1 /* Copyright 2008 - 2016 Freescale Semiconductor, Inc.
2 *
3 * Redistribution and use in source and binary forms, with or without
4 * modification, are permitted provided that the following conditions are met:
5 * * Redistributions of source code must retain the above copyright
6 * notice, this list of conditions and the following disclaimer.
7 * * Redistributions in binary form must reproduce the above copyright
8 * notice, this list of conditions and the following disclaimer in the
9 * documentation and/or other materials provided with the distribution.
10 * * Neither the name of Freescale Semiconductor nor the
11 * names of its contributors may be used to endorse or promote products
12 * derived from this software without specific prior written permission.
13 *
14 * ALTERNATIVELY, this software may be distributed under the terms of the
15 * GNU General Public License ("GPL") as published by the Free Software
16 * Foundation, either version 2 of that License or (at your option) any
17 * later version.
18 *
19 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 #ifndef __FSL_QMAN_H
32 #define __FSL_QMAN_H
33
34 #include <linux/bitops.h>
35 #include <linux/device.h>
36
37 /* Hardware constants */
38 #define QM_CHANNEL_SWPORTAL0 0
39 #define QMAN_CHANNEL_POOL1 0x21
40 #define QMAN_CHANNEL_CAAM 0x80
41 #define QMAN_CHANNEL_POOL1_REV3 0x401
42 #define QMAN_CHANNEL_CAAM_REV3 0x840
43 extern u16 qm_channel_pool1;
44 extern u16 qm_channel_caam;
45
46 /* Portal processing (interrupt) sources */
47 #define QM_PIRQ_CSCI 0x00100000 /* Congestion State Change */
48 #define QM_PIRQ_EQCI 0x00080000 /* Enqueue Command Committed */
49 #define QM_PIRQ_EQRI 0x00040000 /* EQCR Ring (below threshold) */
50 #define QM_PIRQ_DQRI 0x00020000 /* DQRR Ring (non-empty) */
51 #define QM_PIRQ_MRI 0x00010000 /* MR Ring (non-empty) */
52 /*
53 * This mask contains all the interrupt sources that need handling except DQRI,
54 * ie. that if present should trigger slow-path processing.
55 */
56 #define QM_PIRQ_SLOW (QM_PIRQ_CSCI | QM_PIRQ_EQCI | QM_PIRQ_EQRI | \
57 QM_PIRQ_MRI)
58
59 /* For qman_static_dequeue_*** APIs */
60 #define QM_SDQCR_CHANNELS_POOL_MASK 0x00007fff
61 /* for n in [1,15] */
62 #define QM_SDQCR_CHANNELS_POOL(n) (0x00008000 >> (n))
63 /* for conversion from n of qm_channel */
QM_SDQCR_CHANNELS_POOL_CONV(u16 channel)64 static inline u32 QM_SDQCR_CHANNELS_POOL_CONV(u16 channel)
65 {
66 return QM_SDQCR_CHANNELS_POOL(channel + 1 - qm_channel_pool1);
67 }
68
69 /* --- QMan data structures (and associated constants) --- */
70
71 /* "Frame Descriptor (FD)" */
72 struct qm_fd {
73 union {
74 struct {
75 u8 cfg8b_w1;
76 u8 bpid; /* Buffer Pool ID */
77 u8 cfg8b_w3;
78 u8 addr_hi; /* high 8-bits of 40-bit address */
79 __be32 addr_lo; /* low 32-bits of 40-bit address */
80 } __packed;
81 __be64 data;
82 };
83 __be32 cfg; /* format, offset, length / congestion */
84 union {
85 __be32 cmd;
86 __be32 status;
87 };
88 } __aligned(8);
89
90 #define QM_FD_FORMAT_SG BIT(31)
91 #define QM_FD_FORMAT_LONG BIT(30)
92 #define QM_FD_FORMAT_COMPOUND BIT(29)
93 #define QM_FD_FORMAT_MASK GENMASK(31, 29)
94 #define QM_FD_OFF_SHIFT 20
95 #define QM_FD_OFF_MASK GENMASK(28, 20)
96 #define QM_FD_LEN_MASK GENMASK(19, 0)
97 #define QM_FD_LEN_BIG_MASK GENMASK(28, 0)
98
99 enum qm_fd_format {
100 /*
101 * 'contig' implies a contiguous buffer, whereas 'sg' implies a
102 * scatter-gather table. 'big' implies a 29-bit length with no offset
103 * field, otherwise length is 20-bit and offset is 9-bit. 'compound'
104 * implies a s/g-like table, where each entry itself represents a frame
105 * (contiguous or scatter-gather) and the 29-bit "length" is
106 * interpreted purely for congestion calculations, ie. a "congestion
107 * weight".
108 */
109 qm_fd_contig = 0,
110 qm_fd_contig_big = QM_FD_FORMAT_LONG,
111 qm_fd_sg = QM_FD_FORMAT_SG,
112 qm_fd_sg_big = QM_FD_FORMAT_SG | QM_FD_FORMAT_LONG,
113 qm_fd_compound = QM_FD_FORMAT_COMPOUND
114 };
115
qm_fd_addr(const struct qm_fd * fd)116 static inline dma_addr_t qm_fd_addr(const struct qm_fd *fd)
117 {
118 return be64_to_cpu(fd->data) & 0xffffffffffLLU;
119 }
120
qm_fd_addr_get64(const struct qm_fd * fd)121 static inline u64 qm_fd_addr_get64(const struct qm_fd *fd)
122 {
123 return be64_to_cpu(fd->data) & 0xffffffffffLLU;
124 }
125
qm_fd_addr_set64(struct qm_fd * fd,u64 addr)126 static inline void qm_fd_addr_set64(struct qm_fd *fd, u64 addr)
127 {
128 fd->addr_hi = upper_32_bits(addr);
129 fd->addr_lo = cpu_to_be32(lower_32_bits(addr));
130 }
131
132 /*
133 * The 'format' field indicates the interpretation of the remaining
134 * 29 bits of the 32-bit word.
135 * If 'format' is _contig or _sg, 20b length and 9b offset.
136 * If 'format' is _contig_big or _sg_big, 29b length.
137 * If 'format' is _compound, 29b "congestion weight".
138 */
qm_fd_get_format(const struct qm_fd * fd)139 static inline enum qm_fd_format qm_fd_get_format(const struct qm_fd *fd)
140 {
141 return be32_to_cpu(fd->cfg) & QM_FD_FORMAT_MASK;
142 }
143
qm_fd_get_offset(const struct qm_fd * fd)144 static inline int qm_fd_get_offset(const struct qm_fd *fd)
145 {
146 return (be32_to_cpu(fd->cfg) & QM_FD_OFF_MASK) >> QM_FD_OFF_SHIFT;
147 }
148
qm_fd_get_length(const struct qm_fd * fd)149 static inline int qm_fd_get_length(const struct qm_fd *fd)
150 {
151 return be32_to_cpu(fd->cfg) & QM_FD_LEN_MASK;
152 }
153
qm_fd_get_len_big(const struct qm_fd * fd)154 static inline int qm_fd_get_len_big(const struct qm_fd *fd)
155 {
156 return be32_to_cpu(fd->cfg) & QM_FD_LEN_BIG_MASK;
157 }
158
qm_fd_set_param(struct qm_fd * fd,enum qm_fd_format fmt,int off,int len)159 static inline void qm_fd_set_param(struct qm_fd *fd, enum qm_fd_format fmt,
160 int off, int len)
161 {
162 fd->cfg = cpu_to_be32(fmt | (len & QM_FD_LEN_BIG_MASK) |
163 ((off << QM_FD_OFF_SHIFT) & QM_FD_OFF_MASK));
164 }
165
166 #define qm_fd_set_contig(fd, off, len) \
167 qm_fd_set_param(fd, qm_fd_contig, off, len)
168 #define qm_fd_set_sg(fd, off, len) qm_fd_set_param(fd, qm_fd_sg, off, len)
169 #define qm_fd_set_contig_big(fd, len) \
170 qm_fd_set_param(fd, qm_fd_contig_big, 0, len)
171 #define qm_fd_set_sg_big(fd, len) qm_fd_set_param(fd, qm_fd_sg_big, 0, len)
172 #define qm_fd_set_compound(fd, len) qm_fd_set_param(fd, qm_fd_compound, 0, len)
173
qm_fd_clear_fd(struct qm_fd * fd)174 static inline void qm_fd_clear_fd(struct qm_fd *fd)
175 {
176 fd->data = 0;
177 fd->cfg = 0;
178 fd->cmd = 0;
179 }
180
181 /* Scatter/Gather table entry */
182 struct qm_sg_entry {
183 union {
184 struct {
185 u8 __reserved1[3];
186 u8 addr_hi; /* high 8-bits of 40-bit address */
187 __be32 addr_lo; /* low 32-bits of 40-bit address */
188 };
189 __be64 data;
190 };
191 __be32 cfg; /* E bit, F bit, length */
192 u8 __reserved2;
193 u8 bpid;
194 __be16 offset; /* 13-bit, _res[13-15]*/
195 } __packed;
196
197 #define QM_SG_LEN_MASK GENMASK(29, 0)
198 #define QM_SG_OFF_MASK GENMASK(12, 0)
199 #define QM_SG_FIN BIT(30)
200 #define QM_SG_EXT BIT(31)
201
qm_sg_addr(const struct qm_sg_entry * sg)202 static inline dma_addr_t qm_sg_addr(const struct qm_sg_entry *sg)
203 {
204 return be64_to_cpu(sg->data) & 0xffffffffffLLU;
205 }
206
qm_sg_entry_get64(const struct qm_sg_entry * sg)207 static inline u64 qm_sg_entry_get64(const struct qm_sg_entry *sg)
208 {
209 return be64_to_cpu(sg->data) & 0xffffffffffLLU;
210 }
211
qm_sg_entry_set64(struct qm_sg_entry * sg,u64 addr)212 static inline void qm_sg_entry_set64(struct qm_sg_entry *sg, u64 addr)
213 {
214 sg->addr_hi = upper_32_bits(addr);
215 sg->addr_lo = cpu_to_be32(lower_32_bits(addr));
216 }
217
qm_sg_entry_is_final(const struct qm_sg_entry * sg)218 static inline bool qm_sg_entry_is_final(const struct qm_sg_entry *sg)
219 {
220 return be32_to_cpu(sg->cfg) & QM_SG_FIN;
221 }
222
qm_sg_entry_is_ext(const struct qm_sg_entry * sg)223 static inline bool qm_sg_entry_is_ext(const struct qm_sg_entry *sg)
224 {
225 return be32_to_cpu(sg->cfg) & QM_SG_EXT;
226 }
227
qm_sg_entry_get_len(const struct qm_sg_entry * sg)228 static inline int qm_sg_entry_get_len(const struct qm_sg_entry *sg)
229 {
230 return be32_to_cpu(sg->cfg) & QM_SG_LEN_MASK;
231 }
232
qm_sg_entry_set_len(struct qm_sg_entry * sg,int len)233 static inline void qm_sg_entry_set_len(struct qm_sg_entry *sg, int len)
234 {
235 sg->cfg = cpu_to_be32(len & QM_SG_LEN_MASK);
236 }
237
qm_sg_entry_set_f(struct qm_sg_entry * sg,int len)238 static inline void qm_sg_entry_set_f(struct qm_sg_entry *sg, int len)
239 {
240 sg->cfg = cpu_to_be32(QM_SG_FIN | (len & QM_SG_LEN_MASK));
241 }
242
qm_sg_entry_get_off(const struct qm_sg_entry * sg)243 static inline int qm_sg_entry_get_off(const struct qm_sg_entry *sg)
244 {
245 return be32_to_cpu(sg->offset) & QM_SG_OFF_MASK;
246 }
247
248 /* "Frame Dequeue Response" */
249 struct qm_dqrr_entry {
250 u8 verb;
251 u8 stat;
252 __be16 seqnum; /* 15-bit */
253 u8 tok;
254 u8 __reserved2[3];
255 __be32 fqid; /* 24-bit */
256 __be32 context_b;
257 struct qm_fd fd;
258 u8 __reserved4[32];
259 } __packed __aligned(64);
260 #define QM_DQRR_VERB_VBIT 0x80
261 #define QM_DQRR_VERB_MASK 0x7f /* where the verb contains; */
262 #define QM_DQRR_VERB_FRAME_DEQUEUE 0x60 /* "this format" */
263 #define QM_DQRR_STAT_FQ_EMPTY 0x80 /* FQ empty */
264 #define QM_DQRR_STAT_FQ_HELDACTIVE 0x40 /* FQ held active */
265 #define QM_DQRR_STAT_FQ_FORCEELIGIBLE 0x20 /* FQ was force-eligible'd */
266 #define QM_DQRR_STAT_FD_VALID 0x10 /* has a non-NULL FD */
267 #define QM_DQRR_STAT_UNSCHEDULED 0x02 /* Unscheduled dequeue */
268 #define QM_DQRR_STAT_DQCR_EXPIRED 0x01 /* VDQCR or PDQCR expired*/
269
270 /* 'fqid' is a 24-bit field in every h/w descriptor */
271 #define QM_FQID_MASK GENMASK(23, 0)
272 #define qm_fqid_set(p, v) ((p)->fqid = cpu_to_be32((v) & QM_FQID_MASK))
273 #define qm_fqid_get(p) (be32_to_cpu((p)->fqid) & QM_FQID_MASK)
274
275 /* "ERN Message Response" */
276 /* "FQ State Change Notification" */
277 union qm_mr_entry {
278 struct {
279 u8 verb;
280 u8 __reserved[63];
281 };
282 struct {
283 u8 verb;
284 u8 dca;
285 __be16 seqnum;
286 u8 rc; /* Rej Code: 8-bit */
287 u8 __reserved[3];
288 __be32 fqid; /* 24-bit */
289 __be32 tag;
290 struct qm_fd fd;
291 u8 __reserved1[32];
292 } __packed __aligned(64) ern;
293 struct {
294 u8 verb;
295 u8 fqs; /* Frame Queue Status */
296 u8 __reserved1[6];
297 __be32 fqid; /* 24-bit */
298 __be32 context_b;
299 u8 __reserved2[48];
300 } __packed fq; /* FQRN/FQRNI/FQRL/FQPN */
301 };
302 #define QM_MR_VERB_VBIT 0x80
303 /*
304 * ERNs originating from direct-connect portals ("dcern") use 0x20 as a verb
305 * which would be invalid as a s/w enqueue verb. A s/w ERN can be distinguished
306 * from the other MR types by noting if the 0x20 bit is unset.
307 */
308 #define QM_MR_VERB_TYPE_MASK 0x27
309 #define QM_MR_VERB_DC_ERN 0x20
310 #define QM_MR_VERB_FQRN 0x21
311 #define QM_MR_VERB_FQRNI 0x22
312 #define QM_MR_VERB_FQRL 0x23
313 #define QM_MR_VERB_FQPN 0x24
314 #define QM_MR_RC_MASK 0xf0 /* contains one of; */
315 #define QM_MR_RC_CGR_TAILDROP 0x00
316 #define QM_MR_RC_WRED 0x10
317 #define QM_MR_RC_ERROR 0x20
318 #define QM_MR_RC_ORPWINDOW_EARLY 0x30
319 #define QM_MR_RC_ORPWINDOW_LATE 0x40
320 #define QM_MR_RC_FQ_TAILDROP 0x50
321 #define QM_MR_RC_ORPWINDOW_RETIRED 0x60
322 #define QM_MR_RC_ORP_ZERO 0x70
323 #define QM_MR_FQS_ORLPRESENT 0x02 /* ORL fragments to come */
324 #define QM_MR_FQS_NOTEMPTY 0x01 /* FQ has enqueued frames */
325
326 /*
327 * An identical structure of FQD fields is present in the "Init FQ" command and
328 * the "Query FQ" result, it's suctioned out into the "struct qm_fqd" type.
329 * Within that, the 'stashing' and 'taildrop' pieces are also factored out, the
330 * latter has two inlines to assist with converting to/from the mant+exp
331 * representation.
332 */
333 struct qm_fqd_stashing {
334 /* See QM_STASHING_EXCL_<...> */
335 u8 exclusive;
336 /* Numbers of cachelines */
337 u8 cl; /* _res[6-7], as[4-5], ds[2-3], cs[0-1] */
338 };
339
340 struct qm_fqd_oac {
341 /* "Overhead Accounting Control", see QM_OAC_<...> */
342 u8 oac; /* oac[6-7], _res[0-5] */
343 /* Two's-complement value (-128 to +127) */
344 s8 oal; /* "Overhead Accounting Length" */
345 };
346
347 struct qm_fqd {
348 /* _res[6-7], orprws[3-5], oa[2], olws[0-1] */
349 u8 orpc;
350 u8 cgid;
351 __be16 fq_ctrl; /* See QM_FQCTRL_<...> */
352 __be16 dest_wq; /* channel[3-15], wq[0-2] */
353 __be16 ics_cred; /* 15-bit */
354 /*
355 * For "Initialize Frame Queue" commands, the write-enable mask
356 * determines whether 'td' or 'oac_init' is observed. For query
357 * commands, this field is always 'td', and 'oac_query' (below) reflects
358 * the Overhead ACcounting values.
359 */
360 union {
361 __be16 td; /* "Taildrop": _res[13-15], mant[5-12], exp[0-4] */
362 struct qm_fqd_oac oac_init;
363 };
364 __be32 context_b;
365 union {
366 /* Treat it as 64-bit opaque */
367 __be64 opaque;
368 struct {
369 __be32 hi;
370 __be32 lo;
371 };
372 /* Treat it as s/w portal stashing config */
373 /* see "FQD Context_A field used for [...]" */
374 struct {
375 struct qm_fqd_stashing stashing;
376 /*
377 * 48-bit address of FQ context to
378 * stash, must be cacheline-aligned
379 */
380 __be16 context_hi;
381 __be32 context_lo;
382 } __packed;
383 } context_a;
384 struct qm_fqd_oac oac_query;
385 } __packed;
386
387 #define QM_FQD_CHAN_OFF 3
388 #define QM_FQD_WQ_MASK GENMASK(2, 0)
389 #define QM_FQD_TD_EXP_MASK GENMASK(4, 0)
390 #define QM_FQD_TD_MANT_OFF 5
391 #define QM_FQD_TD_MANT_MASK GENMASK(12, 5)
392 #define QM_FQD_TD_MAX 0xe0000000
393 #define QM_FQD_TD_MANT_MAX 0xff
394 #define QM_FQD_OAC_OFF 6
395 #define QM_FQD_AS_OFF 4
396 #define QM_FQD_DS_OFF 2
397 #define QM_FQD_XS_MASK 0x3
398
399 /* 64-bit converters for context_hi/lo */
qm_fqd_stashing_get64(const struct qm_fqd * fqd)400 static inline u64 qm_fqd_stashing_get64(const struct qm_fqd *fqd)
401 {
402 return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL;
403 }
404
qm_fqd_stashing_addr(const struct qm_fqd * fqd)405 static inline dma_addr_t qm_fqd_stashing_addr(const struct qm_fqd *fqd)
406 {
407 return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL;
408 }
409
qm_fqd_context_a_get64(const struct qm_fqd * fqd)410 static inline u64 qm_fqd_context_a_get64(const struct qm_fqd *fqd)
411 {
412 return qm_fqd_stashing_get64(fqd);
413 }
414
qm_fqd_stashing_set64(struct qm_fqd * fqd,u64 addr)415 static inline void qm_fqd_stashing_set64(struct qm_fqd *fqd, u64 addr)
416 {
417 fqd->context_a.context_hi = cpu_to_be16(upper_32_bits(addr));
418 fqd->context_a.context_lo = cpu_to_be32(lower_32_bits(addr));
419 }
420
qm_fqd_context_a_set64(struct qm_fqd * fqd,u64 addr)421 static inline void qm_fqd_context_a_set64(struct qm_fqd *fqd, u64 addr)
422 {
423 fqd->context_a.hi = cpu_to_be32(upper_32_bits(addr));
424 fqd->context_a.lo = cpu_to_be32(lower_32_bits(addr));
425 }
426
427 /* convert a threshold value into mant+exp representation */
qm_fqd_set_taildrop(struct qm_fqd * fqd,u32 val,int roundup)428 static inline int qm_fqd_set_taildrop(struct qm_fqd *fqd, u32 val,
429 int roundup)
430 {
431 u32 e = 0;
432 int td, oddbit = 0;
433
434 if (val > QM_FQD_TD_MAX)
435 return -ERANGE;
436
437 while (val > QM_FQD_TD_MANT_MAX) {
438 oddbit = val & 1;
439 val >>= 1;
440 e++;
441 if (roundup && oddbit)
442 val++;
443 }
444
445 td = (val << QM_FQD_TD_MANT_OFF) & QM_FQD_TD_MANT_MASK;
446 td |= (e & QM_FQD_TD_EXP_MASK);
447 fqd->td = cpu_to_be16(td);
448 return 0;
449 }
450 /* and the other direction */
qm_fqd_get_taildrop(const struct qm_fqd * fqd)451 static inline int qm_fqd_get_taildrop(const struct qm_fqd *fqd)
452 {
453 int td = be16_to_cpu(fqd->td);
454
455 return ((td & QM_FQD_TD_MANT_MASK) >> QM_FQD_TD_MANT_OFF)
456 << (td & QM_FQD_TD_EXP_MASK);
457 }
458
qm_fqd_set_stashing(struct qm_fqd * fqd,u8 as,u8 ds,u8 cs)459 static inline void qm_fqd_set_stashing(struct qm_fqd *fqd, u8 as, u8 ds, u8 cs)
460 {
461 struct qm_fqd_stashing *st = &fqd->context_a.stashing;
462
463 st->cl = ((as & QM_FQD_XS_MASK) << QM_FQD_AS_OFF) |
464 ((ds & QM_FQD_XS_MASK) << QM_FQD_DS_OFF) |
465 (cs & QM_FQD_XS_MASK);
466 }
467
qm_fqd_get_stashing(const struct qm_fqd * fqd)468 static inline u8 qm_fqd_get_stashing(const struct qm_fqd *fqd)
469 {
470 return fqd->context_a.stashing.cl;
471 }
472
qm_fqd_set_oac(struct qm_fqd * fqd,u8 val)473 static inline void qm_fqd_set_oac(struct qm_fqd *fqd, u8 val)
474 {
475 fqd->oac_init.oac = val << QM_FQD_OAC_OFF;
476 }
477
qm_fqd_set_oal(struct qm_fqd * fqd,s8 val)478 static inline void qm_fqd_set_oal(struct qm_fqd *fqd, s8 val)
479 {
480 fqd->oac_init.oal = val;
481 }
482
qm_fqd_set_destwq(struct qm_fqd * fqd,int ch,int wq)483 static inline void qm_fqd_set_destwq(struct qm_fqd *fqd, int ch, int wq)
484 {
485 fqd->dest_wq = cpu_to_be16((ch << QM_FQD_CHAN_OFF) |
486 (wq & QM_FQD_WQ_MASK));
487 }
488
qm_fqd_get_chan(const struct qm_fqd * fqd)489 static inline int qm_fqd_get_chan(const struct qm_fqd *fqd)
490 {
491 return be16_to_cpu(fqd->dest_wq) >> QM_FQD_CHAN_OFF;
492 }
493
qm_fqd_get_wq(const struct qm_fqd * fqd)494 static inline int qm_fqd_get_wq(const struct qm_fqd *fqd)
495 {
496 return be16_to_cpu(fqd->dest_wq) & QM_FQD_WQ_MASK;
497 }
498
499 /* See "Frame Queue Descriptor (FQD)" */
500 /* Frame Queue Descriptor (FQD) field 'fq_ctrl' uses these constants */
501 #define QM_FQCTRL_MASK 0x07ff /* 'fq_ctrl' flags; */
502 #define QM_FQCTRL_CGE 0x0400 /* Congestion Group Enable */
503 #define QM_FQCTRL_TDE 0x0200 /* Tail-Drop Enable */
504 #define QM_FQCTRL_CTXASTASHING 0x0080 /* Context-A stashing */
505 #define QM_FQCTRL_CPCSTASH 0x0040 /* CPC Stash Enable */
506 #define QM_FQCTRL_FORCESFDR 0x0008 /* High-priority SFDRs */
507 #define QM_FQCTRL_AVOIDBLOCK 0x0004 /* Don't block active */
508 #define QM_FQCTRL_HOLDACTIVE 0x0002 /* Hold active in portal */
509 #define QM_FQCTRL_PREFERINCACHE 0x0001 /* Aggressively cache FQD */
510 #define QM_FQCTRL_LOCKINCACHE QM_FQCTRL_PREFERINCACHE /* older naming */
511
512 /* See "FQD Context_A field used for [...] */
513 /* Frame Queue Descriptor (FQD) field 'CONTEXT_A' uses these constants */
514 #define QM_STASHING_EXCL_ANNOTATION 0x04
515 #define QM_STASHING_EXCL_DATA 0x02
516 #define QM_STASHING_EXCL_CTX 0x01
517
518 /* See "Intra Class Scheduling" */
519 /* FQD field 'OAC' (Overhead ACcounting) uses these constants */
520 #define QM_OAC_ICS 0x2 /* Accounting for Intra-Class Scheduling */
521 #define QM_OAC_CG 0x1 /* Accounting for Congestion Groups */
522
523 /*
524 * This struct represents the 32-bit "WR_PARM_[GYR]" parameters in CGR fields
525 * and associated commands/responses. The WRED parameters are calculated from
526 * these fields as follows;
527 * MaxTH = MA * (2 ^ Mn)
528 * Slope = SA / (2 ^ Sn)
529 * MaxP = 4 * (Pn + 1)
530 */
531 struct qm_cgr_wr_parm {
532 /* MA[24-31], Mn[19-23], SA[12-18], Sn[6-11], Pn[0-5] */
533 __be32 word;
534 };
535 /*
536 * This struct represents the 13-bit "CS_THRES" CGR field. In the corresponding
537 * management commands, this is padded to a 16-bit structure field, so that's
538 * how we represent it here. The congestion state threshold is calculated from
539 * these fields as follows;
540 * CS threshold = TA * (2 ^ Tn)
541 */
542 struct qm_cgr_cs_thres {
543 /* _res[13-15], TA[5-12], Tn[0-4] */
544 __be16 word;
545 };
546 /*
547 * This identical structure of CGR fields is present in the "Init/Modify CGR"
548 * commands and the "Query CGR" result. It's suctioned out here into its own
549 * struct.
550 */
551 struct __qm_mc_cgr {
552 struct qm_cgr_wr_parm wr_parm_g;
553 struct qm_cgr_wr_parm wr_parm_y;
554 struct qm_cgr_wr_parm wr_parm_r;
555 u8 wr_en_g; /* boolean, use QM_CGR_EN */
556 u8 wr_en_y; /* boolean, use QM_CGR_EN */
557 u8 wr_en_r; /* boolean, use QM_CGR_EN */
558 u8 cscn_en; /* boolean, use QM_CGR_EN */
559 union {
560 struct {
561 __be16 cscn_targ_upd_ctrl; /* use QM_CGR_TARG_UDP_* */
562 __be16 cscn_targ_dcp_low;
563 };
564 __be32 cscn_targ; /* use QM_CGR_TARG_* */
565 };
566 u8 cstd_en; /* boolean, use QM_CGR_EN */
567 u8 cs; /* boolean, only used in query response */
568 struct qm_cgr_cs_thres cs_thres; /* use qm_cgr_cs_thres_set64() */
569 u8 mode; /* QMAN_CGR_MODE_FRAME not supported in rev1.0 */
570 } __packed;
571 #define QM_CGR_EN 0x01 /* For wr_en_*, cscn_en, cstd_en */
572 #define QM_CGR_TARG_UDP_CTRL_WRITE_BIT 0x8000 /* value written to portal bit*/
573 #define QM_CGR_TARG_UDP_CTRL_DCP 0x4000 /* 0: SWP, 1: DCP */
574 #define QM_CGR_TARG_PORTAL(n) (0x80000000 >> (n)) /* s/w portal, 0-9 */
575 #define QM_CGR_TARG_FMAN0 0x00200000 /* direct-connect portal: fman0 */
576 #define QM_CGR_TARG_FMAN1 0x00100000 /* : fman1 */
577 /* Convert CGR thresholds to/from "cs_thres" format */
qm_cgr_cs_thres_get64(const struct qm_cgr_cs_thres * th)578 static inline u64 qm_cgr_cs_thres_get64(const struct qm_cgr_cs_thres *th)
579 {
580 int thres = be16_to_cpu(th->word);
581
582 return ((thres >> 5) & 0xff) << (thres & 0x1f);
583 }
584
qm_cgr_cs_thres_set64(struct qm_cgr_cs_thres * th,u64 val,int roundup)585 static inline int qm_cgr_cs_thres_set64(struct qm_cgr_cs_thres *th, u64 val,
586 int roundup)
587 {
588 u32 e = 0;
589 int oddbit = 0;
590
591 while (val > 0xff) {
592 oddbit = val & 1;
593 val >>= 1;
594 e++;
595 if (roundup && oddbit)
596 val++;
597 }
598 th->word = cpu_to_be16(((val & 0xff) << 5) | (e & 0x1f));
599 return 0;
600 }
601
602 /* "Initialize FQ" */
603 struct qm_mcc_initfq {
604 u8 __reserved1[2];
605 __be16 we_mask; /* Write Enable Mask */
606 __be32 fqid; /* 24-bit */
607 __be16 count; /* Initialises 'count+1' FQDs */
608 struct qm_fqd fqd; /* the FQD fields go here */
609 u8 __reserved2[30];
610 } __packed;
611 /* "Initialize/Modify CGR" */
612 struct qm_mcc_initcgr {
613 u8 __reserve1[2];
614 __be16 we_mask; /* Write Enable Mask */
615 struct __qm_mc_cgr cgr; /* CGR fields */
616 u8 __reserved2[2];
617 u8 cgid;
618 u8 __reserved3[32];
619 } __packed;
620
621 /* INITFQ-specific flags */
622 #define QM_INITFQ_WE_MASK 0x01ff /* 'Write Enable' flags; */
623 #define QM_INITFQ_WE_OAC 0x0100
624 #define QM_INITFQ_WE_ORPC 0x0080
625 #define QM_INITFQ_WE_CGID 0x0040
626 #define QM_INITFQ_WE_FQCTRL 0x0020
627 #define QM_INITFQ_WE_DESTWQ 0x0010
628 #define QM_INITFQ_WE_ICSCRED 0x0008
629 #define QM_INITFQ_WE_TDTHRESH 0x0004
630 #define QM_INITFQ_WE_CONTEXTB 0x0002
631 #define QM_INITFQ_WE_CONTEXTA 0x0001
632 /* INITCGR/MODIFYCGR-specific flags */
633 #define QM_CGR_WE_MASK 0x07ff /* 'Write Enable Mask'; */
634 #define QM_CGR_WE_WR_PARM_G 0x0400
635 #define QM_CGR_WE_WR_PARM_Y 0x0200
636 #define QM_CGR_WE_WR_PARM_R 0x0100
637 #define QM_CGR_WE_WR_EN_G 0x0080
638 #define QM_CGR_WE_WR_EN_Y 0x0040
639 #define QM_CGR_WE_WR_EN_R 0x0020
640 #define QM_CGR_WE_CSCN_EN 0x0010
641 #define QM_CGR_WE_CSCN_TARG 0x0008
642 #define QM_CGR_WE_CSTD_EN 0x0004
643 #define QM_CGR_WE_CS_THRES 0x0002
644 #define QM_CGR_WE_MODE 0x0001
645
646 #define QMAN_CGR_FLAG_USE_INIT 0x00000001
647 #define QMAN_CGR_MODE_FRAME 0x00000001
648
649 /* Portal and Frame Queues */
650 /* Represents a managed portal */
651 struct qman_portal;
652
653 /*
654 * This object type represents QMan frame queue descriptors (FQD), it is
655 * cacheline-aligned, and initialised by qman_create_fq(). The structure is
656 * defined further down.
657 */
658 struct qman_fq;
659
660 /*
661 * This object type represents a QMan congestion group, it is defined further
662 * down.
663 */
664 struct qman_cgr;
665
666 /*
667 * This enum, and the callback type that returns it, are used when handling
668 * dequeued frames via DQRR. Note that for "null" callbacks registered with the
669 * portal object (for handling dequeues that do not demux because context_b is
670 * NULL), the return value *MUST* be qman_cb_dqrr_consume.
671 */
672 enum qman_cb_dqrr_result {
673 /* DQRR entry can be consumed */
674 qman_cb_dqrr_consume,
675 /* Like _consume, but requests parking - FQ must be held-active */
676 qman_cb_dqrr_park,
677 /* Does not consume, for DCA mode only. */
678 qman_cb_dqrr_defer,
679 /*
680 * Stop processing without consuming this ring entry. Exits the current
681 * qman_p_poll_dqrr() or interrupt-handling, as appropriate. If within
682 * an interrupt handler, the callback would typically call
683 * qman_irqsource_remove(QM_PIRQ_DQRI) before returning this value,
684 * otherwise the interrupt will reassert immediately.
685 */
686 qman_cb_dqrr_stop,
687 /* Like qman_cb_dqrr_stop, but consumes the current entry. */
688 qman_cb_dqrr_consume_stop
689 };
690 typedef enum qman_cb_dqrr_result (*qman_cb_dqrr)(struct qman_portal *qm,
691 struct qman_fq *fq,
692 const struct qm_dqrr_entry *dqrr);
693
694 /*
695 * This callback type is used when handling ERNs, FQRNs and FQRLs via MR. They
696 * are always consumed after the callback returns.
697 */
698 typedef void (*qman_cb_mr)(struct qman_portal *qm, struct qman_fq *fq,
699 const union qm_mr_entry *msg);
700
701 /*
702 * s/w-visible states. Ie. tentatively scheduled + truly scheduled + active +
703 * held-active + held-suspended are just "sched". Things like "retired" will not
704 * be assumed until it is complete (ie. QMAN_FQ_STATE_CHANGING is set until
705 * then, to indicate it's completing and to gate attempts to retry the retire
706 * command). Note, park commands do not set QMAN_FQ_STATE_CHANGING because it's
707 * technically impossible in the case of enqueue DCAs (which refer to DQRR ring
708 * index rather than the FQ that ring entry corresponds to), so repeated park
709 * commands are allowed (if you're silly enough to try) but won't change FQ
710 * state, and the resulting park notifications move FQs from "sched" to
711 * "parked".
712 */
713 enum qman_fq_state {
714 qman_fq_state_oos,
715 qman_fq_state_parked,
716 qman_fq_state_sched,
717 qman_fq_state_retired
718 };
719
720 #define QMAN_FQ_STATE_CHANGING 0x80000000 /* 'state' is changing */
721 #define QMAN_FQ_STATE_NE 0x40000000 /* retired FQ isn't empty */
722 #define QMAN_FQ_STATE_ORL 0x20000000 /* retired FQ has ORL */
723 #define QMAN_FQ_STATE_BLOCKOOS 0xe0000000 /* if any are set, no OOS */
724 #define QMAN_FQ_STATE_CGR_EN 0x10000000 /* CGR enabled */
725 #define QMAN_FQ_STATE_VDQCR 0x08000000 /* being volatile dequeued */
726
727 /*
728 * Frame queue objects (struct qman_fq) are stored within memory passed to
729 * qman_create_fq(), as this allows stashing of caller-provided demux callback
730 * pointers at no extra cost to stashing of (driver-internal) FQ state. If the
731 * caller wishes to add per-FQ state and have it benefit from dequeue-stashing,
732 * they should;
733 *
734 * (a) extend the qman_fq structure with their state; eg.
735 *
736 * // myfq is allocated and driver_fq callbacks filled in;
737 * struct my_fq {
738 * struct qman_fq base;
739 * int an_extra_field;
740 * [ ... add other fields to be associated with each FQ ...]
741 * } *myfq = some_my_fq_allocator();
742 * struct qman_fq *fq = qman_create_fq(fqid, flags, &myfq->base);
743 *
744 * // in a dequeue callback, access extra fields from 'fq' via a cast;
745 * struct my_fq *myfq = (struct my_fq *)fq;
746 * do_something_with(myfq->an_extra_field);
747 * [...]
748 *
749 * (b) when and if configuring the FQ for context stashing, specify how ever
750 * many cachelines are required to stash 'struct my_fq', to accelerate not
751 * only the QMan driver but the callback as well.
752 */
753
754 struct qman_fq_cb {
755 qman_cb_dqrr dqrr; /* for dequeued frames */
756 qman_cb_mr ern; /* for s/w ERNs */
757 qman_cb_mr fqs; /* frame-queue state changes*/
758 };
759
760 struct qman_fq {
761 /* Caller of qman_create_fq() provides these demux callbacks */
762 struct qman_fq_cb cb;
763 /*
764 * These are internal to the driver, don't touch. In particular, they
765 * may change, be removed, or extended (so you shouldn't rely on
766 * sizeof(qman_fq) being a constant).
767 */
768 u32 fqid, idx;
769 unsigned long flags;
770 enum qman_fq_state state;
771 int cgr_groupid;
772 };
773
774 /*
775 * This callback type is used when handling congestion group entry/exit.
776 * 'congested' is non-zero on congestion-entry, and zero on congestion-exit.
777 */
778 typedef void (*qman_cb_cgr)(struct qman_portal *qm,
779 struct qman_cgr *cgr, int congested);
780
781 struct qman_cgr {
782 /* Set these prior to qman_create_cgr() */
783 u32 cgrid; /* 0..255, but u32 to allow specials like -1, 256, etc.*/
784 qman_cb_cgr cb;
785 /* These are private to the driver */
786 u16 chan; /* portal channel this object is created on */
787 struct list_head node;
788 };
789
790 /* Flags to qman_create_fq() */
791 #define QMAN_FQ_FLAG_NO_ENQUEUE 0x00000001 /* can't enqueue */
792 #define QMAN_FQ_FLAG_NO_MODIFY 0x00000002 /* can only enqueue */
793 #define QMAN_FQ_FLAG_TO_DCPORTAL 0x00000004 /* consumed by CAAM/PME/Fman */
794 #define QMAN_FQ_FLAG_DYNAMIC_FQID 0x00000020 /* (de)allocate fqid */
795
796 /* Flags to qman_init_fq() */
797 #define QMAN_INITFQ_FLAG_SCHED 0x00000001 /* schedule rather than park */
798 #define QMAN_INITFQ_FLAG_LOCAL 0x00000004 /* set dest portal */
799
800 /*
801 * For qman_volatile_dequeue(); Choose one PRECEDENCE. EXACT is optional. Use
802 * NUMFRAMES(n) (6-bit) or NUMFRAMES_TILLEMPTY to fill in the frame-count. Use
803 * FQID(n) to fill in the frame queue ID.
804 */
805 #define QM_VDQCR_PRECEDENCE_VDQCR 0x0
806 #define QM_VDQCR_PRECEDENCE_SDQCR 0x80000000
807 #define QM_VDQCR_EXACT 0x40000000
808 #define QM_VDQCR_NUMFRAMES_MASK 0x3f000000
809 #define QM_VDQCR_NUMFRAMES_SET(n) (((n) & 0x3f) << 24)
810 #define QM_VDQCR_NUMFRAMES_GET(n) (((n) >> 24) & 0x3f)
811 #define QM_VDQCR_NUMFRAMES_TILLEMPTY QM_VDQCR_NUMFRAMES_SET(0)
812
813 #define QMAN_VOLATILE_FLAG_WAIT 0x00000001 /* wait if VDQCR is in use */
814 #define QMAN_VOLATILE_FLAG_WAIT_INT 0x00000002 /* if wait, interruptible? */
815 #define QMAN_VOLATILE_FLAG_FINISH 0x00000004 /* wait till VDQCR completes */
816
817 /* "Query FQ Non-Programmable Fields" */
818 struct qm_mcr_queryfq_np {
819 u8 verb;
820 u8 result;
821 u8 __reserved1;
822 u8 state; /* QM_MCR_NP_STATE_*** */
823 u32 fqd_link; /* 24-bit, _res2[24-31] */
824 u16 odp_seq; /* 14-bit, _res3[14-15] */
825 u16 orp_nesn; /* 14-bit, _res4[14-15] */
826 u16 orp_ea_hseq; /* 15-bit, _res5[15] */
827 u16 orp_ea_tseq; /* 15-bit, _res6[15] */
828 u32 orp_ea_hptr; /* 24-bit, _res7[24-31] */
829 u32 orp_ea_tptr; /* 24-bit, _res8[24-31] */
830 u32 pfdr_hptr; /* 24-bit, _res9[24-31] */
831 u32 pfdr_tptr; /* 24-bit, _res10[24-31] */
832 u8 __reserved2[5];
833 u8 is; /* 1-bit, _res12[1-7] */
834 u16 ics_surp;
835 u32 byte_cnt;
836 u32 frm_cnt; /* 24-bit, _res13[24-31] */
837 u32 __reserved3;
838 u16 ra1_sfdr; /* QM_MCR_NP_RA1_*** */
839 u16 ra2_sfdr; /* QM_MCR_NP_RA2_*** */
840 u16 __reserved4;
841 u16 od1_sfdr; /* QM_MCR_NP_OD1_*** */
842 u16 od2_sfdr; /* QM_MCR_NP_OD2_*** */
843 u16 od3_sfdr; /* QM_MCR_NP_OD3_*** */
844 } __packed;
845
846 #define QM_MCR_NP_STATE_FE 0x10
847 #define QM_MCR_NP_STATE_R 0x08
848 #define QM_MCR_NP_STATE_MASK 0x07 /* Reads FQD::STATE; */
849 #define QM_MCR_NP_STATE_OOS 0x00
850 #define QM_MCR_NP_STATE_RETIRED 0x01
851 #define QM_MCR_NP_STATE_TEN_SCHED 0x02
852 #define QM_MCR_NP_STATE_TRU_SCHED 0x03
853 #define QM_MCR_NP_STATE_PARKED 0x04
854 #define QM_MCR_NP_STATE_ACTIVE 0x05
855 #define QM_MCR_NP_PTR_MASK 0x07ff /* for RA[12] & OD[123] */
856 #define QM_MCR_NP_RA1_NRA(v) (((v) >> 14) & 0x3) /* FQD::NRA */
857 #define QM_MCR_NP_RA2_IT(v) (((v) >> 14) & 0x1) /* FQD::IT */
858 #define QM_MCR_NP_OD1_NOD(v) (((v) >> 14) & 0x3) /* FQD::NOD */
859 #define QM_MCR_NP_OD3_NPC(v) (((v) >> 14) & 0x3) /* FQD::NPC */
860
861 enum qm_mcr_queryfq_np_masks {
862 qm_mcr_fqd_link_mask = BIT(24) - 1,
863 qm_mcr_odp_seq_mask = BIT(14) - 1,
864 qm_mcr_orp_nesn_mask = BIT(14) - 1,
865 qm_mcr_orp_ea_hseq_mask = BIT(15) - 1,
866 qm_mcr_orp_ea_tseq_mask = BIT(15) - 1,
867 qm_mcr_orp_ea_hptr_mask = BIT(24) - 1,
868 qm_mcr_orp_ea_tptr_mask = BIT(24) - 1,
869 qm_mcr_pfdr_hptr_mask = BIT(24) - 1,
870 qm_mcr_pfdr_tptr_mask = BIT(24) - 1,
871 qm_mcr_is_mask = BIT(1) - 1,
872 qm_mcr_frm_cnt_mask = BIT(24) - 1,
873 };
874
875 #define qm_mcr_np_get(np, field) \
876 ((np)->field & (qm_mcr_##field##_mask))
877
878 /* Portal Management */
879 /**
880 * qman_p_irqsource_add - add processing sources to be interrupt-driven
881 * @bits: bitmask of QM_PIRQ_**I processing sources
882 *
883 * Adds processing sources that should be interrupt-driven (rather than
884 * processed via qman_poll_***() functions).
885 */
886 void qman_p_irqsource_add(struct qman_portal *p, u32 bits);
887
888 /**
889 * qman_p_irqsource_remove - remove processing sources from being int-driven
890 * @bits: bitmask of QM_PIRQ_**I processing sources
891 *
892 * Removes processing sources from being interrupt-driven, so that they will
893 * instead be processed via qman_poll_***() functions.
894 */
895 void qman_p_irqsource_remove(struct qman_portal *p, u32 bits);
896
897 /**
898 * qman_affine_cpus - return a mask of cpus that have affine portals
899 */
900 const cpumask_t *qman_affine_cpus(void);
901
902 /**
903 * qman_affine_channel - return the channel ID of an portal
904 * @cpu: the cpu whose affine portal is the subject of the query
905 *
906 * If @cpu is -1, the affine portal for the current CPU will be used. It is a
907 * bug to call this function for any value of @cpu (other than -1) that is not a
908 * member of the mask returned from qman_affine_cpus().
909 */
910 u16 qman_affine_channel(int cpu);
911
912 /**
913 * qman_get_affine_portal - return the portal pointer affine to cpu
914 * @cpu: the cpu whose affine portal is the subject of the query
915 */
916 struct qman_portal *qman_get_affine_portal(int cpu);
917
918 /**
919 * qman_start_using_portal - register a device link for the portal user
920 * @p: the portal that will be in use
921 * @dev: the device that will use the portal
922 *
923 * Makes sure that the devices that use the portal are unbound when the
924 * portal is unbound
925 */
926 int qman_start_using_portal(struct qman_portal *p, struct device *dev);
927
928 /**
929 * qman_p_poll_dqrr - process DQRR (fast-path) entries
930 * @limit: the maximum number of DQRR entries to process
931 *
932 * Use of this function requires that DQRR processing not be interrupt-driven.
933 * The return value represents the number of DQRR entries processed.
934 */
935 int qman_p_poll_dqrr(struct qman_portal *p, unsigned int limit);
936
937 /**
938 * qman_p_static_dequeue_add - Add pool channels to the portal SDQCR
939 * @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n)
940 *
941 * Adds a set of pool channels to the portal's static dequeue command register
942 * (SDQCR). The requested pools are limited to those the portal has dequeue
943 * access to.
944 */
945 void qman_p_static_dequeue_add(struct qman_portal *p, u32 pools);
946
947 /* FQ management */
948 /**
949 * qman_create_fq - Allocates a FQ
950 * @fqid: the index of the FQD to encapsulate, must be "Out of Service"
951 * @flags: bit-mask of QMAN_FQ_FLAG_*** options
952 * @fq: memory for storing the 'fq', with callbacks filled in
953 *
954 * Creates a frame queue object for the given @fqid, unless the
955 * QMAN_FQ_FLAG_DYNAMIC_FQID flag is set in @flags, in which case a FQID is
956 * dynamically allocated (or the function fails if none are available). Once
957 * created, the caller should not touch the memory at 'fq' except as extended to
958 * adjacent memory for user-defined fields (see the definition of "struct
959 * qman_fq" for more info). NO_MODIFY is only intended for enqueuing to
960 * pre-existing frame-queues that aren't to be otherwise interfered with, it
961 * prevents all other modifications to the frame queue. The TO_DCPORTAL flag
962 * causes the driver to honour any context_b modifications requested in the
963 * qm_init_fq() API, as this indicates the frame queue will be consumed by a
964 * direct-connect portal (PME, CAAM, or Fman). When frame queues are consumed by
965 * software portals, the context_b field is controlled by the driver and can't
966 * be modified by the caller.
967 */
968 int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq);
969
970 /**
971 * qman_destroy_fq - Deallocates a FQ
972 * @fq: the frame queue object to release
973 *
974 * The memory for this frame queue object ('fq' provided in qman_create_fq()) is
975 * not deallocated but the caller regains ownership, to do with as desired. The
976 * FQ must be in the 'out-of-service' or in the 'parked' state.
977 */
978 void qman_destroy_fq(struct qman_fq *fq);
979
980 /**
981 * qman_fq_fqid - Queries the frame queue ID of a FQ object
982 * @fq: the frame queue object to query
983 */
984 u32 qman_fq_fqid(struct qman_fq *fq);
985
986 /**
987 * qman_init_fq - Initialises FQ fields, leaves the FQ "parked" or "scheduled"
988 * @fq: the frame queue object to modify, must be 'parked' or new.
989 * @flags: bit-mask of QMAN_INITFQ_FLAG_*** options
990 * @opts: the FQ-modification settings, as defined in the low-level API
991 *
992 * The @opts parameter comes from the low-level portal API. Select
993 * QMAN_INITFQ_FLAG_SCHED in @flags to cause the frame queue to be scheduled
994 * rather than parked. NB, @opts can be NULL.
995 *
996 * Note that some fields and options within @opts may be ignored or overwritten
997 * by the driver;
998 * 1. the 'count' and 'fqid' fields are always ignored (this operation only
999 * affects one frame queue: @fq).
1000 * 2. the QM_INITFQ_WE_CONTEXTB option of the 'we_mask' field and the associated
1001 * 'fqd' structure's 'context_b' field are sometimes overwritten;
1002 * - if @fq was not created with QMAN_FQ_FLAG_TO_DCPORTAL, then context_b is
1003 * initialised to a value used by the driver for demux.
1004 * - if context_b is initialised for demux, so is context_a in case stashing
1005 * is requested (see item 4).
1006 * (So caller control of context_b is only possible for TO_DCPORTAL frame queue
1007 * objects.)
1008 * 3. if @flags contains QMAN_INITFQ_FLAG_LOCAL, the 'fqd' structure's
1009 * 'dest::channel' field will be overwritten to match the portal used to issue
1010 * the command. If the WE_DESTWQ write-enable bit had already been set by the
1011 * caller, the channel workqueue will be left as-is, otherwise the write-enable
1012 * bit is set and the workqueue is set to a default of 4. If the "LOCAL" flag
1013 * isn't set, the destination channel/workqueue fields and the write-enable bit
1014 * are left as-is.
1015 * 4. if the driver overwrites context_a/b for demux, then if
1016 * QM_INITFQ_WE_CONTEXTA is set, the driver will only overwrite
1017 * context_a.address fields and will leave the stashing fields provided by the
1018 * user alone, otherwise it will zero out the context_a.stashing fields.
1019 */
1020 int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts);
1021
1022 /**
1023 * qman_schedule_fq - Schedules a FQ
1024 * @fq: the frame queue object to schedule, must be 'parked'
1025 *
1026 * Schedules the frame queue, which must be Parked, which takes it to
1027 * Tentatively-Scheduled or Truly-Scheduled depending on its fill-level.
1028 */
1029 int qman_schedule_fq(struct qman_fq *fq);
1030
1031 /**
1032 * qman_retire_fq - Retires a FQ
1033 * @fq: the frame queue object to retire
1034 * @flags: FQ flags (QMAN_FQ_STATE*) if retirement completes immediately
1035 *
1036 * Retires the frame queue. This returns zero if it succeeds immediately, +1 if
1037 * the retirement was started asynchronously, otherwise it returns negative for
1038 * failure. When this function returns zero, @flags is set to indicate whether
1039 * the retired FQ is empty and/or whether it has any ORL fragments (to show up
1040 * as ERNs). Otherwise the corresponding flags will be known when a subsequent
1041 * FQRN message shows up on the portal's message ring.
1042 *
1043 * NB, if the retirement is asynchronous (the FQ was in the Truly Scheduled or
1044 * Active state), the completion will be via the message ring as a FQRN - but
1045 * the corresponding callback may occur before this function returns!! Ie. the
1046 * caller should be prepared to accept the callback as the function is called,
1047 * not only once it has returned.
1048 */
1049 int qman_retire_fq(struct qman_fq *fq, u32 *flags);
1050
1051 /**
1052 * qman_oos_fq - Puts a FQ "out of service"
1053 * @fq: the frame queue object to be put out-of-service, must be 'retired'
1054 *
1055 * The frame queue must be retired and empty, and if any order restoration list
1056 * was released as ERNs at the time of retirement, they must all be consumed.
1057 */
1058 int qman_oos_fq(struct qman_fq *fq);
1059
1060 /*
1061 * qman_volatile_dequeue - Issue a volatile dequeue command
1062 * @fq: the frame queue object to dequeue from
1063 * @flags: a bit-mask of QMAN_VOLATILE_FLAG_*** options
1064 * @vdqcr: bit mask of QM_VDQCR_*** options, as per qm_dqrr_vdqcr_set()
1065 *
1066 * Attempts to lock access to the portal's VDQCR volatile dequeue functionality.
1067 * The function will block and sleep if QMAN_VOLATILE_FLAG_WAIT is specified and
1068 * the VDQCR is already in use, otherwise returns non-zero for failure. If
1069 * QMAN_VOLATILE_FLAG_FINISH is specified, the function will only return once
1070 * the VDQCR command has finished executing (ie. once the callback for the last
1071 * DQRR entry resulting from the VDQCR command has been called). If not using
1072 * the FINISH flag, completion can be determined either by detecting the
1073 * presence of the QM_DQRR_STAT_UNSCHEDULED and QM_DQRR_STAT_DQCR_EXPIRED bits
1074 * in the "stat" parameter passed to the FQ's dequeue callback, or by waiting
1075 * for the QMAN_FQ_STATE_VDQCR bit to disappear.
1076 */
1077 int qman_volatile_dequeue(struct qman_fq *fq, u32 flags, u32 vdqcr);
1078
1079 /**
1080 * qman_enqueue - Enqueue a frame to a frame queue
1081 * @fq: the frame queue object to enqueue to
1082 * @fd: a descriptor of the frame to be enqueued
1083 *
1084 * Fills an entry in the EQCR of portal @qm to enqueue the frame described by
1085 * @fd. The descriptor details are copied from @fd to the EQCR entry, the 'pid'
1086 * field is ignored. The return value is non-zero on error, such as ring full.
1087 */
1088 int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd);
1089
1090 /**
1091 * qman_alloc_fqid_range - Allocate a contiguous range of FQIDs
1092 * @result: is set by the API to the base FQID of the allocated range
1093 * @count: the number of FQIDs required
1094 *
1095 * Returns 0 on success, or a negative error code.
1096 */
1097 int qman_alloc_fqid_range(u32 *result, u32 count);
1098 #define qman_alloc_fqid(result) qman_alloc_fqid_range(result, 1)
1099
1100 /**
1101 * qman_release_fqid - Release the specified frame queue ID
1102 * @fqid: the FQID to be released back to the resource pool
1103 *
1104 * This function can also be used to seed the allocator with
1105 * FQID ranges that it can subsequently allocate from.
1106 * Returns 0 on success, or a negative error code.
1107 */
1108 int qman_release_fqid(u32 fqid);
1109
1110 /**
1111 * qman_query_fq_np - Queries non-programmable FQD fields
1112 * @fq: the frame queue object to be queried
1113 * @np: storage for the queried FQD fields
1114 */
1115 int qman_query_fq_np(struct qman_fq *fq, struct qm_mcr_queryfq_np *np);
1116
1117 /* Pool-channel management */
1118 /**
1119 * qman_alloc_pool_range - Allocate a contiguous range of pool-channel IDs
1120 * @result: is set by the API to the base pool-channel ID of the allocated range
1121 * @count: the number of pool-channel IDs required
1122 *
1123 * Returns 0 on success, or a negative error code.
1124 */
1125 int qman_alloc_pool_range(u32 *result, u32 count);
1126 #define qman_alloc_pool(result) qman_alloc_pool_range(result, 1)
1127
1128 /**
1129 * qman_release_pool - Release the specified pool-channel ID
1130 * @id: the pool-chan ID to be released back to the resource pool
1131 *
1132 * This function can also be used to seed the allocator with
1133 * pool-channel ID ranges that it can subsequently allocate from.
1134 * Returns 0 on success, or a negative error code.
1135 */
1136 int qman_release_pool(u32 id);
1137
1138 /* CGR management */
1139 /**
1140 * qman_create_cgr - Register a congestion group object
1141 * @cgr: the 'cgr' object, with fields filled in
1142 * @flags: QMAN_CGR_FLAG_* values
1143 * @opts: optional state of CGR settings
1144 *
1145 * Registers this object to receiving congestion entry/exit callbacks on the
1146 * portal affine to the cpu portal on which this API is executed. If opts is
1147 * NULL then only the callback (cgr->cb) function is registered. If @flags
1148 * contains QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will reset
1149 * any unspecified parameters) will be used rather than a modify hw hardware
1150 * (which only modifies the specified parameters).
1151 */
1152 int qman_create_cgr(struct qman_cgr *cgr, u32 flags,
1153 struct qm_mcc_initcgr *opts);
1154
1155 /**
1156 * qman_delete_cgr - Deregisters a congestion group object
1157 * @cgr: the 'cgr' object to deregister
1158 *
1159 * "Unplugs" this CGR object from the portal affine to the cpu on which this API
1160 * is executed. This must be excuted on the same affine portal on which it was
1161 * created.
1162 */
1163 int qman_delete_cgr(struct qman_cgr *cgr);
1164
1165 /**
1166 * qman_delete_cgr_safe - Deregisters a congestion group object from any CPU
1167 * @cgr: the 'cgr' object to deregister
1168 *
1169 * This will select the proper CPU and run there qman_delete_cgr().
1170 */
1171 void qman_delete_cgr_safe(struct qman_cgr *cgr);
1172
1173 /**
1174 * qman_query_cgr_congested - Queries CGR's congestion status
1175 * @cgr: the 'cgr' object to query
1176 * @result: returns 'cgr's congestion status, 1 (true) if congested
1177 */
1178 int qman_query_cgr_congested(struct qman_cgr *cgr, bool *result);
1179
1180 /**
1181 * qman_alloc_cgrid_range - Allocate a contiguous range of CGR IDs
1182 * @result: is set by the API to the base CGR ID of the allocated range
1183 * @count: the number of CGR IDs required
1184 *
1185 * Returns 0 on success, or a negative error code.
1186 */
1187 int qman_alloc_cgrid_range(u32 *result, u32 count);
1188 #define qman_alloc_cgrid(result) qman_alloc_cgrid_range(result, 1)
1189
1190 /**
1191 * qman_release_cgrid - Release the specified CGR ID
1192 * @id: the CGR ID to be released back to the resource pool
1193 *
1194 * This function can also be used to seed the allocator with
1195 * CGR ID ranges that it can subsequently allocate from.
1196 * Returns 0 on success, or a negative error code.
1197 */
1198 int qman_release_cgrid(u32 id);
1199
1200 /**
1201 * qman_is_probed - Check if qman is probed
1202 *
1203 * Returns 1 if the qman driver successfully probed, -1 if the qman driver
1204 * failed to probe or 0 if the qman driver did not probed yet.
1205 */
1206 int qman_is_probed(void);
1207
1208 /**
1209 * qman_portals_probed - Check if all cpu bound qman portals are probed
1210 *
1211 * Returns 1 if all the required cpu bound qman portals successfully probed,
1212 * -1 if probe errors appeared or 0 if the qman portals did not yet finished
1213 * probing.
1214 */
1215 int qman_portals_probed(void);
1216
1217 /**
1218 * qman_dqrr_get_ithresh - Get coalesce interrupt threshold
1219 * @portal: portal to get the value for
1220 * @ithresh: threshold pointer
1221 */
1222 void qman_dqrr_get_ithresh(struct qman_portal *portal, u8 *ithresh);
1223
1224 /**
1225 * qman_dqrr_set_ithresh - Set coalesce interrupt threshold
1226 * @portal: portal to set the new value on
1227 * @ithresh: new threshold value
1228 *
1229 * Returns 0 on success, or a negative error code.
1230 */
1231 int qman_dqrr_set_ithresh(struct qman_portal *portal, u8 ithresh);
1232
1233 /**
1234 * qman_dqrr_get_iperiod - Get coalesce interrupt period
1235 * @portal: portal to get the value for
1236 * @iperiod: period pointer
1237 */
1238 void qman_portal_get_iperiod(struct qman_portal *portal, u32 *iperiod);
1239
1240 /**
1241 * qman_dqrr_set_iperiod - Set coalesce interrupt period
1242 * @portal: portal to set the new value on
1243 * @ithresh: new period value
1244 *
1245 * Returns 0 on success, or a negative error code.
1246 */
1247 int qman_portal_set_iperiod(struct qman_portal *portal, u32 iperiod);
1248
1249 #endif /* __FSL_QMAN_H */
1250