsigned short.
202 * This means the number of sections should be smaller than 65535 at coredump.
203 * Because the kernel adds some informative sections to a image of program at
204 * generating coredump, we need some margin. The number of extra sections is
205 * 1-3 now and depends on arch. We use "5" as safe margin, here.
206 *
207 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
208 * not a hard limit any more. Although some userspace tools can be surprised by
209 * that.
210 */
211 #define MAPCOUNT_ELF_CORE_MARGIN (5)
212 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
213
214 extern int sysctl_max_map_count;
215
216 extern unsigned long sysctl_user_reserve_kbytes;
217 extern unsigned long sysctl_admin_reserve_kbytes;
218
219 extern int sysctl_overcommit_memory;
220 extern int sysctl_overcommit_ratio;
221 extern unsigned long sysctl_overcommit_kbytes;
222
223 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
224 loff_t *);
225 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
226 loff_t *);
227 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
228 loff_t *);
229
230 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
231
232 /* to align the pointer to the (next) page boundary */
233 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
234
235 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
236 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
237
238 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
239
240 /*
241 * Linux kernel virtual memory manager primitives.
242 * The idea being to have a "virtual" mm in the same way
243 * we have a virtual fs - giving a cleaner interface to the
244 * mm details, and allowing different kinds of memory mappings
245 * (from shared memory to executable loading to arbitrary
246 * mmap() functions).
247 */
248
249 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
250 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
251 void vm_area_free(struct vm_area_struct *);
252
253 #ifndef CONFIG_MMU
254 extern struct rb_root nommu_region_tree;
255 extern struct rw_semaphore nommu_region_sem;
256
257 extern unsigned int kobjsize(const void *objp);
258 #endif
259
260 /*
261 * vm_flags in vm_area_struct, see mm_types.h.
262 * When changing, update also include/trace/events/mmflags.h
263 */
264 #define VM_NONE 0x00000000
265
266 #define VM_READ 0x00000001 /* currently active flags */
267 #define VM_WRITE 0x00000002
268 #define VM_EXEC 0x00000004
269 #define VM_SHARED 0x00000008
270
271 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
272 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
273 #define VM_MAYWRITE 0x00000020
274 #define VM_MAYEXEC 0x00000040
275 #define VM_MAYSHARE 0x00000080
276
277 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
278 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
279 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
280 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
281 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
282
283 #define VM_LOCKED 0x00002000
284 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
285
286 /* Used by sys_madvise() */
287 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
288 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
289
290 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
291 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
292 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
293 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
294 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
295 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
296 #define VM_SYNC 0x00800000 /* Synchronous page faults */
297 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
298 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
299 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
300
301 #ifdef CONFIG_MEM_SOFT_DIRTY
302 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
303 #else
304 # define VM_SOFTDIRTY 0
305 #endif
306
307 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
308 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
309 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
310 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
311
312 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
313 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
314 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
315 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
316 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
317 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
318 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
319 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
320 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
321 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
322 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
323 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
324
325 #ifdef CONFIG_ARCH_HAS_PKEYS
326 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
327 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
328 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
329 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
330 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
331 #ifdef CONFIG_PPC
332 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
333 #else
334 # define VM_PKEY_BIT4 0
335 #endif
336 #endif /* CONFIG_ARCH_HAS_PKEYS */
337
338 #if defined(CONFIG_X86)
339 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
340 #elif defined(CONFIG_PPC)
341 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
342 #elif defined(CONFIG_PARISC)
343 # define VM_GROWSUP VM_ARCH_1
344 #elif defined(CONFIG_IA64)
345 # define VM_GROWSUP VM_ARCH_1
346 #elif defined(CONFIG_SPARC64)
347 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
348 # define VM_ARCH_CLEAR VM_SPARC_ADI
349 #elif defined(CONFIG_ARM64)
350 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
351 # define VM_ARCH_CLEAR VM_ARM64_BTI
352 #elif !defined(CONFIG_MMU)
353 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
354 #endif
355
356 #if defined(CONFIG_ARM64_MTE)
357 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
358 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
359 #else
360 # define VM_MTE VM_NONE
361 # define VM_MTE_ALLOWED VM_NONE
362 #endif
363
364 #ifndef VM_GROWSUP
365 # define VM_GROWSUP VM_NONE
366 #endif
367
368 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
369 # define VM_UFFD_MINOR_BIT 37
370 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
371 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
372 # define VM_UFFD_MINOR VM_NONE
373 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
374
375 /* Bits set in the VMA until the stack is in its final location */
376 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
377
378 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
379
380 /* Common data flag combinations */
381 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
382 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
383 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
384 VM_MAYWRITE | VM_MAYEXEC)
385 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
386 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
387
388 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
389 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
390 #endif
391
392 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
393 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
394 #endif
395
396 #ifdef CONFIG_STACK_GROWSUP
397 #define VM_STACK VM_GROWSUP
398 #else
399 #define VM_STACK VM_GROWSDOWN
400 #endif
401
402 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
403
404 /* VMA basic access permission flags */
405 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
406
407
408 /*
409 * Special vmas that are non-mergable, non-mlock()able.
410 */
411 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
412
413 /* This mask prevents VMA from being scanned with khugepaged */
414 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
415
416 /* This mask defines which mm->def_flags a process can inherit its parent */
417 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
418
419 /* This mask is used to clear all the VMA flags used by mlock */
420 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
421
422 /* Arch-specific flags to clear when updating VM flags on protection change */
423 #ifndef VM_ARCH_CLEAR
424 # define VM_ARCH_CLEAR VM_NONE
425 #endif
426 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
427
428 /*
429 * mapping from the currently active vm_flags protection bits (the
430 * low four bits) to a page protection mask..
431 */
432 extern pgprot_t protection_map[16];
433
434 /**
435 * Fault flag definitions.
436 *
437 * @FAULT_FLAG_WRITE: Fault was a write fault.
438 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
439 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
440 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
441 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
442 * @FAULT_FLAG_TRIED: The fault has been tried once.
443 * @FAULT_FLAG_USER: The fault originated in userspace.
444 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
445 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
446 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
447 *
448 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
449 * whether we would allow page faults to retry by specifying these two
450 * fault flags correctly. Currently there can be three legal combinations:
451 *
452 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
453 * this is the first try
454 *
455 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
456 * we've already tried at least once
457 *
458 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
459 *
460 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
461 * be used. Note that page faults can be allowed to retry for multiple times,
462 * in which case we'll have an initial fault with flags (a) then later on
463 * continuous faults with flags (b). We should always try to detect pending
464 * signals before a retry to make sure the continuous page faults can still be
465 * interrupted if necessary.
466 */
467 #define FAULT_FLAG_WRITE 0x01
468 #define FAULT_FLAG_MKWRITE 0x02
469 #define FAULT_FLAG_ALLOW_RETRY 0x04
470 #define FAULT_FLAG_RETRY_NOWAIT 0x08
471 #define FAULT_FLAG_KILLABLE 0x10
472 #define FAULT_FLAG_TRIED 0x20
473 #define FAULT_FLAG_USER 0x40
474 #define FAULT_FLAG_REMOTE 0x80
475 #define FAULT_FLAG_INSTRUCTION 0x100
476 #define FAULT_FLAG_INTERRUPTIBLE 0x200
477 /* Speculative fault, not holding mmap_sem */
478 #define FAULT_FLAG_SPECULATIVE 0x400
479
480 /*
481 * The default fault flags that should be used by most of the
482 * arch-specific page fault handlers.
483 */
484 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
485 FAULT_FLAG_KILLABLE | \
486 FAULT_FLAG_INTERRUPTIBLE)
487
488 /**
489 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
490 *
491 * This is mostly used for places where we want to try to avoid taking
492 * the mmap_lock for too long a time when waiting for another condition
493 * to change, in which case we can try to be polite to release the
494 * mmap_lock in the first round to avoid potential starvation of other
495 * processes that would also want the mmap_lock.
496 *
497 * Return: true if the page fault allows retry and this is the first
498 * attempt of the fault handling; false otherwise.
499 */
fault_flag_allow_retry_first(unsigned int flags)500 static inline bool fault_flag_allow_retry_first(unsigned int flags)
501 {
502 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
503 (!(flags & FAULT_FLAG_TRIED));
504 }
505
506 #define FAULT_FLAG_TRACE \
507 { FAULT_FLAG_WRITE, "WRITE" }, \
508 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
509 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
510 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
511 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
512 { FAULT_FLAG_TRIED, "TRIED" }, \
513 { FAULT_FLAG_USER, "USER" }, \
514 { FAULT_FLAG_REMOTE, "REMOTE" }, \
515 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
516 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
517
518 /*
519 * vm_fault is filled by the pagefault handler and passed to the vma's
520 * ->fault function. The vma's ->fault is responsible for returning a bitmask
521 * of VM_FAULT_xxx flags that give details about how the fault was handled.
522 *
523 * MM layer fills up gfp_mask for page allocations but fault handler might
524 * alter it if its implementation requires a different allocation context.
525 *
526 * pgoff should be used in favour of virtual_address, if possible.
527 */
528 struct vm_fault {
529 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
530 unsigned int sequence;
531 pmd_t orig_pmd; /* value of PMD at the time of fault */
532 #endif
533 const struct {
534 struct vm_area_struct *vma; /* Target VMA */
535 gfp_t gfp_mask; /* gfp mask to be used for allocations */
536 pgoff_t pgoff; /* Logical page offset based on vma */
537 unsigned long address; /* Faulting virtual address */
538 };
539 unsigned int flags; /* FAULT_FLAG_xxx flags
540 * XXX: should really be 'const' */
541 pmd_t *pmd; /* Pointer to pmd entry matching
542 * the 'address' */
543 pud_t *pud; /* Pointer to pud entry matching
544 * the 'address'
545 */
546 pte_t orig_pte; /* Value of PTE at the time of fault */
547
548 struct page *cow_page; /* Page handler may use for COW fault */
549 struct page *page; /* ->fault handlers should return a
550 * page here, unless VM_FAULT_NOPAGE
551 * is set (which is also implied by
552 * VM_FAULT_ERROR).
553 */
554 /* These three entries are valid only while holding ptl lock */
555 pte_t *pte; /* Pointer to pte entry matching
556 * the 'address'. NULL if the page
557 * table hasn't been allocated.
558 */
559 spinlock_t *ptl; /* Page table lock.
560 * Protects pte page table if 'pte'
561 * is not NULL, otherwise pmd.
562 */
563 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
564 * vm_ops->map_pages() sets up a page
565 * table from atomic context.
566 * do_fault_around() pre-allocates
567 * page table to avoid allocation from
568 * atomic context.
569 */
570 /*
571 * These entries are required when handling speculative page fault.
572 * This way the page handling is done using consistent field values.
573 */
574 unsigned long vma_flags;
575 pgprot_t vma_page_prot;
576 ANDROID_OEM_DATA_ARRAY(1, 2);
577 };
578
579 /* page entry size for vm->huge_fault() */
580 enum page_entry_size {
581 PE_SIZE_PTE = 0,
582 PE_SIZE_PMD,
583 PE_SIZE_PUD,
584 };
585
586 /*
587 * These are the virtual MM functions - opening of an area, closing and
588 * unmapping it (needed to keep files on disk up-to-date etc), pointer
589 * to the functions called when a no-page or a wp-page exception occurs.
590 */
591 struct vm_operations_struct {
592 void (*open)(struct vm_area_struct * area);
593 void (*close)(struct vm_area_struct * area);
594 int (*split)(struct vm_area_struct * area, unsigned long addr);
595 int (*mremap)(struct vm_area_struct * area);
596 vm_fault_t (*fault)(struct vm_fault *vmf);
597 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
598 enum page_entry_size pe_size);
599 vm_fault_t (*map_pages)(struct vm_fault *vmf,
600 pgoff_t start_pgoff, pgoff_t end_pgoff);
601 unsigned long (*pagesize)(struct vm_area_struct * area);
602
603 /* notification that a previously read-only page is about to become
604 * writable, if an error is returned it will cause a SIGBUS */
605 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
606
607 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
608 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
609
610 /* called by access_process_vm when get_user_pages() fails, typically
611 * for use by special VMAs that can switch between memory and hardware
612 */
613 int (*access)(struct vm_area_struct *vma, unsigned long addr,
614 void *buf, int len, int write);
615
616 /* Called by the /proc/PID/maps code to ask the vma whether it
617 * has a special name. Returning non-NULL will also cause this
618 * vma to be dumped unconditionally. */
619 const char *(*name)(struct vm_area_struct *vma);
620
621 #ifdef CONFIG_NUMA
622 /*
623 * set_policy() op must add a reference to any non-NULL @new mempolicy
624 * to hold the policy upon return. Caller should pass NULL @new to
625 * remove a policy and fall back to surrounding context--i.e. do not
626 * install a MPOL_DEFAULT policy, nor the task or system default
627 * mempolicy.
628 */
629 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
630
631 /*
632 * get_policy() op must add reference [mpol_get()] to any policy at
633 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
634 * in mm/mempolicy.c will do this automatically.
635 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
636 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
637 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
638 * must return NULL--i.e., do not "fallback" to task or system default
639 * policy.
640 */
641 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
642 unsigned long addr);
643 #endif
644 /*
645 * Called by vm_normal_page() for special PTEs to find the
646 * page for @addr. This is useful if the default behavior
647 * (using pte_page()) would not find the correct page.
648 */
649 struct page *(*find_special_page)(struct vm_area_struct *vma,
650 unsigned long addr);
651
652 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
653 bool (*allow_speculation)(void);
654 #endif
655
656 ANDROID_KABI_RESERVE(1);
657 ANDROID_KABI_RESERVE(2);
658 ANDROID_KABI_RESERVE(3);
659 ANDROID_KABI_RESERVE(4);
660 };
661
INIT_VMA(struct vm_area_struct * vma)662 static inline void INIT_VMA(struct vm_area_struct *vma)
663 {
664 INIT_LIST_HEAD(&vma->anon_vma_chain);
665 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
666 seqcount_init(&vma->vm_sequence);
667 atomic_set(&vma->vm_ref_count, 1);
668 #endif
669 }
670
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)671 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
672 {
673 static const struct vm_operations_struct dummy_vm_ops = {};
674
675 memset(vma, 0, sizeof(*vma));
676 vma->vm_mm = mm;
677 vma->vm_ops = &dummy_vm_ops;
678 INIT_VMA(vma);
679 }
680
vma_set_anonymous(struct vm_area_struct * vma)681 static inline void vma_set_anonymous(struct vm_area_struct *vma)
682 {
683 vma->vm_ops = NULL;
684 }
685
vma_is_anonymous(struct vm_area_struct * vma)686 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
687 {
688 return !vma->vm_ops;
689 }
690
vma_is_temporary_stack(struct vm_area_struct * vma)691 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
692 {
693 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
694
695 if (!maybe_stack)
696 return false;
697
698 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
699 VM_STACK_INCOMPLETE_SETUP)
700 return true;
701
702 return false;
703 }
704
vma_is_foreign(struct vm_area_struct * vma)705 static inline bool vma_is_foreign(struct vm_area_struct *vma)
706 {
707 if (!current->mm)
708 return true;
709
710 if (current->mm != vma->vm_mm)
711 return true;
712
713 return false;
714 }
715
vma_is_accessible(struct vm_area_struct * vma)716 static inline bool vma_is_accessible(struct vm_area_struct *vma)
717 {
718 return vma->vm_flags & VM_ACCESS_FLAGS;
719 }
720
721 #ifdef CONFIG_SHMEM
722 /*
723 * The vma_is_shmem is not inline because it is used only by slow
724 * paths in userfault.
725 */
726 bool vma_is_shmem(struct vm_area_struct *vma);
727 #else
vma_is_shmem(struct vm_area_struct * vma)728 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
729 #endif
730
731 int vma_is_stack_for_current(struct vm_area_struct *vma);
732
733 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
734 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
735
736 struct mmu_gather;
737 struct inode;
738
739 #include <linux/huge_mm.h>
740
741 /*
742 * Methods to modify the page usage count.
743 *
744 * What counts for a page usage:
745 * - cache mapping (page->mapping)
746 * - private data (page->private)
747 * - page mapped in a task's page tables, each mapping
748 * is counted separately
749 *
750 * Also, many kernel routines increase the page count before a critical
751 * routine so they can be sure the page doesn't go away from under them.
752 */
753
754 /*
755 * Drop a ref, return true if the refcount fell to zero (the page has no users)
756 */
put_page_testzero(struct page * page)757 static inline int put_page_testzero(struct page *page)
758 {
759 int ret;
760
761 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
762 ret = page_ref_dec_and_test(page);
763 page_pinner_put_page(page);
764
765 return ret;
766 }
767
768 /*
769 * Try to grab a ref unless the page has a refcount of zero, return false if
770 * that is the case.
771 * This can be called when MMU is off so it must not access
772 * any of the virtual mappings.
773 */
get_page_unless_zero(struct page * page)774 static inline int get_page_unless_zero(struct page *page)
775 {
776 return page_ref_add_unless(page, 1, 0);
777 }
778
779 extern int page_is_ram(unsigned long pfn);
780
781 enum {
782 REGION_INTERSECTS,
783 REGION_DISJOINT,
784 REGION_MIXED,
785 };
786
787 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
788 unsigned long desc);
789
790 /* Support for virtually mapped pages */
791 struct page *vmalloc_to_page(const void *addr);
792 unsigned long vmalloc_to_pfn(const void *addr);
793
794 /*
795 * Determine if an address is within the vmalloc range
796 *
797 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
798 * is no special casing required.
799 */
800
801 #ifndef is_ioremap_addr
802 #define is_ioremap_addr(x) is_vmalloc_addr(x)
803 #endif
804
805 #ifdef CONFIG_MMU
806 extern bool is_vmalloc_addr(const void *x);
807 extern int is_vmalloc_or_module_addr(const void *x);
808 #else
is_vmalloc_addr(const void * x)809 static inline bool is_vmalloc_addr(const void *x)
810 {
811 return false;
812 }
is_vmalloc_or_module_addr(const void * x)813 static inline int is_vmalloc_or_module_addr(const void *x)
814 {
815 return 0;
816 }
817 #endif
818
819 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
kvmalloc(size_t size,gfp_t flags)820 static inline void *kvmalloc(size_t size, gfp_t flags)
821 {
822 return kvmalloc_node(size, flags, NUMA_NO_NODE);
823 }
kvzalloc_node(size_t size,gfp_t flags,int node)824 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
825 {
826 return kvmalloc_node(size, flags | __GFP_ZERO, node);
827 }
kvzalloc(size_t size,gfp_t flags)828 static inline void *kvzalloc(size_t size, gfp_t flags)
829 {
830 return kvmalloc(size, flags | __GFP_ZERO);
831 }
832
kvmalloc_array(size_t n,size_t size,gfp_t flags)833 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
834 {
835 size_t bytes;
836
837 if (unlikely(check_mul_overflow(n, size, &bytes)))
838 return NULL;
839
840 return kvmalloc(bytes, flags);
841 }
842
kvcalloc(size_t n,size_t size,gfp_t flags)843 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
844 {
845 return kvmalloc_array(n, size, flags | __GFP_ZERO);
846 }
847
848 extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize,
849 gfp_t flags);
850 extern void kvfree(const void *addr);
851 extern void kvfree_sensitive(const void *addr, size_t len);
852
head_compound_mapcount(struct page * head)853 static inline int head_compound_mapcount(struct page *head)
854 {
855 return atomic_read(compound_mapcount_ptr(head)) + 1;
856 }
857
858 /*
859 * Mapcount of compound page as a whole, does not include mapped sub-pages.
860 *
861 * Must be called only for compound pages or any their tail sub-pages.
862 */
compound_mapcount(struct page * page)863 static inline int compound_mapcount(struct page *page)
864 {
865 VM_BUG_ON_PAGE(!PageCompound(page), page);
866 page = compound_head(page);
867 return head_compound_mapcount(page);
868 }
869
870 /*
871 * The atomic page->_mapcount, starts from -1: so that transitions
872 * both from it and to it can be tracked, using atomic_inc_and_test
873 * and atomic_add_negative(-1).
874 */
page_mapcount_reset(struct page * page)875 static inline void page_mapcount_reset(struct page *page)
876 {
877 atomic_set(&(page)->_mapcount, -1);
878 }
879
880 int __page_mapcount(struct page *page);
881
882 /*
883 * Mapcount of 0-order page; when compound sub-page, includes
884 * compound_mapcount().
885 *
886 * Result is undefined for pages which cannot be mapped into userspace.
887 * For example SLAB or special types of pages. See function page_has_type().
888 * They use this place in struct page differently.
889 */
page_mapcount(struct page * page)890 static inline int page_mapcount(struct page *page)
891 {
892 if (unlikely(PageCompound(page)))
893 return __page_mapcount(page);
894 return atomic_read(&page->_mapcount) + 1;
895 }
896
897 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
898 int total_mapcount(struct page *page);
899 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
900 #else
total_mapcount(struct page * page)901 static inline int total_mapcount(struct page *page)
902 {
903 return page_mapcount(page);
904 }
page_trans_huge_mapcount(struct page * page,int * total_mapcount)905 static inline int page_trans_huge_mapcount(struct page *page,
906 int *total_mapcount)
907 {
908 int mapcount = page_mapcount(page);
909 if (total_mapcount)
910 *total_mapcount = mapcount;
911 return mapcount;
912 }
913 #endif
914
virt_to_head_page(const void * x)915 static inline struct page *virt_to_head_page(const void *x)
916 {
917 struct page *page = virt_to_page(x);
918
919 return compound_head(page);
920 }
921
922 void __put_page(struct page *page);
923
924 void put_pages_list(struct list_head *pages);
925
926 void split_page(struct page *page, unsigned int order);
927
928 /*
929 * Compound pages have a destructor function. Provide a
930 * prototype for that function and accessor functions.
931 * These are _only_ valid on the head of a compound page.
932 */
933 typedef void compound_page_dtor(struct page *);
934
935 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
936 enum compound_dtor_id {
937 NULL_COMPOUND_DTOR,
938 COMPOUND_PAGE_DTOR,
939 #ifdef CONFIG_HUGETLB_PAGE
940 HUGETLB_PAGE_DTOR,
941 #endif
942 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
943 TRANSHUGE_PAGE_DTOR,
944 #endif
945 NR_COMPOUND_DTORS,
946 };
947 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
948
set_compound_page_dtor(struct page * page,enum compound_dtor_id compound_dtor)949 static inline void set_compound_page_dtor(struct page *page,
950 enum compound_dtor_id compound_dtor)
951 {
952 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
953 page[1].compound_dtor = compound_dtor;
954 }
955
destroy_compound_page(struct page * page)956 static inline void destroy_compound_page(struct page *page)
957 {
958 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
959 compound_page_dtors[page[1].compound_dtor](page);
960 }
961
compound_order(struct page * page)962 static inline unsigned int compound_order(struct page *page)
963 {
964 if (!PageHead(page))
965 return 0;
966 return page[1].compound_order;
967 }
968
hpage_pincount_available(struct page * page)969 static inline bool hpage_pincount_available(struct page *page)
970 {
971 /*
972 * Can the page->hpage_pinned_refcount field be used? That field is in
973 * the 3rd page of the compound page, so the smallest (2-page) compound
974 * pages cannot support it.
975 */
976 page = compound_head(page);
977 return PageCompound(page) && compound_order(page) > 1;
978 }
979
head_compound_pincount(struct page * head)980 static inline int head_compound_pincount(struct page *head)
981 {
982 return atomic_read(compound_pincount_ptr(head));
983 }
984
compound_pincount(struct page * page)985 static inline int compound_pincount(struct page *page)
986 {
987 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
988 page = compound_head(page);
989 return head_compound_pincount(page);
990 }
991
set_compound_order(struct page * page,unsigned int order)992 static inline void set_compound_order(struct page *page, unsigned int order)
993 {
994 page[1].compound_order = order;
995 page[1].compound_nr = 1U << order;
996 }
997
998 /* Returns the number of pages in this potentially compound page. */
compound_nr(struct page * page)999 static inline unsigned long compound_nr(struct page *page)
1000 {
1001 if (!PageHead(page))
1002 return 1;
1003 return page[1].compound_nr;
1004 }
1005
1006 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)1007 static inline unsigned long page_size(struct page *page)
1008 {
1009 return PAGE_SIZE << compound_order(page);
1010 }
1011
1012 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)1013 static inline unsigned int page_shift(struct page *page)
1014 {
1015 return PAGE_SHIFT + compound_order(page);
1016 }
1017
1018 void free_compound_page(struct page *page);
1019
1020 #ifdef CONFIG_MMU
1021 /*
1022 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1023 * servicing faults for write access. In the normal case, do always want
1024 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1025 * that do not have writing enabled, when used by access_process_vm.
1026 */
maybe_mkwrite(pte_t pte,unsigned long vma_flags)1027 static inline pte_t maybe_mkwrite(pte_t pte, unsigned long vma_flags)
1028 {
1029 if (likely(vma_flags & VM_WRITE))
1030 pte = pte_mkwrite(pte);
1031 return pte;
1032 }
1033
1034 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1035 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
1036
1037 vm_fault_t finish_fault(struct vm_fault *vmf);
1038 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1039 #endif
1040
1041 /*
1042 * Multiple processes may "see" the same page. E.g. for untouched
1043 * mappings of /dev/null, all processes see the same page full of
1044 * zeroes, and text pages of executables and shared libraries have
1045 * only one copy in memory, at most, normally.
1046 *
1047 * For the non-reserved pages, page_count(page) denotes a reference count.
1048 * page_count() == 0 means the page is free. page->lru is then used for
1049 * freelist management in the buddy allocator.
1050 * page_count() > 0 means the page has been allocated.
1051 *
1052 * Pages are allocated by the slab allocator in order to provide memory
1053 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1054 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1055 * unless a particular usage is carefully commented. (the responsibility of
1056 * freeing the kmalloc memory is the caller's, of course).
1057 *
1058 * A page may be used by anyone else who does a __get_free_page().
1059 * In this case, page_count still tracks the references, and should only
1060 * be used through the normal accessor functions. The top bits of page->flags
1061 * and page->virtual store page management information, but all other fields
1062 * are unused and could be used privately, carefully. The management of this
1063 * page is the responsibility of the one who allocated it, and those who have
1064 * subsequently been given references to it.
1065 *
1066 * The other pages (we may call them "pagecache pages") are completely
1067 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1068 * The following discussion applies only to them.
1069 *
1070 * A pagecache page contains an opaque `private' member, which belongs to the
1071 * page's address_space. Usually, this is the address of a circular list of
1072 * the page's disk buffers. PG_private must be set to tell the VM to call
1073 * into the filesystem to release these pages.
1074 *
1075 * A page may belong to an inode's memory mapping. In this case, page->mapping
1076 * is the pointer to the inode, and page->index is the file offset of the page,
1077 * in units of PAGE_SIZE.
1078 *
1079 * If pagecache pages are not associated with an inode, they are said to be
1080 * anonymous pages. These may become associated with the swapcache, and in that
1081 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1082 *
1083 * In either case (swapcache or inode backed), the pagecache itself holds one
1084 * reference to the page. Setting PG_private should also increment the
1085 * refcount. The each user mapping also has a reference to the page.
1086 *
1087 * The pagecache pages are stored in a per-mapping radix tree, which is
1088 * rooted at mapping->i_pages, and indexed by offset.
1089 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1090 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1091 *
1092 * All pagecache pages may be subject to I/O:
1093 * - inode pages may need to be read from disk,
1094 * - inode pages which have been modified and are MAP_SHARED may need
1095 * to be written back to the inode on disk,
1096 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1097 * modified may need to be swapped out to swap space and (later) to be read
1098 * back into memory.
1099 */
1100
1101 /*
1102 * The zone field is never updated after free_area_init_core()
1103 * sets it, so none of the operations on it need to be atomic.
1104 */
1105
1106 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1107 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1108 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1109 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1110 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1111 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1112
1113 /*
1114 * Define the bit shifts to access each section. For non-existent
1115 * sections we define the shift as 0; that plus a 0 mask ensures
1116 * the compiler will optimise away reference to them.
1117 */
1118 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1119 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1120 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1121 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1122 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1123
1124 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1125 #ifdef NODE_NOT_IN_PAGE_FLAGS
1126 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1127 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1128 SECTIONS_PGOFF : ZONES_PGOFF)
1129 #else
1130 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1131 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1132 NODES_PGOFF : ZONES_PGOFF)
1133 #endif
1134
1135 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1136
1137 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1138 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1139 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1140 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1141 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1142 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1143
page_zonenum(const struct page * page)1144 static inline enum zone_type page_zonenum(const struct page *page)
1145 {
1146 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1147 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1148 }
1149
1150 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1151 static inline bool is_zone_device_page(const struct page *page)
1152 {
1153 return page_zonenum(page) == ZONE_DEVICE;
1154 }
1155 extern void memmap_init_zone_device(struct zone *, unsigned long,
1156 unsigned long, struct dev_pagemap *);
1157 #else
is_zone_device_page(const struct page * page)1158 static inline bool is_zone_device_page(const struct page *page)
1159 {
1160 return false;
1161 }
1162 #endif
1163
1164 #ifdef CONFIG_DEV_PAGEMAP_OPS
1165 void free_devmap_managed_page(struct page *page);
1166 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1167
page_is_devmap_managed(struct page * page)1168 static inline bool page_is_devmap_managed(struct page *page)
1169 {
1170 if (!static_branch_unlikely(&devmap_managed_key))
1171 return false;
1172 if (!is_zone_device_page(page))
1173 return false;
1174 switch (page->pgmap->type) {
1175 case MEMORY_DEVICE_PRIVATE:
1176 case MEMORY_DEVICE_FS_DAX:
1177 return true;
1178 default:
1179 break;
1180 }
1181 return false;
1182 }
1183
1184 void put_devmap_managed_page(struct page *page);
1185
1186 #else /* CONFIG_DEV_PAGEMAP_OPS */
page_is_devmap_managed(struct page * page)1187 static inline bool page_is_devmap_managed(struct page *page)
1188 {
1189 return false;
1190 }
1191
put_devmap_managed_page(struct page * page)1192 static inline void put_devmap_managed_page(struct page *page)
1193 {
1194 }
1195 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1196
is_device_private_page(const struct page * page)1197 static inline bool is_device_private_page(const struct page *page)
1198 {
1199 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1200 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1201 is_zone_device_page(page) &&
1202 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1203 }
1204
is_pci_p2pdma_page(const struct page * page)1205 static inline bool is_pci_p2pdma_page(const struct page *page)
1206 {
1207 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1208 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1209 is_zone_device_page(page) &&
1210 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1211 }
1212
1213 /* 127: arbitrary random number, small enough to assemble well */
1214 #define page_ref_zero_or_close_to_overflow(page) \
1215 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1216
get_page(struct page * page)1217 static inline void get_page(struct page *page)
1218 {
1219 page = compound_head(page);
1220 /*
1221 * Getting a normal page or the head of a compound page
1222 * requires to already have an elevated page->_refcount.
1223 */
1224 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1225 page_ref_inc(page);
1226 }
1227
1228 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1229
try_get_page(struct page * page)1230 static inline __must_check bool try_get_page(struct page *page)
1231 {
1232 page = compound_head(page);
1233 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1234 return false;
1235 page_ref_inc(page);
1236 return true;
1237 }
1238
put_page(struct page * page)1239 static inline void put_page(struct page *page)
1240 {
1241 page = compound_head(page);
1242
1243 /*
1244 * For devmap managed pages we need to catch refcount transition from
1245 * 2 to 1, when refcount reach one it means the page is free and we
1246 * need to inform the device driver through callback. See
1247 * include/linux/memremap.h and HMM for details.
1248 */
1249 if (page_is_devmap_managed(page)) {
1250 put_devmap_managed_page(page);
1251 return;
1252 }
1253
1254 if (put_page_testzero(page))
1255 __put_page(page);
1256 }
1257
1258 /*
1259 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1260 * the page's refcount so that two separate items are tracked: the original page
1261 * reference count, and also a new count of how many pin_user_pages() calls were
1262 * made against the page. ("gup-pinned" is another term for the latter).
1263 *
1264 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1265 * distinct from normal pages. As such, the unpin_user_page() call (and its
1266 * variants) must be used in order to release gup-pinned pages.
1267 *
1268 * Choice of value:
1269 *
1270 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1271 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1272 * simpler, due to the fact that adding an even power of two to the page
1273 * refcount has the effect of using only the upper N bits, for the code that
1274 * counts up using the bias value. This means that the lower bits are left for
1275 * the exclusive use of the original code that increments and decrements by one
1276 * (or at least, by much smaller values than the bias value).
1277 *
1278 * Of course, once the lower bits overflow into the upper bits (and this is
1279 * OK, because subtraction recovers the original values), then visual inspection
1280 * no longer suffices to directly view the separate counts. However, for normal
1281 * applications that don't have huge page reference counts, this won't be an
1282 * issue.
1283 *
1284 * Locking: the lockless algorithm described in page_cache_get_speculative()
1285 * and page_cache_gup_pin_speculative() provides safe operation for
1286 * get_user_pages and page_mkclean and other calls that race to set up page
1287 * table entries.
1288 */
1289 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1290
1291 void put_user_page(struct page *page);
1292 void unpin_user_page(struct page *page);
1293 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1294 bool make_dirty);
1295 void unpin_user_pages(struct page **pages, unsigned long npages);
1296
1297 /**
1298 * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1299 *
1300 * This function checks if a page has been pinned via a call to
1301 * pin_user_pages*().
1302 *
1303 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1304 * because it means "definitely not pinned for DMA", but true means "probably
1305 * pinned for DMA, but possibly a false positive due to having at least
1306 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1307 *
1308 * False positives are OK, because: a) it's unlikely for a page to get that many
1309 * refcounts, and b) all the callers of this routine are expected to be able to
1310 * deal gracefully with a false positive.
1311 *
1312 * For huge pages, the result will be exactly correct. That's because we have
1313 * more tracking data available: the 3rd struct page in the compound page is
1314 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1315 * scheme).
1316 *
1317 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1318 *
1319 * @page: pointer to page to be queried.
1320 * @Return: True, if it is likely that the page has been "dma-pinned".
1321 * False, if the page is definitely not dma-pinned.
1322 */
page_maybe_dma_pinned(struct page * page)1323 static inline bool page_maybe_dma_pinned(struct page *page)
1324 {
1325 if (hpage_pincount_available(page))
1326 return compound_pincount(page) > 0;
1327
1328 /*
1329 * page_ref_count() is signed. If that refcount overflows, then
1330 * page_ref_count() returns a negative value, and callers will avoid
1331 * further incrementing the refcount.
1332 *
1333 * Here, for that overflow case, use the signed bit to count a little
1334 * bit higher via unsigned math, and thus still get an accurate result.
1335 */
1336 return ((unsigned int)page_ref_count(compound_head(page))) >=
1337 GUP_PIN_COUNTING_BIAS;
1338 }
1339
1340 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1341 #define SECTION_IN_PAGE_FLAGS
1342 #endif
1343
1344 /*
1345 * The identification function is mainly used by the buddy allocator for
1346 * determining if two pages could be buddies. We are not really identifying
1347 * the zone since we could be using the section number id if we do not have
1348 * node id available in page flags.
1349 * We only guarantee that it will return the same value for two combinable
1350 * pages in a zone.
1351 */
page_zone_id(struct page * page)1352 static inline int page_zone_id(struct page *page)
1353 {
1354 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1355 }
1356
1357 #ifdef NODE_NOT_IN_PAGE_FLAGS
1358 extern int page_to_nid(const struct page *page);
1359 #else
page_to_nid(const struct page * page)1360 static inline int page_to_nid(const struct page *page)
1361 {
1362 struct page *p = (struct page *)page;
1363
1364 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1365 }
1366 #endif
1367
1368 #ifdef CONFIG_NUMA_BALANCING
cpu_pid_to_cpupid(int cpu,int pid)1369 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1370 {
1371 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1372 }
1373
cpupid_to_pid(int cpupid)1374 static inline int cpupid_to_pid(int cpupid)
1375 {
1376 return cpupid & LAST__PID_MASK;
1377 }
1378
cpupid_to_cpu(int cpupid)1379 static inline int cpupid_to_cpu(int cpupid)
1380 {
1381 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1382 }
1383
cpupid_to_nid(int cpupid)1384 static inline int cpupid_to_nid(int cpupid)
1385 {
1386 return cpu_to_node(cpupid_to_cpu(cpupid));
1387 }
1388
cpupid_pid_unset(int cpupid)1389 static inline bool cpupid_pid_unset(int cpupid)
1390 {
1391 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1392 }
1393
cpupid_cpu_unset(int cpupid)1394 static inline bool cpupid_cpu_unset(int cpupid)
1395 {
1396 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1397 }
1398
__cpupid_match_pid(pid_t task_pid,int cpupid)1399 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1400 {
1401 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1402 }
1403
1404 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1405 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
page_cpupid_xchg_last(struct page * page,int cpupid)1406 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1407 {
1408 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1409 }
1410
page_cpupid_last(struct page * page)1411 static inline int page_cpupid_last(struct page *page)
1412 {
1413 return page->_last_cpupid;
1414 }
page_cpupid_reset_last(struct page * page)1415 static inline void page_cpupid_reset_last(struct page *page)
1416 {
1417 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1418 }
1419 #else
page_cpupid_last(struct page * page)1420 static inline int page_cpupid_last(struct page *page)
1421 {
1422 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1423 }
1424
1425 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1426
page_cpupid_reset_last(struct page * page)1427 static inline void page_cpupid_reset_last(struct page *page)
1428 {
1429 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1430 }
1431 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1432 #else /* !CONFIG_NUMA_BALANCING */
page_cpupid_xchg_last(struct page * page,int cpupid)1433 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1434 {
1435 return page_to_nid(page); /* XXX */
1436 }
1437
page_cpupid_last(struct page * page)1438 static inline int page_cpupid_last(struct page *page)
1439 {
1440 return page_to_nid(page); /* XXX */
1441 }
1442
cpupid_to_nid(int cpupid)1443 static inline int cpupid_to_nid(int cpupid)
1444 {
1445 return -1;
1446 }
1447
cpupid_to_pid(int cpupid)1448 static inline int cpupid_to_pid(int cpupid)
1449 {
1450 return -1;
1451 }
1452
cpupid_to_cpu(int cpupid)1453 static inline int cpupid_to_cpu(int cpupid)
1454 {
1455 return -1;
1456 }
1457
cpu_pid_to_cpupid(int nid,int pid)1458 static inline int cpu_pid_to_cpupid(int nid, int pid)
1459 {
1460 return -1;
1461 }
1462
cpupid_pid_unset(int cpupid)1463 static inline bool cpupid_pid_unset(int cpupid)
1464 {
1465 return true;
1466 }
1467
page_cpupid_reset_last(struct page * page)1468 static inline void page_cpupid_reset_last(struct page *page)
1469 {
1470 }
1471
cpupid_match_pid(struct task_struct * task,int cpupid)1472 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1473 {
1474 return false;
1475 }
1476 #endif /* CONFIG_NUMA_BALANCING */
1477
1478 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1479
1480 /*
1481 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1482 * setting tags for all pages to native kernel tag value 0xff, as the default
1483 * value 0x00 maps to 0xff.
1484 */
1485
page_kasan_tag(const struct page * page)1486 static inline u8 page_kasan_tag(const struct page *page)
1487 {
1488 u8 tag = 0xff;
1489
1490 if (kasan_enabled()) {
1491 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1492 tag ^= 0xff;
1493 }
1494
1495 return tag;
1496 }
1497
page_kasan_tag_set(struct page * page,u8 tag)1498 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1499 {
1500 if (kasan_enabled()) {
1501 tag ^= 0xff;
1502 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1503 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1504 }
1505 }
1506
page_kasan_tag_reset(struct page * page)1507 static inline void page_kasan_tag_reset(struct page *page)
1508 {
1509 if (kasan_enabled())
1510 page_kasan_tag_set(page, 0xff);
1511 }
1512
1513 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1514
page_kasan_tag(const struct page * page)1515 static inline u8 page_kasan_tag(const struct page *page)
1516 {
1517 return 0xff;
1518 }
1519
page_kasan_tag_set(struct page * page,u8 tag)1520 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1521 static inline void page_kasan_tag_reset(struct page *page) { }
1522
1523 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1524
page_zone(const struct page * page)1525 static inline struct zone *page_zone(const struct page *page)
1526 {
1527 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1528 }
1529
page_pgdat(const struct page * page)1530 static inline pg_data_t *page_pgdat(const struct page *page)
1531 {
1532 return NODE_DATA(page_to_nid(page));
1533 }
1534
1535 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1536 static inline void set_page_section(struct page *page, unsigned long section)
1537 {
1538 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1539 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1540 }
1541
page_to_section(const struct page * page)1542 static inline unsigned long page_to_section(const struct page *page)
1543 {
1544 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1545 }
1546 #endif
1547
set_page_zone(struct page * page,enum zone_type zone)1548 static inline void set_page_zone(struct page *page, enum zone_type zone)
1549 {
1550 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1551 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1552 }
1553
set_page_node(struct page * page,unsigned long node)1554 static inline void set_page_node(struct page *page, unsigned long node)
1555 {
1556 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1557 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1558 }
1559
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)1560 static inline void set_page_links(struct page *page, enum zone_type zone,
1561 unsigned long node, unsigned long pfn)
1562 {
1563 set_page_zone(page, zone);
1564 set_page_node(page, node);
1565 #ifdef SECTION_IN_PAGE_FLAGS
1566 set_page_section(page, pfn_to_section_nr(pfn));
1567 #endif
1568 }
1569
1570 #ifdef CONFIG_MEMCG
page_memcg(struct page * page)1571 static inline struct mem_cgroup *page_memcg(struct page *page)
1572 {
1573 return page->mem_cgroup;
1574 }
page_memcg_rcu(struct page * page)1575 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1576 {
1577 WARN_ON_ONCE(!rcu_read_lock_held());
1578 return READ_ONCE(page->mem_cgroup);
1579 }
1580 #else
page_memcg(struct page * page)1581 static inline struct mem_cgroup *page_memcg(struct page *page)
1582 {
1583 return NULL;
1584 }
page_memcg_rcu(struct page * page)1585 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1586 {
1587 WARN_ON_ONCE(!rcu_read_lock_held());
1588 return NULL;
1589 }
1590 #endif
1591
1592 /*
1593 * Some inline functions in vmstat.h depend on page_zone()
1594 */
1595 #include <linux/vmstat.h>
1596
lowmem_page_address(const struct page * page)1597 static __always_inline void *lowmem_page_address(const struct page *page)
1598 {
1599 return page_to_virt(page);
1600 }
1601
1602 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1603 #define HASHED_PAGE_VIRTUAL
1604 #endif
1605
1606 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)1607 static inline void *page_address(const struct page *page)
1608 {
1609 return page->virtual;
1610 }
set_page_address(struct page * page,void * address)1611 static inline void set_page_address(struct page *page, void *address)
1612 {
1613 page->virtual = address;
1614 }
1615 #define page_address_init() do { } while(0)
1616 #endif
1617
1618 #if defined(HASHED_PAGE_VIRTUAL)
1619 void *page_address(const struct page *page);
1620 void set_page_address(struct page *page, void *virtual);
1621 void page_address_init(void);
1622 #endif
1623
1624 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1625 #define page_address(page) lowmem_page_address(page)
1626 #define set_page_address(page, address) do { } while(0)
1627 #define page_address_init() do { } while(0)
1628 #endif
1629
1630 extern void *page_rmapping(struct page *page);
1631 extern struct anon_vma *page_anon_vma(struct page *page);
1632 extern struct address_space *page_mapping(struct page *page);
1633
1634 extern struct address_space *__page_file_mapping(struct page *);
1635
1636 static inline
page_file_mapping(struct page * page)1637 struct address_space *page_file_mapping(struct page *page)
1638 {
1639 if (unlikely(PageSwapCache(page)))
1640 return __page_file_mapping(page);
1641
1642 return page->mapping;
1643 }
1644
1645 extern pgoff_t __page_file_index(struct page *page);
1646
1647 /*
1648 * Return the pagecache index of the passed page. Regular pagecache pages
1649 * use ->index whereas swapcache pages use swp_offset(->private)
1650 */
page_index(struct page * page)1651 static inline pgoff_t page_index(struct page *page)
1652 {
1653 if (unlikely(PageSwapCache(page)))
1654 return __page_file_index(page);
1655 return page->index;
1656 }
1657
1658 bool page_mapped(struct page *page);
1659 struct address_space *page_mapping(struct page *page);
1660 struct address_space *page_mapping_file(struct page *page);
1661
1662 /*
1663 * Return true only if the page has been allocated with
1664 * ALLOC_NO_WATERMARKS and the low watermark was not
1665 * met implying that the system is under some pressure.
1666 */
page_is_pfmemalloc(struct page * page)1667 static inline bool page_is_pfmemalloc(struct page *page)
1668 {
1669 /*
1670 * Page index cannot be this large so this must be
1671 * a pfmemalloc page.
1672 */
1673 return page->index == -1UL;
1674 }
1675
1676 /*
1677 * Only to be called by the page allocator on a freshly allocated
1678 * page.
1679 */
set_page_pfmemalloc(struct page * page)1680 static inline void set_page_pfmemalloc(struct page *page)
1681 {
1682 page->index = -1UL;
1683 }
1684
clear_page_pfmemalloc(struct page * page)1685 static inline void clear_page_pfmemalloc(struct page *page)
1686 {
1687 page->index = 0;
1688 }
1689
1690 /*
1691 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1692 */
1693 extern void pagefault_out_of_memory(void);
1694
1695 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1696 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1697
1698 /*
1699 * Flags passed to show_mem() and show_free_areas() to suppress output in
1700 * various contexts.
1701 */
1702 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1703
1704 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1705
1706 #ifdef CONFIG_MMU
1707 extern bool can_do_mlock(void);
1708 #else
can_do_mlock(void)1709 static inline bool can_do_mlock(void) { return false; }
1710 #endif
1711 extern int user_shm_lock(size_t, struct user_struct *);
1712 extern void user_shm_unlock(size_t, struct user_struct *);
1713
1714 /*
1715 * Parameter block passed down to zap_pte_range in exceptional cases.
1716 */
1717 struct zap_details {
1718 struct address_space *check_mapping; /* Check page->mapping if set */
1719 pgoff_t first_index; /* Lowest page->index to unmap */
1720 pgoff_t last_index; /* Highest page->index to unmap */
1721 struct page *single_page; /* Locked page to be unmapped */
1722 };
1723
1724 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1725 pte_t pte, unsigned long vma_flags);
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)1726 static inline struct page *vm_normal_page(struct vm_area_struct *vma,
1727 unsigned long addr, pte_t pte)
1728 {
1729 return _vm_normal_page(vma, addr, pte, vma->vm_flags);
1730 }
1731
1732 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1733 pmd_t pmd);
1734
1735 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1736 unsigned long size);
1737 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1738 unsigned long size);
1739 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1740 unsigned long start, unsigned long end);
1741
1742 struct mmu_notifier_range;
1743
1744 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1745 unsigned long end, unsigned long floor, unsigned long ceiling);
1746 int
1747 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1748 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1749 struct mmu_notifier_range *range, pte_t **ptepp,
1750 pmd_t **pmdpp, spinlock_t **ptlp);
1751 int follow_pte(struct mm_struct *mm, unsigned long address,
1752 pte_t **ptepp, spinlock_t **ptlp);
1753 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1754 unsigned long *pfn);
1755 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1756 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1757 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1758 void *buf, int len, int write);
1759
1760 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
vm_write_begin(struct vm_area_struct * vma)1761 static inline void vm_write_begin(struct vm_area_struct *vma)
1762 {
1763 /*
1764 * Isolated vma might be freed without exclusive mmap_lock but
1765 * speculative page fault handler still needs to know it was changed.
1766 */
1767 if (!RB_EMPTY_NODE(&vma->vm_rb))
1768 mmap_assert_write_locked(vma->vm_mm);
1769 /*
1770 * The reads never spins and preemption
1771 * disablement is not required.
1772 */
1773 raw_write_seqcount_begin(&vma->vm_sequence);
1774 }
vm_write_end(struct vm_area_struct * vma)1775 static inline void vm_write_end(struct vm_area_struct *vma)
1776 {
1777 raw_write_seqcount_end(&vma->vm_sequence);
1778 }
1779 #else
vm_write_begin(struct vm_area_struct * vma)1780 static inline void vm_write_begin(struct vm_area_struct *vma)
1781 {
1782 }
vm_write_end(struct vm_area_struct * vma)1783 static inline void vm_write_end(struct vm_area_struct *vma)
1784 {
1785 }
1786 #endif /* CONFIG_SPECULATIVE_PAGE_FAULT */
1787
1788 extern void truncate_pagecache(struct inode *inode, loff_t new);
1789 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1790 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1791 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1792 int truncate_inode_page(struct address_space *mapping, struct page *page);
1793 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1794 int invalidate_inode_page(struct page *page);
1795
1796 #ifdef CONFIG_MMU
1797 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1798 unsigned long address, unsigned int flags,
1799 struct pt_regs *regs);
1800 extern int fixup_user_fault(struct mm_struct *mm,
1801 unsigned long address, unsigned int fault_flags,
1802 bool *unlocked);
1803
1804 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
1805 extern vm_fault_t __handle_speculative_fault(struct mm_struct *mm,
1806 unsigned long address,
1807 unsigned int flags,
1808 struct vm_area_struct **vma,
1809 struct pt_regs *regs);
handle_speculative_fault(struct mm_struct * mm,unsigned long address,unsigned int flags,struct vm_area_struct ** vma,struct pt_regs * regs)1810 static inline vm_fault_t handle_speculative_fault(struct mm_struct *mm,
1811 unsigned long address,
1812 unsigned int flags,
1813 struct vm_area_struct **vma,
1814 struct pt_regs *regs)
1815 {
1816 /*
1817 * Try speculative page fault for multithreaded user space task only.
1818 */
1819 if (!(flags & FAULT_FLAG_USER) || atomic_read(&mm->mm_users) == 1) {
1820 *vma = NULL;
1821 return VM_FAULT_RETRY;
1822 }
1823 return __handle_speculative_fault(mm, address, flags, vma, regs);
1824 }
1825 extern bool can_reuse_spf_vma(struct vm_area_struct *vma,
1826 unsigned long address);
1827 #else
handle_speculative_fault(struct mm_struct * mm,unsigned long address,unsigned int flags,struct vm_area_struct ** vma,struct pt_regs * regs)1828 static inline vm_fault_t handle_speculative_fault(struct mm_struct *mm,
1829 unsigned long address,
1830 unsigned int flags,
1831 struct vm_area_struct **vma,
1832 struct pt_regs *regs)
1833 {
1834 return VM_FAULT_RETRY;
1835 }
can_reuse_spf_vma(struct vm_area_struct * vma,unsigned long address)1836 static inline bool can_reuse_spf_vma(struct vm_area_struct *vma,
1837 unsigned long address)
1838 {
1839 return false;
1840 }
1841 #endif /* CONFIG_SPECULATIVE_PAGE_FAULT */
1842
1843 void unmap_mapping_page(struct page *page);
1844 void unmap_mapping_pages(struct address_space *mapping,
1845 pgoff_t start, pgoff_t nr, bool even_cows);
1846 void unmap_mapping_range(struct address_space *mapping,
1847 loff_t const holebegin, loff_t const holelen, int even_cows);
1848 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)1849 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1850 unsigned long address, unsigned int flags,
1851 struct pt_regs *regs)
1852 {
1853 /* should never happen if there's no MMU */
1854 BUG();
1855 return VM_FAULT_SIGBUS;
1856 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1857 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1858 unsigned int fault_flags, bool *unlocked)
1859 {
1860 /* should never happen if there's no MMU */
1861 BUG();
1862 return -EFAULT;
1863 }
unmap_mapping_page(struct page * page)1864 static inline void unmap_mapping_page(struct page *page) { }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)1865 static inline void unmap_mapping_pages(struct address_space *mapping,
1866 pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)1867 static inline void unmap_mapping_range(struct address_space *mapping,
1868 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1869 #endif
1870
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)1871 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1872 loff_t const holebegin, loff_t const holelen)
1873 {
1874 unmap_mapping_range(mapping, holebegin, holelen, 0);
1875 }
1876
1877 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1878 void *buf, int len, unsigned int gup_flags);
1879 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1880 void *buf, int len, unsigned int gup_flags);
1881 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1882 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1883
1884 long get_user_pages_remote(struct mm_struct *mm,
1885 unsigned long start, unsigned long nr_pages,
1886 unsigned int gup_flags, struct page **pages,
1887 struct vm_area_struct **vmas, int *locked);
1888 long pin_user_pages_remote(struct mm_struct *mm,
1889 unsigned long start, unsigned long nr_pages,
1890 unsigned int gup_flags, struct page **pages,
1891 struct vm_area_struct **vmas, int *locked);
1892 long get_user_pages(unsigned long start, unsigned long nr_pages,
1893 unsigned int gup_flags, struct page **pages,
1894 struct vm_area_struct **vmas);
1895 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1896 unsigned int gup_flags, struct page **pages,
1897 struct vm_area_struct **vmas);
1898 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1899 unsigned int gup_flags, struct page **pages, int *locked);
1900 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1901 unsigned int gup_flags, struct page **pages, int *locked);
1902 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1903 struct page **pages, unsigned int gup_flags);
1904 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1905 struct page **pages, unsigned int gup_flags);
1906
1907 int get_user_pages_fast(unsigned long start, int nr_pages,
1908 unsigned int gup_flags, struct page **pages);
1909 int pin_user_pages_fast(unsigned long start, int nr_pages,
1910 unsigned int gup_flags, struct page **pages);
1911
1912 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1913 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1914 struct task_struct *task, bool bypass_rlim);
1915
1916 /* Container for pinned pfns / pages */
1917 struct frame_vector {
1918 unsigned int nr_allocated; /* Number of frames we have space for */
1919 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1920 bool got_ref; /* Did we pin pages by getting page ref? */
1921 bool is_pfns; /* Does array contain pages or pfns? */
1922 void *ptrs[]; /* Array of pinned pfns / pages. Use
1923 * pfns_vector_pages() or pfns_vector_pfns()
1924 * for access */
1925 };
1926
1927 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1928 void frame_vector_destroy(struct frame_vector *vec);
1929 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1930 unsigned int gup_flags, struct frame_vector *vec);
1931 void put_vaddr_frames(struct frame_vector *vec);
1932 int frame_vector_to_pages(struct frame_vector *vec);
1933 void frame_vector_to_pfns(struct frame_vector *vec);
1934
frame_vector_count(struct frame_vector * vec)1935 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1936 {
1937 return vec->nr_frames;
1938 }
1939
frame_vector_pages(struct frame_vector * vec)1940 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1941 {
1942 if (vec->is_pfns) {
1943 int err = frame_vector_to_pages(vec);
1944
1945 if (err)
1946 return ERR_PTR(err);
1947 }
1948 return (struct page **)(vec->ptrs);
1949 }
1950
frame_vector_pfns(struct frame_vector * vec)1951 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1952 {
1953 if (!vec->is_pfns)
1954 frame_vector_to_pfns(vec);
1955 return (unsigned long *)(vec->ptrs);
1956 }
1957
1958 struct kvec;
1959 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1960 struct page **pages);
1961 int get_kernel_page(unsigned long start, int write, struct page **pages);
1962 struct page *get_dump_page(unsigned long addr);
1963
1964 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1965 extern void do_invalidatepage(struct page *page, unsigned int offset,
1966 unsigned int length);
1967
1968 void __set_page_dirty(struct page *, struct address_space *, int warn);
1969 int __set_page_dirty_nobuffers(struct page *page);
1970 int __set_page_dirty_no_writeback(struct page *page);
1971 int redirty_page_for_writepage(struct writeback_control *wbc,
1972 struct page *page);
1973 void account_page_dirtied(struct page *page, struct address_space *mapping);
1974 void account_page_cleaned(struct page *page, struct address_space *mapping,
1975 struct bdi_writeback *wb);
1976 int set_page_dirty(struct page *page);
1977 int set_page_dirty_lock(struct page *page);
1978 void __cancel_dirty_page(struct page *page);
cancel_dirty_page(struct page * page)1979 static inline void cancel_dirty_page(struct page *page)
1980 {
1981 /* Avoid atomic ops, locking, etc. when not actually needed. */
1982 if (PageDirty(page))
1983 __cancel_dirty_page(page);
1984 }
1985 int clear_page_dirty_for_io(struct page *page);
1986
1987 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1988
1989 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1990 unsigned long old_addr, struct vm_area_struct *new_vma,
1991 unsigned long new_addr, unsigned long len,
1992 bool need_rmap_locks);
1993
1994 /*
1995 * Flags used by change_protection(). For now we make it a bitmap so
1996 * that we can pass in multiple flags just like parameters. However
1997 * for now all the callers are only use one of the flags at the same
1998 * time.
1999 */
2000 /* Whether we should allow dirty bit accounting */
2001 #define MM_CP_DIRTY_ACCT (1UL << 0)
2002 /* Whether this protection change is for NUMA hints */
2003 #define MM_CP_PROT_NUMA (1UL << 1)
2004 /* Whether this change is for write protecting */
2005 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2006 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2007 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2008 MM_CP_UFFD_WP_RESOLVE)
2009
2010 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
2011 unsigned long end, pgprot_t newprot,
2012 unsigned long cp_flags);
2013 extern int mprotect_fixup(struct vm_area_struct *vma,
2014 struct vm_area_struct **pprev, unsigned long start,
2015 unsigned long end, unsigned long newflags);
2016
2017 /*
2018 * doesn't attempt to fault and will return short.
2019 */
2020 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2021 unsigned int gup_flags, struct page **pages);
2022 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2023 unsigned int gup_flags, struct page **pages);
2024
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)2025 static inline bool get_user_page_fast_only(unsigned long addr,
2026 unsigned int gup_flags, struct page **pagep)
2027 {
2028 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2029 }
2030 /*
2031 * per-process(per-mm_struct) statistics.
2032 */
get_mm_counter(struct mm_struct * mm,int member)2033 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2034 {
2035 long val = atomic_long_read(&mm->rss_stat.count[member]);
2036
2037 #ifdef SPLIT_RSS_COUNTING
2038 /*
2039 * counter is updated in asynchronous manner and may go to minus.
2040 * But it's never be expected number for users.
2041 */
2042 if (val < 0)
2043 val = 0;
2044 #endif
2045 return (unsigned long)val;
2046 }
2047
2048 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count,
2049 long value);
2050
add_mm_counter(struct mm_struct * mm,int member,long value)2051 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2052 {
2053 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
2054
2055 mm_trace_rss_stat(mm, member, count, value);
2056 }
2057
inc_mm_counter(struct mm_struct * mm,int member)2058 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2059 {
2060 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
2061
2062 mm_trace_rss_stat(mm, member, count, 1);
2063 }
2064
dec_mm_counter(struct mm_struct * mm,int member)2065 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2066 {
2067 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
2068
2069 mm_trace_rss_stat(mm, member, count, -1);
2070 }
2071
2072 /* Optimized variant when page is already known not to be PageAnon */
mm_counter_file(struct page * page)2073 static inline int mm_counter_file(struct page *page)
2074 {
2075 if (PageSwapBacked(page))
2076 return MM_SHMEMPAGES;
2077 return MM_FILEPAGES;
2078 }
2079
mm_counter(struct page * page)2080 static inline int mm_counter(struct page *page)
2081 {
2082 if (PageAnon(page))
2083 return MM_ANONPAGES;
2084 return mm_counter_file(page);
2085 }
2086
get_mm_rss(struct mm_struct * mm)2087 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2088 {
2089 return get_mm_counter(mm, MM_FILEPAGES) +
2090 get_mm_counter(mm, MM_ANONPAGES) +
2091 get_mm_counter(mm, MM_SHMEMPAGES);
2092 }
2093
get_mm_hiwater_rss(struct mm_struct * mm)2094 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2095 {
2096 return max(mm->hiwater_rss, get_mm_rss(mm));
2097 }
2098
get_mm_hiwater_vm(struct mm_struct * mm)2099 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2100 {
2101 return max(mm->hiwater_vm, mm->total_vm);
2102 }
2103
update_hiwater_rss(struct mm_struct * mm)2104 static inline void update_hiwater_rss(struct mm_struct *mm)
2105 {
2106 unsigned long _rss = get_mm_rss(mm);
2107
2108 if ((mm)->hiwater_rss < _rss)
2109 (mm)->hiwater_rss = _rss;
2110 }
2111
update_hiwater_vm(struct mm_struct * mm)2112 static inline void update_hiwater_vm(struct mm_struct *mm)
2113 {
2114 if (mm->hiwater_vm < mm->total_vm)
2115 mm->hiwater_vm = mm->total_vm;
2116 }
2117
reset_mm_hiwater_rss(struct mm_struct * mm)2118 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2119 {
2120 mm->hiwater_rss = get_mm_rss(mm);
2121 }
2122
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2123 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2124 struct mm_struct *mm)
2125 {
2126 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2127
2128 if (*maxrss < hiwater_rss)
2129 *maxrss = hiwater_rss;
2130 }
2131
2132 #if defined(SPLIT_RSS_COUNTING)
2133 void sync_mm_rss(struct mm_struct *mm);
2134 #else
sync_mm_rss(struct mm_struct * mm)2135 static inline void sync_mm_rss(struct mm_struct *mm)
2136 {
2137 }
2138 #endif
2139
2140 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)2141 static inline int pte_special(pte_t pte)
2142 {
2143 return 0;
2144 }
2145
pte_mkspecial(pte_t pte)2146 static inline pte_t pte_mkspecial(pte_t pte)
2147 {
2148 return pte;
2149 }
2150 #endif
2151
2152 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)2153 static inline int pte_devmap(pte_t pte)
2154 {
2155 return 0;
2156 }
2157 #endif
2158
2159 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2160
2161 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2162 spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2163 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2164 spinlock_t **ptl)
2165 {
2166 pte_t *ptep;
2167 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2168 return ptep;
2169 }
2170
2171 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2172 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2173 unsigned long address)
2174 {
2175 return 0;
2176 }
2177 #else
2178 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2179 #endif
2180
2181 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2182 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2183 unsigned long address)
2184 {
2185 return 0;
2186 }
mm_inc_nr_puds(struct mm_struct * mm)2187 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)2188 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2189
2190 #else
2191 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2192
mm_inc_nr_puds(struct mm_struct * mm)2193 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2194 {
2195 if (mm_pud_folded(mm))
2196 return;
2197 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2198 }
2199
mm_dec_nr_puds(struct mm_struct * mm)2200 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2201 {
2202 if (mm_pud_folded(mm))
2203 return;
2204 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2205 }
2206 #endif
2207
2208 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2209 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2210 unsigned long address)
2211 {
2212 return 0;
2213 }
2214
mm_inc_nr_pmds(struct mm_struct * mm)2215 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)2216 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2217
2218 #else
2219 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2220
mm_inc_nr_pmds(struct mm_struct * mm)2221 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2222 {
2223 if (mm_pmd_folded(mm))
2224 return;
2225 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2226 }
2227
mm_dec_nr_pmds(struct mm_struct * mm)2228 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2229 {
2230 if (mm_pmd_folded(mm))
2231 return;
2232 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2233 }
2234 #endif
2235
2236 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)2237 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2238 {
2239 atomic_long_set(&mm->pgtables_bytes, 0);
2240 }
2241
mm_pgtables_bytes(const struct mm_struct * mm)2242 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2243 {
2244 return atomic_long_read(&mm->pgtables_bytes);
2245 }
2246
mm_inc_nr_ptes(struct mm_struct * mm)2247 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2248 {
2249 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2250 }
2251
mm_dec_nr_ptes(struct mm_struct * mm)2252 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2253 {
2254 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2255 }
2256 #else
2257
mm_pgtables_bytes_init(struct mm_struct * mm)2258 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)2259 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2260 {
2261 return 0;
2262 }
2263
mm_inc_nr_ptes(struct mm_struct * mm)2264 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)2265 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2266 #endif
2267
2268 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2269 int __pte_alloc_kernel(pmd_t *pmd);
2270
2271 #if defined(CONFIG_MMU)
2272
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2273 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2274 unsigned long address)
2275 {
2276 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2277 NULL : p4d_offset(pgd, address);
2278 }
2279
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2280 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2281 unsigned long address)
2282 {
2283 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2284 NULL : pud_offset(p4d, address);
2285 }
2286
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2287 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2288 {
2289 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2290 NULL: pmd_offset(pud, address);
2291 }
2292 #endif /* CONFIG_MMU */
2293
2294 #if USE_SPLIT_PTE_PTLOCKS
2295 #if ALLOC_SPLIT_PTLOCKS
2296 void __init ptlock_cache_init(void);
2297 extern bool ptlock_alloc(struct page *page);
2298 extern void ptlock_free(struct page *page);
2299
ptlock_ptr(struct page * page)2300 static inline spinlock_t *ptlock_ptr(struct page *page)
2301 {
2302 return page->ptl;
2303 }
2304 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)2305 static inline void ptlock_cache_init(void)
2306 {
2307 }
2308
ptlock_alloc(struct page * page)2309 static inline bool ptlock_alloc(struct page *page)
2310 {
2311 return true;
2312 }
2313
ptlock_free(struct page * page)2314 static inline void ptlock_free(struct page *page)
2315 {
2316 }
2317
ptlock_ptr(struct page * page)2318 static inline spinlock_t *ptlock_ptr(struct page *page)
2319 {
2320 return &page->ptl;
2321 }
2322 #endif /* ALLOC_SPLIT_PTLOCKS */
2323
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2324 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2325 {
2326 return ptlock_ptr(pmd_page(*pmd));
2327 }
2328
ptlock_init(struct page * page)2329 static inline bool ptlock_init(struct page *page)
2330 {
2331 /*
2332 * prep_new_page() initialize page->private (and therefore page->ptl)
2333 * with 0. Make sure nobody took it in use in between.
2334 *
2335 * It can happen if arch try to use slab for page table allocation:
2336 * slab code uses page->slab_cache, which share storage with page->ptl.
2337 */
2338 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2339 if (!ptlock_alloc(page))
2340 return false;
2341 spin_lock_init(ptlock_ptr(page));
2342 return true;
2343 }
2344
2345 #else /* !USE_SPLIT_PTE_PTLOCKS */
2346 /*
2347 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2348 */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2349 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2350 {
2351 return &mm->page_table_lock;
2352 }
ptlock_cache_init(void)2353 static inline void ptlock_cache_init(void) {}
ptlock_init(struct page * page)2354 static inline bool ptlock_init(struct page *page) { return true; }
ptlock_free(struct page * page)2355 static inline void ptlock_free(struct page *page) {}
2356 #endif /* USE_SPLIT_PTE_PTLOCKS */
2357
pgtable_init(void)2358 static inline void pgtable_init(void)
2359 {
2360 ptlock_cache_init();
2361 pgtable_cache_init();
2362 }
2363
pgtable_pte_page_ctor(struct page * page)2364 static inline bool pgtable_pte_page_ctor(struct page *page)
2365 {
2366 if (!ptlock_init(page))
2367 return false;
2368 __SetPageTable(page);
2369 inc_zone_page_state(page, NR_PAGETABLE);
2370 return true;
2371 }
2372
pgtable_pte_page_dtor(struct page * page)2373 static inline void pgtable_pte_page_dtor(struct page *page)
2374 {
2375 ptlock_free(page);
2376 __ClearPageTable(page);
2377 dec_zone_page_state(page, NR_PAGETABLE);
2378 }
2379
2380 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
2381 ({ \
2382 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2383 pte_t *__pte = pte_offset_map(pmd, address); \
2384 *(ptlp) = __ptl; \
2385 spin_lock(__ptl); \
2386 __pte; \
2387 })
2388
2389 #define pte_unmap_unlock(pte, ptl) do { \
2390 spin_unlock(ptl); \
2391 pte_unmap(pte); \
2392 } while (0)
2393
2394 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2395
2396 #define pte_alloc_map(mm, pmd, address) \
2397 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2398
2399 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2400 (pte_alloc(mm, pmd) ? \
2401 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2402
2403 #define pte_alloc_kernel(pmd, address) \
2404 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2405 NULL: pte_offset_kernel(pmd, address))
2406
2407 #if USE_SPLIT_PMD_PTLOCKS
2408
pmd_to_page(pmd_t * pmd)2409 static struct page *pmd_to_page(pmd_t *pmd)
2410 {
2411 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2412 return virt_to_page((void *)((unsigned long) pmd & mask));
2413 }
2414
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2415 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2416 {
2417 return ptlock_ptr(pmd_to_page(pmd));
2418 }
2419
pmd_ptlock_init(struct page * page)2420 static inline bool pmd_ptlock_init(struct page *page)
2421 {
2422 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2423 page->pmd_huge_pte = NULL;
2424 #endif
2425 return ptlock_init(page);
2426 }
2427
pmd_ptlock_free(struct page * page)2428 static inline void pmd_ptlock_free(struct page *page)
2429 {
2430 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2431 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2432 #endif
2433 ptlock_free(page);
2434 }
2435
2436 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2437
2438 #else
2439
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2440 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2441 {
2442 return &mm->page_table_lock;
2443 }
2444
pmd_ptlock_init(struct page * page)2445 static inline bool pmd_ptlock_init(struct page *page) { return true; }
pmd_ptlock_free(struct page * page)2446 static inline void pmd_ptlock_free(struct page *page) {}
2447
2448 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2449
2450 #endif
2451
pmd_lock(struct mm_struct * mm,pmd_t * pmd)2452 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2453 {
2454 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2455 spin_lock(ptl);
2456 return ptl;
2457 }
2458
pgtable_pmd_page_ctor(struct page * page)2459 static inline bool pgtable_pmd_page_ctor(struct page *page)
2460 {
2461 if (!pmd_ptlock_init(page))
2462 return false;
2463 __SetPageTable(page);
2464 inc_zone_page_state(page, NR_PAGETABLE);
2465 return true;
2466 }
2467
pgtable_pmd_page_dtor(struct page * page)2468 static inline void pgtable_pmd_page_dtor(struct page *page)
2469 {
2470 pmd_ptlock_free(page);
2471 __ClearPageTable(page);
2472 dec_zone_page_state(page, NR_PAGETABLE);
2473 }
2474
2475 /*
2476 * No scalability reason to split PUD locks yet, but follow the same pattern
2477 * as the PMD locks to make it easier if we decide to. The VM should not be
2478 * considered ready to switch to split PUD locks yet; there may be places
2479 * which need to be converted from page_table_lock.
2480 */
pud_lockptr(struct mm_struct * mm,pud_t * pud)2481 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2482 {
2483 return &mm->page_table_lock;
2484 }
2485
pud_lock(struct mm_struct * mm,pud_t * pud)2486 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2487 {
2488 spinlock_t *ptl = pud_lockptr(mm, pud);
2489
2490 spin_lock(ptl);
2491 return ptl;
2492 }
2493
2494 extern void __init pagecache_init(void);
2495 extern void __init free_area_init_memoryless_node(int nid);
2496 extern void free_initmem(void);
2497
2498 /*
2499 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2500 * into the buddy system. The freed pages will be poisoned with pattern
2501 * "poison" if it's within range [0, UCHAR_MAX].
2502 * Return pages freed into the buddy system.
2503 */
2504 extern unsigned long free_reserved_area(void *start, void *end,
2505 int poison, const char *s);
2506
2507 #ifdef CONFIG_HIGHMEM
2508 /*
2509 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2510 * and totalram_pages.
2511 */
2512 extern void free_highmem_page(struct page *page);
2513 #endif
2514
2515 extern void adjust_managed_page_count(struct page *page, long count);
2516 extern void mem_init_print_info(const char *str);
2517
2518 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2519
2520 /* Free the reserved page into the buddy system, so it gets managed. */
__free_reserved_page(struct page * page)2521 static inline void __free_reserved_page(struct page *page)
2522 {
2523 ClearPageReserved(page);
2524 init_page_count(page);
2525 __free_page(page);
2526 }
2527
free_reserved_page(struct page * page)2528 static inline void free_reserved_page(struct page *page)
2529 {
2530 __free_reserved_page(page);
2531 adjust_managed_page_count(page, 1);
2532 }
2533
mark_page_reserved(struct page * page)2534 static inline void mark_page_reserved(struct page *page)
2535 {
2536 SetPageReserved(page);
2537 adjust_managed_page_count(page, -1);
2538 }
2539
2540 /*
2541 * Default method to free all the __init memory into the buddy system.
2542 * The freed pages will be poisoned with pattern "poison" if it's within
2543 * range [0, UCHAR_MAX].
2544 * Return pages freed into the buddy system.
2545 */
free_initmem_default(int poison)2546 static inline unsigned long free_initmem_default(int poison)
2547 {
2548 extern char __init_begin[], __init_end[];
2549
2550 return free_reserved_area(&__init_begin, &__init_end,
2551 poison, "unused kernel");
2552 }
2553
get_num_physpages(void)2554 static inline unsigned long get_num_physpages(void)
2555 {
2556 int nid;
2557 unsigned long phys_pages = 0;
2558
2559 for_each_online_node(nid)
2560 phys_pages += node_present_pages(nid);
2561
2562 return phys_pages;
2563 }
2564
2565 /*
2566 * Using memblock node mappings, an architecture may initialise its
2567 * zones, allocate the backing mem_map and account for memory holes in an
2568 * architecture independent manner.
2569 *
2570 * An architecture is expected to register range of page frames backed by
2571 * physical memory with memblock_add[_node]() before calling
2572 * free_area_init() passing in the PFN each zone ends at. At a basic
2573 * usage, an architecture is expected to do something like
2574 *
2575 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2576 * max_highmem_pfn};
2577 * for_each_valid_physical_page_range()
2578 * memblock_add_node(base, size, nid)
2579 * free_area_init(max_zone_pfns);
2580 */
2581 void free_area_init(unsigned long *max_zone_pfn);
2582 unsigned long node_map_pfn_alignment(void);
2583 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2584 unsigned long end_pfn);
2585 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2586 unsigned long end_pfn);
2587 extern void get_pfn_range_for_nid(unsigned int nid,
2588 unsigned long *start_pfn, unsigned long *end_pfn);
2589 extern unsigned long find_min_pfn_with_active_regions(void);
2590
2591 #ifndef CONFIG_NEED_MULTIPLE_NODES
early_pfn_to_nid(unsigned long pfn)2592 static inline int early_pfn_to_nid(unsigned long pfn)
2593 {
2594 return 0;
2595 }
2596 #else
2597 /* please see mm/page_alloc.c */
2598 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2599 /* there is a per-arch backend function. */
2600 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2601 struct mminit_pfnnid_cache *state);
2602 #endif
2603
2604 extern void set_dma_reserve(unsigned long new_dma_reserve);
2605 extern void memmap_init_zone(unsigned long, int, unsigned long,
2606 unsigned long, unsigned long, enum meminit_context,
2607 struct vmem_altmap *, int migratetype);
2608 extern void setup_per_zone_wmarks(void);
2609 extern int __meminit init_per_zone_wmark_min(void);
2610 extern void mem_init(void);
2611 extern void __init mmap_init(void);
2612 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2613 extern long si_mem_available(void);
2614 extern void si_meminfo(struct sysinfo * val);
2615 extern void si_meminfo_node(struct sysinfo *val, int nid);
2616 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2617 extern unsigned long arch_reserved_kernel_pages(void);
2618 #endif
2619
2620 extern __printf(3, 4)
2621 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2622
2623 extern void setup_per_cpu_pageset(void);
2624
2625 /* page_alloc.c */
2626 extern int min_free_kbytes;
2627 extern int watermark_boost_factor;
2628 extern int watermark_scale_factor;
2629 extern bool arch_has_descending_max_zone_pfns(void);
2630
2631 /* nommu.c */
2632 extern atomic_long_t mmap_pages_allocated;
2633 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2634
2635 /* interval_tree.c */
2636 void vma_interval_tree_insert(struct vm_area_struct *node,
2637 struct rb_root_cached *root);
2638 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2639 struct vm_area_struct *prev,
2640 struct rb_root_cached *root);
2641 void vma_interval_tree_remove(struct vm_area_struct *node,
2642 struct rb_root_cached *root);
2643 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2644 unsigned long start, unsigned long last);
2645 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2646 unsigned long start, unsigned long last);
2647
2648 #define vma_interval_tree_foreach(vma, root, start, last) \
2649 for (vma = vma_interval_tree_iter_first(root, start, last); \
2650 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2651
2652 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2653 struct rb_root_cached *root);
2654 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2655 struct rb_root_cached *root);
2656 struct anon_vma_chain *
2657 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2658 unsigned long start, unsigned long last);
2659 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2660 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2661 #ifdef CONFIG_DEBUG_VM_RB
2662 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2663 #endif
2664
2665 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2666 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2667 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2668
2669 /* mmap.c */
2670 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2671 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2672 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2673 struct vm_area_struct *expand, bool keep_locked);
vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert)2674 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2675 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2676 {
2677 return __vma_adjust(vma, start, end, pgoff, insert, NULL, false);
2678 }
2679
2680 extern struct vm_area_struct *__vma_merge(struct mm_struct *mm,
2681 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2682 unsigned long vm_flags, struct anon_vma *anon, struct file *file,
2683 pgoff_t pgoff, struct mempolicy *mpol, struct vm_userfaultfd_ctx uff,
2684 const char __user *user, bool keep_locked);
2685
vma_merge(struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon,struct file * file,pgoff_t off,struct mempolicy * pol,struct vm_userfaultfd_ctx uff,const char __user * user)2686 static inline struct vm_area_struct *vma_merge(struct mm_struct *mm,
2687 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2688 unsigned long vm_flags, struct anon_vma *anon, struct file *file,
2689 pgoff_t off, struct mempolicy *pol, struct vm_userfaultfd_ctx uff,
2690 const char __user *user)
2691 {
2692 return __vma_merge(mm, prev, addr, end, vm_flags, anon, file, off,
2693 pol, uff, user, false);
2694 }
2695
2696 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2697 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2698 unsigned long addr, int new_below);
2699 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2700 unsigned long addr, int new_below);
2701 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2702 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2703 struct rb_node **, struct rb_node *);
2704 extern void unlink_file_vma(struct vm_area_struct *);
2705 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2706 unsigned long addr, unsigned long len, pgoff_t pgoff,
2707 bool *need_rmap_locks);
2708 extern void exit_mmap(struct mm_struct *);
2709
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)2710 static inline int check_data_rlimit(unsigned long rlim,
2711 unsigned long new,
2712 unsigned long start,
2713 unsigned long end_data,
2714 unsigned long start_data)
2715 {
2716 if (rlim < RLIM_INFINITY) {
2717 if (((new - start) + (end_data - start_data)) > rlim)
2718 return -ENOSPC;
2719 }
2720
2721 return 0;
2722 }
2723
2724 extern int mm_take_all_locks(struct mm_struct *mm);
2725 extern void mm_drop_all_locks(struct mm_struct *mm);
2726
2727 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2728 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2729 extern struct file *get_task_exe_file(struct task_struct *task);
2730
2731 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2732 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2733
2734 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2735 const struct vm_special_mapping *sm);
2736 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2737 unsigned long addr, unsigned long len,
2738 unsigned long flags,
2739 const struct vm_special_mapping *spec);
2740 /* This is an obsolete alternative to _install_special_mapping. */
2741 extern int install_special_mapping(struct mm_struct *mm,
2742 unsigned long addr, unsigned long len,
2743 unsigned long flags, struct page **pages);
2744
2745 unsigned long randomize_stack_top(unsigned long stack_top);
2746 unsigned long randomize_page(unsigned long start, unsigned long range);
2747
2748 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2749
2750 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2751 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2752 struct list_head *uf);
2753 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2754 unsigned long len, unsigned long prot, unsigned long flags,
2755 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2756 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2757 struct list_head *uf, bool downgrade);
2758 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2759 struct list_head *uf);
2760 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2761
2762 #ifdef CONFIG_MMU
2763 extern int __mm_populate(unsigned long addr, unsigned long len,
2764 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)2765 static inline void mm_populate(unsigned long addr, unsigned long len)
2766 {
2767 /* Ignore errors */
2768 (void) __mm_populate(addr, len, 1);
2769 }
2770 #else
mm_populate(unsigned long addr,unsigned long len)2771 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2772 #endif
2773
2774 /* These take the mm semaphore themselves */
2775 extern int __must_check vm_brk(unsigned long, unsigned long);
2776 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2777 extern int vm_munmap(unsigned long, size_t);
2778 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2779 unsigned long, unsigned long,
2780 unsigned long, unsigned long);
2781
2782 struct vm_unmapped_area_info {
2783 #define VM_UNMAPPED_AREA_TOPDOWN 1
2784 unsigned long flags;
2785 unsigned long length;
2786 unsigned long low_limit;
2787 unsigned long high_limit;
2788 unsigned long align_mask;
2789 unsigned long align_offset;
2790 };
2791
2792 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2793
2794 /* truncate.c */
2795 extern void truncate_inode_pages(struct address_space *, loff_t);
2796 extern void truncate_inode_pages_range(struct address_space *,
2797 loff_t lstart, loff_t lend);
2798 extern void truncate_inode_pages_final(struct address_space *);
2799
2800 /* generic vm_area_ops exported for stackable file systems */
2801 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2802 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2803 pgoff_t start_pgoff, pgoff_t end_pgoff);
2804 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2805 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
2806 extern bool filemap_allow_speculation(void);
2807 #endif
2808
2809 /* mm/page-writeback.c */
2810 int __must_check write_one_page(struct page *page);
2811 void task_dirty_inc(struct task_struct *tsk);
2812
2813 extern unsigned long stack_guard_gap;
2814 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2815 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2816
2817 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2818 extern int expand_downwards(struct vm_area_struct *vma,
2819 unsigned long address);
2820 #if VM_GROWSUP
2821 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2822 #else
2823 #define expand_upwards(vma, address) (0)
2824 #endif
2825
2826 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2827 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2828 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2829 struct vm_area_struct **pprev);
2830
2831 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2832 NULL if none. Assume start_addr < end_addr. */
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)2833 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2834 {
2835 struct vm_area_struct * vma = find_vma(mm,start_addr);
2836
2837 if (vma && end_addr <= vma->vm_start)
2838 vma = NULL;
2839 return vma;
2840 }
2841
vm_start_gap(struct vm_area_struct * vma)2842 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2843 {
2844 unsigned long vm_start = vma->vm_start;
2845
2846 if (vma->vm_flags & VM_GROWSDOWN) {
2847 vm_start -= stack_guard_gap;
2848 if (vm_start > vma->vm_start)
2849 vm_start = 0;
2850 }
2851 return vm_start;
2852 }
2853
vm_end_gap(struct vm_area_struct * vma)2854 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2855 {
2856 unsigned long vm_end = vma->vm_end;
2857
2858 if (vma->vm_flags & VM_GROWSUP) {
2859 vm_end += stack_guard_gap;
2860 if (vm_end < vma->vm_end)
2861 vm_end = -PAGE_SIZE;
2862 }
2863 return vm_end;
2864 }
2865
vma_pages(struct vm_area_struct * vma)2866 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2867 {
2868 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2869 }
2870
2871 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)2872 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2873 unsigned long vm_start, unsigned long vm_end)
2874 {
2875 struct vm_area_struct *vma = find_vma(mm, vm_start);
2876
2877 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2878 vma = NULL;
2879
2880 return vma;
2881 }
2882
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)2883 static inline bool range_in_vma(struct vm_area_struct *vma,
2884 unsigned long start, unsigned long end)
2885 {
2886 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2887 }
2888
2889 #ifdef CONFIG_MMU
2890 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2891 void vma_set_page_prot(struct vm_area_struct *vma);
2892 #else
vm_get_page_prot(unsigned long vm_flags)2893 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2894 {
2895 return __pgprot(0);
2896 }
vma_set_page_prot(struct vm_area_struct * vma)2897 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2898 {
2899 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2900 }
2901 #endif
2902
2903 #ifdef CONFIG_NUMA_BALANCING
2904 unsigned long change_prot_numa(struct vm_area_struct *vma,
2905 unsigned long start, unsigned long end);
2906 #endif
2907
2908 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2909 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2910 unsigned long pfn, unsigned long size, pgprot_t);
2911 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2912 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2913 struct page **pages, unsigned long *num);
2914 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2915 unsigned long num);
2916 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2917 unsigned long num);
2918 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2919 unsigned long pfn);
2920 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2921 unsigned long pfn, pgprot_t pgprot);
2922 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2923 pfn_t pfn);
2924 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2925 pfn_t pfn, pgprot_t pgprot);
2926 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2927 unsigned long addr, pfn_t pfn);
2928 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2929
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2930 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2931 unsigned long addr, struct page *page)
2932 {
2933 int err = vm_insert_page(vma, addr, page);
2934
2935 if (err == -ENOMEM)
2936 return VM_FAULT_OOM;
2937 if (err < 0 && err != -EBUSY)
2938 return VM_FAULT_SIGBUS;
2939
2940 return VM_FAULT_NOPAGE;
2941 }
2942
2943 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2944 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2945 unsigned long addr, unsigned long pfn,
2946 unsigned long size, pgprot_t prot)
2947 {
2948 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2949 }
2950 #endif
2951
vmf_error(int err)2952 static inline vm_fault_t vmf_error(int err)
2953 {
2954 if (err == -ENOMEM)
2955 return VM_FAULT_OOM;
2956 return VM_FAULT_SIGBUS;
2957 }
2958
2959 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2960 unsigned int foll_flags);
2961
2962 #define FOLL_WRITE 0x01 /* check pte is writable */
2963 #define FOLL_TOUCH 0x02 /* mark page accessed */
2964 #define FOLL_GET 0x04 /* do get_page on page */
2965 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2966 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2967 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2968 * and return without waiting upon it */
2969 #define FOLL_POPULATE 0x40 /* fault in page */
2970 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2971 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2972 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2973 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2974 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2975 #define FOLL_MLOCK 0x1000 /* lock present pages */
2976 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2977 #define FOLL_COW 0x4000 /* internal GUP flag */
2978 #define FOLL_ANON 0x8000 /* don't do file mappings */
2979 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2980 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2981 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
2982 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
2983
2984 /*
2985 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2986 * other. Here is what they mean, and how to use them:
2987 *
2988 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2989 * period _often_ under userspace control. This is in contrast to
2990 * iov_iter_get_pages(), whose usages are transient.
2991 *
2992 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2993 * lifetime enforced by the filesystem and we need guarantees that longterm
2994 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2995 * the filesystem. Ideas for this coordination include revoking the longterm
2996 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2997 * added after the problem with filesystems was found FS DAX VMAs are
2998 * specifically failed. Filesystem pages are still subject to bugs and use of
2999 * FOLL_LONGTERM should be avoided on those pages.
3000 *
3001 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
3002 * Currently only get_user_pages() and get_user_pages_fast() support this flag
3003 * and calls to get_user_pages_[un]locked are specifically not allowed. This
3004 * is due to an incompatibility with the FS DAX check and
3005 * FAULT_FLAG_ALLOW_RETRY.
3006 *
3007 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
3008 * that region. And so, CMA attempts to migrate the page before pinning, when
3009 * FOLL_LONGTERM is specified.
3010 *
3011 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
3012 * but an additional pin counting system) will be invoked. This is intended for
3013 * anything that gets a page reference and then touches page data (for example,
3014 * Direct IO). This lets the filesystem know that some non-file-system entity is
3015 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
3016 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
3017 * a call to unpin_user_page().
3018 *
3019 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
3020 * and separate refcounting mechanisms, however, and that means that each has
3021 * its own acquire and release mechanisms:
3022 *
3023 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
3024 *
3025 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
3026 *
3027 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
3028 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
3029 * calls applied to them, and that's perfectly OK. This is a constraint on the
3030 * callers, not on the pages.)
3031 *
3032 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
3033 * directly by the caller. That's in order to help avoid mismatches when
3034 * releasing pages: get_user_pages*() pages must be released via put_page(),
3035 * while pin_user_pages*() pages must be released via unpin_user_page().
3036 *
3037 * Please see Documentation/core-api/pin_user_pages.rst for more information.
3038 */
3039
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)3040 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3041 {
3042 if (vm_fault & VM_FAULT_OOM)
3043 return -ENOMEM;
3044 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3045 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3046 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3047 return -EFAULT;
3048 return 0;
3049 }
3050
3051 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3052 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3053 unsigned long size, pte_fn_t fn, void *data);
3054 extern int apply_to_existing_page_range(struct mm_struct *mm,
3055 unsigned long address, unsigned long size,
3056 pte_fn_t fn, void *data);
3057
3058 extern void init_mem_debugging_and_hardening(void);
3059 #ifdef CONFIG_PAGE_POISONING
3060 extern void __kernel_poison_pages(struct page *page, int numpages);
3061 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3062 extern bool _page_poisoning_enabled_early;
3063 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
page_poisoning_enabled(void)3064 static inline bool page_poisoning_enabled(void)
3065 {
3066 return _page_poisoning_enabled_early;
3067 }
3068 /*
3069 * For use in fast paths after init_mem_debugging() has run, or when a
3070 * false negative result is not harmful when called too early.
3071 */
page_poisoning_enabled_static(void)3072 static inline bool page_poisoning_enabled_static(void)
3073 {
3074 return static_branch_unlikely(&_page_poisoning_enabled);
3075 }
kernel_poison_pages(struct page * page,int numpages)3076 static inline void kernel_poison_pages(struct page *page, int numpages)
3077 {
3078 if (page_poisoning_enabled_static())
3079 __kernel_poison_pages(page, numpages);
3080 }
kernel_unpoison_pages(struct page * page,int numpages)3081 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3082 {
3083 if (page_poisoning_enabled_static())
3084 __kernel_unpoison_pages(page, numpages);
3085 }
3086 #else
page_poisoning_enabled(void)3087 static inline bool page_poisoning_enabled(void) { return false; }
page_poisoning_enabled_static(void)3088 static inline bool page_poisoning_enabled_static(void) { return false; }
__kernel_poison_pages(struct page * page,int nunmpages)3089 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
kernel_poison_pages(struct page * page,int numpages)3090 static inline void kernel_poison_pages(struct page *page, int numpages) { }
kernel_unpoison_pages(struct page * page,int numpages)3091 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3092 #endif
3093
3094 DECLARE_STATIC_KEY_FALSE(init_on_alloc);
want_init_on_alloc(gfp_t flags)3095 static inline bool want_init_on_alloc(gfp_t flags)
3096 {
3097 if (static_branch_unlikely(&init_on_alloc))
3098 return true;
3099 return flags & __GFP_ZERO;
3100 }
3101
3102 DECLARE_STATIC_KEY_FALSE(init_on_free);
want_init_on_free(void)3103 static inline bool want_init_on_free(void)
3104 {
3105 return static_branch_unlikely(&init_on_free);
3106 }
3107
3108 extern bool _debug_pagealloc_enabled_early;
3109 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3110
debug_pagealloc_enabled(void)3111 static inline bool debug_pagealloc_enabled(void)
3112 {
3113 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3114 _debug_pagealloc_enabled_early;
3115 }
3116
3117 /*
3118 * For use in fast paths after init_debug_pagealloc() has run, or when a
3119 * false negative result is not harmful when called too early.
3120 */
debug_pagealloc_enabled_static(void)3121 static inline bool debug_pagealloc_enabled_static(void)
3122 {
3123 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3124 return false;
3125
3126 return static_branch_unlikely(&_debug_pagealloc_enabled);
3127 }
3128
3129 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
3130 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3131
3132 /*
3133 * When called in DEBUG_PAGEALLOC context, the call should most likely be
3134 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
3135 */
3136 static inline void
kernel_map_pages(struct page * page,int numpages,int enable)3137 kernel_map_pages(struct page *page, int numpages, int enable)
3138 {
3139 __kernel_map_pages(page, numpages, enable);
3140 }
3141
debug_pagealloc_map_pages(struct page * page,int numpages)3142 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3143 {
3144 if (debug_pagealloc_enabled_static())
3145 __kernel_map_pages(page, numpages, 1);
3146 }
3147
debug_pagealloc_unmap_pages(struct page * page,int numpages)3148 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3149 {
3150 if (debug_pagealloc_enabled_static())
3151 __kernel_map_pages(page, numpages, 0);
3152 }
3153
3154 #ifdef CONFIG_HIBERNATION
3155 extern bool kernel_page_present(struct page *page);
3156 #endif /* CONFIG_HIBERNATION */
3157 #else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
3158 static inline void
kernel_map_pages(struct page * page,int numpages,int enable)3159 kernel_map_pages(struct page *page, int numpages, int enable) {}
debug_pagealloc_map_pages(struct page * page,int numpages)3160 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
debug_pagealloc_unmap_pages(struct page * page,int numpages)3161 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3162 #ifdef CONFIG_HIBERNATION
kernel_page_present(struct page * page)3163 static inline bool kernel_page_present(struct page *page) { return true; }
3164 #endif /* CONFIG_HIBERNATION */
3165 #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
3166
3167 #ifdef __HAVE_ARCH_GATE_AREA
3168 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3169 extern int in_gate_area_no_mm(unsigned long addr);
3170 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3171 #else
get_gate_vma(struct mm_struct * mm)3172 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3173 {
3174 return NULL;
3175 }
in_gate_area_no_mm(unsigned long addr)3176 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)3177 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3178 {
3179 return 0;
3180 }
3181 #endif /* __HAVE_ARCH_GATE_AREA */
3182
3183 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3184
3185 #ifdef CONFIG_SYSCTL
3186 extern int sysctl_drop_caches;
3187 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3188 loff_t *);
3189 #endif
3190
3191 void drop_slab(void);
3192 void drop_slab_node(int nid);
3193
3194 #ifndef CONFIG_MMU
3195 #define randomize_va_space 0
3196 #else
3197 extern int randomize_va_space;
3198 #endif
3199
3200 const char * arch_vma_name(struct vm_area_struct *vma);
3201 #ifdef CONFIG_MMU
3202 void print_vma_addr(char *prefix, unsigned long rip);
3203 #else
print_vma_addr(char * prefix,unsigned long rip)3204 static inline void print_vma_addr(char *prefix, unsigned long rip)
3205 {
3206 }
3207 #endif
3208
3209 void *sparse_buffer_alloc(unsigned long size);
3210 struct page * __populate_section_memmap(unsigned long pfn,
3211 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3212 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3213 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3214 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3215 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3216 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3217 struct vmem_altmap *altmap);
3218 void *vmemmap_alloc_block(unsigned long size, int node);
3219 struct vmem_altmap;
3220 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3221 struct vmem_altmap *altmap);
3222 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3223 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3224 int node, struct vmem_altmap *altmap);
3225 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3226 struct vmem_altmap *altmap);
3227 void vmemmap_populate_print_last(void);
3228 #ifdef CONFIG_MEMORY_HOTPLUG
3229 void vmemmap_free(unsigned long start, unsigned long end,
3230 struct vmem_altmap *altmap);
3231 #endif
3232 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3233 unsigned long nr_pages);
3234
3235 enum mf_flags {
3236 MF_COUNT_INCREASED = 1 << 0,
3237 MF_ACTION_REQUIRED = 1 << 1,
3238 MF_MUST_KILL = 1 << 2,
3239 MF_SOFT_OFFLINE = 1 << 3,
3240 };
3241 extern int memory_failure(unsigned long pfn, int flags);
3242 extern void memory_failure_queue(unsigned long pfn, int flags);
3243 extern void memory_failure_queue_kick(int cpu);
3244 extern int unpoison_memory(unsigned long pfn);
3245 extern int sysctl_memory_failure_early_kill;
3246 extern int sysctl_memory_failure_recovery;
3247 extern void shake_page(struct page *p, int access);
3248 extern atomic_long_t num_poisoned_pages __read_mostly;
3249 extern int soft_offline_page(unsigned long pfn, int flags);
3250
3251
3252 /*
3253 * Error handlers for various types of pages.
3254 */
3255 enum mf_result {
3256 MF_IGNORED, /* Error: cannot be handled */
3257 MF_FAILED, /* Error: handling failed */
3258 MF_DELAYED, /* Will be handled later */
3259 MF_RECOVERED, /* Successfully recovered */
3260 };
3261
3262 enum mf_action_page_type {
3263 MF_MSG_KERNEL,
3264 MF_MSG_KERNEL_HIGH_ORDER,
3265 MF_MSG_SLAB,
3266 MF_MSG_DIFFERENT_COMPOUND,
3267 MF_MSG_POISONED_HUGE,
3268 MF_MSG_HUGE,
3269 MF_MSG_FREE_HUGE,
3270 MF_MSG_NON_PMD_HUGE,
3271 MF_MSG_UNMAP_FAILED,
3272 MF_MSG_DIRTY_SWAPCACHE,
3273 MF_MSG_CLEAN_SWAPCACHE,
3274 MF_MSG_DIRTY_MLOCKED_LRU,
3275 MF_MSG_CLEAN_MLOCKED_LRU,
3276 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3277 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3278 MF_MSG_DIRTY_LRU,
3279 MF_MSG_CLEAN_LRU,
3280 MF_MSG_TRUNCATED_LRU,
3281 MF_MSG_BUDDY,
3282 MF_MSG_BUDDY_2ND,
3283 MF_MSG_DAX,
3284 MF_MSG_UNSPLIT_THP,
3285 MF_MSG_UNKNOWN,
3286 };
3287
3288 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3289 extern void clear_huge_page(struct page *page,
3290 unsigned long addr_hint,
3291 unsigned int pages_per_huge_page);
3292 extern void copy_user_huge_page(struct page *dst, struct page *src,
3293 unsigned long addr_hint,
3294 struct vm_area_struct *vma,
3295 unsigned int pages_per_huge_page);
3296 extern long copy_huge_page_from_user(struct page *dst_page,
3297 const void __user *usr_src,
3298 unsigned int pages_per_huge_page,
3299 bool allow_pagefault);
3300
3301 /**
3302 * vma_is_special_huge - Are transhuge page-table entries considered special?
3303 * @vma: Pointer to the struct vm_area_struct to consider
3304 *
3305 * Whether transhuge page-table entries are considered "special" following
3306 * the definition in vm_normal_page().
3307 *
3308 * Return: true if transhuge page-table entries should be considered special,
3309 * false otherwise.
3310 */
vma_is_special_huge(const struct vm_area_struct * vma)3311 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3312 {
3313 return vma_is_dax(vma) || (vma->vm_file &&
3314 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3315 }
3316
3317 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3318
3319 #ifdef CONFIG_DEBUG_PAGEALLOC
3320 extern unsigned int _debug_guardpage_minorder;
3321 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3322
debug_guardpage_minorder(void)3323 static inline unsigned int debug_guardpage_minorder(void)
3324 {
3325 return _debug_guardpage_minorder;
3326 }
3327
debug_guardpage_enabled(void)3328 static inline bool debug_guardpage_enabled(void)
3329 {
3330 return static_branch_unlikely(&_debug_guardpage_enabled);
3331 }
3332
page_is_guard(struct page * page)3333 static inline bool page_is_guard(struct page *page)
3334 {
3335 if (!debug_guardpage_enabled())
3336 return false;
3337
3338 return PageGuard(page);
3339 }
3340 #else
debug_guardpage_minorder(void)3341 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)3342 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)3343 static inline bool page_is_guard(struct page *page) { return false; }
3344 #endif /* CONFIG_DEBUG_PAGEALLOC */
3345
3346 #if MAX_NUMNODES > 1
3347 void __init setup_nr_node_ids(void);
3348 #else
setup_nr_node_ids(void)3349 static inline void setup_nr_node_ids(void) {}
3350 #endif
3351
3352 extern int memcmp_pages(struct page *page1, struct page *page2);
3353
pages_identical(struct page * page1,struct page * page2)3354 static inline int pages_identical(struct page *page1, struct page *page2)
3355 {
3356 return !memcmp_pages(page1, page2);
3357 }
3358
3359 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3360 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3361 pgoff_t first_index, pgoff_t nr,
3362 pgoff_t bitmap_pgoff,
3363 unsigned long *bitmap,
3364 pgoff_t *start,
3365 pgoff_t *end);
3366
3367 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3368 pgoff_t first_index, pgoff_t nr);
3369 #endif
3370
3371 extern int sysctl_nr_trim_pages;
3372 extern bool pte_map_lock_addr(struct vm_fault *vmf, unsigned long addr);
3373 extern int reclaim_shmem_address_space(struct address_space *mapping);
3374
3375 /**
3376 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3377 * @seals: the seals to check
3378 * @vma: the vma to operate on
3379 *
3380 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3381 * the vma flags. Return 0 if check pass, or <0 for errors.
3382 */
seal_check_future_write(int seals,struct vm_area_struct * vma)3383 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3384 {
3385 if (seals & F_SEAL_FUTURE_WRITE) {
3386 /*
3387 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3388 * "future write" seal active.
3389 */
3390 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3391 return -EPERM;
3392
3393 /*
3394 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3395 * MAP_SHARED and read-only, take care to not allow mprotect to
3396 * revert protections on such mappings. Do this only for shared
3397 * mappings. For private mappings, don't need to mask
3398 * VM_MAYWRITE as we still want them to be COW-writable.
3399 */
3400 if (vma->vm_flags & VM_SHARED)
3401 vma->vm_flags &= ~(VM_MAYWRITE);
3402 }
3403
3404 return 0;
3405 }
3406
3407 #endif /* __KERNEL__ */
3408 #endif /* _LINUX_MM_H */
3409