• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /* SPDX-License-Identifier: GPL-2.0-only */
2  /*
3   * User-mode machine state access
4   *
5   * Copyright (C) 2007 Red Hat, Inc.  All rights reserved.
6   *
7   * Red Hat Author: Roland McGrath.
8   */
9  
10  #ifndef _LINUX_REGSET_H
11  #define _LINUX_REGSET_H	1
12  
13  #include <linux/compiler.h>
14  #include <linux/types.h>
15  #include <linux/bug.h>
16  #include <linux/uaccess.h>
17  struct task_struct;
18  struct user_regset;
19  
20  struct membuf {
21  	void *p;
22  	size_t left;
23  };
24  
membuf_zero(struct membuf * s,size_t size)25  static inline int membuf_zero(struct membuf *s, size_t size)
26  {
27  	if (s->left) {
28  		if (size > s->left)
29  			size = s->left;
30  		memset(s->p, 0, size);
31  		s->p += size;
32  		s->left -= size;
33  	}
34  	return s->left;
35  }
36  
membuf_write(struct membuf * s,const void * v,size_t size)37  static inline int membuf_write(struct membuf *s, const void *v, size_t size)
38  {
39  	if (s->left) {
40  		if (size > s->left)
41  			size = s->left;
42  		memcpy(s->p, v, size);
43  		s->p += size;
44  		s->left -= size;
45  	}
46  	return s->left;
47  }
48  
49  /* current s->p must be aligned for v; v must be a scalar */
50  #define membuf_store(s, v)				\
51  ({							\
52  	struct membuf *__s = (s);			\
53          if (__s->left) {				\
54  		typeof(v) __v = (v);			\
55  		size_t __size = sizeof(__v);		\
56  		if (unlikely(__size > __s->left)) {	\
57  			__size = __s->left;		\
58  			memcpy(__s->p, &__v, __size);	\
59  		} else {				\
60  			*(typeof(__v + 0) *)__s->p = __v;	\
61  		}					\
62  		__s->p += __size;			\
63  		__s->left -= __size;			\
64  	}						\
65  	__s->left;})
66  
67  /**
68   * user_regset_active_fn - type of @active function in &struct user_regset
69   * @target:	thread being examined
70   * @regset:	regset being examined
71   *
72   * Return -%ENODEV if not available on the hardware found.
73   * Return %0 if no interesting state in this thread.
74   * Return >%0 number of @size units of interesting state.
75   * Any get call fetching state beyond that number will
76   * see the default initialization state for this data,
77   * so a caller that knows what the default state is need
78   * not copy it all out.
79   * This call is optional; the pointer is %NULL if there
80   * is no inexpensive check to yield a value < @n.
81   */
82  typedef int user_regset_active_fn(struct task_struct *target,
83  				  const struct user_regset *regset);
84  
85  typedef int user_regset_get2_fn(struct task_struct *target,
86  			       const struct user_regset *regset,
87  			       struct membuf to);
88  
89  /**
90   * user_regset_set_fn - type of @set function in &struct user_regset
91   * @target:	thread being examined
92   * @regset:	regset being examined
93   * @pos:	offset into the regset data to access, in bytes
94   * @count:	amount of data to copy, in bytes
95   * @kbuf:	if not %NULL, a kernel-space pointer to copy from
96   * @ubuf:	if @kbuf is %NULL, a user-space pointer to copy from
97   *
98   * Store register values.  Return %0 on success; -%EIO or -%ENODEV
99   * are usual failure returns.  The @pos and @count values are in
100   * bytes, but must be properly aligned.  If @kbuf is non-null, that
101   * buffer is used and @ubuf is ignored.  If @kbuf is %NULL, then
102   * ubuf gives a userland pointer to access directly, and an -%EFAULT
103   * return value is possible.
104   */
105  typedef int user_regset_set_fn(struct task_struct *target,
106  			       const struct user_regset *regset,
107  			       unsigned int pos, unsigned int count,
108  			       const void *kbuf, const void __user *ubuf);
109  
110  /**
111   * user_regset_writeback_fn - type of @writeback function in &struct user_regset
112   * @target:	thread being examined
113   * @regset:	regset being examined
114   * @immediate:	zero if writeback at completion of next context switch is OK
115   *
116   * This call is optional; usually the pointer is %NULL.  When
117   * provided, there is some user memory associated with this regset's
118   * hardware, such as memory backing cached register data on register
119   * window machines; the regset's data controls what user memory is
120   * used (e.g. via the stack pointer value).
121   *
122   * Write register data back to user memory.  If the @immediate flag
123   * is nonzero, it must be written to the user memory so uaccess or
124   * access_process_vm() can see it when this call returns; if zero,
125   * then it must be written back by the time the task completes a
126   * context switch (as synchronized with wait_task_inactive()).
127   * Return %0 on success or if there was nothing to do, -%EFAULT for
128   * a memory problem (bad stack pointer or whatever), or -%EIO for a
129   * hardware problem.
130   */
131  typedef int user_regset_writeback_fn(struct task_struct *target,
132  				     const struct user_regset *regset,
133  				     int immediate);
134  
135  /**
136   * struct user_regset - accessible thread CPU state
137   * @n:			Number of slots (registers).
138   * @size:		Size in bytes of a slot (register).
139   * @align:		Required alignment, in bytes.
140   * @bias:		Bias from natural indexing.
141   * @core_note_type:	ELF note @n_type value used in core dumps.
142   * @get:		Function to fetch values.
143   * @set:		Function to store values.
144   * @active:		Function to report if regset is active, or %NULL.
145   * @writeback:		Function to write data back to user memory, or %NULL.
146   *
147   * This data structure describes a machine resource we call a register set.
148   * This is part of the state of an individual thread, not necessarily
149   * actual CPU registers per se.  A register set consists of a number of
150   * similar slots, given by @n.  Each slot is @size bytes, and aligned to
151   * @align bytes (which is at least @size).  For dynamically-sized
152   * regsets, @n must contain the maximum possible number of slots for the
153   * regset.
154   *
155   * For backward compatibility, the @get and @set methods must pad to, or
156   * accept, @n * @size bytes, even if the current regset size is smaller.
157   * The precise semantics of these operations depend on the regset being
158   * accessed.
159   *
160   * The functions to which &struct user_regset members point must be
161   * called only on the current thread or on a thread that is in
162   * %TASK_STOPPED or %TASK_TRACED state, that we are guaranteed will not
163   * be woken up and return to user mode, and that we have called
164   * wait_task_inactive() on.  (The target thread always might wake up for
165   * SIGKILL while these functions are working, in which case that
166   * thread's user_regset state might be scrambled.)
167   *
168   * The @pos argument must be aligned according to @align; the @count
169   * argument must be a multiple of @size.  These functions are not
170   * responsible for checking for invalid arguments.
171   *
172   * When there is a natural value to use as an index, @bias gives the
173   * difference between the natural index and the slot index for the
174   * register set.  For example, x86 GDT segment descriptors form a regset;
175   * the segment selector produces a natural index, but only a subset of
176   * that index space is available as a regset (the TLS slots); subtracting
177   * @bias from a segment selector index value computes the regset slot.
178   *
179   * If nonzero, @core_note_type gives the n_type field (NT_* value)
180   * of the core file note in which this regset's data appears.
181   * NT_PRSTATUS is a special case in that the regset data starts at
182   * offsetof(struct elf_prstatus, pr_reg) into the note data; that is
183   * part of the per-machine ELF formats userland knows about.  In
184   * other cases, the core file note contains exactly the whole regset
185   * (@n * @size) and nothing else.  The core file note is normally
186   * omitted when there is an @active function and it returns zero.
187   */
188  struct user_regset {
189  	user_regset_get2_fn		*regset_get;
190  	user_regset_set_fn		*set;
191  	user_regset_active_fn		*active;
192  	user_regset_writeback_fn	*writeback;
193  	unsigned int			n;
194  	unsigned int 			size;
195  	unsigned int 			align;
196  	unsigned int 			bias;
197  	unsigned int 			core_note_type;
198  };
199  
200  /**
201   * struct user_regset_view - available regsets
202   * @name:	Identifier, e.g. UTS_MACHINE string.
203   * @regsets:	Array of @n regsets available in this view.
204   * @n:		Number of elements in @regsets.
205   * @e_machine:	ELF header @e_machine %EM_* value written in core dumps.
206   * @e_flags:	ELF header @e_flags value written in core dumps.
207   * @ei_osabi:	ELF header @e_ident[%EI_OSABI] value written in core dumps.
208   *
209   * A regset view is a collection of regsets (&struct user_regset,
210   * above).  This describes all the state of a thread that can be seen
211   * from a given architecture/ABI environment.  More than one view might
212   * refer to the same &struct user_regset, or more than one regset
213   * might refer to the same machine-specific state in the thread.  For
214   * example, a 32-bit thread's state could be examined from the 32-bit
215   * view or from the 64-bit view.  Either method reaches the same thread
216   * register state, doing appropriate widening or truncation.
217   */
218  struct user_regset_view {
219  	const char *name;
220  	const struct user_regset *regsets;
221  	unsigned int n;
222  	u32 e_flags;
223  	u16 e_machine;
224  	u8 ei_osabi;
225  };
226  
227  /*
228   * This is documented here rather than at the definition sites because its
229   * implementation is machine-dependent but its interface is universal.
230   */
231  /**
232   * task_user_regset_view - Return the process's native regset view.
233   * @tsk: a thread of the process in question
234   *
235   * Return the &struct user_regset_view that is native for the given process.
236   * For example, what it would access when it called ptrace().
237   * Throughout the life of the process, this only changes at exec.
238   */
239  const struct user_regset_view *task_user_regset_view(struct task_struct *tsk);
240  
user_regset_copyin(unsigned int * pos,unsigned int * count,const void ** kbuf,const void __user ** ubuf,void * data,const int start_pos,const int end_pos)241  static inline int user_regset_copyin(unsigned int *pos, unsigned int *count,
242  				     const void **kbuf,
243  				     const void __user **ubuf, void *data,
244  				     const int start_pos, const int end_pos)
245  {
246  	if (*count == 0)
247  		return 0;
248  	BUG_ON(*pos < start_pos);
249  	if (end_pos < 0 || *pos < end_pos) {
250  		unsigned int copy = (end_pos < 0 ? *count
251  				     : min(*count, end_pos - *pos));
252  		data += *pos - start_pos;
253  		if (*kbuf) {
254  			memcpy(data, *kbuf, copy);
255  			*kbuf += copy;
256  		} else if (__copy_from_user(data, *ubuf, copy))
257  			return -EFAULT;
258  		else
259  			*ubuf += copy;
260  		*pos += copy;
261  		*count -= copy;
262  	}
263  	return 0;
264  }
265  
user_regset_copyin_ignore(unsigned int * pos,unsigned int * count,const void ** kbuf,const void __user ** ubuf,const int start_pos,const int end_pos)266  static inline int user_regset_copyin_ignore(unsigned int *pos,
267  					    unsigned int *count,
268  					    const void **kbuf,
269  					    const void __user **ubuf,
270  					    const int start_pos,
271  					    const int end_pos)
272  {
273  	if (*count == 0)
274  		return 0;
275  	BUG_ON(*pos < start_pos);
276  	if (end_pos < 0 || *pos < end_pos) {
277  		unsigned int copy = (end_pos < 0 ? *count
278  				     : min(*count, end_pos - *pos));
279  		if (*kbuf)
280  			*kbuf += copy;
281  		else
282  			*ubuf += copy;
283  		*pos += copy;
284  		*count -= copy;
285  	}
286  	return 0;
287  }
288  
289  extern int regset_get(struct task_struct *target,
290  		      const struct user_regset *regset,
291  		      unsigned int size, void *data);
292  
293  extern int regset_get_alloc(struct task_struct *target,
294  			    const struct user_regset *regset,
295  			    unsigned int size,
296  			    void **data);
297  
298  extern int copy_regset_to_user(struct task_struct *target,
299  			       const struct user_regset_view *view,
300  			       unsigned int setno, unsigned int offset,
301  			       unsigned int size, void __user *data);
302  
303  /**
304   * copy_regset_from_user - store into thread's user_regset data from user memory
305   * @target:	thread to be examined
306   * @view:	&struct user_regset_view describing user thread machine state
307   * @setno:	index in @view->regsets
308   * @offset:	offset into the regset data, in bytes
309   * @size:	amount of data to copy, in bytes
310   * @data:	user-mode pointer to copy from
311   */
copy_regset_from_user(struct task_struct * target,const struct user_regset_view * view,unsigned int setno,unsigned int offset,unsigned int size,const void __user * data)312  static inline int copy_regset_from_user(struct task_struct *target,
313  					const struct user_regset_view *view,
314  					unsigned int setno,
315  					unsigned int offset, unsigned int size,
316  					const void __user *data)
317  {
318  	const struct user_regset *regset = &view->regsets[setno];
319  
320  	if (!regset->set)
321  		return -EOPNOTSUPP;
322  
323  	if (!access_ok(data, size))
324  		return -EFAULT;
325  
326  	return regset->set(target, regset, offset, size, NULL, data);
327  }
328  
329  #endif	/* <linux/regset.h> */
330