1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * arch-independent dma-mapping routines
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/export.h>
12 #include <linux/gfp.h>
13 #include <linux/of_device.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include "debug.h"
17 #include "direct.h"
18
19 /*
20 * Managed DMA API
21 */
22 struct dma_devres {
23 size_t size;
24 void *vaddr;
25 dma_addr_t dma_handle;
26 unsigned long attrs;
27 };
28
dmam_release(struct device * dev,void * res)29 static void dmam_release(struct device *dev, void *res)
30 {
31 struct dma_devres *this = res;
32
33 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
34 this->attrs);
35 }
36
dmam_match(struct device * dev,void * res,void * match_data)37 static int dmam_match(struct device *dev, void *res, void *match_data)
38 {
39 struct dma_devres *this = res, *match = match_data;
40
41 if (this->vaddr == match->vaddr) {
42 WARN_ON(this->size != match->size ||
43 this->dma_handle != match->dma_handle);
44 return 1;
45 }
46 return 0;
47 }
48
49 /**
50 * dmam_free_coherent - Managed dma_free_coherent()
51 * @dev: Device to free coherent memory for
52 * @size: Size of allocation
53 * @vaddr: Virtual address of the memory to free
54 * @dma_handle: DMA handle of the memory to free
55 *
56 * Managed dma_free_coherent().
57 */
dmam_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle)58 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
59 dma_addr_t dma_handle)
60 {
61 struct dma_devres match_data = { size, vaddr, dma_handle };
62
63 dma_free_coherent(dev, size, vaddr, dma_handle);
64 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
65 }
66 EXPORT_SYMBOL(dmam_free_coherent);
67
68 /**
69 * dmam_alloc_attrs - Managed dma_alloc_attrs()
70 * @dev: Device to allocate non_coherent memory for
71 * @size: Size of allocation
72 * @dma_handle: Out argument for allocated DMA handle
73 * @gfp: Allocation flags
74 * @attrs: Flags in the DMA_ATTR_* namespace.
75 *
76 * Managed dma_alloc_attrs(). Memory allocated using this function will be
77 * automatically released on driver detach.
78 *
79 * RETURNS:
80 * Pointer to allocated memory on success, NULL on failure.
81 */
dmam_alloc_attrs(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)82 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
83 gfp_t gfp, unsigned long attrs)
84 {
85 struct dma_devres *dr;
86 void *vaddr;
87
88 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
89 if (!dr)
90 return NULL;
91
92 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
93 if (!vaddr) {
94 devres_free(dr);
95 return NULL;
96 }
97
98 dr->vaddr = vaddr;
99 dr->dma_handle = *dma_handle;
100 dr->size = size;
101 dr->attrs = attrs;
102
103 devres_add(dev, dr);
104
105 return vaddr;
106 }
107 EXPORT_SYMBOL(dmam_alloc_attrs);
108
dma_go_direct(struct device * dev,dma_addr_t mask,const struct dma_map_ops * ops)109 static bool dma_go_direct(struct device *dev, dma_addr_t mask,
110 const struct dma_map_ops *ops)
111 {
112 if (likely(!ops))
113 return true;
114 #ifdef CONFIG_DMA_OPS_BYPASS
115 if (dev->dma_ops_bypass)
116 return min_not_zero(mask, dev->bus_dma_limit) >=
117 dma_direct_get_required_mask(dev);
118 #endif
119 return false;
120 }
121
122
123 /*
124 * Check if the devices uses a direct mapping for streaming DMA operations.
125 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
126 * enough.
127 */
dma_alloc_direct(struct device * dev,const struct dma_map_ops * ops)128 static inline bool dma_alloc_direct(struct device *dev,
129 const struct dma_map_ops *ops)
130 {
131 return dma_go_direct(dev, dev->coherent_dma_mask, ops);
132 }
133
dma_map_direct(struct device * dev,const struct dma_map_ops * ops)134 static inline bool dma_map_direct(struct device *dev,
135 const struct dma_map_ops *ops)
136 {
137 return dma_go_direct(dev, *dev->dma_mask, ops);
138 }
139
dma_map_page_attrs(struct device * dev,struct page * page,size_t offset,size_t size,enum dma_data_direction dir,unsigned long attrs)140 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
141 size_t offset, size_t size, enum dma_data_direction dir,
142 unsigned long attrs)
143 {
144 const struct dma_map_ops *ops = get_dma_ops(dev);
145 dma_addr_t addr;
146
147 BUG_ON(!valid_dma_direction(dir));
148
149 if (WARN_ON_ONCE(!dev->dma_mask))
150 return DMA_MAPPING_ERROR;
151
152 if (dma_map_direct(dev, ops))
153 addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
154 else
155 addr = ops->map_page(dev, page, offset, size, dir, attrs);
156 debug_dma_map_page(dev, page, offset, size, dir, addr);
157
158 return addr;
159 }
160 EXPORT_SYMBOL(dma_map_page_attrs);
161
dma_unmap_page_attrs(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)162 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
163 enum dma_data_direction dir, unsigned long attrs)
164 {
165 const struct dma_map_ops *ops = get_dma_ops(dev);
166
167 BUG_ON(!valid_dma_direction(dir));
168 if (dma_map_direct(dev, ops))
169 dma_direct_unmap_page(dev, addr, size, dir, attrs);
170 else if (ops->unmap_page)
171 ops->unmap_page(dev, addr, size, dir, attrs);
172 debug_dma_unmap_page(dev, addr, size, dir);
173 }
174 EXPORT_SYMBOL(dma_unmap_page_attrs);
175
176 /*
177 * dma_maps_sg_attrs returns 0 on error and > 0 on success.
178 * It should never return a value < 0.
179 */
dma_map_sg_attrs(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)180 int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, int nents,
181 enum dma_data_direction dir, unsigned long attrs)
182 {
183 const struct dma_map_ops *ops = get_dma_ops(dev);
184 int ents;
185
186 BUG_ON(!valid_dma_direction(dir));
187
188 if (WARN_ON_ONCE(!dev->dma_mask))
189 return 0;
190
191 if (dma_map_direct(dev, ops))
192 ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
193 else
194 ents = ops->map_sg(dev, sg, nents, dir, attrs);
195 BUG_ON(ents < 0);
196 debug_dma_map_sg(dev, sg, nents, ents, dir);
197
198 return ents;
199 }
200 EXPORT_SYMBOL(dma_map_sg_attrs);
201
dma_unmap_sg_attrs(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)202 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
203 int nents, enum dma_data_direction dir,
204 unsigned long attrs)
205 {
206 const struct dma_map_ops *ops = get_dma_ops(dev);
207
208 BUG_ON(!valid_dma_direction(dir));
209 debug_dma_unmap_sg(dev, sg, nents, dir);
210 if (dma_map_direct(dev, ops))
211 dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
212 else if (ops->unmap_sg)
213 ops->unmap_sg(dev, sg, nents, dir, attrs);
214 }
215 EXPORT_SYMBOL(dma_unmap_sg_attrs);
216
dma_map_resource(struct device * dev,phys_addr_t phys_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)217 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
218 size_t size, enum dma_data_direction dir, unsigned long attrs)
219 {
220 const struct dma_map_ops *ops = get_dma_ops(dev);
221 dma_addr_t addr = DMA_MAPPING_ERROR;
222
223 BUG_ON(!valid_dma_direction(dir));
224
225 if (WARN_ON_ONCE(!dev->dma_mask))
226 return DMA_MAPPING_ERROR;
227
228 /* Don't allow RAM to be mapped */
229 if (WARN_ON_ONCE(pfn_valid(PHYS_PFN(phys_addr))))
230 return DMA_MAPPING_ERROR;
231
232 if (dma_map_direct(dev, ops))
233 addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
234 else if (ops->map_resource)
235 addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
236
237 debug_dma_map_resource(dev, phys_addr, size, dir, addr);
238 return addr;
239 }
240 EXPORT_SYMBOL(dma_map_resource);
241
dma_unmap_resource(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)242 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
243 enum dma_data_direction dir, unsigned long attrs)
244 {
245 const struct dma_map_ops *ops = get_dma_ops(dev);
246
247 BUG_ON(!valid_dma_direction(dir));
248 if (!dma_map_direct(dev, ops) && ops->unmap_resource)
249 ops->unmap_resource(dev, addr, size, dir, attrs);
250 debug_dma_unmap_resource(dev, addr, size, dir);
251 }
252 EXPORT_SYMBOL(dma_unmap_resource);
253
dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)254 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
255 enum dma_data_direction dir)
256 {
257 const struct dma_map_ops *ops = get_dma_ops(dev);
258
259 BUG_ON(!valid_dma_direction(dir));
260 if (dma_map_direct(dev, ops))
261 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
262 else if (ops->sync_single_for_cpu)
263 ops->sync_single_for_cpu(dev, addr, size, dir);
264 debug_dma_sync_single_for_cpu(dev, addr, size, dir);
265 }
266 EXPORT_SYMBOL(dma_sync_single_for_cpu);
267
dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)268 void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
269 size_t size, enum dma_data_direction dir)
270 {
271 const struct dma_map_ops *ops = get_dma_ops(dev);
272
273 BUG_ON(!valid_dma_direction(dir));
274 if (dma_map_direct(dev, ops))
275 dma_direct_sync_single_for_device(dev, addr, size, dir);
276 else if (ops->sync_single_for_device)
277 ops->sync_single_for_device(dev, addr, size, dir);
278 debug_dma_sync_single_for_device(dev, addr, size, dir);
279 }
280 EXPORT_SYMBOL(dma_sync_single_for_device);
281
dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)282 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
283 int nelems, enum dma_data_direction dir)
284 {
285 const struct dma_map_ops *ops = get_dma_ops(dev);
286
287 BUG_ON(!valid_dma_direction(dir));
288 if (dma_map_direct(dev, ops))
289 dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
290 else if (ops->sync_sg_for_cpu)
291 ops->sync_sg_for_cpu(dev, sg, nelems, dir);
292 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
293 }
294 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
295
dma_sync_sg_for_device(struct device * dev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)296 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
297 int nelems, enum dma_data_direction dir)
298 {
299 const struct dma_map_ops *ops = get_dma_ops(dev);
300
301 BUG_ON(!valid_dma_direction(dir));
302 if (dma_map_direct(dev, ops))
303 dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
304 else if (ops->sync_sg_for_device)
305 ops->sync_sg_for_device(dev, sg, nelems, dir);
306 debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
307 }
308 EXPORT_SYMBOL(dma_sync_sg_for_device);
309
310 /*
311 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
312 * that the intention is to allow exporting memory allocated via the
313 * coherent DMA APIs through the dma_buf API, which only accepts a
314 * scattertable. This presents a couple of problems:
315 * 1. Not all memory allocated via the coherent DMA APIs is backed by
316 * a struct page
317 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
318 * as we will try to flush the memory through a different alias to that
319 * actually being used (and the flushes are redundant.)
320 */
dma_get_sgtable_attrs(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)321 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
322 void *cpu_addr, dma_addr_t dma_addr, size_t size,
323 unsigned long attrs)
324 {
325 const struct dma_map_ops *ops = get_dma_ops(dev);
326
327 if (dma_alloc_direct(dev, ops))
328 return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
329 size, attrs);
330 if (!ops->get_sgtable)
331 return -ENXIO;
332 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
333 }
334 EXPORT_SYMBOL(dma_get_sgtable_attrs);
335
336 #ifdef CONFIG_MMU
337 /*
338 * Return the page attributes used for mapping dma_alloc_* memory, either in
339 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
340 */
dma_pgprot(struct device * dev,pgprot_t prot,unsigned long attrs)341 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
342 {
343 if (force_dma_unencrypted(dev))
344 prot = pgprot_decrypted(prot);
345 if (dev_is_dma_coherent(dev))
346 return prot;
347 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
348 if (attrs & DMA_ATTR_WRITE_COMBINE)
349 return pgprot_writecombine(prot);
350 #endif
351 if (attrs & DMA_ATTR_SYS_CACHE_ONLY ||
352 attrs & DMA_ATTR_SYS_CACHE_ONLY_NWA)
353 return pgprot_syscached(prot);
354 return pgprot_dmacoherent(prot);
355 }
356 #endif /* CONFIG_MMU */
357
358 /**
359 * dma_can_mmap - check if a given device supports dma_mmap_*
360 * @dev: device to check
361 *
362 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
363 * map DMA allocations to userspace.
364 */
dma_can_mmap(struct device * dev)365 bool dma_can_mmap(struct device *dev)
366 {
367 const struct dma_map_ops *ops = get_dma_ops(dev);
368
369 if (dma_alloc_direct(dev, ops))
370 return dma_direct_can_mmap(dev);
371 return ops->mmap != NULL;
372 }
373 EXPORT_SYMBOL_GPL(dma_can_mmap);
374
375 /**
376 * dma_mmap_attrs - map a coherent DMA allocation into user space
377 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
378 * @vma: vm_area_struct describing requested user mapping
379 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
380 * @dma_addr: device-view address returned from dma_alloc_attrs
381 * @size: size of memory originally requested in dma_alloc_attrs
382 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
383 *
384 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
385 * space. The coherent DMA buffer must not be freed by the driver until the
386 * user space mapping has been released.
387 */
dma_mmap_attrs(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)388 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
389 void *cpu_addr, dma_addr_t dma_addr, size_t size,
390 unsigned long attrs)
391 {
392 const struct dma_map_ops *ops = get_dma_ops(dev);
393
394 if (dma_alloc_direct(dev, ops))
395 return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
396 attrs);
397 if (!ops->mmap)
398 return -ENXIO;
399 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
400 }
401 EXPORT_SYMBOL(dma_mmap_attrs);
402
dma_get_required_mask(struct device * dev)403 u64 dma_get_required_mask(struct device *dev)
404 {
405 const struct dma_map_ops *ops = get_dma_ops(dev);
406
407 if (dma_alloc_direct(dev, ops))
408 return dma_direct_get_required_mask(dev);
409 if (ops->get_required_mask)
410 return ops->get_required_mask(dev);
411
412 /*
413 * We require every DMA ops implementation to at least support a 32-bit
414 * DMA mask (and use bounce buffering if that isn't supported in
415 * hardware). As the direct mapping code has its own routine to
416 * actually report an optimal mask we default to 32-bit here as that
417 * is the right thing for most IOMMUs, and at least not actively
418 * harmful in general.
419 */
420 return DMA_BIT_MASK(32);
421 }
422 EXPORT_SYMBOL_GPL(dma_get_required_mask);
423
dma_alloc_attrs(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag,unsigned long attrs)424 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
425 gfp_t flag, unsigned long attrs)
426 {
427 const struct dma_map_ops *ops = get_dma_ops(dev);
428 void *cpu_addr;
429
430 WARN_ON_ONCE(!dev->coherent_dma_mask);
431
432 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
433 return cpu_addr;
434
435 /* let the implementation decide on the zone to allocate from: */
436 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
437
438 if (dma_alloc_direct(dev, ops))
439 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
440 else if (ops->alloc)
441 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
442 else
443 return NULL;
444
445 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
446 return cpu_addr;
447 }
448 EXPORT_SYMBOL(dma_alloc_attrs);
449
dma_free_attrs(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_handle,unsigned long attrs)450 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
451 dma_addr_t dma_handle, unsigned long attrs)
452 {
453 const struct dma_map_ops *ops = get_dma_ops(dev);
454
455 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
456 return;
457 /*
458 * On non-coherent platforms which implement DMA-coherent buffers via
459 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
460 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
461 * sleep on some machines, and b) an indication that the driver is
462 * probably misusing the coherent API anyway.
463 */
464 WARN_ON(irqs_disabled());
465
466 if (!cpu_addr)
467 return;
468
469 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
470 if (dma_alloc_direct(dev, ops))
471 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
472 else if (ops->free)
473 ops->free(dev, size, cpu_addr, dma_handle, attrs);
474 }
475 EXPORT_SYMBOL(dma_free_attrs);
476
dma_alloc_pages(struct device * dev,size_t size,dma_addr_t * dma_handle,enum dma_data_direction dir,gfp_t gfp)477 struct page *dma_alloc_pages(struct device *dev, size_t size,
478 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
479 {
480 const struct dma_map_ops *ops = get_dma_ops(dev);
481 struct page *page;
482
483 if (WARN_ON_ONCE(!dev->coherent_dma_mask))
484 return NULL;
485 if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
486 return NULL;
487
488 size = PAGE_ALIGN(size);
489 if (dma_alloc_direct(dev, ops))
490 page = dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
491 else if (ops->alloc_pages)
492 page = ops->alloc_pages(dev, size, dma_handle, dir, gfp);
493 else
494 return NULL;
495
496 debug_dma_map_page(dev, page, 0, size, dir, *dma_handle);
497
498 return page;
499 }
500 EXPORT_SYMBOL_GPL(dma_alloc_pages);
501
dma_free_pages(struct device * dev,size_t size,struct page * page,dma_addr_t dma_handle,enum dma_data_direction dir)502 void dma_free_pages(struct device *dev, size_t size, struct page *page,
503 dma_addr_t dma_handle, enum dma_data_direction dir)
504 {
505 const struct dma_map_ops *ops = get_dma_ops(dev);
506
507 size = PAGE_ALIGN(size);
508 debug_dma_unmap_page(dev, dma_handle, size, dir);
509
510 if (dma_alloc_direct(dev, ops))
511 dma_direct_free_pages(dev, size, page, dma_handle, dir);
512 else if (ops->free_pages)
513 ops->free_pages(dev, size, page, dma_handle, dir);
514 }
515 EXPORT_SYMBOL_GPL(dma_free_pages);
516
dma_alloc_noncoherent(struct device * dev,size_t size,dma_addr_t * dma_handle,enum dma_data_direction dir,gfp_t gfp)517 void *dma_alloc_noncoherent(struct device *dev, size_t size,
518 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
519 {
520 const struct dma_map_ops *ops = get_dma_ops(dev);
521 void *vaddr;
522
523 if (!ops || !ops->alloc_noncoherent) {
524 struct page *page;
525
526 page = dma_alloc_pages(dev, size, dma_handle, dir, gfp);
527 if (!page)
528 return NULL;
529 return page_address(page);
530 }
531
532 size = PAGE_ALIGN(size);
533 vaddr = ops->alloc_noncoherent(dev, size, dma_handle, dir, gfp);
534 if (vaddr)
535 debug_dma_map_page(dev, virt_to_page(vaddr), 0, size, dir,
536 *dma_handle);
537 return vaddr;
538 }
539 EXPORT_SYMBOL_GPL(dma_alloc_noncoherent);
540
dma_free_noncoherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle,enum dma_data_direction dir)541 void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
542 dma_addr_t dma_handle, enum dma_data_direction dir)
543 {
544 const struct dma_map_ops *ops = get_dma_ops(dev);
545
546 if (!ops || !ops->free_noncoherent) {
547 dma_free_pages(dev, size, virt_to_page(vaddr), dma_handle, dir);
548 return;
549 }
550
551 size = PAGE_ALIGN(size);
552 debug_dma_unmap_page(dev, dma_handle, size, dir);
553 ops->free_noncoherent(dev, size, vaddr, dma_handle, dir);
554 }
555 EXPORT_SYMBOL_GPL(dma_free_noncoherent);
556
dma_supported(struct device * dev,u64 mask)557 int dma_supported(struct device *dev, u64 mask)
558 {
559 const struct dma_map_ops *ops = get_dma_ops(dev);
560
561 /*
562 * ->dma_supported sets the bypass flag, so we must always call
563 * into the method here unless the device is truly direct mapped.
564 */
565 if (!ops)
566 return dma_direct_supported(dev, mask);
567 if (!ops->dma_supported)
568 return 1;
569 return ops->dma_supported(dev, mask);
570 }
571 EXPORT_SYMBOL(dma_supported);
572
573 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
574 void arch_dma_set_mask(struct device *dev, u64 mask);
575 #else
576 #define arch_dma_set_mask(dev, mask) do { } while (0)
577 #endif
578
dma_set_mask(struct device * dev,u64 mask)579 int dma_set_mask(struct device *dev, u64 mask)
580 {
581 /*
582 * Truncate the mask to the actually supported dma_addr_t width to
583 * avoid generating unsupportable addresses.
584 */
585 mask = (dma_addr_t)mask;
586
587 if (!dev->dma_mask || !dma_supported(dev, mask))
588 return -EIO;
589
590 arch_dma_set_mask(dev, mask);
591 *dev->dma_mask = mask;
592 return 0;
593 }
594 EXPORT_SYMBOL(dma_set_mask);
595
596 #ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
dma_set_coherent_mask(struct device * dev,u64 mask)597 int dma_set_coherent_mask(struct device *dev, u64 mask)
598 {
599 /*
600 * Truncate the mask to the actually supported dma_addr_t width to
601 * avoid generating unsupportable addresses.
602 */
603 mask = (dma_addr_t)mask;
604
605 if (!dma_supported(dev, mask))
606 return -EIO;
607
608 dev->coherent_dma_mask = mask;
609 return 0;
610 }
611 EXPORT_SYMBOL(dma_set_coherent_mask);
612 #endif
613
dma_max_mapping_size(struct device * dev)614 size_t dma_max_mapping_size(struct device *dev)
615 {
616 const struct dma_map_ops *ops = get_dma_ops(dev);
617 size_t size = SIZE_MAX;
618
619 if (dma_map_direct(dev, ops))
620 size = dma_direct_max_mapping_size(dev);
621 else if (ops && ops->max_mapping_size)
622 size = ops->max_mapping_size(dev);
623
624 return size;
625 }
626 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
627
dma_need_sync(struct device * dev,dma_addr_t dma_addr)628 bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
629 {
630 const struct dma_map_ops *ops = get_dma_ops(dev);
631
632 if (dma_map_direct(dev, ops))
633 return dma_direct_need_sync(dev, dma_addr);
634 return ops->sync_single_for_cpu || ops->sync_single_for_device;
635 }
636 EXPORT_SYMBOL_GPL(dma_need_sync);
637
dma_get_merge_boundary(struct device * dev)638 unsigned long dma_get_merge_boundary(struct device *dev)
639 {
640 const struct dma_map_ops *ops = get_dma_ops(dev);
641
642 if (!ops || !ops->get_merge_boundary)
643 return 0; /* can't merge */
644
645 return ops->get_merge_boundary(dev);
646 }
647 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
648