1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Pid namespaces
4 *
5 * Authors:
6 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
7 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
8 * Many thanks to Oleg Nesterov for comments and help
9 *
10 */
11
12 #include <linux/pid.h>
13 #include <linux/pid_namespace.h>
14 #include <linux/user_namespace.h>
15 #include <linux/syscalls.h>
16 #include <linux/cred.h>
17 #include <linux/err.h>
18 #include <linux/acct.h>
19 #include <linux/slab.h>
20 #include <linux/proc_ns.h>
21 #include <linux/reboot.h>
22 #include <linux/export.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/signal.h>
25 #include <linux/idr.h>
26
27 static DEFINE_MUTEX(pid_caches_mutex);
28 static struct kmem_cache *pid_ns_cachep;
29 /* Write once array, filled from the beginning. */
30 static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
31
32 /*
33 * creates the kmem cache to allocate pids from.
34 * @level: pid namespace level
35 */
36
create_pid_cachep(unsigned int level)37 static struct kmem_cache *create_pid_cachep(unsigned int level)
38 {
39 /* Level 0 is init_pid_ns.pid_cachep */
40 struct kmem_cache **pkc = &pid_cache[level - 1];
41 struct kmem_cache *kc;
42 char name[4 + 10 + 1];
43 unsigned int len;
44
45 kc = READ_ONCE(*pkc);
46 if (kc)
47 return kc;
48
49 snprintf(name, sizeof(name), "pid_%u", level + 1);
50 len = sizeof(struct pid) + level * sizeof(struct upid);
51 mutex_lock(&pid_caches_mutex);
52 /* Name collision forces to do allocation under mutex. */
53 if (!*pkc)
54 *pkc = kmem_cache_create(name, len, 0,
55 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, 0);
56 mutex_unlock(&pid_caches_mutex);
57 /* current can fail, but someone else can succeed. */
58 return READ_ONCE(*pkc);
59 }
60
inc_pid_namespaces(struct user_namespace * ns)61 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
62 {
63 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
64 }
65
dec_pid_namespaces(struct ucounts * ucounts)66 static void dec_pid_namespaces(struct ucounts *ucounts)
67 {
68 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
69 }
70
create_pid_namespace(struct user_namespace * user_ns,struct pid_namespace * parent_pid_ns)71 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
72 struct pid_namespace *parent_pid_ns)
73 {
74 struct pid_namespace *ns;
75 unsigned int level = parent_pid_ns->level + 1;
76 struct ucounts *ucounts;
77 int err;
78
79 err = -EINVAL;
80 if (!in_userns(parent_pid_ns->user_ns, user_ns))
81 goto out;
82
83 err = -ENOSPC;
84 if (level > MAX_PID_NS_LEVEL)
85 goto out;
86 ucounts = inc_pid_namespaces(user_ns);
87 if (!ucounts)
88 goto out;
89
90 err = -ENOMEM;
91 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
92 if (ns == NULL)
93 goto out_dec;
94
95 idr_init(&ns->idr);
96
97 ns->pid_cachep = create_pid_cachep(level);
98 if (ns->pid_cachep == NULL)
99 goto out_free_idr;
100
101 err = ns_alloc_inum(&ns->ns);
102 if (err)
103 goto out_free_idr;
104 ns->ns.ops = &pidns_operations;
105
106 kref_init(&ns->kref);
107 ns->level = level;
108 ns->parent = get_pid_ns(parent_pid_ns);
109 ns->user_ns = get_user_ns(user_ns);
110 ns->ucounts = ucounts;
111 ns->pid_allocated = PIDNS_ADDING;
112
113 return ns;
114
115 out_free_idr:
116 idr_destroy(&ns->idr);
117 kmem_cache_free(pid_ns_cachep, ns);
118 out_dec:
119 dec_pid_namespaces(ucounts);
120 out:
121 return ERR_PTR(err);
122 }
123
delayed_free_pidns(struct rcu_head * p)124 static void delayed_free_pidns(struct rcu_head *p)
125 {
126 struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
127
128 dec_pid_namespaces(ns->ucounts);
129 put_user_ns(ns->user_ns);
130
131 kmem_cache_free(pid_ns_cachep, ns);
132 }
133
destroy_pid_namespace(struct pid_namespace * ns)134 static void destroy_pid_namespace(struct pid_namespace *ns)
135 {
136 ns_free_inum(&ns->ns);
137
138 idr_destroy(&ns->idr);
139 call_rcu(&ns->rcu, delayed_free_pidns);
140 }
141
copy_pid_ns(unsigned long flags,struct user_namespace * user_ns,struct pid_namespace * old_ns)142 struct pid_namespace *copy_pid_ns(unsigned long flags,
143 struct user_namespace *user_ns, struct pid_namespace *old_ns)
144 {
145 if (!(flags & CLONE_NEWPID))
146 return get_pid_ns(old_ns);
147 if (task_active_pid_ns(current) != old_ns)
148 return ERR_PTR(-EINVAL);
149 return create_pid_namespace(user_ns, old_ns);
150 }
151
free_pid_ns(struct kref * kref)152 static void free_pid_ns(struct kref *kref)
153 {
154 struct pid_namespace *ns;
155
156 ns = container_of(kref, struct pid_namespace, kref);
157 destroy_pid_namespace(ns);
158 }
159
put_pid_ns(struct pid_namespace * ns)160 void put_pid_ns(struct pid_namespace *ns)
161 {
162 struct pid_namespace *parent;
163
164 while (ns != &init_pid_ns) {
165 parent = ns->parent;
166 if (!kref_put(&ns->kref, free_pid_ns))
167 break;
168 ns = parent;
169 }
170 }
171 EXPORT_SYMBOL_GPL(put_pid_ns);
172
zap_pid_ns_processes(struct pid_namespace * pid_ns)173 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
174 {
175 int nr;
176 int rc;
177 struct task_struct *task, *me = current;
178 int init_pids = thread_group_leader(me) ? 1 : 2;
179 struct pid *pid;
180
181 /* Don't allow any more processes into the pid namespace */
182 disable_pid_allocation(pid_ns);
183
184 /*
185 * Ignore SIGCHLD causing any terminated children to autoreap.
186 * This speeds up the namespace shutdown, plus see the comment
187 * below.
188 */
189 spin_lock_irq(&me->sighand->siglock);
190 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
191 spin_unlock_irq(&me->sighand->siglock);
192
193 /*
194 * The last thread in the cgroup-init thread group is terminating.
195 * Find remaining pid_ts in the namespace, signal and wait for them
196 * to exit.
197 *
198 * Note: This signals each threads in the namespace - even those that
199 * belong to the same thread group, To avoid this, we would have
200 * to walk the entire tasklist looking a processes in this
201 * namespace, but that could be unnecessarily expensive if the
202 * pid namespace has just a few processes. Or we need to
203 * maintain a tasklist for each pid namespace.
204 *
205 */
206 rcu_read_lock();
207 read_lock(&tasklist_lock);
208 nr = 2;
209 idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
210 task = pid_task(pid, PIDTYPE_PID);
211 if (task && !__fatal_signal_pending(task))
212 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX);
213 }
214 read_unlock(&tasklist_lock);
215 rcu_read_unlock();
216
217 /*
218 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
219 * kernel_wait4() will also block until our children traced from the
220 * parent namespace are detached and become EXIT_DEAD.
221 */
222 do {
223 clear_thread_flag(TIF_SIGPENDING);
224 rc = kernel_wait4(-1, NULL, __WALL, NULL);
225 } while (rc != -ECHILD);
226
227 /*
228 * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE
229 * process whose parents processes are outside of the pid
230 * namespace. Such processes are created with setns()+fork().
231 *
232 * If those EXIT_ZOMBIE processes are not reaped by their
233 * parents before their parents exit, they will be reparented
234 * to pid_ns->child_reaper. Thus pidns->child_reaper needs to
235 * stay valid until they all go away.
236 *
237 * The code relies on the pid_ns->child_reaper ignoring
238 * SIGCHILD to cause those EXIT_ZOMBIE processes to be
239 * autoreaped if reparented.
240 *
241 * Semantically it is also desirable to wait for EXIT_ZOMBIE
242 * processes before allowing the child_reaper to be reaped, as
243 * that gives the invariant that when the init process of a
244 * pid namespace is reaped all of the processes in the pid
245 * namespace are gone.
246 *
247 * Once all of the other tasks are gone from the pid_namespace
248 * free_pid() will awaken this task.
249 */
250 for (;;) {
251 set_current_state(TASK_INTERRUPTIBLE);
252 if (pid_ns->pid_allocated == init_pids)
253 break;
254 /*
255 * Release tasks_rcu_exit_srcu to avoid following deadlock:
256 *
257 * 1) TASK A unshare(CLONE_NEWPID)
258 * 2) TASK A fork() twice -> TASK B (child reaper for new ns)
259 * and TASK C
260 * 3) TASK B exits, kills TASK C, waits for TASK A to reap it
261 * 4) TASK A calls synchronize_rcu_tasks()
262 * -> synchronize_srcu(tasks_rcu_exit_srcu)
263 * 5) *DEADLOCK*
264 *
265 * It is considered safe to release tasks_rcu_exit_srcu here
266 * because we assume the current task can not be concurrently
267 * reaped at this point.
268 */
269 exit_tasks_rcu_stop();
270 schedule();
271 exit_tasks_rcu_start();
272 }
273 __set_current_state(TASK_RUNNING);
274
275 if (pid_ns->reboot)
276 current->signal->group_exit_code = pid_ns->reboot;
277
278 acct_exit_ns(pid_ns);
279 return;
280 }
281
282 #ifdef CONFIG_CHECKPOINT_RESTORE
pid_ns_ctl_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)283 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
284 void *buffer, size_t *lenp, loff_t *ppos)
285 {
286 struct pid_namespace *pid_ns = task_active_pid_ns(current);
287 struct ctl_table tmp = *table;
288 int ret, next;
289
290 if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns))
291 return -EPERM;
292
293 /*
294 * Writing directly to ns' last_pid field is OK, since this field
295 * is volatile in a living namespace anyway and a code writing to
296 * it should synchronize its usage with external means.
297 */
298
299 next = idr_get_cursor(&pid_ns->idr) - 1;
300
301 tmp.data = &next;
302 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
303 if (!ret && write)
304 idr_set_cursor(&pid_ns->idr, next + 1);
305
306 return ret;
307 }
308
309 extern int pid_max;
310 static struct ctl_table pid_ns_ctl_table[] = {
311 {
312 .procname = "ns_last_pid",
313 .maxlen = sizeof(int),
314 .mode = 0666, /* permissions are checked in the handler */
315 .proc_handler = pid_ns_ctl_handler,
316 .extra1 = SYSCTL_ZERO,
317 .extra2 = &pid_max,
318 },
319 { }
320 };
321 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
322 #endif /* CONFIG_CHECKPOINT_RESTORE */
323
reboot_pid_ns(struct pid_namespace * pid_ns,int cmd)324 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
325 {
326 if (pid_ns == &init_pid_ns)
327 return 0;
328
329 switch (cmd) {
330 case LINUX_REBOOT_CMD_RESTART2:
331 case LINUX_REBOOT_CMD_RESTART:
332 pid_ns->reboot = SIGHUP;
333 break;
334
335 case LINUX_REBOOT_CMD_POWER_OFF:
336 case LINUX_REBOOT_CMD_HALT:
337 pid_ns->reboot = SIGINT;
338 break;
339 default:
340 return -EINVAL;
341 }
342
343 read_lock(&tasklist_lock);
344 send_sig(SIGKILL, pid_ns->child_reaper, 1);
345 read_unlock(&tasklist_lock);
346
347 do_exit(0);
348
349 /* Not reached */
350 return 0;
351 }
352
to_pid_ns(struct ns_common * ns)353 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
354 {
355 return container_of(ns, struct pid_namespace, ns);
356 }
357
pidns_get(struct task_struct * task)358 static struct ns_common *pidns_get(struct task_struct *task)
359 {
360 struct pid_namespace *ns;
361
362 rcu_read_lock();
363 ns = task_active_pid_ns(task);
364 if (ns)
365 get_pid_ns(ns);
366 rcu_read_unlock();
367
368 return ns ? &ns->ns : NULL;
369 }
370
pidns_for_children_get(struct task_struct * task)371 static struct ns_common *pidns_for_children_get(struct task_struct *task)
372 {
373 struct pid_namespace *ns = NULL;
374
375 task_lock(task);
376 if (task->nsproxy) {
377 ns = task->nsproxy->pid_ns_for_children;
378 get_pid_ns(ns);
379 }
380 task_unlock(task);
381
382 if (ns) {
383 read_lock(&tasklist_lock);
384 if (!ns->child_reaper) {
385 put_pid_ns(ns);
386 ns = NULL;
387 }
388 read_unlock(&tasklist_lock);
389 }
390
391 return ns ? &ns->ns : NULL;
392 }
393
pidns_put(struct ns_common * ns)394 static void pidns_put(struct ns_common *ns)
395 {
396 put_pid_ns(to_pid_ns(ns));
397 }
398
pidns_install(struct nsset * nsset,struct ns_common * ns)399 static int pidns_install(struct nsset *nsset, struct ns_common *ns)
400 {
401 struct nsproxy *nsproxy = nsset->nsproxy;
402 struct pid_namespace *active = task_active_pid_ns(current);
403 struct pid_namespace *ancestor, *new = to_pid_ns(ns);
404
405 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
406 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
407 return -EPERM;
408
409 /*
410 * Only allow entering the current active pid namespace
411 * or a child of the current active pid namespace.
412 *
413 * This is required for fork to return a usable pid value and
414 * this maintains the property that processes and their
415 * children can not escape their current pid namespace.
416 */
417 if (new->level < active->level)
418 return -EINVAL;
419
420 ancestor = new;
421 while (ancestor->level > active->level)
422 ancestor = ancestor->parent;
423 if (ancestor != active)
424 return -EINVAL;
425
426 put_pid_ns(nsproxy->pid_ns_for_children);
427 nsproxy->pid_ns_for_children = get_pid_ns(new);
428 return 0;
429 }
430
pidns_get_parent(struct ns_common * ns)431 static struct ns_common *pidns_get_parent(struct ns_common *ns)
432 {
433 struct pid_namespace *active = task_active_pid_ns(current);
434 struct pid_namespace *pid_ns, *p;
435
436 /* See if the parent is in the current namespace */
437 pid_ns = p = to_pid_ns(ns)->parent;
438 for (;;) {
439 if (!p)
440 return ERR_PTR(-EPERM);
441 if (p == active)
442 break;
443 p = p->parent;
444 }
445
446 return &get_pid_ns(pid_ns)->ns;
447 }
448
pidns_owner(struct ns_common * ns)449 static struct user_namespace *pidns_owner(struct ns_common *ns)
450 {
451 return to_pid_ns(ns)->user_ns;
452 }
453
454 const struct proc_ns_operations pidns_operations = {
455 .name = "pid",
456 .type = CLONE_NEWPID,
457 .get = pidns_get,
458 .put = pidns_put,
459 .install = pidns_install,
460 .owner = pidns_owner,
461 .get_parent = pidns_get_parent,
462 };
463
464 const struct proc_ns_operations pidns_for_children_operations = {
465 .name = "pid_for_children",
466 .real_ns_name = "pid",
467 .type = CLONE_NEWPID,
468 .get = pidns_for_children_get,
469 .put = pidns_put,
470 .install = pidns_install,
471 .owner = pidns_owner,
472 .get_parent = pidns_get_parent,
473 };
474
pid_namespaces_init(void)475 static __init int pid_namespaces_init(void)
476 {
477 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
478
479 #ifdef CONFIG_CHECKPOINT_RESTORE
480 register_sysctl_paths(kern_path, pid_ns_ctl_table);
481 #endif
482 return 0;
483 }
484
485 __initcall(pid_namespaces_init);
486