1 /* SPDX-License-Identifier: GPL-2.0 */
2 #undef TRACE_SYSTEM
3 #define TRACE_SYSTEM sched
4
5 #if !defined(_TRACE_SCHED_H) || defined(TRACE_HEADER_MULTI_READ)
6 #define _TRACE_SCHED_H
7
8 #include <linux/sched/numa_balancing.h>
9 #include <linux/tracepoint.h>
10 #include <linux/binfmts.h>
11
12 /*
13 * Tracepoint for calling kthread_stop, performed to end a kthread:
14 */
15 TRACE_EVENT(sched_kthread_stop,
16
17 TP_PROTO(struct task_struct *t),
18
19 TP_ARGS(t),
20
21 TP_STRUCT__entry(
22 __array( char, comm, TASK_COMM_LEN )
23 __field( pid_t, pid )
24 ),
25
26 TP_fast_assign(
27 memcpy(__entry->comm, t->comm, TASK_COMM_LEN);
28 __entry->pid = t->pid;
29 ),
30
31 TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid)
32 );
33
34 /*
35 * Tracepoint for the return value of the kthread stopping:
36 */
37 TRACE_EVENT(sched_kthread_stop_ret,
38
39 TP_PROTO(int ret),
40
41 TP_ARGS(ret),
42
43 TP_STRUCT__entry(
44 __field( int, ret )
45 ),
46
47 TP_fast_assign(
48 __entry->ret = ret;
49 ),
50
51 TP_printk("ret=%d", __entry->ret)
52 );
53
54 /*
55 * Tracepoint for waking up a task:
56 */
57 DECLARE_EVENT_CLASS(sched_wakeup_template,
58
59 TP_PROTO(struct task_struct *p),
60
61 TP_ARGS(__perf_task(p)),
62
63 TP_STRUCT__entry(
64 __array( char, comm, TASK_COMM_LEN )
65 __field( pid_t, pid )
66 __field( int, prio )
67 __field( int, success )
68 __field( int, target_cpu )
69 ),
70
71 TP_fast_assign(
72 memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
73 __entry->pid = p->pid;
74 __entry->prio = p->prio; /* XXX SCHED_DEADLINE */
75 __entry->success = 1; /* rudiment, kill when possible */
76 __entry->target_cpu = task_cpu(p);
77 ),
78
79 TP_printk("comm=%s pid=%d prio=%d target_cpu=%03d",
80 __entry->comm, __entry->pid, __entry->prio,
81 __entry->target_cpu)
82 );
83
84 /*
85 * Tracepoint called when waking a task; this tracepoint is guaranteed to be
86 * called from the waking context.
87 */
88 DEFINE_EVENT(sched_wakeup_template, sched_waking,
89 TP_PROTO(struct task_struct *p),
90 TP_ARGS(p));
91
92 /*
93 * Tracepoint called when the task is actually woken; p->state == TASK_RUNNNG.
94 * It is not always called from the waking context.
95 */
96 DEFINE_EVENT(sched_wakeup_template, sched_wakeup,
97 TP_PROTO(struct task_struct *p),
98 TP_ARGS(p));
99
100 /*
101 * Tracepoint for waking up a new task:
102 */
103 DEFINE_EVENT(sched_wakeup_template, sched_wakeup_new,
104 TP_PROTO(struct task_struct *p),
105 TP_ARGS(p));
106
107 #ifdef CREATE_TRACE_POINTS
__trace_sched_switch_state(bool preempt,struct task_struct * p)108 static inline long __trace_sched_switch_state(bool preempt, struct task_struct *p)
109 {
110 unsigned int state;
111
112 #ifdef CONFIG_SCHED_DEBUG
113 BUG_ON(p != current);
114 #endif /* CONFIG_SCHED_DEBUG */
115
116 /*
117 * Preemption ignores task state, therefore preempted tasks are always
118 * RUNNING (we will not have dequeued if state != RUNNING).
119 */
120 if (preempt)
121 return TASK_REPORT_MAX;
122
123 /*
124 * task_state_index() uses fls() and returns a value from 0-8 range.
125 * Decrement it by 1 (except TASK_RUNNING state i.e 0) before using
126 * it for left shift operation to get the correct task->state
127 * mapping.
128 */
129 state = task_state_index(p);
130
131 return state ? (1 << (state - 1)) : state;
132 }
133 #endif /* CREATE_TRACE_POINTS */
134
135 /*
136 * Tracepoint for task switches, performed by the scheduler:
137 */
138 TRACE_EVENT(sched_switch,
139
140 TP_PROTO(bool preempt,
141 struct task_struct *prev,
142 struct task_struct *next),
143
144 TP_ARGS(preempt, prev, next),
145
146 TP_STRUCT__entry(
147 __array( char, prev_comm, TASK_COMM_LEN )
148 __field( pid_t, prev_pid )
149 __field( int, prev_prio )
150 __field( long, prev_state )
151 __array( char, next_comm, TASK_COMM_LEN )
152 __field( pid_t, next_pid )
153 __field( int, next_prio )
154 ),
155
156 TP_fast_assign(
157 memcpy(__entry->next_comm, next->comm, TASK_COMM_LEN);
158 __entry->prev_pid = prev->pid;
159 __entry->prev_prio = prev->prio;
160 __entry->prev_state = __trace_sched_switch_state(preempt, prev);
161 memcpy(__entry->prev_comm, prev->comm, TASK_COMM_LEN);
162 __entry->next_pid = next->pid;
163 __entry->next_prio = next->prio;
164 /* XXX SCHED_DEADLINE */
165 ),
166
167 TP_printk("prev_comm=%s prev_pid=%d prev_prio=%d prev_state=%s%s ==> next_comm=%s next_pid=%d next_prio=%d",
168 __entry->prev_comm, __entry->prev_pid, __entry->prev_prio,
169
170 (__entry->prev_state & (TASK_REPORT_MAX - 1)) ?
171 __print_flags(__entry->prev_state & (TASK_REPORT_MAX - 1), "|",
172 { TASK_INTERRUPTIBLE, "S" },
173 { TASK_UNINTERRUPTIBLE, "D" },
174 { __TASK_STOPPED, "T" },
175 { __TASK_TRACED, "t" },
176 { EXIT_DEAD, "X" },
177 { EXIT_ZOMBIE, "Z" },
178 { TASK_PARKED, "P" },
179 { TASK_DEAD, "I" }) :
180 "R",
181
182 __entry->prev_state & TASK_REPORT_MAX ? "+" : "",
183 __entry->next_comm, __entry->next_pid, __entry->next_prio)
184 );
185
186 /*
187 * Tracepoint for a task being migrated:
188 */
189 TRACE_EVENT(sched_migrate_task,
190
191 TP_PROTO(struct task_struct *p, int dest_cpu),
192
193 TP_ARGS(p, dest_cpu),
194
195 TP_STRUCT__entry(
196 __array( char, comm, TASK_COMM_LEN )
197 __field( pid_t, pid )
198 __field( int, prio )
199 __field( int, orig_cpu )
200 __field( int, dest_cpu )
201 __field( int, running )
202 ),
203
204 TP_fast_assign(
205 memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
206 __entry->pid = p->pid;
207 __entry->prio = p->prio; /* XXX SCHED_DEADLINE */
208 __entry->orig_cpu = task_cpu(p);
209 __entry->dest_cpu = dest_cpu;
210 __entry->running = (p->state == TASK_RUNNING);
211 ),
212
213 TP_printk("comm=%s pid=%d prio=%d orig_cpu=%d dest_cpu=%d running=%d",
214 __entry->comm, __entry->pid, __entry->prio,
215 __entry->orig_cpu, __entry->dest_cpu,
216 __entry->running)
217 );
218
219 DECLARE_EVENT_CLASS(sched_process_template,
220
221 TP_PROTO(struct task_struct *p),
222
223 TP_ARGS(p),
224
225 TP_STRUCT__entry(
226 __array( char, comm, TASK_COMM_LEN )
227 __field( pid_t, pid )
228 __field( int, prio )
229 ),
230
231 TP_fast_assign(
232 memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
233 __entry->pid = p->pid;
234 __entry->prio = p->prio; /* XXX SCHED_DEADLINE */
235 ),
236
237 TP_printk("comm=%s pid=%d prio=%d",
238 __entry->comm, __entry->pid, __entry->prio)
239 );
240
241 /*
242 * Tracepoint for freeing a task:
243 */
244 DEFINE_EVENT(sched_process_template, sched_process_free,
245 TP_PROTO(struct task_struct *p),
246 TP_ARGS(p));
247
248 /*
249 * Tracepoint for a task exiting:
250 */
251 DEFINE_EVENT(sched_process_template, sched_process_exit,
252 TP_PROTO(struct task_struct *p),
253 TP_ARGS(p));
254
255 /*
256 * Tracepoint for waiting on task to unschedule:
257 */
258 DEFINE_EVENT(sched_process_template, sched_wait_task,
259 TP_PROTO(struct task_struct *p),
260 TP_ARGS(p));
261
262 /*
263 * Tracepoint for a waiting task:
264 */
265 TRACE_EVENT(sched_process_wait,
266
267 TP_PROTO(struct pid *pid),
268
269 TP_ARGS(pid),
270
271 TP_STRUCT__entry(
272 __array( char, comm, TASK_COMM_LEN )
273 __field( pid_t, pid )
274 __field( int, prio )
275 ),
276
277 TP_fast_assign(
278 memcpy(__entry->comm, current->comm, TASK_COMM_LEN);
279 __entry->pid = pid_nr(pid);
280 __entry->prio = current->prio; /* XXX SCHED_DEADLINE */
281 ),
282
283 TP_printk("comm=%s pid=%d prio=%d",
284 __entry->comm, __entry->pid, __entry->prio)
285 );
286
287 /*
288 * Tracepoint for do_fork:
289 */
290 TRACE_EVENT(sched_process_fork,
291
292 TP_PROTO(struct task_struct *parent, struct task_struct *child),
293
294 TP_ARGS(parent, child),
295
296 TP_STRUCT__entry(
297 __array( char, parent_comm, TASK_COMM_LEN )
298 __field( pid_t, parent_pid )
299 __array( char, child_comm, TASK_COMM_LEN )
300 __field( pid_t, child_pid )
301 ),
302
303 TP_fast_assign(
304 memcpy(__entry->parent_comm, parent->comm, TASK_COMM_LEN);
305 __entry->parent_pid = parent->pid;
306 memcpy(__entry->child_comm, child->comm, TASK_COMM_LEN);
307 __entry->child_pid = child->pid;
308 ),
309
310 TP_printk("comm=%s pid=%d child_comm=%s child_pid=%d",
311 __entry->parent_comm, __entry->parent_pid,
312 __entry->child_comm, __entry->child_pid)
313 );
314
315 /*
316 * Tracepoint for exec:
317 */
318 TRACE_EVENT(sched_process_exec,
319
320 TP_PROTO(struct task_struct *p, pid_t old_pid,
321 struct linux_binprm *bprm),
322
323 TP_ARGS(p, old_pid, bprm),
324
325 TP_STRUCT__entry(
326 __string( filename, bprm->filename )
327 __field( pid_t, pid )
328 __field( pid_t, old_pid )
329 ),
330
331 TP_fast_assign(
332 __assign_str(filename, bprm->filename);
333 __entry->pid = p->pid;
334 __entry->old_pid = old_pid;
335 ),
336
337 TP_printk("filename=%s pid=%d old_pid=%d", __get_str(filename),
338 __entry->pid, __entry->old_pid)
339 );
340
341
342 #ifdef CONFIG_SCHEDSTATS
343 #define DEFINE_EVENT_SCHEDSTAT DEFINE_EVENT
344 #define DECLARE_EVENT_CLASS_SCHEDSTAT DECLARE_EVENT_CLASS
345 #else
346 #define DEFINE_EVENT_SCHEDSTAT DEFINE_EVENT_NOP
347 #define DECLARE_EVENT_CLASS_SCHEDSTAT DECLARE_EVENT_CLASS_NOP
348 #endif
349
350 /*
351 * XXX the below sched_stat tracepoints only apply to SCHED_OTHER/BATCH/IDLE
352 * adding sched_stat support to SCHED_FIFO/RR would be welcome.
353 */
354 DECLARE_EVENT_CLASS_SCHEDSTAT(sched_stat_template,
355
356 TP_PROTO(struct task_struct *tsk, u64 delay),
357
358 TP_ARGS(__perf_task(tsk), __perf_count(delay)),
359
360 TP_STRUCT__entry(
361 __array( char, comm, TASK_COMM_LEN )
362 __field( pid_t, pid )
363 __field( u64, delay )
364 ),
365
366 TP_fast_assign(
367 memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
368 __entry->pid = tsk->pid;
369 __entry->delay = delay;
370 ),
371
372 TP_printk("comm=%s pid=%d delay=%Lu [ns]",
373 __entry->comm, __entry->pid,
374 (unsigned long long)__entry->delay)
375 );
376
377 /*
378 * Tracepoint for accounting wait time (time the task is runnable
379 * but not actually running due to scheduler contention).
380 */
381 DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_wait,
382 TP_PROTO(struct task_struct *tsk, u64 delay),
383 TP_ARGS(tsk, delay));
384
385 /*
386 * Tracepoint for accounting sleep time (time the task is not runnable,
387 * including iowait, see below).
388 */
389 DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_sleep,
390 TP_PROTO(struct task_struct *tsk, u64 delay),
391 TP_ARGS(tsk, delay));
392
393 /*
394 * Tracepoint for accounting iowait time (time the task is not runnable
395 * due to waiting on IO to complete).
396 */
397 DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_iowait,
398 TP_PROTO(struct task_struct *tsk, u64 delay),
399 TP_ARGS(tsk, delay));
400
401 /*
402 * Tracepoint for accounting blocked time (time the task is in uninterruptible).
403 */
404 DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_blocked,
405 TP_PROTO(struct task_struct *tsk, u64 delay),
406 TP_ARGS(tsk, delay));
407
408 /*
409 * Tracepoint for recording the cause of uninterruptible sleep.
410 */
411 TRACE_EVENT(sched_blocked_reason,
412
413 TP_PROTO(struct task_struct *tsk),
414
415 TP_ARGS(tsk),
416
417 TP_STRUCT__entry(
418 __field( pid_t, pid )
419 __field( void*, caller )
420 __field( bool, io_wait )
421 ),
422
423 TP_fast_assign(
424 __entry->pid = tsk->pid;
425 __entry->caller = (void *)get_wchan(tsk);
426 __entry->io_wait = tsk->in_iowait;
427 ),
428
429 TP_printk("pid=%d iowait=%d caller=%pS", __entry->pid, __entry->io_wait, __entry->caller)
430 );
431
432 /*
433 * Tracepoint for accounting runtime (time the task is executing
434 * on a CPU).
435 */
436 DECLARE_EVENT_CLASS(sched_stat_runtime,
437
438 TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime),
439
440 TP_ARGS(tsk, __perf_count(runtime), vruntime),
441
442 TP_STRUCT__entry(
443 __array( char, comm, TASK_COMM_LEN )
444 __field( pid_t, pid )
445 __field( u64, runtime )
446 __field( u64, vruntime )
447 ),
448
449 TP_fast_assign(
450 memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
451 __entry->pid = tsk->pid;
452 __entry->runtime = runtime;
453 __entry->vruntime = vruntime;
454 ),
455
456 TP_printk("comm=%s pid=%d runtime=%Lu [ns] vruntime=%Lu [ns]",
457 __entry->comm, __entry->pid,
458 (unsigned long long)__entry->runtime,
459 (unsigned long long)__entry->vruntime)
460 );
461
462 DEFINE_EVENT(sched_stat_runtime, sched_stat_runtime,
463 TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime),
464 TP_ARGS(tsk, runtime, vruntime));
465
466 /*
467 * Tracepoint for showing priority inheritance modifying a tasks
468 * priority.
469 */
470 TRACE_EVENT(sched_pi_setprio,
471
472 TP_PROTO(struct task_struct *tsk, struct task_struct *pi_task),
473
474 TP_ARGS(tsk, pi_task),
475
476 TP_STRUCT__entry(
477 __array( char, comm, TASK_COMM_LEN )
478 __field( pid_t, pid )
479 __field( int, oldprio )
480 __field( int, newprio )
481 ),
482
483 TP_fast_assign(
484 memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
485 __entry->pid = tsk->pid;
486 __entry->oldprio = tsk->prio;
487 __entry->newprio = pi_task ?
488 min(tsk->normal_prio, pi_task->prio) :
489 tsk->normal_prio;
490 /* XXX SCHED_DEADLINE bits missing */
491 ),
492
493 TP_printk("comm=%s pid=%d oldprio=%d newprio=%d",
494 __entry->comm, __entry->pid,
495 __entry->oldprio, __entry->newprio)
496 );
497
498 #ifdef CONFIG_DETECT_HUNG_TASK
499 TRACE_EVENT(sched_process_hang,
500 TP_PROTO(struct task_struct *tsk),
501 TP_ARGS(tsk),
502
503 TP_STRUCT__entry(
504 __array( char, comm, TASK_COMM_LEN )
505 __field( pid_t, pid )
506 ),
507
508 TP_fast_assign(
509 memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
510 __entry->pid = tsk->pid;
511 ),
512
513 TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid)
514 );
515 #endif /* CONFIG_DETECT_HUNG_TASK */
516
517 /*
518 * Tracks migration of tasks from one runqueue to another. Can be used to
519 * detect if automatic NUMA balancing is bouncing between nodes.
520 */
521 TRACE_EVENT(sched_move_numa,
522
523 TP_PROTO(struct task_struct *tsk, int src_cpu, int dst_cpu),
524
525 TP_ARGS(tsk, src_cpu, dst_cpu),
526
527 TP_STRUCT__entry(
528 __field( pid_t, pid )
529 __field( pid_t, tgid )
530 __field( pid_t, ngid )
531 __field( int, src_cpu )
532 __field( int, src_nid )
533 __field( int, dst_cpu )
534 __field( int, dst_nid )
535 ),
536
537 TP_fast_assign(
538 __entry->pid = task_pid_nr(tsk);
539 __entry->tgid = task_tgid_nr(tsk);
540 __entry->ngid = task_numa_group_id(tsk);
541 __entry->src_cpu = src_cpu;
542 __entry->src_nid = cpu_to_node(src_cpu);
543 __entry->dst_cpu = dst_cpu;
544 __entry->dst_nid = cpu_to_node(dst_cpu);
545 ),
546
547 TP_printk("pid=%d tgid=%d ngid=%d src_cpu=%d src_nid=%d dst_cpu=%d dst_nid=%d",
548 __entry->pid, __entry->tgid, __entry->ngid,
549 __entry->src_cpu, __entry->src_nid,
550 __entry->dst_cpu, __entry->dst_nid)
551 );
552
553 DECLARE_EVENT_CLASS(sched_numa_pair_template,
554
555 TP_PROTO(struct task_struct *src_tsk, int src_cpu,
556 struct task_struct *dst_tsk, int dst_cpu),
557
558 TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu),
559
560 TP_STRUCT__entry(
561 __field( pid_t, src_pid )
562 __field( pid_t, src_tgid )
563 __field( pid_t, src_ngid )
564 __field( int, src_cpu )
565 __field( int, src_nid )
566 __field( pid_t, dst_pid )
567 __field( pid_t, dst_tgid )
568 __field( pid_t, dst_ngid )
569 __field( int, dst_cpu )
570 __field( int, dst_nid )
571 ),
572
573 TP_fast_assign(
574 __entry->src_pid = task_pid_nr(src_tsk);
575 __entry->src_tgid = task_tgid_nr(src_tsk);
576 __entry->src_ngid = task_numa_group_id(src_tsk);
577 __entry->src_cpu = src_cpu;
578 __entry->src_nid = cpu_to_node(src_cpu);
579 __entry->dst_pid = dst_tsk ? task_pid_nr(dst_tsk) : 0;
580 __entry->dst_tgid = dst_tsk ? task_tgid_nr(dst_tsk) : 0;
581 __entry->dst_ngid = dst_tsk ? task_numa_group_id(dst_tsk) : 0;
582 __entry->dst_cpu = dst_cpu;
583 __entry->dst_nid = dst_cpu >= 0 ? cpu_to_node(dst_cpu) : -1;
584 ),
585
586 TP_printk("src_pid=%d src_tgid=%d src_ngid=%d src_cpu=%d src_nid=%d dst_pid=%d dst_tgid=%d dst_ngid=%d dst_cpu=%d dst_nid=%d",
587 __entry->src_pid, __entry->src_tgid, __entry->src_ngid,
588 __entry->src_cpu, __entry->src_nid,
589 __entry->dst_pid, __entry->dst_tgid, __entry->dst_ngid,
590 __entry->dst_cpu, __entry->dst_nid)
591 );
592
593 DEFINE_EVENT(sched_numa_pair_template, sched_stick_numa,
594
595 TP_PROTO(struct task_struct *src_tsk, int src_cpu,
596 struct task_struct *dst_tsk, int dst_cpu),
597
598 TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu)
599 );
600
601 DEFINE_EVENT(sched_numa_pair_template, sched_swap_numa,
602
603 TP_PROTO(struct task_struct *src_tsk, int src_cpu,
604 struct task_struct *dst_tsk, int dst_cpu),
605
606 TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu)
607 );
608
609
610 /*
611 * Tracepoint for waking a polling cpu without an IPI.
612 */
613 TRACE_EVENT(sched_wake_idle_without_ipi,
614
615 TP_PROTO(int cpu),
616
617 TP_ARGS(cpu),
618
619 TP_STRUCT__entry(
620 __field( int, cpu )
621 ),
622
623 TP_fast_assign(
624 __entry->cpu = cpu;
625 ),
626
627 TP_printk("cpu=%d", __entry->cpu)
628 );
629
630 /*
631 * Following tracepoints are not exported in tracefs and provide hooking
632 * mechanisms only for testing and debugging purposes.
633 *
634 * Postfixed with _tp to make them easily identifiable in the code.
635 */
636 DECLARE_TRACE(pelt_cfs_tp,
637 TP_PROTO(struct cfs_rq *cfs_rq),
638 TP_ARGS(cfs_rq));
639
640 DECLARE_TRACE(pelt_rt_tp,
641 TP_PROTO(struct rq *rq),
642 TP_ARGS(rq));
643
644 DECLARE_TRACE(pelt_dl_tp,
645 TP_PROTO(struct rq *rq),
646 TP_ARGS(rq));
647
648 DECLARE_TRACE(pelt_thermal_tp,
649 TP_PROTO(struct rq *rq),
650 TP_ARGS(rq));
651
652 DECLARE_TRACE(pelt_irq_tp,
653 TP_PROTO(struct rq *rq),
654 TP_ARGS(rq));
655
656 DECLARE_TRACE(pelt_se_tp,
657 TP_PROTO(struct sched_entity *se),
658 TP_ARGS(se));
659
660 DECLARE_TRACE(sched_cpu_capacity_tp,
661 TP_PROTO(struct rq *rq),
662 TP_ARGS(rq));
663
664 DECLARE_TRACE(sched_overutilized_tp,
665 TP_PROTO(struct root_domain *rd, bool overutilized),
666 TP_ARGS(rd, overutilized));
667
668 DECLARE_TRACE(sched_util_est_cfs_tp,
669 TP_PROTO(struct cfs_rq *cfs_rq),
670 TP_ARGS(cfs_rq));
671
672 DECLARE_TRACE(sched_util_est_se_tp,
673 TP_PROTO(struct sched_entity *se),
674 TP_ARGS(se));
675
676 DECLARE_TRACE(sched_update_nr_running_tp,
677 TP_PROTO(struct rq *rq, int change),
678 TP_ARGS(rq, change));
679
680 #endif /* _TRACE_SCHED_H */
681
682 /* This part must be outside protection */
683 #include <trace/define_trace.h>
684